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Abstract—Predicting query execution time is useful in many
database management issues including admission control, query
scheduling, progress monitoring, and system sizing. Recently the
research community has been exploring the use of statistical
machine learning approaches to build predictive models for
this task. An implicit assumption behind this work is that
the cost models used by query optimizers are insufficient for
query execution time prediction. In this paper we challenge this
assumption and show while the simple approach of scaling the
optimizer’s estimated cost indeed fails, a properly calibrated
optimizer cost model is surprisingly effective. However, even
a well-tuned optimizer cost model will fail in the presence of
errors in cardinality estimates. Accordingly we investigate the
novel idea of spending extra resources to refine estimates for the
query plan after it has been chosen by the optimizer but before
execution. In our experiments we find that a well calibrated query
optimizer model along with cardinality estimation refinement
provides a low overhead way to provide estimates that are
always competitive and often much better than the best reported
numbers from the machine learning approaches.

I. INTRODUCTION

Predicting query execution time has always been desir-

able if somewhat elusive capability for database management

systems. This capability has received a flurry of attention

recently, perhaps because it has become increasingly important

in the context of offering databases as a service (DaaS). A

DaaS provider has to manage infrastructure costs as well

as honor service level agreements (SLAs), and many system

management decisions can benefit from prediction of query

execution time, including:

• Admission Control: Knowing the execution time of an

incoming query can enable cost-based decisions on ad-

mission control [28], [31].

• Query Scheduling: Knowing the query execution time is

crucial in deadline and latency aware scheduling [9], [14].

• Progress Monitoring: Knowing the execution time of an

incoming query can help avoid “rogue queries” that are

submitted in error and take an unreasonably long time to

execute [24].

• System Sizing: Knowing query execution time as a func-

tion of hardware resources can help in system sizing [30].

1 The work was done while the author was at NEC Laboratories America.

Recent work on predicting query execution time [4], [12],

[28], [31] has focused on various machine learning techniques,

which treat the database system as a black box and try to

learn a query running time prediction model. This move

toward black box machine learning techniques is implicitly

and sometimes explicitly motivated by a belief that query

optimizers’ cost estimations are not good enough for run time

prediction. For example, in [12], the authors found that using

linear regression to map the cost from Neoview’s commercial

query optimizer to the actual running was not effective (see

Figure 17 of [12]). In [4], the same approach was used to map

PostgreSQL’s estimate to the actual execution time, and similar

disappointing results were obtained (see Figure 5 of [4]).

It is clear from this previous work that post-processing the

optimizer cost estimate is not effective. However, we argue

in this paper that this does not imply that optimizer estimates

are not useful — to the contrary, our experiments show that if

the optimizer’s internal cost model is tuned before making the

estimate, the optimizer’s estimates are competitive with and

often superior to those obtained by more complex approaches.

In more detail, for specificity consider the cost model used by

the PostgreSQL query optimizer:

Example 1 (PostgreSQL’s Cost Models): PostgreSQL’s op-

timizer uses a vector of five parameters (referred to as cost

units) in its cost model: c = (cs, cr, ct, ci, co)
⊺, defined as

follows:

1) cs: seq page cost, the I/O cost to sequentially access a
page.

2) cr: random page cost, the I/O cost to randomly access a
page.

3) ct: cpu tuple cost, the CPU cost to process a tuple.
4) ci: cpu index tuple cost, the CPU cost to process a tuple
via index access.

5) co: cpu operator cost, the CPU cost to perform an opera-
tion such as hash or aggregation.

The cost CO of an operatorO in a query plan is then computed
by a linear combination of cs, cr, ct, ci, and co:

CO = n
⊺
c = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (1)

The values n = (ns, nr, nt, ni, no)
⊺ here represent the number

of pages sequentially scanned, the number of pages randomly



accessed, and so forth, during the execution of the operator

O. The total estimated cost of a query plan is then simply
the sum of the costs of the individual operators in the query

plan. �

The accuracy of CO hence depends on both the accuracy

of the c’s and the n’s. In PostgreSQL, by default, cs = 1.0,
cr = 4.0, ct = 0.01, ci = 0.005, and co = 0.0025. The
cost CO in Equation (1) is thus reported in units of sequential

page I/O cost (since cs = 1.0). Note that these cost units were
somewhat arbitrarily set by the optimizer designers with no

knowledge of the system on which the query is actually being

run. Using linear regression to map an estimate so obtained

will only work if the ratios among these units are correct, and

not surprisingly, these default ratios were far from correct on

our systems.

Of course, the accuracy of CO also depends on the quan-

tities ns, nr, nt, ni, and no. Determining accurate values for

these quantities is not a matter of calibration — rather, it is a

matter of good cardinality estimation in the optimizer. Hence

one could say that we have reduced the problem of query time

prediction to the previously unsolved problem of cardinality

estimation. In a sense this is true, but further reflection reveals

that we are solving a subtly but significantly different problem.

In their traditional role, cardinality estimates are required

for every cardinality encountered as the optimizer searches

thousands or tens of thousands of alternative plans. This

of course means that the estimation process itself must be

extremely efficient, or long optimization times will result.

But our problem is different: we must determine cardinalities

for the single plan that the optimizer has already chosen.

The fact that we are working on a single plan means we

can afford to spend some extra time to improve the original

optimizer estimates. Specifically, in this paper we consider

using sampling-based approaches to refine these estimates.

We believe that although sampling-based approaches may be

too expensive to be used while searching for good query

plans, they can be practically used for correcting the erroneous

cardinality estimates in a ready-to-be-executed query plan.

Our experiments show that if we correctly calibrate the

constants in the optimizer’s cost model, it yields good query

execution time estimates when the cardinality estimates are

good (as is the case in, for example, the uniformly distributed

data set variants of the TPC-H benchmark.) Furthermore,

“expensive” techniques such as sampling can be effectively

used to improve the cardinality estimates for the chosen plan.

Putting the two together yields cost estimates that are as good

or better than those obtained by previously studied “black box”

machine learning approaches.

The rest of the paper is organized as follows. We first give an

overview of our cost-model based approach in Section II. We

then discuss the two error-correction steps, i.e., calibrating cost

units and cardinality estimates, in Sections III and IV, respec-

tively. We further conduct extensive experimental evaluations

and present our results in Section V. We summarize related

work in Section VI and conclude the paper in Section VII.
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Fig. 1. The architecture of our framework.

II. OUR FRAMEWORK

Example 1 demonstrates that errors in c and n might prevent

us from leveraging CO = n
⊺
c to predict query execution time.

Our basic idea is simply to correct these errors in a principled

fashion.

As illustrated in Figure 1, our framework consists of two

error-correction stages, namely, an offline profiling stage to

calibrate the c, and an online sampling stage to refine the n:

• Offline profiling to calibrate c:

The errors in c reflect an inaccurate view of the un-

derlying hardware and database system. To correct this,

instead of using the default values assigned by the query

optimizer, we calibrate them by running a family of

profiling queries on the system on which the queries will

be run. Note that this profiling stage is offline. Moreover,

it only needs to be run once as long as the underlying

hardware and software configuration does not change.

We describe the details of the profiling stage in Sec-

tion III.

• Online sampling to refine n:

The errors in n reflect errors in cardinality estimation.

Once the query plan has been chosen by the query

optimizer, we re-estimate cardinalities, if necessary, using

a sampling-based approach. Although using sampling

for cardinality estimation is well-known, current DBMS

optimizers exclude sampling from their implementations,

perhaps due to the additional overhead sampling incurs.

However, since we only have to estimate cardinalities

for one plan, the overhead of sampling is affordable in

practice. We describe the details of the sampling stage in

Section IV. We note that the important idea is that there

is an opportunity to spend extra time refining cardinality

estimates once a query plan has been chosen; sampling

is one example of how that could be done, and finding

other techniques is an interesting area for future work.

The advantages of our framework for predicting query

execution time include the following:

• Lightweight: The profiling step is fast and so can be

conducted in a new hardware environment quickly. The

sampling step, as will be shown, introduces small (usually

< 10%) and tunable overhead.



• No training data needed: Unlike machine-learning-based

approaches, which heavily rely on training data repre-

sentative of the actual workload, our framework does not

rely on such a training data set and so can handle ad hoc

queries well.

• White-box approach: Instead of sophisticated statistical

models (e.g., SVM and KCCA), which are often difficult

to understand for non-experts, our framework adopts an

intuitive white-box approach that fits naturally into the

existing paradigm of query optimization and evaluation

in relational database systems.

III. CALIBRATING COST UNITS

In this section we consider the task of calibrating the

cost units in the optimizer cost model to match the true

performance of the hardware and software on which the query

will be run. It turns out that closely related problems have

been studied in the context of heterogeneous DBMS [10], DB

resource virtualization [26], and storage type selection [32].

Previous work, however, has focused either on cost models for

particular operators (e.g., selections and 2-way joins in [10]),

or on a subset of cost units dedicated to a particular subsystem

of the DBMS (e.g., CPU in [26] and I/O in [32]). We build

on this previous work following their technique of using a set

of calibration queries. The basic idea is that for each cost

unit to be calibrated, one designs some particular query that

isolates this parameter from the others. In practice, this is not

completely straightforward in that not every cost unit can be

isolated in a single query.

A. Guiding Principles

Ideally, we wish to have one calibration query for each

parameter. However, this is not always possible. For instance,

there is no SQL query which involves the cpu operator cost

but not the cpu tuple cost. A natural generalization is then to

use k calibration queries for k parameters, as was done in [26].
The following example illustrates this idea.

Example 2 (Calibration Query): Suppose R is some rela-

tion that is buffer pool resident. We can use the following two

calibration queries to obtain the parameters cpu tuple cost and

cpu operator cost:

• Q1: SELECT * FROM R

• Q2: SELECT COUNT(*) FROM R

Since R is memory resident, there is no I/O cost for Q1 or

Q2. Q1 only involves the parameter cpu tuple cost, while Q2

involves both cpu tuple cost and cpu operator cost (due to

the COUNT aggregation). Suppose the execution time of Q1

and Q2 are t1 and t2, respectively. Since the overhead due to
cpu tuple cost for Q1 and Q2 are the same, we can then infer

cpu operator cost with respect to the execution time t2 − t1.
Specifically, let the number of tuples processed be nt, and

the number of CPU operations be no, as in Equation (1). In

PostgreSQL’s cost model, a CPU operation means things like

adding two integers, hashing an attribute, and so on. no is

thus the number of such operations performed. On the other

hand, nt is the number of input tuples (sometimes the output

tuples or the sum of both, depending on the specific operator).

Here, for Q1, the cost model will only charge one ct per tuple,
since the CPU merely reads in the tuple without any further

processing. For Q2, in addition to charging one ct per tuple
for reading it, the cost model will also charge one co per tuple
for doing the aggregation (i.e., COUNT), and hence the total

CPU cost is estimated to be ntct + noco. Note that for this
particular query Q2, we coincidentally have nt = no = |R|.
In general, nt and no could be different. For example, for the

sort operator, nt is the number of input tuples, and no is the

number of comparisons made. In this case, no = nt lognt.

Now suppose that Tt is the time for the CPU to process

one tuple, and To is the time for one CPU operation. We then

have

t1 = Tt · nt,

t2 = Tt · nt + To · no.

Solving these two equations gives us the values of Tt and

To, in turn determines ct and co in Equation (1). �

In general, with a set of calibration queries Q, we first
estimate ni for each qi ∈ Q and then measure its execution
time ti. With N = (n1, · · · ,nk)

⊺ and t = (t1, · · · , tk)
⊺, we

can solve the following equation for c:

Nc = t,

which is just a system of k equations.
The next question is then, given a set of optimizer cost units

c, how to design a set of calibration queries Q. Our goal is to
design a set with the following properties:

• Completeness: Each cost unit in c should be covered by

at least one calibration query q ∈ Q.
• Conciseness: Each query q ∈ Q should be necessary to
guarantee completeness. In other words, any subset Q′ ⊂
Q is not complete.

• Simplicity: Each query q ∈ Q should be as simple as
possible when Q is both complete and concise.

Clearly “completeness” is mandatory, while the others are just

“desirable”. Since the possible number of SQL queries on a

given database is infinite, we restrict our attention to concise

complete subsets. However, there is still infinite number of sets

Q that are both complete and concise. Simpler queries are
preferred over more complex, because it is easier to obtain

correct values for the cardinalities such as nt and no in

Example 2 (getting exact values for such cardinalities may

be difficult for operators embedded in deep query trees).

B. Implementation

We designed the 5 calibration queries for the PostgreSQL

optimizer as follows. We chose queries qi forQ by introducing
individual cost units one by one:

• cpu tuple cost: We use query q1:
SELECT * FROM R

as the calibration query. The relation R is first paged into

the buffer pool, and hence there is no I/O cost involved:

n1 = (0, 0, nt1, 0, 0)
⊺.



• cpu operator cost: We use query q2:
SELECT COUNT(*) FROM R

as another calibration query. We then use the method

illustrated in Example 2. Again, R is memory resident:

n2 = (0, 0, nt2, 0, no2)
⊺ and nt2 = nt1.

• cpu index tuple cost: We use query q3:
SELECT * FROM R WHERE R.A < a

where R.A has a clustered index and we pick a so

that the optimizer will choose an index scan. This

query involves cpu tuple cost, cpu index tuple cost,

and cpu operator cost. Once again, R is memory resi-

dent: n3 = (0, 0, nt3, ni3, no3)
⊺.

• seq page cost: We use query q4:
SELECT * FROM R

as the calibration query. This query will be executed

in a sequential scan, and the cost model only involves

overhead in terms of seq page cost and cpu tuple cost:

n4 = (ns4, 0, nt4, 0, 0)
⊺.

• rand page cost: We use query q5:
SELECT * FROM R where R.B < b

as the calibration query. Here R.B is some attribute

of the relation R on which an unclustered index is

built. The values of B are uniformly generated, and we

pick b so that the optimizer chooses an index scan.

Ideally, we would like that the qualified tuples were

completely randomly distributed so that we could isolate

the parameter rand page cost. However, in practice, pure

random access is difficult to achieve, since the execution

subsystem can first determine the pages that need to be

accessed based on the qualified tuples before it actually

accesses the pages. In this sense, local sequential accesses

are unavoidable, and the query plan involves more or

less overhead in terms of seq page cost. In fact, a

typical query plan of this query will contain all the five

parameters: n5 = (ns5, nr5, nt5, ni5, no5)
⊺.

Notice that ni can be estimated relatively accurately due to

simplicity of qi. Furthermore, the 5 equations generated by
the 5 queries are independent, which guarantees the existence

of a unique solution for c. This can be easily seen by observing

the matrix N = (n1, · · · ,n5)
⊺, namely,

N =













0 0 nt1 0 0
0 0 nt2 0 no2

0 0 nt3 ni3 no3

ns4 0 nt4 0 0
ns5 nr5 nt5 ni5 no5













.

Note that the determinant |N| satisfies |N| 6= 0, since by
rearranging the columns of N, we can make it a triangular

matrix.

To make this approach more robust, our implementation

uses multiple queries for each qi and finds the best-fitting of
c. This is done by picking different relations R and different

values for the a in the predicates of the form R.A < a.

IV. REFINING CARDINALITY ESTIMATION

We discuss how to refine n in this section. To make

this paper self-contained, we first discuss how the optimizer

obtains n for a given query plan. We then propose a sampling-

based method of refining the cardinality estimates (and hence

the n) of the final plan chosen by the optimizer. We describe

the details of the algorithm and our current implementation.

A. Optimizer’s Estimation of n

The optimizer estimates query execution cost by aggregating

the cost estimates of the operators in the query plan. To

distinguish blocking and non-blocking operators, this cost

model comprises of the start cost and total cost of each

operator:

• start cost (sc) is the cost before the operator can produce
its first output tuple;

• total cost (tc) is the cost after the operator generates all
of its output tuples.

Note that the cost of an operator includes the cost of its child

operators.

As an example, we show how n is derived for the in-memory

sort and nested-loop join operators in PostgreSQL. These

operators are representative of blocking and non-blocking

operators, respectively. In the following illustration, run cost

(rc for short) is defined as rc = tc − sc, and Nt is the

(estimated) number of input tuples for the operator. Observe

that the costs are given as linear combinations of c.

Example 3 (In-Memory Sort): Quick sort is used for tables

that optimizer estimates can be completely held in memory.

The values sc and rc are estimated as follows:

sc = 2 · co ·Nt · logNt + tc of child,

rc = ct ·Nt.

�

Example 4 (Nested-Loop Join): The nested-loop join oper-

ator joins two input relations. The sc and rc are estimated as

follows:

sc = sc of outer child+ sc of inner child,

rc = ct ·N
o
t ·N

i
t +No

t · rc of inner child.

Here No
t and N

i
t are the number of input tuples from the outer

and inner child operator, respectively. �

Notice that the main uncertainty in n comes from the

estimated input cardinality Nt in both of these examples. In

general, the logic flow in the cost models of PostgreSQL

optimizer can be summarized with five steps:

1) estimate the input/output cardinality;

2) compute the CPU cost based on cardinality estimates;

3) estimate the number of accessed pages according to the

cardinality estimates;

4) compute the I/O cost based on estimates of accessed pages;

5) compute the total cost as the sum of CPU and I/O cost.

Hence, our main task in calibrating n is to refine the in-

put/output cardinalities for each operator.



B. Cardinality Refinement

As mentioned in the introduction, traditionally cardinality

estimation has had to satisfy strict performance constraints

because it is done for every plan considered by the optimizer.

This has led to compromises that may produce inaccuracies

in estimates that are too large for run time estimation.

Our goal is to refine the cardinality estimates for the

plan chosen by the optimizer. Clearly, this will increase the

overhead of the optimization phase. However, the key insight

here is that because the refinement procedure only needs to

be performed once per query, rather than once per plan, we

can afford to spend more time than is possible for traditional

cardinality estimation.

C. A Sampling-Based Approach

In principle, any approach that can improve cardinality

estimation can be applied. We use a generalized version of

the sequential-sampling estimator proposed in [15] for the

following two reasons:

• It incorporates a tunable trade-off between efficiency (i.e.,

the number of samples taken) and effectiveness (i.e., the

precision of the estimates);

• It can simultaneously estimate cardinalities for multiple

operators in the query plan.

In this paper, we extend the framework in [15] in the

following two aspects:

• The estimator described in [15] is for join queries. We

generalize the framework to queries with arbitrary num-

ber of selections and joins. We prove that this extension

preserves the two key properties, namely, unbiasedness

and strong consistency, of the original estimator.

• The framework described in [15] uses random disk ac-

cesses to take samples. In comparison, we propose to

take samples offline, store them as materialized views,

and directly use them at runtime. This greatly reduces the

runtime overhead and requires very minimal changes to

the database engine (e.g., a few hundred lines of C code

in the case of PostgreSQL). We further show that this

offline sampling preserves the semantics of the original

online sampling.

We next first describe the estimator in its generalized form,

and then describe our cardinality refinement algorithm and its

implementation details.

D. The Estimator

Let D be a database consisting of K relations R1, ..., RK .

Suppose that Rk is partitioned into mk blocks each with size

Nk, namely, |Rk| = mkNk. Consider the two basic relational

operators: selection σF (F is a boolean formula representing
the selection condition), and cross-product ×. For σF , we

define the output of an input block B to be σF (B). For ×,
we define the output of the two input blocks B and B′ to

be B×B′. Instead of estimating the cardinality of the output

relation directly, the estimator will estimate the selectivity of

the operator, which is defined as the output cardinality divided

by the input cardinality. Specifically, the selectivity of the

selection operator σF is ρR = |σF (R)|/|R| where R is the
input relation. Moreover, the selectivity of σF on a particular

block B of R is ρB = |σF (B)|/|B|. On the other hand, the
selectivity of the cross-product operator × is always 1. It is
then straightforward to obtain the output cardinality once we

know the selectivity of the operator1.

In the following, without loss of generality, we will as-

sume that the query considered is over relations R1, ...,

RK , and we use the notation R = R1 × · · · × RK . Let

B(k, j) be the j-th block of relation k (1 ≤ j ≤ mk,

and 1 ≤ k ≤ K). We use B(L1,i1 , ..., LK,iK ) to represent
B(1, L1,i1) × · · · × B(K,LK,iK ), where B(k, Lk,ik) is the
block (with index Lk,ik ) randomly picked from the relation

Rk in the ik-th sampling step. Moreover, we use the notation
Bi if i1 = i2 = · · · = iK = i.

Lemma 1: Consider σF (R). Let B1, ..., Bn be a sequence

of n random samples (with replacement) from R. Define

ρBi
= |σF (Bi)|/|Bi| (1 ≤ i ≤ n). Then E

[

ρBi

]

= ρR.

Due to space limitations we defer the proofs of our results

to the full version of this paper [1].

Define

ρ̃R =
1

n

n
∑

i=1

ρBi
.

Then it is easy to see from Lemma 1 that E
[

ρ̃R
]

= ρR.
Moreover, since the random variables ρBi

are i.i.d., by the

strong law of large numbers, we have Pr
[

lim
n→∞

ρ̃R = ρR
]

=

1. We summarize this result in the following lemma:

Lemma 2: E
[

ρ̃R
]

= ρR, and Pr
[

lim
n→∞

ρ̃R = ρR
]

= 1.

Lemma 2 can be generalized to queries with arbitrary

number of selections and joins:

Theorem 1: Let q be any query involving only selections
and joins over R, and let ρq be the selectivity of q. Then
E
[

ρ̃q
]

= ρq , and Pr
[

lim
n→∞

ρ̃q = ρq
]

= 1.

In statistical terminology, the estimator ρ̃q is unbiased, and
strongly consistent for ρq: the more samples we take, the closer
ρ̃q is to ρq . This gives us a way to control the trade-off between
the estimation accuracy and the number of samples we take.

The estimator we just described takes samples from each

relation uniformly and independently (called independent sam-

pling [15]). Therefore, after n steps, we have n observations in
total. In [15], the authors further discussed another alternative

called cross-product sampling. The idea is that, at the i-th
step, assuming the K blocks taken from the K relations

are B(1, L1,i), ..., B(K,LK,i), we can actually join each
B(k, Lk,i) with each B(k′, Lk′,i′) such that 1 ≤ i′ ≤ i and

1Note that the input cardinality is already known before the estimation
procedure runs. It is simply the product of the cardinalities of the underlying
relations that are input to the operator, which can be directly obtained from
the statistics stored in system catalogs.



k′ 6= k (note that in the case of independent sampling, we
only join among the blocks with i′ = i). In this way, we can
obtain nK observations after n steps.
Define

ρ̃cp
R

=
1

nK

n
∑

i1=1

· · ·

n
∑

iK=1

ρB(L1,i1
,··· ,LK,iK

). (2)

From Lemma 1, it is clear that ρ̃cp
R
is still unbiased, i.e.,

E
[

ρ̃cp
R

]

= ρR. However, since now the ρB(L1,i1
,··· ,LK,iK

)’s

are no longer independent, we cannot directly apply the strong

law of large numbers to show the strong consistency of ρ̃cp
R
,

although it still holds here:

Lemma 3: E
[

ρ̃cp
R

]

= ρR, and Pr
[

lim
n→∞

ρ̃cp
R

= ρR
]

= 1.

Therefore, Theorem 1 still holds in the case of cross-

product sampling. It is also shown that cross-product sampling

is always superior to independent sampling because of its

lower sample variance (see Theorem 2 of [15]). Therefore,

our cardinality refinement algorithm discussed next is based

on cross-product sampling instead of independent sampling.

E. The Cardinality Refinement Algorithm

There are several considerations when designing our refine-

ment algorithm based on the sampling-based estimator.

First, the estimator needs to access disk to take samples.

However, since samples should be randomly taken, this means

significant random reads may be required during the sampling

phase, which may be too costly in practice. To overcome

this issue, as has been suggested in previous applications of

sampling in DBMS (e.g., [25]), we take samples offline and

store them as materialized views in the database. We found in

our experiments that the number of samples required is quite

small and therefore can be cached in memory during runtime.

Second, the estimator we discussed so far focuses on

estimating the selectivity (or equivalently, cardinality) for a

single operator. However, in practice, a query plan may contain

more than one operator, and for our purpose of refining the

cost estimates of this plan, we need to estimate the cardinality

for each operator. Another good property of the estimator is

that, for a query plan with a fixed join order, which is always

the case when refinement is performed, we can estimate all se-

lection and join operators in the plan simultaneously. Consider,

for example, a three-way join query q = R1 ⊲⊳ R2 ⊲⊳ R3. We

need to estimate the cardinality for both q′ = R1 ⊲⊳ R2 and

q. However, after we are done with q′, we can estimate for q
by directly evaluating q′ ⊲⊳ R3. This means, we can estimate

the cardinality for each operator by simply invoking the query

plan q over the sample relations and then apply the estimator
to each operator (see Theorem 2 below).

Theorem 2: Let q = σF (R1 × · · · × RK) be an arbitrary
query with only selections and joins. For every subquery

qi = σFi
(R1 × · · · × Ri) (1 ≤ i ≤ K , and Fi is the

selection condition only involving R1, ..., Ri), E
[

ρ̃qi
]

= ρqi
and Pr

[

lim
n→∞

ρ̃qi = ρqi
]

= 1.

Third, while the estimator discussed above is both unbiased

and strongly consistent, it only works for queries involving

selections and joins. In practice, SQL queries can contain

additional operators. A particularly common class of such

operators we encountered in TPC-H queries is aggregates, for

which we need to estimate the number of distinct values in the

input relation. Aggregates basically collapse the underlying

data distribution, so the estimator cannot work for queries

containing aggregates. As a result, we can only apply the

sampling-based estimator to the part of the query plan that

does not involve aggregates. For aggregate operators, we

simply rely on PostgreSQL’s models for estimating output

cardinalities. However, note that, since the refinement phase

may change the input estimates for the aggregate, the output

estimates for the aggregate may change as well. We observed

in our experimental evaluation (see Section V) that the current

approach already leads to promising prediction of execution

time in practice. We leave the problem of further integrating

state-of-the-art estimators (e.g., the GEE estimator in [6]) for

estimating the number of distinct values as future work.

Our cardinality refinement algorithm is illustrated in Al-

gorithm 1. For the input query q, we first call the optimizer
to obtain its query plan Pq (line 30). We then modify Pq

by replacing the relations it touches with the corresponding

sample relations (i.e., materialized views), and run Pq over

the sample relations (line 31 to 34). After that, we call the

procedure RecomputeCardinality to refine the cardinality
estimation for each operator in Pq (line 36).

The procedure RecomputeCardinality (line 11 to 27)
works as follows. It first invokes EstimateCardinality on
the child operators (if any) of the current operator O (line
12 to 17). It then checks the flag HasAgg, which indicates

whether O has any descendant operator that is an aggregate.
If the flag is set, then it simply calls the optimizer’s own

model to do cardinality estimation for O (line 18 to 19), since
our estimator refinement cannot be applied in this case, as

discussed above. If, on the other hand, the flag is not set, then

it further checks whether O is itself an aggregate. If so, it
again calls the optimizer’s cardinality estimation model for O,
and sets the flag HasAgg (line 21 to 23). If not, it invokes

EstimateCardinality to estimate the cardinality of O (line
25). Note that due to the order that EstimateCardinality is
invoked, the estimator is applied to each operator in a bottom-

up manner. This guarantees that the input cardinality of any

operator will be estimated after its child operators (if any).

While this is not necessary if we only need to refine the

cardinalities, it is necessary since we need to further estimate

based on the cardinality (for example, the number of pages

accessed), which enforces the same bottom-up ordering here

since the cost of an operator covers the cost of its child

operators as well (recall Example 3 and 4).

The procedure EstimateCardinality (line 3 to 9) imple-
ments the estimator. GetSubP lan returns the subtree PO of

the query plan with the current operator O as the root. Ns is

the product of the cardinalities of the sample relations involved

in PO , and Es is the exact output cardinality of O when



Algorithm 1: Cardinality Refinement

Input: q, a SQL query
Output: Pq, query plan of q with refined cardinalities

1 HasAgg ← False;
2

3 EstimateCardinality(O):
4 PO ← GetSubP lan(O);
5 Ns ←

∏

Rs∈SampleRelations(PO ) |R
s|;

6 Es ← CardinalityBySampling(O);
7 NO ←

∏

RO∈Relations(PO) |RO|;

8 EO ← NO ·
Es

Ns
;

9 Treat EO as the cardinality estimate for O;
10

11 RecomputeCardinality(O):
12 if O has left child Olc then

13 EstimateCardinality(Olc);
14 end

15 if O has right child Orc then

16 EstimateCardinality(Orc);
17 end

18 if HasAgg then

19 Use optimizer’s model to estimate for O;
20 else

21 if O is aggregate then
22 Use optimizer’s model to estimate for O;
23 HasAgg ← True;
24 else

25 EstimateCardinality(O);
26 end

27 end

28

29 Main:

30 Pq ← GetP lanFromOptimizer(q);
31 foreach R ∈ Relations(Pq) do
32 Replace R with its sample relation Rs;

33 end

34 Run the plan Pq over the sample relations;

35 O ← GetRootOperator(Pq);
36 RecomputeCardinality(O);
37 return Pq;

the plan is evaluated over sample relations. Therefore, the

estimated selectivity is Es

Ns
, and the output cardinality of O

over the original relations is then NO ·
Es

Ns
, where NO is the

product of the cardinalities of the original input relations. In

Theorem 3, we further show that EstimateCardinality is a
particular implementation of the estimator conforming to the

semantics of cross-product sampling, with a special tuple-level

partitioning scheme, where each block contains only a single

tuple of the relation.

Theorem 3: The procedure EstimateCardinality esti-
mates the cardinality of the operator O according to the
semantics of cross-product sampling.

V. EVALUATION

In this section, we describe our experimental settings and

report our results. Due to space limitations, some of the results

are omitted. The complete experimental results are included

in [1].

A. Experimental Settings

We implemented Algorithm 1 inside PostgreSQL 9.0.4

by modifying the query optimizer. In addition, we added

instrumentation code to the optimizer to collect the input cardi-

nalities for each operator. Our software setup was PostgreSQL

on Linux Kernel 2.6.18, and we tested our method on both

TPC-H 1GB and 10GB databases.

Our experiments were conducted on two different hardware

configurations:

• PC1: configured with a 1-core 2.27GHz Intel CPU and

2GB memory;

• PC2: configured with an 8-core 2.40GHz Intel CPU and

16GB memory.

We randomly drew 10 queries from each of the 21 query

templates2, and we ran each query 5 times. Our error metric

is computed based on the mean execution time of the queries.

We cleared both the filesystem and DB buffers between each

run of each query.

Since the original TPC-H database generator uses uniform

distributions, to test the robustness of different approaches on

different data distributions, we also used a skewed TPC-H

database generator [2]. This database generator populates a

TPC-H database using a Zipf distribution. This distribution

has a parameter z that controls the degree of skewness. z = 0
generates a uniform distribution, and as z increases, the data
becomes more and more skewed. We created skewed databases

generated using z = 1.

B. Calibrating Cost Units

We use the approach described in Section III to generate

calibration queries. The calibrated values for the 5 PostgreSQL

optimizer parameters on PC1 and PC2 are shown in Table I

and II, respectively. Except for rand page cost, the cost

units show very small variance when profiled under different

relations.

Calibrating the rand page cost is more difficult. As dis-

cussed in Section III-B, achieving purely random reads in a

query appears difficult in practice. In addition, the number of

random pages accessed as estimated by optimizer is based

on statistics about correlations between the order of keys

stored in the unclustered index and their actual order in the

corresponding data file. Therefore, there is some inherent

uncertainty in this estimation. It is interesting future work

to see whether the rand page cost could be calibrated more

accurately with different methods than the one described in

this paper.

2We excluded the template Q15 because it creates a view before the query
runs, which is not supported by our current implementation of Algorithm 1.



Optimizer Parameter Calibrated µ± σ (ms) Default

seq page cost 5.53e-2 ± 3.09e-3 1.0
rand page cost 6.50e-2 ± 2.32e-2 4.0
cpu tuple cost 1.67e-4 ± 5.83e-6 0.01
cpu index tuple cost 3.41e-5 ± 2.30e-5 0.005
cpu operator cost 1.12e-4 ± 1.30e-6 0.0025

TABLE I
ACTUAL VALUES OF POSTGRESQL OPTIMIZER PARAMETERS ON PC1

Optimizer Parameter Calibrated µ± σ (ms) Default

seq page cost 5.03e-2 ± 3.82e-3 1.0
rand page cost 4.89e-1 ± 7.44e-2 4.0
cpu tuple cost 1.41e-4 ± 1.35e-5 0.01
cpu index tuple cost 3.34e-5 ± 3.85e-5 0.005
cpu operator cost 7.10e-5 ± 1.52e-5 0.0025

TABLE II
ACTUAL VALUES OF POSTGRESQL OPTIMIZER PARAMETERS ON PC2

Note that the default settings of the parameters fail to accu-

rately reflect the actual relative magnitudes. For example, on

PC1, the ratio of calibrated cpu tuple cost to seq page cost

is about 0.003 instead of 0.01.

Clearly, the overhead of this profiling stage depends on how

many calibration queries we use. In our experiments on the

TPC-H database, we used the 5 largest relations as the R in

SELECT * FROM R and SELECT COUNT(*) FROM R,

respectively. For SELECT * FROM R WHERE R.A < a,

we used the largest relation (lineitem), and generated 10

queries where the predicate R.A < a had different selectiv-

ities in each. Under this setting, the profiling stage usually

finishes in less than an hour, which is substantially less than

the long training stage of machine-learning-based approaches.

Moreover, our profiling stage was conducted on top of the

uniform TPC-H database. Note that we do not need to run

it again for the skewed TPC-H database. This is because the

values of the cost units only depend on the specific hardware

configuration. After the cost units are calibrated, they can be

used as long as the hardware configuration does not change.

On the other hand, machine-learning-based approaches usually

need to collect new training data and rebuild the predictive

model if the underlying data distribution significantly changes.

C. Prediction Results

We evaluated the accuracy of prediction in terms of the

mean relative error (MRE), a metric used in [4]. MRE is

defined as

1

M

M
∑

i=1

|T pred
i − T act

i |

T act
i

,

whereM is the number of testing queries, T pred
i and T act

i are

the predicted and actual execution time of the testing query i,
respectively.

We compare the prediction accuracy of our approach

with several state-of-the-art machine-learning-based solutions:

Plan-level modeling with SVM [4], Plan-level modeling with

REP trees [31], and Operator-level modeling with Multivariate

Linear Regression (MLR) [4]. We use the same set of features

as described in [4]. We focus on the settings of the so-called

dynamic workload in [4]. The idea of plan-level modeling
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Fig. 2. Uniform TPC-H 1GB database

was also tried in [12], and the authors chose to use Kernel

Canonical Correlation Analysis (KCCA) [5] instead of SVM

as the machine-learning approach. We do not compare our

techniques with theirs, for it has been shown in [4] that both

the plan-level and operator-level modeling approach of [4] are

superior to the KCCA-based approach for dynamic workloads.

To generate a dynamic workload, we conducted the follow-

ing “leave-one-template-out” experiment as in [4]. Among the

N TPC-H query templates, we chose one template to generate
the queries whose execution time is to be predicted, and the

other N-1 templates were used to generate the training queries

used by the machine learning methods to train their predictive

models.

Figure 2 shows the results on the uniform (i.e., z = 0) 1GB
TPC-H database. As presented in [4], operator-level modeling

requires that the testing queries do not contain operators not

used by the training queries. Since some TPC-H templates

include specific operators not found in the other templates

(e.g., hash-semi-join), we excluded these templates from our

experiments. The same argument applies to TPC-H templates

containing PostgreSQL-specific structures (i.e., INITPLAN

and SUBQUERY). The authors of [4] also excluded these

queries for the same reason. However, we note here that this

is a problem due to the particular choice of the workload and

database system, not due to the operator-level modeling itself.

If TPC-H were a more varied workload, we would not have

this restriction. For example, if it had multiple queries that

used the hash-semi-join operator, we could have incorporated

queries with that operator in our experiments. This leaves

11 TPC-H templates participating in the dynamic workload



experiment when operator-level modeling is leveraged (see

Figure 2(b)).

In Figure 2, the x-axis represents the approaches we tested
in the experiments, and the y-axis shows the average error
and the standard deviation (shown with the error bars) over

the TPC-H templates. Here, Et is the prediction error of

our approach when the true cardinalities are used (the true

cardinalities are measured in an artificial “pre-running” of

the query — we present this number to provide insight into

what could be achievable if we were able to get perfect

cost estimates). Eo is the prediction error of our approach

when the cardinalities from the optimizer are used without

refinement. Ef
s is the prediction error of our approach when

the cardinalities are estimated via sampling, where f is the
sampling ratio (e.g., f = 0.1 means we take a 10% sample
from each underlying table). In our experiments, we tested

sampling ratios f = 0.05, 0.1, 0.2, 0.3, 0.4. Due to space
limitations, we only present the results of f = 0.1 and
f = 0.3. ESV M , EREP , and EOper are the prediction errors

of the three machine-learning based approaches, i.e., plan-

level modeling with SVM, plan-level modeling with REP, and

operator-level modeling, respectively. Finally, as a baseline,

ELR
o is the prediction error of mapping the original cost

estimates from the optimizer to the execution time via linear

regression, as was done in previous work.

We have several observations. First, in the case of uniform

data, the cost models with properly tuned c’s already work well
(the Eo in Figure 2 is close to Et). Sampling does not help

much in improving the prediction accuracy. This is reasonable,

because the assumptions like uniformity and independence

leveraged by the optimizer for cardinality estimation usually

hold in this case.

Second, the performance of machine-learning based ap-

proaches is not consistent. For some queries, their predictions

are good. However, for the other queries, their predictions

are far away from the true values. This can be observed by

noticing the big error bars in the figures. As an example,

the ESV M in Figure 2(a) varies between 0.03 for Q7 and

12.16 for Q17 (see [1]). One possible reason for this is:

most machine learning methods assume that the testing queries

should be similar to the queries used in training the model.

More specifically, the feature vectors of the testing queries

should be close to those feature vectors of the training queries,

in terms of the distance in the feature space. Unfortunately,

this assumption is not valid for dynamic workloads.

To see this, we further apply Principal Component Analysis

(PCA) [17] on the query features (47 features in total) and

project the queries onto the subspace spanned by the three

most dominating principal components. It is well known

that these dominating components reveal the major directions

in the feature space. While it is true that more principal

components are better, we restrict ourselves to 3-dimensional

space for the purpose of visualization.

Figure 3 shows the queries in the projected space, where

each combination of color and shape represents one query

template. From the figure we can see that the templates can
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Fig. 3. Queries projected on the 3 dominating principal components

be grouped into several clusters. About half of the templates

fall into the rightmost cluster, and each of the remaining

templates usually forms a singleton cluster. The distances

between clusters are quite big. Note that PCA will not increase

the distances between feature vectors after the projection,

which means the distances between feature vectors in the

original 47-dimensional space can only be the same or even

bigger. This suggests that there is little similarity among the

TPC-H templates within different clusters. Therefore, if we

test the queries from a template within a singleton cluster, by

using the model trained with the other templates, then there

is little hope for us to observe good predictions.

Third, machine-learning approaches are sensitive to the set

of queries used in training. In [1], we show that the prediction

errors for some queries fluctuate dramatically when different

sets of training queries are used3. For instance,EREP for Q8 is

0.44 when 20 templates are used in training (as in Figure 2(a)),

but it will increase to 2.87 when only 10 templates are used (as

in Figure 2(b)). Picking a set of proper training queries hence

is critical in practice when using machine-learning approaches.

However, it seems quite difficult in the environment when

workload is not known in advance.

Figure 4 further presents the results on the skewed TPC-H

1GB database. As expected, when data becomes skewed, the

cardinality estimates from the optimizer become inaccurate,

and hence the predictive power is weakened. However, by

leveraging the sampling-based cardinality correction, the pre-

diction accuracy is improved. Moreover, more samples usually

mean better prediction accuracy, as long as the overhead on

sampling is acceptable (see Section V-D). We note that the

sampling overhead can be up to 20% on this data set. As

we will see, this can be viewed as a problem that arises on

small data sets, as the overhead due to sampling for the 10GB

data set is much lower. On the other hand, the performance

of machine-learning based approaches becomes even worse.

This is perhaps partially because of the worse distortion of the

assumption that training and testing queries should be similar.

Similar results on the TPC-H 10GB database are observed

3Recall that, to be fair, we only use 10 templates in training when comparing
with operator-level modeling (as in Figure 2(b)).
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Fig. 4. Skewed TPC-H 1GB database
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in our experiments, as shown in Figure 5 and Figure 6. Here,

to make the overall experiment time controllable, as done

in [4], we kill the query if it runs longer than an hour. This

leaves us with 18 templates participating in the evaluation. We

tested sampling ratios f = 0.01, 0.02, 0.05, 0.1, and present
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Fig. 6. Skewed TPC-H 10GB database

the results of f = 0.02 and f = 0.05, for space constraints.
Note that, while the database size scales up by a factor of 10,

the required absolute number of samples to achieve predictions

close to the ideal case (compare E0.05
s and Et in the figures)

remains almost the same. We need 0.05 × 10GB = 0.5GB
samples here, while we need 0.3×1GB = 0.3GB samples in
the case of 1GB database. Therefore, the additional overhead

of taking samples becomes ignorable when the database is

larger (see Section V-D).

D. Overhead of Sampling

Figure 7 shows the additional runtime overhead due to

sampling for the 1GB TPC-H database. Here rfs is defined
as rfs = Ts/T , where Ts and T are the time to run the queries
over the sample tables and original tables, respectively, and f
is the sampling ratio as before. For each sampling ratio, we

report the average rfs as well as the standard deviation (shown
with the error bars) over the participating TPC-H templates.

We can see that for the sampling ratio f = 0.3, which
allows us to achieve close prediction accuracy to what if the

true cardinalities were used on both the uniform and skewed

data, the average additional runtime overhead is around 20%

of the actual execution time of the query. Note that for

query optimization, 20% is prohibitively high. For example,

it means that we can only consider 1/20% = 5 plans during
optimization before the estimation cost dominates the query

execution time, since sampling should be invoked for every

query plan considered. But for our purposes, where we are

trying to estimate the running time of a single query plan,

this amount of overhead may be acceptable. Perhaps more
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Fig. 7. Additional overhead of sampling on TPC-H 1GB database

importantly, this overhead drops dramatically when we move

to the 10GB data set.

Figure 8 further presents the results over 10GB TPC-H

database. It confirms that the additional overhead introduced

by sampling is even smaller, compared with the overhead

of running the original query. For the case where good

prediction can be achieved (i.e., f = 0.05, see Figure 5 and
Figure 6), the additional overhead is below 4% on average.

This demonstrates the practicality of incorporating sampling

for the purpose of query time prediction.

VI. RELATED WORK

Query optimizers have built-in cost models that provide car-

dinality/cost estimates for a given query. There is a lot of previ-

ous work on this topic, including methods based on sampling

(e.g., [18], [22]), methods based on histograms (e.g., [19]),

methods based on machine learning (e.g., [13], [29]), and

methods based on using execution feedback (e.g., [8], [27]).

However, the purpose of these estimates is to help the opti-

mizer pick a relatively good plan, not to predict the actual

execution time of the query. Therefore, these estimates need

not to be very accurate as long as the optimizer can leverage

them to distinguish good plans from bad ones. As shown in [4],

[12], without proper calibration, directly leveraging these cost

estimates cannot provide good predictions of execution time.

Nonetheless, it would be very interesting future work to see

the effectiveness by incorporating some methods other than

sampling into our current framework for refining cardinality

estimates. For example, recent work [29] presented an efficient

approach based on graphical models, which was reported to

have an order of magnitude better selectivity estimates.
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Fig. 8. Additional overhead of sampling on TPC-H 10GB database

Previous work has explored the issue of calibrating opti-

mizer parameters, for different purposes such as query opti-

mization in heterogeneous DBMS [10], DB resource virtual-

ization [26], and storage type selection [32]. To the best of our

knowledge, we are not aware of any work that tries to predict

the execution time of SQL queries based on calibrating the

cost models of query optimizers.

Another related research direction is query progress indi-

cators [7], [20], [21], [23]. The task of a progress indicator

is to dynamically monitor the percentage of work that has

been done so far for the query. The key difference from query

execution time prediction is that progress indicators usually

rely on runtime statistics obtained during the actual execution

of the query, which are not available if the prediction is

restricted to be made before query execution. A query running

time predictor could be useful in providing the very first

estimate for a progress indicator (one used before the query

starts executing).

Quite surprisingly, the problem of predicting actual exe-

cution time of a query has been specifically addressed only

recently [12]. Existing work [3], [4], [11], [12], [28] usually

employs predictive frameworks based on statistical machine

learning techniques.

In [12], each query is represented as a set of features con-

taining an instance count and cardinality sum for each possible

operator. Kernel Canonical Correlation Analysis (KCCA) [5]

modeling techniques are then used to map the queries from

their feature space onto their performance space. One main

limitation of this approach is that its prediction is based on

taking the average of the k (usually 3) nearest neighbors in the
training set, which means that the prediction can never exceed



the longest execution time observed during training stage.

Hence, when the query to be predicted takes significantly

longer time than all the training queries observed, the model

is incapable of giving reasonable predictions.

In [4], a similar idea of using features extracted from the

entire plan to represent a query is leveraged, and the authors

propose to use SVM instead of KCCA. However, the SVM

approach still suffers from the same generalization problem.

To alleviate this, the authors further apply this idea at the

operator-level. But from the reported experimental results

(both in [4] and Section V of this paper), it seems that

operator-level modeling is still quite vulnerable to workload

changes. Our approach in this paper avoids this generalization

problem, for it does not rely on any particular training queries.

In [11], the authors study the problem of predicting the

execution time when the query is concurrently running with

the other queries, with a linear multivariate regression model

to capture the interaction between queries. Similar problems

in admission control and query scheduling are also studied

in [28] and [3], respectively. One key limitation of this line of

work is that they all assume a closed-world workload scenario,

where all possible queries are needed to be known in ahead,

which is hardly to be the case in practice. Although this paper

does not address the prediction problem in the presence of

concurrent query execution, it is interesting to see how to

extend the techniques here to provide alternative solutions to

this challenge.

VII. CONCLUSION

In this paper, we studied the problem of leveraging opti-

mizer’s cost models to predict query execution time. We show

that, after proper calibration, the current cost models used by

query optimizers can be more effective for predicting query

execution time than reported by previous work.

Of course, it is possible that a new machine learning

technique, perhaps with improved feature selection, will out-

perform the techniques presented here. On the other hand,

further improvements are also possible in optimizer-based

running time prediction. Perhaps the most interesting aspect

of this work is the basic question it raises: should query

running time prediction treat the DBMS as a black box (the

machine learning approach), or should we exploit the fact

that we actually know exactly what is going on inside the

box (the optimizer based approach)? We regard this paper

as an argument that the latter approach shows promise, and

expect that exploring the capabilities of the two very different

approaches will be fertile ground for future research.
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