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Abstract—Knowledge acquisition is an iterative process. Most
prior work used syntactic bootstrapping approaches, while se-
mantic bootstrapping was proposed recently. Unlike syntactic
bootstrapping, semantic bootstrapping bootstraps directly on
knowledge rather than on syntactic patterns, that is, it uses
existing knowledge to understand the text and acquire more
knowledge. It has been shown that semantic bootstrapping can
achieve superb precision while retaining good recall on extracting
isA relation. Nonetheless, the working mechanism of semantic
bootstrapping remains elusive. In this extended abstract, we
present a theoretical analysis as well as an experimental study to
provide deeper insights into semantic bootstrapping.

I. INTRODUCTION

The problem of extracting isA relations in the open do-
main has been studied for years. Most existing systems, such
as KnowlItAll [1] and TextRunner [2], use a bootstrapping
approach. They start with some seed examples and/or seed
patterns of the target relations. They next look for occurrences
of these seed examples in the corpus, and derive new patterns.
They then use the new patterns to extract more instances of the
relations. The iteration continues until no more new patterns
are learned. We refer to this idea as syntactic bootstrapping.

The philosophy of syntactic bootstrapping is that, in or-
der to find more relations, we need more syntactic patterns.
However, this is often not true. One-to-one mapping between
syntactic patterns and underlying knowledge (i.e., the pairs
we are interested in) does not always exist. Sometimes one
pattern can mean multiple things and multiple patterns can
refer to the same thing. This disconnect between the patterns
and knowledge means that acquiring more patterns does not
always give us more knowledge, but rather ambiguity and
noise [3]. Unlike that, Wu et al. [3] outlined a conceptually
different iterative framework, which bootstraps on knowledge
rather than on syntactic patterns. We refer to this approach as
semantic bootstrapping. It differs from syntactic bootstrapping
in that it uses a fixed set of input patterns (e.g., the Hearst pat-
terns [4]) and relies on using existing knowledge (e.g., the pairs
already extracted with their frequency) to understand more
text and acquire more knowledge (Section II). This approach
demonstrates exceptional strength in disambiguating otherwise
unaccessible pairs and thus achieves superb precision while
maintaining good recall in the extracted pairs.

Nonetheless, the underlying working mechanism of se-
mantic bootstrapping remains elusive in [3]: were the results
reported just by chance? In this extended abstract, we present

a theoretical analysis as well as an extended experimental
study to provide deeper insights into semantic bootstrapping.
We show that the efficiency and effectiveness of semantic
bootstrapping can be theoretically guaranteed. Specifically, the
required number of iterations is O(log|T'|), where T is the set
of extracted pairs; and the precision of the extracted pairs is
very close to that of the pairs extracted in the bootstrapping
stage (i.e., the first two rounds of iteration), which are usually
of high quality in practice. Our experimental evaluation results
substantiate the theoretical analysis.

II. SEMANTIC BOOTSTRAPPING

isA relation can be extracted from sentences that match
any of the Hearst patterns, e.g., “... in countries such as
China, Japan, ...” Given such a sentence s, our goal is then to
extract all pairs (z,y) in s such that “y isA 2”. For instance,
from the above sentence, we want to extract (country, China)
and (country, Japan). Formally, we can represent s with a
triple s = (X, (P),Ys), where X5 = {x1,...,x,,} is the set
of all candidate super-concepts, (P) is the pattern keywords
(e.g., the “such as” in the above example sentence), and
Ys = {y1,...,yn} is the set of all candidate sub-concepts.

The bootstrapping framework relies on a couple of basic
properties of the sentences that match the Hearst patterns to
distinguish valid isA pairs from invalid ones [3]:

(P1) For most sentences, only one x € X is valid.
(P2) The closer a y € Y; is to (P), the more likely y is valid.
(P3) If y,. € Y; is valid, then yq, ..., yr_1 are all valid.

Algorithm 1 outlines the method. Here, we use I' to repre-
sent the multiset or bag of the pairs that we have discovered
so far. We also use I'; to denote the I' after the 7-th round of
iteration in Algorithm 1, and use A; = I'; — I';_; to denote
the multiset of pairs added in round <. Initially, Ty = (). We
define a count function n(z,y) which returns how many times
the pair (z,y) has been discovered in the corpus.

By (P1), in the case of | X| > 1, we need to decide the
valid super-concept of s. The basic idea is to compute the
likelihood p(x;|Ys) for each x; € X, and then pick the one
with the maximum likelihood.

Assume that we have identified the super-concept X, =
{z}. The next task is to find the sub-concepts from Y;. Based
on (P2) and (P3), the strategy is to find the largest k such that
the likelihood p(yx|x) is above a threshold.



Algorithm 1: isA relation extraction

Input: P, the Heast patterns; S, sentences that match any of
the patterns in P
Output: I', the extracted isA pairs
I« 0;
1+ 1;
while ¢true do
Ai < @;
foreach s € S do
Xs,Ys + ExtractCandidates(s) ;
if | X| > 1 then
Xs < DetectSuper(Xs,Ys,T'i—1);
if | X| =1 then
Y, < DetectSub(Xs,Ys,Ti—1);
add valid pairs to A;;
end
end
break if A; = 0;
i« Tic1 UAg;
P41+ 1;
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return I';
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III. SUMMARY OF THEORETICAL ANALYSIS

We first analyze the efficiency of Algorithm 1. Since the
total number of pairs we can extract from the corpus is finite,
and in each round we only extract new valid pairs from a
sentence into I', Algorithm 1 is guaranteed to terminate. The
efficiency depends on the number of iterations it executes.

Theorem 1. Algorithm 1 is expected to terminate after
[ogs |T'|] + 1 iterations, where v = 1(1+ q).
Yy

Here ¢ = 1—6, where 0 (0 < # < 1) is probability that a sub-
concept y in A; serves as the “boundary” y;, specified in (P3).
Therefore, 0 < ¢ < 1. As a result, v < 1 and Algorithm 1
ends in O(log |I'|) iterations. In practice we expect y ~ 3 for
most iterations except for the last few ones.

We next analyze the precision of the pairs extracted by
Algorithm 1. Since precision can only be manually evaluated,
our goal here is not to give an explicit number. Rather,
we develop a lower bound of the expected overall precision
given that the precision of the first several rounds is known.
Specifically, our analysis shows that, the overall precision only
depends on the precision of the pairs extracted in the first two
rounds. Since in practice the precision of these pairs is usually
very high, we can therefore expect high precision of all the
pairs extracted by the algorithm.

Theorem 2. Let P; and P, be the precision of A1 and As.

- : _ aPy+2P — [84]
The prseaswn Poflis P= R where o = sl and
b= ﬁ. Since o > 0 and 3 > 0, we have P > ﬁPQ.

Theorem 2 suggests a lower bound of P that only depends
on « and P,. Since 0 < o < 1, we then have P > %Pg,
regardless of which o we have. In practice, « is usually quite
small since |Az| is usually much larger than |A;]|, for Ay
only serves the purpose of providing seed pairs for semantic
bootstrapping. Therefore, we could expect that the lower bound
is very close to P».

IV. EVALUATION

We report our experimental evaluation results in this sec-
tion. Our corpus contains more than 7 billion Web pages,
which is 3.4 times larger than that used by Wu et al. [3].

We extracted overall 102,309,829 isA pairs. We further
studied the number of pairs extracted in each round of iteration.
Table I shows the number of pairs extracted (|A;|) and the
number of remaining pairs (|€2;]) for each round 7. Note that,
since A; is by definition a multiset, we also report the number

of unique elements it contains (|A;

extracted in round <.

"), which are the new pairs

I Round 7 [ |A1| [ ‘A,|u [ ‘Ql|
1 26,492,477 16,736,068 | 321,276,392

2 | 244,880,870 | 56,060,246 76,395,522

3 48,582,780 17,515,818 27,812,742

4 16,214,502 7,060,475 11,598,240

5 7,069,892 2,907,529 4,528,348

6 2,204,261 1,047,007 2,324,087

7 1,619,613 567,942 704,474

8 523,076 286,324 181,398

9 106,641 73,762 74,757

10 51,644 39,520 23,113

11 23,113 15,138 0

TABLE THE NUMBER OF isA PAIRS EXTRACTED

We observe from Table I that |Q2;| decreases exponentially,
as predicted by Theorem 1. Moreover, the remaining number
of pairs from the current round ¢ is usually no more than half of
that from the previous round ¢ — 1, as mentioned in Section III.

l Round 7 [ |A1| [ Pi [ Ql l
1 26,492,477 | 0.9728 | 0.9728
2 | 244,880,870 | 09713 | 0.9714
3 48,582,780 | 0.8877 | 0.9587
4 16,214,502 | 0.7976 | 0.9509
5 7,069,892 | 0.6846 | 0.9454
6 2,204,261 | 0.5403 | 0.9429
7 1,619,613 | 0.4378 | 0.9405
8 523,076 0.5 | 0.9398
9 106,641 | 0.3983 | 0.9397
10 51,644 | 0.3576 | 0.9396
11 23,113 | 0.3049 | 0.9395
ABLE 1I. PRECISION OF THE PAIRS EXTRACTED

In Table II, we further examined the precision of the
pairs (P;) and the overall precision (@;), for each round %
of iteration. We find that the overall precision matches our
lower bound developed in Section III quite well. According to
Theorem 2, the overall precision P > 2_‘%Pg. According to

Table II, we have ov = Iﬁ;} ~ 0.1082. Hence, the predicted
P > 0.9487P, ~ 0.9215, which is very close to the actual

overall precision observed (i.e., @11 = 0.9395 as in Table II).
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