
Published as a conference paper at ICLR 2024

DATA DEBUGGING WITH SHAPLEY IMPORTANCE OVER
MACHINE LEARNING PIPELINES

Bojan Karlaš1*, David Dao2, Matteo Interlandi3, Sebastian Schelter4, Wentao Wu3, Ce Zhang5

1Harvard University, 2ETH Zurich, 3Microsoft, 4University of Amsterdam, 5University of Chicago
*bkarlas@mgh.harvard.edu

ABSTRACT

When a machine learning (ML) model exhibits poor quality (e.g., poor accuracy or fairness),
the problem can often be traced back to errors in the training data. Being able to discover the
data examples that are the most likely culprits is a fundamental concern that has received a
lot of attention recently. One prominent way to measure "data importance" with respect to
model quality is the Shapley value. Unfortunately, existing methods only focus on the ML
model in isolation, without considering the broader ML pipeline for data preparation and
feature extraction, which appears in the majority of real-world ML code. This presents a
major limitation to applying existing methods in practical settings. In this paper, we propose
Datascope, a method for efficiently computing Shapley-based data importance over ML
pipelines. We introduce several approximations that lead to dramatic improvements in terms
of computational speed. Finally, our experimental evaluation demonstrates that our methods
are capable of data error discovery that is as effective as existing Monte Carlo baselines, and
in some cases even outperform them. We release our code as an open-source data debugging
library available at github.com/easeml/datascope.

1 INTRODUCTION

Data quality issues have been widely recognized to be among the main culprits for underperforming
machine learning (ML) models, especially when it comes to tasks that are otherwise considered
solved by ML (Liang et al., 2022; Ilyas & Chu, 2019). A common type of data errors are wrong
labels. For example, biomedical images can be misdiagnosed due to human error which results in
label errors. Many systematic methods have been developed to repair data errors (Rekatsinas et al.,
2017; Krishnan et al., 2017). Unfortunately, in many practical scenarios, repairing data in a reliable
manner requires human labor, especially if humans have been involved in producing the original data.
The high cost of this data debugging process has led to a natural question – Can we prioritize data
repairs based on some notion of importance which leads to the highest quality improvements for the
downstream model?
In recent years, several approaches have emerged to answer these questions. One line of work suggests
expressing importance using influence functions (Koh & Liang, 2017) which is essentially a gradient-
based approximation of the leave-one-out (LOO) method. Here, the importance of a training data
example is expressed as the difference in the model quality score observed after removing that data
example from the training set. This quality difference is referred to as the marginal contribution of that
data example. Another line of work proposes Shapley value as a measure of importance (Ghorbani &
Zou, 2019; Jia et al., 2019b; 2021) that has a long history in game theory (Shapley, 1951). In the
context of data importance, it can be seen as a generalization of LOO. Namely, instead of measuring
the marginal contribution over the entire training set, we measure it over every subset of the training
set and then compute a weighted average. Apart from having many useful theoretical properties, the
Shapley value was shown to be very effective in many data debugging scenarios (Jia et al., 2021).
On the flip side, because the Shapley value requires enumerating exponentially many subsets, com-
puting it is intractable in practical settings. There have been different ways to approximate this
computation. This includes Monte Carlo (MC) sampling (Ghorbani & Zou, 2019) or group test-
ing (Jia et al., 2019b) to sample subsets of training data, train models as black boxes on those subsets,
compute marginal contributions of training data examples, and aggregate the results to compute the
final approximated result. Unfortunately, re-training the model can be quite costly, especially for large
models. Some methods try to overcome this by leveraging proxy models such as K-nearest neighbors

1

https://github.com/easeml/datascope

Published as a conference paper at ICLR 2024

other
black
white

Race

US
FR
FR

Origin

$31,133
Avg. Income

US
FR

Country

???
???

???
???

Data
Importance

18
26
65

Age

no
yes
no

Wealthy

LabelsFeatures

Trained
Model

Accuracy

Fairness

ROC AUC

Data Errors

Data Preprocessing Operators

computed with respect to

Source
Training Data

Prepared
Training Data

Model Quality
MetricsMissing

Indicator

Standard
Scaler

Feature
Union

K-Means

Inner Join

map
join

map

reduce+map

Random
Augment

fork

reduce+map

$34,375

???

Existing Methods Assume This SettingData Debugging Occurs Here

0.71
0.64
0.43

Data
Importance

Figure 1: Existing data debugging methods were designed to compute data importance of already
preprocessed data. In typical real-world scenarios, data errors occur in source datasets, before being
passed through a data preparation pipeline. The goal of our work is to help close that gap.

(KNN) (Jia et al., 2019a) and exploiting its simple structure to derive dynamic programming (DP)
algorithms for computing the Shapley value.
One major trait of the existing work in this space is that it primarily focuses on computing the
importance of data examples in the prepared training dataset. This poses a challenge in practical
settings where data errors typically occur earlier in the data preparation process. In most realistic
scenarios, this process involves taking one or more source training datasets, joining them together
if needed, and applying a composition of data preprocessing operators (Figure 1). The simplest
operators may represent a 1-1 map of input dataset elements to output dataset elements (referred to as
tuples in the data management literature). Some operators, such as the data augmentation operator,
fork the data by converting a single input data tuple into multiple output tuples. On the other hand, an
output tuple of a join operator can be the product of multiple input tuples. Finally, some operators
involve a reduce operation which involves computing some intermediate result based on the entire
input dataset (e.g. the mean and standard deviation) and then applying that result to output tuples.
This new setting impacts existing approximation methods in several ways. Firstly, given that it is
a black box approach, Monte Carlo sampling (Ghorbani & Zou, 2019) can directly be applied to
this setting. However, this comes with the computational cost of re-running the data preprocessing
operators for every subset of the training data that we sample. Depending on the complexity of
the preprocessing pipeline, this cost can be quite significant. Secondly, the existing KNN-based
Shapley approximation method (Jia et al., 2019a) strictly relies on the ability to independently remove
tuples from the prepared training dataset in order to compute their marginal contributions. Given the
aforementioned complexity induced by preprocessing operators, the tractability result of the previous
KNN-based method does not hold directly in this new setting. Therefore, a novel analysis is needed
to see whether the Shapley value computation can be made tractable depending on the structure of
the data preprocessing pipeline.
Contributions. In this paper, we focus on studying the relationship between the structure of ML
pipelines and our ability to efficiently compute Shapley values of source data examples. We make use
of data provenance (Green et al., 2007; Cheney et al., 2009), a simple yet powerful theoretical toolkit
for tracing individual data examples as they pass through a data processing pipeline. We propose
ease.ml/datascope, a framework for modeling the interdependence between tuples induced by data
preprocessing operators. Our contributions can be summarized as follows:
• We apply the notion of data provenance to ML pipelines in order to relate the input and output

datasets as a function of the pipeline structure. We introduce the notion of a “canonical pipeline”
which we simply define as a distinct pipeline structure that lends itself to efficiently relating pipeline
inputs and outputs, as well as efficiently computing Shapley values. We identify three classes of
canonical pipelines: map, fork and one-to-many join. (section 3)

• We show how approximating pipelines as canonical leads to significant speed-ups of Monte Carlo
methods for Shapley computation. We also demonstrate how the majority of real-world ML
pipelines can be approximated as canonical. (section 3)

• We combine canonical pipelines with the K-nearest neighbor as a proxy model. We show how
canonical pipelines can be compiled into efficient counting oracles and used to derive PTIME
Shapley computation algorithms. Under this framework, the KNN Shapley method from prior work
represents a special case applicable to map pipelines. (section 4)

• We conduct an extensive experimental evaluation by applying all considered Shapley computation
methods to the task of repairing noisy labels in various real-world datasets. We conclude that in
most cases our method is able to achieve solid performance in terms of reducing the cost of label
repair while demonstrating significant improvements in computational runtime. (section 5)

2

https://ease.ml/datascope

Published as a conference paper at ICLR 2024

2 PROBLEM: COMPUTING THE SHAPLEY VALUE OVER ML PIPELINES

Shapley Value. Let Dtr be a training dataset and u some utility function used to express the value of
any subset of Dtr by mapping it to a real number. Then, the Shapley value, denoting the importance
of a tuple ti ∈ Dtr, is defined as

φ(ti) =
1

|Dtr|
∑

D⊆Dtr\{ti}
(|Dtr|−1

|D|
)−1

(u(D ∪ {ti})− u(D)) . (1)

Intuitively, the importance of ti for a subset D ⊆ Dtr\{ti} is measured as the difference between
the utility u(D ∪ {ti}) with ti and the utility u(D) without ti. The Shapley value takes a weighted
average of all of the 2|Dtr|−1 possible subsets D ⊆ Dtr\{ti}, which enables it to have a range of
desired properties that significantly benefit data debugging tasks, often leading to more effective data
debugging mechanisms compared to other leave-one-out methods.
Quality of ML Pipelines. As mentioned, the utility function u is defined to measure the value of
any subset of Dtr, which in our context corresponds to the source training dataset. We assume that
this dataset can be made up of multiple sets of tuples (e.g. a multi-modal dataset involving a set of
images and a table with metadata). The validation dataset Dval is defined in a similar manner.
Then, let f be a data preprocessing pipeline that transforms any training data subset D ⊆ Dtr into a
set of tuples {ti = (xi, yi)}i∈[M] made up of M feature and label pairs that the ML training algorithm
A takes as input. Finally, we obtain a trained ML modelA◦ f(D) which we can evaluate using some
model quality metric. Based on this, we can define the utility function u used to express the value of
a training data subset D as a measure of the quality of an ML pipeline A ◦ f(D) when scored using
Dval. Formally, we write this as

u(D) := m(A ◦ f(D), f(Dval)). (2)

Here, m can be any model quality metric such as accuracy or a fairness metric such as equalized
odds difference. Note that, for simplicity, we assume that we are applying the same pipeline to both
the training data subset D and the validation dataset Dval. In general, these two pipelines can differ
as long as the data format of f(Dval) is readable by the trained ML model. For example, a data
augmentation operation is typically applied to training data only (as is the case in our experiments).
Core Technical Problem. In this work, we focus on the ML pipeline utility u defined in Equation 2
and we ask the following question: How can we approximate the structure of u in order to obtain
Shapley-based data importance that is (1) computationally fast; and (2) effective at downstream data
debugging tasks?

3 CANONICAL ML PIPELINES

In this section, we take a closer look at a data preprocessing pipeline f that can, in principle, contain
an arbitrarily complex set of data processing operators. This complexity can result in a heavy overhead
on the cost of computing the Shapley value. This overhead comes from having to re-evaluate the
pipeline many times for different training data subsets. In this section, we describe a framework for
minimizing that overhead by solving a concrete technical problem.

Problem 1. We are given a training dataset Dtr, a data preprocessing pipeline f , and the output set
f(Dtr). For an arbitrary subset D ⊆ Dtr and some tuple t′ ∈ f(Dtr), decide whether t′ ∈ f(D) in
time O(1) w.r.t. |Dtr|.
It is easy to see how solving this problem virtually removes the cost of computing the pipeline output
of an arbitrary training data subset. Next, we describe a reduced version of the data provenance
framework (Green et al., 2007; Cheney et al., 2009) which we will apply to solve this problem.

3.1 DATA PROVENANCE FOR ML PIPELINES

We define a set of binary variables A and associate a variable at ∈ A with every training data tuple
t ∈ Dtr. Each subset D ⊆ Dtr can be defined using a value assignment v(a) 7→ {0, 1}, where
v(at) = 1 means that t ∈ D. We can use Dtr[v] to denote D. We write VA to denote the set of all
the 2|A| possible value assignments. Next, with every tuple t′ ∈ f(Dtr) we associate a “provenance
polynomial” pt′ which is a logical formula with variables in A (e.g. a1 + a2 · a3). For a given
value assignment v, we define an evaluation function evalv(pt′) 7→ {0, 1} which simply follows the

3

Published as a conference paper at ICLR 2024

(a) Map pipeline (b) Fork pipeline (c) One-to-many join pipeline (d) Distribution of canonical pipelines

0 3 6 9 12 15 18
Pipeline Size

0

50k

N
um

b
er

of
P

ip
el

in
es Purely Canonical

Approximately Canonical

Other

Figure 2: (a-c) Three types of canonical pipelines where data provenance allows us to efficiently
compute subsets. (d) A majority of real-world ML pipelines (Psallidas et al., 2019) either already
exhibit a canonical pipeline pattern, or are easily convertible to it using our approximation scheme.

standard logical reduction rules to determine the truthiness of pt′ given v. For a tuple t′ ∈ f(Dtr)
and a value assignment v, we define t′ ∈ f(Dtr[v]) iff evalv(pt′) = 1. It is easy to see that we can
directly apply this framework to solve Problem 1. However, to respect the O(1) time complexity, |pt|
must be O(1) w.r.t. |Dtr|. In subsection 3.2, we explore when this condition is met.
Redefining the Shapley value. Using this framework, we can rewrite the Shapley value as:

φ(ti) =
1
|A|

∑
v∈VA\{ai}

(|A|−1
|supp(v)|

)−1
u(Dtr[v; ai ← 1])− u(Dtr[v; ai ← 0]) (3)

The notation [v; ai ← X] for X ∈ {0, 1} means that we augment v with v(ai) = X . Also, we define
the support of v as supp(v) := {a ∈ A : v(a) = 1}.

3.2 APPROXIMATION: ML PIPELINES ARE CANONICAL

As mentioned above, solving Problem 1 in O(1) time depends on |pt| being O(1) w.r.t. |Dtr|. This
does not necessarily hold true for an arbitrary pipeline f . However, it does hold true for some classes
of pipelines, which we refer to as canonical pipelines. Hence, if we approximate the pipeline f as
canonical, then we can solve Problem 1. The three classes of canonical pipelines that we identified to
be useful in the context of this work are: map, fork, and one-to-many join pipelines (Figure 2).
Map pipelines. This is the simplest form of pipeline where each input tuple t ∈ Dtr corresponds to
at most one output tuple t′ ∈ f(Dtr), after passing through an optional per-tuple mapping function
µ(t) 7→ t′ (Figure 2a). Examples of such pipelines include missing value indicators, polynomial
feature generators, pre-trained embeddings, etc.
Fork pipelines. In this pipeline, each input tuple t ∈ Dtr can be associated with multiple output
tuples t′ ∈ f(Dtr), but a single output tuple is associated with a single input tuple (Figure 2b). A
prominent example is a data augmentation pipeline that outputs several slightly altered versions of
every input tuple.
One-to-many Join pipelines. This pipeline contains table join operators like the one in Figure 1.
Here, the training dataset Dtr = {Dt,Da1

, . . . ,Dak
} is made up of multiple tuple sets that form a

"star schema". This means that any training example tuple t ∈ Dt can be joined with no more than
one tuple from each of the auxiliary tables Da1 , . . . ,Dak

. Note that, for this pipeline, the provenance
polynomial of each output tuple is a Boolean product of variables associated with all tuples that were
joined to produce that output tuple (Figure 2c).

3.3 APPROXIMATING REAL ML PIPELINES

Even though many real-world pipelines can be directly represented as our canonical pipelines, there
is still a solid amount that cannot be represented. Nevertheless, upon taking a closer look, we can
identify a class of pipelines that we might be able to approximately represent. These are the pipelines
that exhibit an estimator-transformer pattern f(D) = map(reduce(D),D). Specifically, they are
made up of some reduce operation performed on the entire dataset which produces some intermediate
data, which is used to parameterize a map operation which is performed on individual tuples. An
example of such a pipeline is a min-max scaler, where the reduce step computes min and max
statistics for each feature, which are then used to re-scale individual tuples.
The reduce step of this pipeline causes every output tuple to depend on every input tuple, which does
not fit into our canonical pipeline framework. However, we can still approximate such pipelines by
isolating the intermediate data produced by reduce(Dtr). Then, conditioned on that intermediate
data, we can re-define our pipeline f to be a conditional map pipeline f∗ as follows:

f(D) = map(reduce(D),D) 7→ f∗(D) = map(reduce(Dtr),D).
Evaluation of Effectiveness. We evaluate our method of approximating pipelines as canonical and
apply it directly to compute the Shapley value using the Truncated Monte Carlo (TMC) sampling

4

Published as a conference paper at ICLR 2024

Dataset: Folktables Adult; Pipeline: Random Augment + Missing Indicator + Standard Scaler + K-Means
(a) Target Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7
A

cc
u
ra

cy

0% 50% 100%
Portion of Labels Examined

0%

20%

40%

60%

80%

100%

Po
rt

io
n
 o

f
D

ir
ty

 L
a
b
e
ls

 F
o
u
n
d

101

102

103

C
o
m

p
u
te

 T
im

e
 [

s]

55.11

611.28

31.07

291.23

(b) Target Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0% 50% 100%
Portion of Labels Examined

0%

20%

40%

60%

80%

100%

Po
rti

on
 o

f D
irt

y
La

be
ls

Fo
un

d

101

102

103

Co
m

pu
te

 T
im

e
[s

]

48.45

666.48

2.88

48.57

Random TMC x10 Datascope TMC x10 TMC x100 Datascope TMC x100

Figure 3: An ML pipeline with an estimator-transformer pattern approximated as a canonical pipeline
can achieve comparable performance on a label repair task, with significantly faster runtime.

method (Ghorbani & Zou, 2019). We run the evaluation for 10 and 100 Monte Carlo iterations
(x10/x100). We can see that our approach exhibits comparable performance with significant gains in
computational runtime (Figure 3). See section 5 for more details about the experimental protocol.
Statistics of Real-world Pipelines. A natural question is how common these families of pipelines
are in practice. Figure 2d illustrates a case study that we conducted using 500K real-world pipelines
provided by Microsoft (Psallidas et al., 2019). We divide pipelines into three categories: (1) “pure”
map/fork pipelines, based on our definition of canonical pipelines; (2) “conditional” map/fork
pipelines, which are comprised of a reduce operator that can be effectively approximated using the
scheme we just described; and (3) other pipelines, which contain complex operators that cannot be
approximated. We observe that a vast majority of pipelines we encountered in our case study fall into
the first two categories that we can effectively approximate using our canonical pipelines framework.

4 SHAPLEY VALUE OVER CANONICAL PIPELINES

In section 3 we described an approach for treating the data preprocessing pipeline f as a white box
which led us to directly attainable performance improvements of Monte Carlo Shapley methods.
However, these methods still rely on treating the modelA as a black box and retraining it for different
training data subsets, which often results in slow runtime. In this section, we are interested in PTIME
algorithms that give orders of magnitude faster runtime and thus open the door for interactive data
debugging. Specifically, we focus on the following technical problem:

Problem 2. We are given a training dataset Dtr, a data preprocessing pipeline f and a model quality
metric m computed over a given validation dataset Dval. Compute the Shapley value (as defined in
Equation 1) of a given tuple ti ∈ Dtr for the ML pipeline utility (as defined in Equation 2) in time
polynomial w.r.t. |Dtr| and |Dval|.
We will now explore additional approximations we can make on the model A as well as the model
quality metric m. Specifically, we replace the model with a KNN classifier, and we assume that
the quality metric has a specific additive structure. We then sketch the outline of a solution to the
given problem that leverages these approximations. It should be noted that although prior work has
explored the idea of using the KNN proxy model for PTIME algorithms (Jia et al., 2019a), to the best
of our knowledge, the work presented in this paper is the first to analyze the relationship between the
structure of different types of ML pipelines and the computational complexity of the Shapley value
computation. A brief discussion about the limitations of prior work is presented in Appendix A.

4.1 APPROXIMATION: THE MODEL IS KNN AND THE MODEL QUALITY METRIC IS ADDITIVE

Here we define two structures which we will use as building blocks for approximating ML pipelines:
the KNN model and additive model quality metrics. In the following section we will show how these
building blocks can be leveraged to provide PTIME algorithms for computing Shapley values.
K-Nearest Neighbor (KNN) Model. We provide a specific definition of the KNN model in order to
facilitate our further analysis. Given some set of training tuples D and a validation tuple tval, the
KNN model AKNN (D) can be defined as follows:

AKNN (D)(tval) := argmaxy∈Y

(
tally

(
D

∣∣∣ topK(
D

∣∣ tval), tval)(y)). (4)

Here, topK(D | tval) returns a tuple tK ∈ D that takes the K-th position when ranked by similarity
with the validation tuple tval. Furthermore, tally(D | tK , tval) tallies up the class labels of all tuples

5

Published as a conference paper at ICLR 2024

in D that have similarity with tval higher or equal to tK . It returns γ, a label tally vector that is
indexed by class labels (i.e. γ : Y → N). Note that the sum of all elements in γ must be K. Given a
set of classes Y , we define ΓY,K to be the set of all possible label tally vectors. Finally, assuming a
standard majority voting scheme, argmaxy∈Y returns the predicted class label with the highest tally.
Additive Model Quality Metric. We say that a model quality metric is additive if there exists a
tuple-wise metric mT such that m can be written as:

m(A ◦ f(D), f(Dval)) = w ·∑tval∈f(Dval)
mT

((
A ◦ f(D)

)
(tval), tval

)
(5)

Here, w is a scaling factor that can depend only onDval. The tuple-wise metric mT : (ypred, tval) 7→
[0, 1] takes a validation tuple tval ∈ Dval as well as a class label ypred ∈ Y predicted by the model
for tval. It is easy to see that some popular utilities, such as validation accuracy, are additive, e.g.,
the accuracy utility is simply defined by plugging mT (ypred, (xval, yval)) := 1{ypred = yval} and
w := 1/|Dval| into Equation 5. In subsection E.3, we show even more examples of such metrics.

4.2 COMPUTING THE SHAPLEY VALUE

We now outline our approach to computing the Shapley value of a training data tuple ti ∈ Dtr using
our approximation described in subsection 3.2 and subsection 4.1. We start off from Equation 3 and
plug in u as defined in Equation 2. Next, since we assume that our model quality metric is additive,
we plug in m as defined in Equation 5. By rearranging the sums, we can write the Shapley formula
as φ(ti) = w ·∑tval∈f(Dval)

φ(ti, tval), where φ(ti, tval) is a validation tuple-wise Shapley value.
Under the assumption that our model is KNN, we can plug in A as defined in Equation 4, rearrange
the sums, and arrive at the following definition of φ(ti, tval):

φ(ti, tval) =
1
|A|

∑
t′,t′′∈f(Dtr)

∑|A|
α=1

(|A|−1
α

)−1 ∑
γ′,γ′′∈ΓY,K

m∆(γ
′, γ′′ | tval) · ω(α, γ′, γ′′ | ti, tval, t′, t′′). (6)

We define m∆(γ
′, γ′′ | tval) := mT (argmaxy∈Yγ

′′(y), tval) −mT (argmaxy∈Yγ
′(y), tval) as the

differential metric.
Counting Oracles. The function ω in Equation 6 is a counting oracle which we introduce to help us
isolate and analyze the exponential sum from Equation 3. We define it as:

ω(α, γ′, γ′′ | ti, tval, t′, t′′) :=
∑

v∈VA\{ai}

·1
{
α = |supp(v)|

}
·1
{
t′ = topK

(
f(Dtr[v; ai ← 0]) | tval

)}
· 1

{
t′′ = topK

(
f(Dtr[v; ai ← 1]) | tval

)}
·1
{
γ′ = tally

(
f(Dtr[v; ai ← 0]) | t′, tval

)}
· 1

{
γ′′ = tally

(
f(Dtr[v; ai ← 1]) | t′′, tval

)}
.

(7)

Intuitively, the counting oracle is a function that returns the number of value assignments with exactly
α variables set to 1, and the label tally of the top-K tuples will be exactly γ′′ when ti is included in
the training dataset, and γ′ when it is excluded. By looking at Equation 6 we can observe that all
the sums are polynomial w.r.t. the size of data. Thus, we arrive at the following theorem (which we
prove in Appendix E):
Theorem 4.1. If we can compute the counting oracle ω as defined in Equation 7 in time polynomial
w.r.t. |Dtr| and |Dval|, then we can compute the Shapley value of a tuple ti ∈ Dtr in time polynomial
w.r.t. |Dtr| and |Dval|.
The above theorem outlines a solution of Problem 2, given that we can find a PTIME solution for
computing the counting oracle. Next, we cover a solution that models the problem as a model
counting problem by leveraging a data structure which we call Additive Decision Diagrams (ADD’s).
Counting Oracle as Model Counting over ADD’s. We use Additive Decision Diagram (ADD) to
compute the counting oracle ωt,t′ (Equation 7). An ADD represents a Boolean function ϕ : VA →
E ∪ {∞} that maps value assignments v ∈ VA to elements of some set E or a special invalid element
∞ (see Appendix C for more details). For our purpose, we define E := {1, ..., |A|} × ΓY,K × ΓY,K .
Then, we define a function over Boolean inputs ϕ(v | ti, , tval, t′, t′′) as follows:

ϕ(v | ti, tval, t′, t′′) :=

∞, if t′ ̸∈ Dtr[v; ai ← 0],

∞, if t′′ ̸∈ Dtr[v; ai ← 1],

(α, γ′, γ′′), otherwise,

α := |supp(v)|, γ′ := tally
(
Dtr[v; ai ← 0] | t′, tval

)
, γ′′ := tally

(
Dtr[v; ai ← 1] | t′′, tval

)
.

(8)

6

Published as a conference paper at ICLR 2024

Dataset: Folktables Adult Pipeline: Random Augment + Missing Indicator + Standard Scaler + K-Means
(a) Target Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7
A

cc
u
ra

cy

0% 50% 100%
Portion of Labels Examined

0%

20%

40%

60%

80%

100%

Po
rt

io
n
 o

f
D

ir
ty

 L
a
b
e
ls

 F
o
u
n
d

101

102

103

C
o
m

p
u
te

 T
im

e
 [

s]

1.52

55.11

611.28

31.07

291.23

(b) Target Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0% 50% 100%
Portion of Labels Examined

0%

20%

40%

60%

80%

100%

Po
rti

on
 o

f D
irt

y
La

be
ls

Fo
un

d

101

102

103

Co
m

pu
te

 T
im

e
[s

]

1.53

48.45

666.48

2.88

48.57

Random Datascope KNN TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100

Figure 4: Computing the Shapley value by using KNN as a proxy model can achieve comparable
performance on a label repair task, with orders of magnitude faster runtime.

If we can construct an ADD that computes ϕ(v | ti, tval, t′, t′′), then the model counting operation
on that ADD exactly computes ω(α, γ′, γ′′ | ti, tval, t′, t′′). As the complexity of model counting is
O(|N | · |E|) (see Equation 12) and |E| is polynomial in the data size, we have the following result:

Theorem 4.2. If we can represent the ϕt,t′(v) in Equation 8 with an ADD of size polynomial in |A|
and |Df

tr|, we can compute the counting oracle ωt,t′ in time polynomial of |A| and |Df
tr|.

A proof is provided in Appendix E. For specific canonical pipelines, we have the following corollaries.

Corollary 4.1. (One-to-Many Join Pipelines) For the K-NN accuracy utility and a one-to-many
join pipeline, which takes as input two datasets, DF and DD, of total size |DF | + |DD| = N and
outputs a joined dataset of size O(N), the Shapley value can be computed in O(N4) time.

Corollary 4.2. (Fork Pipelines) For the K-NN accuracy utility and a fork pipeline, which takes
as input a dataset of size N and outputs a dataset of size M , the Shapley value can be computed in
O(M2N2) time.

Corollary 4.3. (Map Pipelines) For the K-NN accuracy utility and a map pipeline, which takes as
input a dataset of size N , the Shapley value can be computed in O(N2) time.

Evaluation of Effectiveness. We evaluate our method of computing the Shapley value by using
KNN as a proxy model (Figure 4). We can see that its effectiveness is comparable even when applied
to the task of label repair over pipelines that have different models. On the other hand, we can see
that the computational cost is orders of magnitude lower when compared to MC methods.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of our method by applying it to a common data debugging scenario
– label repair. The goal of this empirical study was to validate that: (1) our approximations enable
significantly faster computation of Shapley values, and (2) in spite of any inherent biases, these
approximations still manage to enable effective data debugging.

5.1 EXPERIMENTAL SETUP

Protocol. We conduct a series of experimental runs that simulate a real-world importance-driven data
debugging workflow. In each experimental run, we select a dataset, pipeline, model, and data repair
method. If a dataset does not already have human-generated label errors, we follow the protocol
of Li et al. (2021) and Jia et al. (2021) and artificially inject 50% of label noise. We compute the
importance using a validation dataset and use it to prioritize our label repairs. We divide the range
between 0% data examined and 100% data examined into 100 checkpoints. At each checkpoint, we
measure the quality of the given model on a separate test dataset using some metric (e.g. accuracy).
We also measure the time spent on computing importance scores for the entire training dataset. We
repeat each experiment 10 times and report the median as well as the 90-th percentile range (either
shaded or with error bars).
Data Debugging Methods. We apply various methods of computing data importance:
• Random — Importance is a random number and thus we apply data repairs in random order.
• TMC x10 / x100 — Shapley values computed using the Truncated Monte-Carlo (TMC)

method (Ghorbani & Zou, 2019), with 10 and 100 Monte-Carlo iterations, respectively.
• Datascope TMC x10 / x100 — This applies our method of approximating pipelines using data

provenance over canonical pipelines to the TMC method of computing the Shapley value.

7

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

u
ra

cy

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
q

u
a
liz

e
d

 O
d

d
s

D
if
fe

re
n
ce

100

102

C
o
m

p
u
te

 T
im

e
 [

s]

0.04

4.06

5.67

98.76

5.46

96.97

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: XGBoost
Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

u
ra

cy

0% 50% 100%
Portion of Labels Examined

0.0

0.5

E
q

u
a
liz

e
d

 O
d

d
s

D
if
fe

re
n
ce

101

103

C
o
m

p
u
te

 T
im

e
 [

s]

0.24

13.33

547.26

5051.14

538.88

5177.91

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: XGBoost
Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 5: Under our framework it is possible to optimize for model quality metrics other than
accuracy. Here we show a commonly used fairness metric – equalized odds difference (lower is
better). Given that approximating this metric is more complex, optimal results are achieved by using
KNN Interactive which recomputes the Shapley value after each data repair checkpoint.

• Datascope KNN — This is our method for efficiently computing the Shapley value over ML
pipelines by using the KNN as a proxy model.

• Datascope KNN Interactive — While the above methods compute importance only once at the
beginning of the repair process, the speed of our method allows us to recompute the importance
after each data repair checkpoint.

Table 1: Data preprocessing pipelines used in experiments.

Pipeline Dataset
Modality

Purely
Canonical Operators

Identity tabular true ∅
Standard Scaler tabular false StandardScaler
Logarithmic Scaler tabular false Log1P ◦ StandardScaler
PCA tabular false PCA
Missing Indicator + KMeans tabular false MissingIndicator ◦ KMeans
Gaussian Blur image true GaussBlur
Histogram of Oriented Gradients image true HogTransform
ResNet18 Embedding Model image true ResNet18
MobileViT Embedding (Mehta & Rastegari, 2022) image true MobileViT

TFIDF text false CountVectorizer
◦TfidfTransformer

Tolower + URLRemove+ TFIDF text false

TextToLower ◦ UrlRemover
◦CountVectorizer
◦TfidfTransformer

MinLM Embedding (Wang et al., 2020) text true MinLM
ALBERT Embedding (Reimers & Gurevych, 2019) text true Albert

Data Preprocessing Pipelines. We
obtained a dataset with about 500K
machine learning workflow instances
from internal Microsoft users (Psalli-
das et al., 2019). Each workflow con-
sists of a dataset, a data preprocessing
pipeline, and an ML model. We iden-
tified a handful of the most represen-
tative pipelines and translated them
to sklearn pipelines. All pipelines
used in our experiments are listed in
Table 1 along with the operators they
are made up of. Some pipelines are purely canonical, while some involve a reduce operation.

5.2 RESULTS

In this section, we highlight some of the most interesting results of our empirical analysis and point
out some key insights that we can draw. A more extensive experimental analysis is presented in
Appendix G. We start off with three general scenarios: (1) accuracy-driven label repair; (2) fairness-
driven label repair to demonstrate usage of different model quality metrics; and (3) label repair in
deep learning scenarios. In each one, we study the tradeoff between computational cost of any data
repair approach, and the labor cost, which is measured as the amount of data repairs that need to be
conducted to deliver the biggest improvement of model quality. Finally, we conduct a scalability
analysis of our algorithm to showcase its potential for handling large datasets.
Improving Accuracy. In this set of experiments, our goal is to improve model accuracy with targeted
label repairs. In Figure 4 we show one example workflow for the FolkUCI Adult dataset and the
pipeline from Figure 1 without the join operator. We evaluate our KNN-based method over pipelines
that contain two different ML models: LogisticRegression and XGBoost. We can draw two key
conclusions about our KNN-based algorithm. Firstly, given that our KNN-based method is able to
achieve comparable performance to Monte Carlo-based methods, we can conclude that KNN can
indeed serve as a good proxy model for computing the Shapley value. Secondly, it is able to achieve
this performance at only a fraction of the computational cost which makes it even more compelling.
Improving Accuracy and Fairness. Next, we explore the relationship between accuracy and fairness
when performing label repairs. In these experiments, we use tabular datasets that have a ‘sex’ feature
that we use to compute group fairness using equalized odds difference (Hardt et al., 2016). In Figure 5
we explore the tradeoff between two data debugging goals – the left panel illustrates the behavior of
optimizing for accuracy whereas the right panel illustrates the behavior of optimizing for fairness. We
first notice that being able to debug specifically for fairness is important because for some datasets
improving accuracy does not necessarily improve the fairness of the trained model. Secondly, we
can see that even when we do optimize for fairness, not all methods will end up being successful.
The best-performing method is Datascope KNN Interactive which is the only one that recomputes
the Shapley value at each of the 100 checkpoints (due to the speed of our KNN-based method). It
is likely that the complexity of the equalized odds difference as a metric makes it challenging to

8

Published as a conference paper at ICLR 2024

(a) ResNet as target Model

0% 50% 100%
Portion of Labels Examined

0.6

0.8
Ac

cu
ra

cy

Dataset: FashionMNIST
Model: ResNet18

(b) ResNet embedding as the preprocessing pipeline

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

u
ra

cy

102

2 × 102

3 × 102

C
o
m

p
u
te

 T
im

e
 [

s]

105.86

142.04

214.86

Dataset: FashionMNIST
Pipeline: ResNet18 Embedding; Model: Logistic Regression

(c) Matching Network as target model

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

u
ra

cy

102

104

C
o
m

p
u
te

 T
im

e
 [

s]

3.30

76.58

641.24

Dataset: FashionMNIST
Model: Matching Network

Random Datascope KNN Datascope TMC x10 Datascope TMC x100

Figure 6: The KNN proxy can offer effective data debugging in various deep-learning scenarios.

compute the Shapley value. Especially since some interventions on the dataset might end up shifting
the optimal path, and only by recomputing are we able to detect this shift.
Deep learning pipelines. We also measured the effectiveness of our approximation methods in
several scenarios that involve deep learning models. In Figure 6a we use a pre-trained ResNet-18
model as the target model. We fine-tune it for 5 epochs on a noisy label dataset and see that Datascope
KNN fares favorably compared to random label repair. Figure 6b shows the result of applying a
pre-trained embedding model and evaluating both the Datascope KNN and the Datascope TMC
approximations, where the KNN proxy again shows good performance. Finally, in Figure 6c we
show how our method can be used to repair labels of a dataset used as a support set for a one-shot
learning neural network. We use the matching networks model (Vinyals et al., 2016) which employs
a learned “distance metric” between examples in the test set and those in the support set. This allows
us to replace the standard Euclidean distance metric in our KNN proxy model with a custom one and
achieve effective label repairs with efficiently computed Shapley values.

10k 100k 1M
Training Set Size

100

101

102

C
om

pu
te

T
im

e
[s

]

100 1k 10k
Validation Set Size

101

102

C
om

pu
te

T
im

e
[s

]
10 100 1k

Number of Features

102

C
om

pu
te

T
im

e
[s

]

Figure 7: Scalability analysis of our Datascope
KNN Shapley algorithm over different training set,
validation set, and feature vector sizes.

Scalability. We evaluate the speed of our al-
gorithm for larger training datasets. We test
the runtime for various sizes of the training set
(10k-1M), the validation set (100-10k), and the
number of features (100-1k). As expected, the
impact of the training set size and validation
set size is roughly linear (Figure 7). Even for
large datasets, our method can compute Shapley
scores in minutes.

6 RELATED WORK

Targeted data repairs have been studied for some time now. Apart from the work mentioned in
section 1, a notable piece of work is CleanLab which leverages confident learning to make targeted
repairs of noisy labels (Northcutt et al., 2021). Our work focuses on the Shapley value given it was
shown to be applicable to many scenarios (Jia et al., 2021). Apart from the data valuation scenario,
the Shapley value has also been used for computing feature importance (Lundberg & Lee, 2017). On
the other hand, the scope of our work is data importance over ML pipelines.
Debugging data pipelines has started receiving some attention recently. Systems such as Data X-Ray
can debug data processing pipelines by finding groups of data errors that might have the same
cause (Wang et al., 2015). Another example is mlinspect which also uses data provenance as an
abstraction for automatically analyzing data preprocessing pipelines and discovering data distribution
errors (Grafberger et al., 2022). A system called Rain leverages influence functions as a method for
analyzing pipelines comprising of a model and a post-processing query (Wu et al., 2020). Rain also
uses data provenance as a key ingredient, but their focus is on queries that take as input predictions of
a model that has been trained directly on the source data.

7 CONCLUSION AND OUTLOOK

In this paper, we propose ease.ml/datascope, a framework for representing a wide range of ML
pipelines that appear in real-world scenarios with the end goal of efficiently computing the Shapley
value of source data examples. We show how this framework can be leveraged to provide significant
speed-ups to Monte Carlo-based methods for Shapley value computation. Furthermore, we provide
PTIME algorithms for computing the Shapley value using the KNN proxy model for several classes
of ML pipelines. Finally, we empirically demonstrate that our methods achieve significant speed-ups
over previously developed baselines while demonstrating competitive performance in a downstream
data debugging task. Our code is available at github.com/easeml/datascope.

9

https://ease.ml/datascope
https://github.com/easeml/datascope

Published as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and
Fabio Somenzi. Algebric decision diagrams and their applications. Formal methods in system
design, 10(2):171–206, 1997.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on, 100(8):677–691, 1986.

Marco Cadoli and Francesco M Donini. A survey on knowledge compilation. AI Communications,
10(3, 4):137–150, 1997.

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in databases: Why, how, and
where. Now Publishers Inc, 2009.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. arXiv preprint arXiv:2108.04884, 2021.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, pp. 2242–2251. PMLR, 2019.

Stefan Grafberger, Paul Groth, Julia Stoyanovich, and Sebastian Schelter. Data distribution debugging
in machine learning pipelines. The VLDB Journal, pp. 1–24, 2022.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
31–40, 2007.

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf.

Ihab F. Ilyas and Xu Chu. Data Cleaning. Association for Computing Machinery, New York, NY,
USA, 2019. ISBN 9781450371520.

Abhay Jha and Dan Suciu. Knowledge compilation meets database theory: Compiling queries to
decision diagrams. In ACM International Conference Proceeding Series, pp. 162–173, 2011. ISBN
9781450305297. doi: 10.1145/1938551.1938574.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient Task-Specific data valuation for nearest neighbor
algorithms. In VLDB, 2019a.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019b.

Ruoxi Jia, Xuehui Sun, Jiacen Xu, Ce Zhang, Bo Li, and Dawn Song. Scalability vs. utility: Do we
have to sacrifice one for the other in data importance quantification? CVPR, 2021.

Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for text categorization.
Technical report, Carnegie-mellon univ pittsburgh pa dept of computer science, 1996.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
International conference on machine learning, 70:1885–1894, 2017.

10

http://www.fairmlbook.org
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf

Published as a conference paper at ICLR 2024

Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Kdd,
volume 96, pp. 202–207, 1996.

Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. Boostclean: Automated error
detection and repair for machine learning. arXiv preprint arXiv:1711.01299, 2017.

Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula. Formal verification using edge-valued
binary decision diagrams. IEEE Transactions on Computers, 45(2):247–255, 1996.

C. Y. Lee. Representation of switching circuits by binary-decision programs. The Bell System
Technical Journal, 38(4):985–999, 1959. doi: 10.1002/j.1538-7305.1959.tb01585.x.

Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. CleanML: A study for evaluating
the impact of data cleaning on ML classification tasks. In 36th IEEE International Conference on
Data Engineering (ICDE 2020)(virtual), 2021.

Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, L Fei-Fei, Matei Zaharia, Ce Zhang, and James
Zou. Advances, challenges and opportunities in creating data for trustworthy ai. Nature Machine
Intelligence, 4(8):669–677, 2022.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017.

Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William Gaviria Rojas, Sudnya
Diamos, Greg Diamos, Lynn He, Douwe Kiela, David Jurado, et al. Dataperf: Benchmarks for
data-centric ai development. arXiv preprint arXiv:2207.10062, 2022.

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer. 2022. URL https://arxiv.org/abs/2110.02178.

Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident learning: Estimating uncertainty in
dataset labels. Journal of Artificial Intelligence Research (JAIR), 70:1373–1411, 2021.

Fotis Psallidas, Yiwen Zhu, Bojan Karlaš, Matteo Interlandi, Avrilia Floratou, Konstantinos Karana-
sos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino, et al. Data science through the looking
glass and what we found there. arXiv preprint arXiv:1912.09536, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 11 2019. URL http://arxiv.org/abs/1908.10084.

Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic data repairs
with probabilistic inference. Proc. VLDB Endow., 10(11):1190–1201, aug 2017. ISSN 2150-8097.
doi: 10.14778/3137628.3137631. URL https://doi.org/10.14778/3137628.3137631.

Peter Ross. Generalized hockey stick identities and n-dimensional blockwalking. The College
Mathematics Journal, 28(4):325, 1997.

Scott Sanner and David McAllester. Affine algebraic decision diagrams (aadds) and their application
to structured probabilistic inference. In IJCAI, volume 2005, pp. 1384–1390, 2005.

Lloyd S. Shapley. Notes on the N-Person Game II: The Value of an N-Person Game. RAND
Corporation, Santa Monica, CA, 1951. doi: 10.7249/RM0670.

L G Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8(2):189–201,
January 1979.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

11

https://arxiv.org/abs/2110.02178
http://arxiv.org/abs/1908.10084
https://doi.org/10.14778/3137628.3137631

Published as a conference paper at ICLR 2024

Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data x-ray: A diagnostic tool for data errors.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, pp. 1231–1245, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450327589. doi: 10.1145/2723372.2750549. URL https://doi.org/10.1145/
2723372.2750549.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with noisy
labels revisited: A study using real-world human annotations. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=TBWA6PLJZQm.

Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. Complaint-driven training data
debugging for query 2.0. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 1317–1334, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

12

https://doi.org/10.1145/2723372.2750549
https://doi.org/10.1145/2723372.2750549
https://openreview.net/forum?id=TBWA6PLJZQm

Published as a conference paper at ICLR 2024

A DISCUSSION ABOUT THE LIMITATIONS OF PRIOR WORK

In this section, we provide a brief outline of the existing KNN approximation method for computing
the Shapley value (Jia et al., 2019a) which was instrumental in laying the foundation for applying
the KNN proxy model to Shapley computation. However, as we argue in this paper, this work is not
directly applicable to ML pipelines as defined in this paper. Note that our goal here is to offer only
intuition as to why it is the case, and thus we are leaving out many technical details. In Appendix F
we present how the results in (Jia et al., 2019a) can be seen as a special case for computing Shapley
values using the 1-NN proxy model.
The polynomial time approximation to computing Shapley values using the KNN proxy model
established by Jia et al. (2019a) relies on several assumptions that do not hold in the context of
fork/join pipelines. The prediction of the KNN model (and by extension its accuracy) for any training
data (sub)set is strictly dependent on the labels of the top-K data examples that are most similar
to some validation example tval for which the KNN model is supposed to predict the label (and by
extension result in a measurement of the accuracy of this prediction). To compute the Shapley value
of a training data example ti ∈ Dtr, we need to know the accuracy difference (i.e. the marginal
contribution) that occurs when adding that data example to every possible subset D ⊆ Dtr. In
simple terms, the method in (Jia et al., 2019a) computes the Shapley value of an input data example
by first sorting all data examples according to their similarity with tval. After that, it relies on the
observation that in order for ti to end up in the top-K (and thus have a chance of impacting the
prediction accuracy of some subset D ⊆ Dtr), of all data examples that are higher than ti in the
sorting order, at most (K − 1) can be present in D. It then computes how many subsets D ⊆ Dtr of
size α satisfy this condition. Specifically, if ti takes the j-th position in the sorting order, then the
number of such subsets is

(
j−1
K−1

)(|Dtr|−j
α−K

)
. Finally, it includes the Shapley weighing factor along

with some combinatorial tricks to combine all this into a simple formula:

φ(ti, tval) =

|Dtr|∑
j=1

(
mT (y(ti), tval)−mT (y(tj), tval)

)(|Dtr| − j

j + 1

)

As we can see, this method strictly expects that adding ti to any subset of Dtr will always result
in either 0 or 1 data examples being added to the top-K and that the choice between 0 and 1
strictly depends on the number of data examples that come before ti in the sorting order. Two core
assumptions lie behind this expectation: (1) adding ti to a subset of Dtr will always result in exactly
one additional data example being passed to KNN, and (2) the presence of any data example in the
KNN training set is caused by the presence of exactly one data example in Dtr. The first assumption
allows us to separate data examples into those that come before ti in the sorting order and those that
come after. The second assumption allows us to count subsets using binomial coefficients. If any
of the two assumptions do not hold, then the simple combinatorial formula is no longer applicable
because the data examples passed to KNN are no longer independent from each other. Map pipelines
do not break these assumptions. On the other hand, fork pipelines break the first assumption, and join
pipelines break both the first and the second assumption.
In this work, we examine the broader setting of ML pipelines which comes with several open
questions. If any single training data examples ti ∈ Dtr is associated with e.g. 10 data examples that
are passed to KNN, and they are all intertwined in the sorting order, how do we efficiently compute
the number of subsets D ⊆ Dtr where adding a specific data example ti will result in altering the
accuracy of the KNN prediction? If a data example that gets passed to KNN is the result of joining
two data examples t1,1 and t2,1 from separate source datasets D1 and D2, but t1,1 is also joined with
other examples from D2 that make up even more output data examples, so removing t2,1 from the
training dataset will result in one data example not being passed to KNN but removing t1,1 will result
in more than one not being passed, how do we efficiently compute the number of subsets where
adding t1,1 will alter the KNN prediction? Do things change in the case of multi-class classification?
Can we use model quality metrics other than accuracy? To answer these open questions, we employed
all the theoretical components described in this paper, including provenance polynomials, ADD’s, and
model counting oracles. The theoretical insight we would like to convey is that all these components
are fundamental to solving this problem and that this is the correct level of abstraction for analyzing
ML pipelines and developing PTIME algorithms.

13

Published as a conference paper at ICLR 2024

B DISCUSSION ABOUT TYPES OF ML PIPELINE OPERATORS

Here we provide an overview of types of pipeline operators that can be found in ML workflows. We
base this discussion on operatos that can be found in the scikit-learn and ML.NET frameworks, as
well as commonly used operators that can be found in real-world ML code.
Unary Map: These are functions that map single value inputs to single value outputs. Examples
include:

• Log - Computes a logarithm of the input.
• Missing Value Indicator - returns a Boolean that indicates if the input is a missing value or not

(e.g. MissingIndicator in scikit-learn).
• Stopword Remover - takes an input list of string tokens and removes the ones that correspond to

stop-words (e.g. "the", "and", etc); the list of stop words is specified as an additional argument
(e.g. StopWordsRemovingTransformer in ML.NET)

Binary Numerical and Logical Map: These are common mathematical operators such as addition,
subtraction, multiplication, division, logical and, logical or, equality test, etc.
Multi-Value Map: Values containing multiple elements are taken as inputs and produced as outputs.
A key example is a vector normalizing operator which maps a vector input to a vector output.
Tuple Filter Map: These operators remove tuples from the dataset based on the result of some unary
map operation. Since these operators map a single tuple to either a single output tuple or to nothing,
they are categorized as map filters. Examples include:

• Missing Value Filter - Removes tuples that contain missing values.
• Range Filter - Removes tuples where values of a specified column are outside a given range.

Numerical Aggregate Reduce: This operator takes an entire column and reduces it into a single
numerical value. Examples include summation, counting, mean value, standard deviation, as well as
minimal and maximal element selector operators.
Unary Map with Reduce Elements: These operator function similarly to regular unary map
operators. However, their mapping operation is dependent on performing some numerical aggregate
reduce operation beforehand. Examples include:

• Min-Max Scaler - Scales column values to a 0-1 range based on minimal and maximal
element values which represent the pre-computed reduce element (e.g. MinMaxScaler in
scikit-learn).

• Standardization Scaler - Same as the min-max scaler but transforms elements based on the
pre-computed mean and standard deviation values (e.g. StandardScaler in scikit-learn).

• One-Hot Encoder - Encodes numerical features as a one-hot numerical array. Depends on a
pre-computed list of unique column element values.

• TD-IDF Encoder - Converts textual values into their Term Frequency - Inverse Document
Frequency encodings. This operator depends on a pre-computed dictionary of token frequencies.

Data Augmentation Fork: This can be any data augmentation operator that maps input tuples to
some specified number of output tuples. Examples include: random noise injection, randomly shifting
or rotating images, removing or replacing characters in text to simulate misspelling, etc.
One-to-Many Join: Join operators compute a matching between two sets of tuples DA and DB , and
for each pair of matched input tuples produce a single output tuple. In general there are no constraints
on the kinds of matchings that can be performed. However, the specific type of join we describe here,
referred to as one-to-many type join requires that tuples from one of the two sets (e.g. DA) can be
matched with at most one tuple from the other set (e.g. DB). At the same time, tuples from DB can
be matched with multuple tuples from DA.

C PRELIMINARY: ADDITIVE DECISION DIAGRAMS (ADD’S)

In this section, we describe a type of decision diagram that we use as a tool for compact representation
of functions over Boolean inputs. The process of translating functions into data structures for easier
analysis is referred to as knowledge compilation. We briefly describe this in the context of our work,
and then go over the data structure we use in our methods – Additive Decision Diagrams.
Knowledge Compilation. Our approach to computing the Shapley value will rely upon being able to
construct functions over Boolean inputs ϕ : VA → E , where E is some finite value set. We require
an elementary algebra with +, −, · and / operations to be defined for this value set. Furthermore,
we require this value set to contain a zero element 0, as well as an invalid element∞ representing

14

Published as a conference paper at ICLR 2024

an undefined result (e.g. a result that is out of bounds). We then need to count the number of value
assignments v ∈ VA such that ϕ(v) = e, for some specific value e ∈ E . This is referred to as the
model counting problem, which is #P complete for arbitrary logical formulas Valiant (1979); Arora
& Barak (2009). For example, if A = {a1, a2, a3}, we can define E = {0, 1, 2, 3,∞} to be a value
set and a function ϕ(v) := v(a1) + v(a2) + v(a3) corresponding to the number of variables in A
that are set to 1 under some value assignment v ∈ VA.
Knowledge compilation Cadoli & Donini (1997) has been developed as a well-known approach to
tackle this model counting problem. It was also successfully applied to various problems in data
management Jha & Suciu (2011). One key result from this line of work is that, if we can construct
certain polynomial-size data structures to represent our logical formula, then we can perform model
counting in polynomial time. Among the most notable of such data structures are decision diagrams,
specifically binary decision diagrams Lee (1959); Bryant (1986) and their various derivatives Bahar
et al. (1997); Sanner & McAllester (2005); Lai et al. (1996). For our purpose in this paper, we use the
additive decision diagrams (ADD), as detailed below.
Additive Decision Diagrams (ADD). We define a simplified version of the affine algebraic decision
diagrams Sanner & McAllester (2005). An ADD is a directed acyclic graph defined over a set of nodes
N and a special sink node denoted as ⊡. Each node n ∈ N is associated with a variable a(n) ∈ A.
Each node has two outgoing edges, cL(n) and cH(n), that point to its low and high child nodes,
respectively. For some value assignment v, the low/high edge corresponds to v(a) = 0/v(a) = 1.
Furthermore, each low/high edge is associated with an increment wL/wH that maps edges to elements
of E .
Note that each node n ∈ N represents the root of a subgraph and defines a Boolean function. Given
some value assignment v ∈ VA we can evaluate this function by constructing a path starting from
n and at each step moving towards the low or high child depending on whether the corresponding
variable is assigned 0 or 1. The value of the function is the result of adding all the edge increments
together. Figure 8a presents an example ADD with one path highlighted in red. Formally, we can
define the evaluation of the function defined by the node n as follows:

evalv(n) :=

0, if n = ⊡,

wL(n) + evalv(cL(n)) if v(x(n)) = 0,

wH(n) + evalv(cH(n)) if v(x(n)) = 1.

(9)

In our work, we focus specifically on ADD’s that are full and ordered. A diagram is full if every
path from root to sink encounters every variable in A exactly once. For example, in Figure 8a
we see a full diagram over the set of variables A = {a1,1, a1,2, a2,1, a2,2, a2,3}. If any of the
variables in A has no node associated with it, then the diagram is not considered full. On the
other hand, an ADD is ordered when on each path from root to sink variables always appear
in the same order. For this purpose, we define π : A → {1, ..., |A|} to be a permutation of
variables that assigns each variable a ∈ A an index. For example, in Figure 8a, the variable order
is π = {a1,1 7→ 1, a1,2 7→ 4, a2,1 7→ 2, a2,2 7→ 3, a2,3 7→ 5}. It is possible, for example, to swap
the two nodes on the left side that correspond to a2,1 and a2,2. This, however, makes the diagram
unordered, which dramatically complicates certain operations (e.g. the diagram summation operation
that we will describe shortly).
Diagram Diameter. We define the diameter of an ADD as the maximum number of nodes associated
with any single variable. Formally we can write:

diam(N) := max
ai∈A

∣∣{n ∈ N : a(n) = ai}
∣∣ (10)

We can immediately notice that the size of any ADD with a set of nodes N and variables A is
bounded by O(|A| · diam(N)).
Model Counting. We define a model counting operator

counte(n) :=
∣∣∣{v ∈ VA[≤π(a(n))] | evalv(n) = e

}∣∣∣, (11)

where A[≤ π(a(n))] is the subset of variables in A that include a(n) and all variables that come
before it in the permutation π. For an ordered and full ADD, counte(n) satisfies the following
recursion:

counte(n) :=

1, if e = 0 and n = ⊡,

0, if e =∞ or n = ⊡,

counte−wL(n)(cL(n)) + counte−wH(n)(cH(n)), otherwise.

(12)

15

Published as a conference paper at ICLR 2024

(a) ADD

a1,1

a2,1

+1
a2,2

+1
a1,2

a2,3

· +1

(b) Uniform ADD

a1

+5
a2

+5
a3

·
+5

Figure 8: (a) An ordered and full ADD for computing ϕ(v) := v(a1,1) ·
(
v(a2,1) + v(a2,2)

)
+

v(a1,2) · v(a2,3). (b) A uniform ADD for computing ϕ(v) := 5 · (v(a1) + v(a2) + v(a3)).

The above recursion can be implemented as a dynamic program with computational complexity
O(|N | · |E|).
Figure 8b shows a special case of a full and ordered ADD, which we call a uniform ADD. It is
structured as a chain with one node per variable, where all low increments equal zero and all high
increments equal some constant E ∈ E . For this type of ADD, we can perform model counting in
constant time, assuming that we have a precomputed table of factorials of size O(|N |) that allows us
to compute binomial coefficients in constant time. The counte operator for a uniform ADD can be
defined as

counte(n) :=

{(
π(a(n))
e/E

)
, if e mod E = 0,

0 otherwise.
(13)

Intuitively, if we observe the uniform ADD shown in Figure 8b, we see that the result of an evaluation
must be a multiple of 5. For example, to evaluate to 10, the evaluation path must pass a high edge
exactly twice. Therefore, in a 3-node ADD with root node nR, the result of count10(nR) will be
exactly

(
3
2

)
.

Special Operations on ADD’s. Given an ADD with node set N , we define two operations that will
become useful later on when constructing diagrams for our specific scenario:

1. Variable restriction, denoted as N [ai ← V], which restricts the domain of variables A by forcing
the variable ai to be assigned the value V . This operation removes every node n ∈ N where
a(n) = ai and rewires all incoming edges to point to the node’s high or low child, depending on
whether V = 1 or V = 0. The resulting diagram will have between 1 and diam(N) nodes less
than the original diagram, depending on the number of nodes associated with variable ai.

2. Diagram summation, denoted as N1 + N2, where N1 and N2 are two ADD’s over the same
(ordered) set of variables A. ordered in the same way. It starts from the respective root nodes
n1 and n2, and produces a new node n := n1 + n2. We then apply the same operation to child
nodes. Therefore, cL(n1 + n2) := cL(n1) + cL(n2) and cH(n1 + n2) := cH(n1) + cH(n2).
Also, for the increments, we can define wL(n1 +n2) := wL(n1)+wL(n2) and wH(n1 +n2) :=
wH(n1)+wH(n2). The size of the resulting diagram is bounded by O(|A|·diam(N1)·diam(N2)).
A proof of this claim is presented in subsection E.2.

D CONSTRUCTING POLYNOMIAL-SIZE ADD’S FOR ML PIPELINES

Algorithm 1 presents our main procedure COMPILEADD that constructs an ADD for a given dataset
D made up of tuples annotated with provenance polynomials. This is achieved by invoking the
procedure COMPILEADD(D, A, ti, tval) constructs an ADD with node set N ′ that computes

ϕ(v | ti, tval, t′) :=
{∞, if t′ ̸∈ D[v]),
tally(D[v] | t′, tval), otherwise.

(14)

16

Published as a conference paper at ICLR 2024

Algorithm 1 Compiling a provenance-tracked dataset into ADD.

1: function COMPILEADD
2: inputs
3: D, provenance-tracked dataset;
4: A, set of variables;
5: ti, boundary tuple;
6: tval, validation tuple;
7: outputs
8: N , nodes of the compiled ADD;
9: begin

10: N ← {}
11: P ← {(a1, a2) ∈ A : ∃ti ∈ D, a1 ∈ p(ti) ∧ a2 ∈ p(ti)}
12: AL ← GETLEAFVARIABLES(P)
13: for AC ∈ GETCONNECTEDCOMPONENTS(P) do
14: A′ ← AC \AL

15: N ′ ← CONSTRUCTADDTREE(A′)
16: D′ ← {t′ ∈ D : p(t′) ∪AC ̸= ∅}
17: for v ∈ VA′ do
18: NC ← CONSTRUCTADDCHAIN(AC ∩AL)
19: for n ∈ NC do
20: v′ ← v ∪ {a(n)→ 1}
21: wH(n)← |{t′ ∈ D′ : evalv′p(t′) = 1 ∧ σ(t′, tval) ≥ σ(ti, tval)}|
22: end for
23: N ′ ← APPENDTOADDPATH(N ′, NC , v)
24: end for
25: N ← APPENDTOADDROOT(N , N ′)
26: end for
27: for a′ ∈ p(t) do
28: for n ∈ N where a(n) = a′ do
29: wL(n)←∞
30: end for
31: end for
32: return N
33: end function

We provide a more detailed description of Algorithm 1 in subsection D.1.
To construct the function defined in Equation 8, we need to invoke COMPILEADD once more by
passing t′′ instead of t′ in order to obtain another diagram N ′′. The final diagram is obtained as a
result of N ′[ai ← 0] +N ′′[ai ← 1]. In other words, by performing a diagram summation operation
over diagrams N ′ (with variable restriction ai ← 0) and N ′′ (with variable restriction ai ← 1). The
size of the resulting diagram will still be bounded by O(|D|).
We can now examine different types of canonical pipelines and see how their structures are reflected
onto the structure of ADD’s. In summary, we can construct an ADD with polynomial-size for
canonical pipelines, and therefore, by Theorem 4.2, the computation of the corresponding counting
oracles is in PTIME.
One-to-Many Join Pipeline. In a star database schema, this corresponds to a join between a fact
table and a dimension table, where each tuple from the dimension table can be joined with multiple
tuples from the fact table. It can be represented by an ADD similar to the one in Figure 8a.
Corollary D.1. For the K-NN accuracy utility and a one-to-many join pipeline, which takes as input
two datasets, DF and DD, of total size |DF |+ |DD| = N and outputs a joined dataset of size O(N),
the Shapley value can be computed in O(N4) time.

Proof. This follows from the observation that in Algorithm 1, each connected component AC will be
made up of one variable corresponding to the dimension table and one or more variables corresponding
to the fact table. Since the fact table variables will be categorized as "leaf variables", the expression
AC \AL in Line 14 will contain only a single element – the dimension table variable. Consequently,
the ADD tree in N ′ will contain a single node. On the other side, the AC ∩ AL expression will

17

Published as a conference paper at ICLR 2024

contain all fact table variables associated with that single dimension table variable. That chain will
be added to the ADD tree two times for two outgoing branches of the single tree node. Hence, the
ADD segment will be made up of two fact table variable chains stemming from a single dimension
table variable node. There will be O(|DD|) partitions in total. Given that the fact table variables are
partitioned, the cumulative size of their chains will be O(|DF |). Therefore, the total size of the ADD
with all partitions joined together is bounded by O(|DD|+ |DF |) = O(N).
Given fact and combining it with Theorem 4.2 we know that the counting oracle can be computed in
time O(N) time. Finally, given Theorem 4.1 and the structure of Equation 6 we can observe that
the counting oracle is invoked O(N3) times. As a result, we can conclude that the total complexity
of computing the Shapley value is O(N4). Here, we assume that we have a precomputed table of
factorials from 1 to N that allows us to compute the binomial coefficient in constant time.

Fork Pipeline. The key characteristic of a pipeline f that contains only fork or map operators is
that the resulting dataset f(D) has provenance polynomials with only a single variable. This is due
to the absence of joins, which are the only operator that results in provenance polynomials with a
combination of variables.
Corollary D.2. For the K-NN accuracy utility and a fork pipeline, which takes as input a dataset of
size N and outputs a dataset of size M , the Shapley value can be computed in O(M2N2) time.

Proof. The key observation here is that, since all provenance polynomials contain only a single
variable, there is no interdependency between them, which means that the connected components
returned in Line 13 of Algorithm 1 will each contain a single variable. Therefore, the size of the
resulting ADD will be O(N). Consequently, similar to the proof of the previous corollary, the
counting oracle can be computed in time O(N) time. In this case, the size of the output dataset is
O(M) which means that Equation 6 will invoke the oracle O(M2N) times. Therefore, the total time
complexity of computing the Shapley value will be O(M2N2). Here, we assume that we have a
precomputed table of factorials from 1 to N that allows us to compute the binomial coefficient in
constant time.

Map Pipeline. A map pipeline is similar to fork pipeline in the sense that every provenance
polynomial contains only a single variable. However, each variable now can appear in a provenance
polynomial of at most one tuple, in contrast to fork pipeline where a single variable can be associated
with multiple tuples. This additional restriction results in the following corollary:
Corollary D.3. For the K-NN accuracy utility and a map pipeline, which takes as input a dataset of
size N , the Shapley value can be computed in O(N2) time.

Proof. There are two arguments we need to make which will result in the reduction of complexity
compared to fork pipelines. The first argument is that given that each variable can appear in the
provenance polynomial of at most one tuple, having its value set to 1 can result in either zero or one
tuple contributing to the top-K tally. It will be one if that tuple is more similar than the boundary
tuple t and it will be zero if it is less similar. Consequently, our ADD will have a chain structure
with high-child increments being either 0 or 1. If we partition the ADD into two chains, one with
all increments 1 and another with all increments 0, then we end up with two uniform ADD’s. As
shown in Equation 13, model counting of uniform ADD’s can be achieved in constant time. The
only difference here is that, since we have to account for the support size of each model, computing
the oracle ω(α, γ′, γ′′|ti, tval, t′, t′′) for a given α will require us to account for different possible
ways to split α across the two ADD’s. However, since the tuple t needs to be the boundary tuple,
which means it is the K-th most similar, there need to be exactly K − 1 variables from the ADD
with increments 1 that can be set to 1. This gives us a single possible distribution of α across two
ADD’s. Hence, the oracle can be computed in constant time.
As for the second argument, we need to make a simple observation. For map pipelines, given a
boundary tuple t′ and a tally vector γ′ corresponding to the variable ai being assigned the value 0,
we know that setting this variable to 1 can introduce at most one tuple to the top-K. That could
only be the single tuple associated with ai. If this tuple has a lower similarity score than t′, there
will be no change in the top-K. On the other side, if it has a higher similarity, then it will become
part of the top-K and it will evict exactly t′ from it. Hence, there is a unique tally vector γ′′

resulting from ai being assigned the value 1. This means that instead of computing the counting
oracle ω(α, γ′, γ′′|ti, tval, t′, t′′), we can compute the oracle ω(α, γ′|ti, tval, t′). This means that, in
Equation 6 we can eliminate the iteration over t′′ which saves us an order of O(N) in complexity.

18

Published as a conference paper at ICLR 2024

As a result, Equation 6 will make O(N2) invocations to the oracle which can be computed in constant
time. Here, we assume that we have a precomputed table of factorials from 1 to N that allows us
to compute the binomial coefficient in constant time. Hence, the final complexity of computing the
Shapley value will be O(N2).

D.1 DETAILS OF ALGORITHM 1

In this section, we examine the method of compiling a provenance-tracked dataset f(Dtr) that results
from a pipeline f . The crux of the method is defined in Algorithm 1 which is an algorithm that takes
a dataset f(Dtr) with provenance tracked over a set of variables A, a boundary tuple t′ ∈ f(Dtr)
and a validation tuple tval ∈ f(Dval). The result is an ADD that computes the following function:

ϕ(v | ti, tval, t′) :=
{∞, if t′ ̸∈ f(Dtr[v]),

tally(f(Dtr[v]) | t′, tval), otherwise.
(15)

Assuming that all provenance polynomials are actually a single conjunction of variables and that the
tally is always a sum over those polynomials, it tries to perform factoring by determining if there are
any variables that can be isolated. This is achieved by first constructing the set of "leaf variables"
AL (Line 12). No pair of variables in AL ever appears in the same provenance polynomial. In graph
theory, this set is also known as the "independent set". We use a heuristic approach to construct this
set that prioritizes the least frequently occurring variables and completes them in O(N) time. We
then iterate over each "connected component" AC (Line 13) where any two variables are "connected"
if they are ever in the same provenance polynomial. Then we get the set A′ = AC \ AL which
contains variables that cannot be isolated (because they appear in polynomials in multiple tuples with
multiple different variables). We form a group that will be treated as one binary vector and based on
the value of that vector we would take a specific path in the tree. We thus take the group of variables
and call the CONSTRUCTADDTREE function to construct an ADD tree (Line 15).
Every path in this tree corresponds to one value assignment to the variables in that tree. Then, for
every path we call the CONSTRUCTADDCHAIN to build a chain made up of the isolated variables and
call APPENDTOADDPATH to append them to the leaf of that path (Line 23). For each variable in the
chain, we also define an increment that is defined by the number of tuples that will be more similar
than the boundary tuple t′ and also have their provenance polynomial "supported" by the path. We
thus construct a segment of the final ADD made up of different components. We append this segment
to the final ADD using the APPENDTOADDROOT function. We don’t explicitly define these functions
but we illustrate their functionality in Figure 9.

E ADDITIONAL PROOFS AND DETAILS

E.1 PROOF OF THEOREM 4.1

Proof. This theorem can easily be proven by observing the structure of the Shapley value of a tuple
ti for a single validation tuple tval, as we defined it in Equation 6:

φ(ti, tval) =
1
|A|

∑
t′,t′′∈f(Dtr)

∑|A|
α=1

(|A|−1
α

)−1 ∑
γ′,γ′′∈ΓY,K

m∆(γ
′, γ′′ | tval) · ω(α, γ′, γ′′ | ti, tval, t′, t′′).

We can notice that it is made up of several sums: (1) the left-most one is a sum over t′, t′′ ∈ f(Dtr)
which for a canonical pipeline f is a set of cardinality in O(|Dtr|); (2) the next one is a sum over |A|
elements which is O(|Dtr|) according to the definition of A given in subsection 3.1; and finally (3)
the right-most sum is over γ′, γ′′ ∈ ΓY,K where ΓY,K is the set of all |Y|-dimensional label tally
vectors which can be defined as ΓY,K := {γ ∈ N|Y| : K ≥∑

i γi} and can be treated as constant
since it does not depend on |Dtr|. As we can see, given that all sums in φ(ti, tval) are O(|Dtr|),
then it is safe to conclude that if we can compute ω(α, γ′, γ′′ | ti, tval, t′, t′′) in time polynomial w.r.t
|Dtr|, then we can also compute φ(ti, tval) in time polynomial in |Dtr|. Finally, as mentioned in
, the Shapley value for a tuple ti can be computed as φ(ti) = w ·∑tval∈f(Dval)

φ(ti, tval) which
contains a sum over O(|Dval|) elements (given that the pipeline f is canonical). Hence, we can see
that the Shapley value can be computed in time polynomial in |Dtr| and |Dval|, which concludes our
proof.

E.2 PROOF OF THEOREM 4.2

Model Counting for ADD’s. We start off by proving that Equation 12 correctly performs model
counting.

19

Published as a conference paper at ICLR 2024

a1

a2

a3

N1 = CONSTRUCTADDTREE({a1, a2, a3})

a4

a5

a6

N2 = CONSTRUCTADDCHAIN({a4, a5, a6})

a1

a2

a3

a4

a5

a6

APPENDTOADDPATH(N1,N2, {a1 → 1, a2 → 0, a3 → 1})

a1

a2

a3

a4

a5

a6

APPENDTOADDROOT(N1,N2)

Figure 9: An example of ADD compilation functions.

Lemma E.1. For a given node n ∈ N of an ADD and a given value e ∈ E , Equation 12 correctly
computes counte(n) which returns the number of assignments v ∈ VA such that evalv(n) = e.
Furthermore, when computing counte(n) for any n ∈ N , the number of computational steps is
bounded by O(|N | · |E|).

Proof. We will prove this by induction on the structure of the recursion.
(Base case.) Based on Equation 9, when n = ⊡ we get evalv(n) = 0 for all v. Furthermore, when
n = ⊡, the set VA[a>π(a(n)) = 0] contains only one value assignment with all variables set to zero.
Hence, the model count will equal to 1 only for e = 0 and it will be 0 otherwise, which is reflected in
the base cases of Equation 12.
(Inductive step.) Because our ADD is ordered and full, both cL(n) and cH(n) are associated with the
same variable, which is the predecessor of a(n) in the permutation π. Based on this and the induction
hypothesis, we can assume that

counte−wL(n)(cL(n)) =
∣∣∣{v ∈ VA[≤a(cL(n))] | evalv(cL(n)) = e− wL(n)

}∣∣∣
counte−wH(n)(cH(n)) =

∣∣∣{v ∈ VA[≤a(cH(n))] | evalv(cH(n)) = e− wH(n)
}∣∣∣ (16)

We would like to compute counte(n) as defined in Equation 11. It computes the size of a set defined
over possible value assignments to variables in A[≤ a(n)]. The set of value assignments can be
partitioned into two distinct sets: one where a(n)← 0 and one where a(n)← 1. We thus obtain the
following expression:

counte(n) :=
∣∣∣{v ∈ VA[≤a(n)]

[
a(n)← 0

]
| evalv(n) = e

}∣∣∣
+

∣∣∣{v ∈ VA[≤a(n)]

[
a(n)← 1

]
| evalv(n) = e

}∣∣∣ (17)

20

Published as a conference paper at ICLR 2024

Based on Equation 9, we can transform the evalv(n) expressions as such:

counte(n) :=
∣∣∣{v ∈ VA[≤a(cL(n))] | wL(n) + evalv(cL(n)) = e

}∣∣∣
+

∣∣∣{v ∈ VA[≤a(cL(n))] | wH(n) + evalv(cH(n)) = e
}∣∣∣ (18)

Finally, we can notice that the set size expressions are equivalent to those in Equation 16. Therefore,
we can obtain the following expression:

counte(n) := counte−wL(n)(cL(n)) + counte−wH(n)(cH(n)) (19)

which is exactly the recursive step in Equation 12. This concludes our inductive proof and we move
onto proving the complexity bound.
(Complexity.) This is trivially proven by observing that since count has two arguments, we can
maintain a table of results obtained for each n ∈ N and e ∈ E . Therefore, we know that we will
never need to perform more than O(|N | · |E|) invocations of counte(n).

ADD Construction. Next, we prove that the size of an ADD resulting from diagram summation as
defined in Appendix C is linear in the number of variables.
The size of the diagram resulting from a sum of two diagrams with node sets N1 and N2 can be
loosely bounded by O(|N1| · |N2|) assuming that its nodes come from a combination of every possible
pair of operand nodes. However, given the much more narrow assumptions we made in the definition
of the node sum operator, we can make this bound considerably tighter. As mentioned in Appendix C,
the size of any ADD with set of nodes N and variables A is bounded by O(|A| · diam(N)). We can
use this fact to prove a tighter bound on the size of an ADD resulting from a sum operation:
Lemma E.2. Given two full ordered ADD’s with nodes N1 and N2, noth defined over the set of
variables A, the number of nodes in N1 +N2 is bounded by O(|A| · diam(N1) · diam(N2)).

Proof. It is sufficient to show that diam(N1 +N2) = O(diam(N1) · diam(N2)). This is a direct
consequence of the fact that for full ordered ADD’s the node sum operator is defined only for nodes
associated with the same variable. Since the only way to produce new nodes is by merging one node
inN1 with one node inN2, and given that we can merge nodes associated with the same variable, the
number of nodes associated with the same variable in the resulting ADD equals the product of the
corresponding number of nodes in the constituent ADD’s. Since the diameter is simply the upper
bound of the number of nodes associated with any single variable, the same upper bound in the
resulting ADD cannot be larger than the product of the upper bounds of constituent nodes.

Computing the Oracle using ADD’s. Finally, we prove the correctness of Theorem 4.2.
Lemma E.3. Given an Additive Decision diagram with root node n(ti, tval, t

′, t′′) that com-
putes the Boolean function ϕ(v|ti, tval, t′, t′′) as defined in Equation 8, the counting oracle
ω(α, γ′, γ′′|ti, tval, t′, t′′) defined in Equation 7 can be computed as:

ω(α, γ′, γ′′|ti, tval, t′, t′′) := count(α,γ′,γ′′)(n(ti, tval, t
′, t′′)) (20)

Proof. Given a training dataset Dtr and a data preprocessing pipeline f , we have f(Dtr) as the
output of that pipeline and input to an ML model. Let us define f(Dtr)[≥σ(·,tval) t

′] ⊆ f(Dtr) as
a set of tuples in f(Dtr) with similarity to a validation tuple tval higher or equal than that of t′,
formally f(Dtr)[≥σ(·,tval) t′] := {t′′ ∈ f(Dtr) : σ(t′′, tval) ≥ σ(t′, tval)}. Similarly to f(Dtr),
the semantics of f(Dtr)[≥σ(·,tval) t

′] is also that of a set of possible candidate sets. Given a value
assignment v, we can obtain f(Dtr[v])[≥σ(·,tval) t

′] from f(Dtr[v]). For convenience, we also define
f(Dtr)[≥σ(·,tval) t′][=ℓ y] as a subset of f(Dtr)[≥σ(·,tval) t′] with only tuples that have label y.
Given these definitions, we can define several equivalences. First, for topK we have:(

t′ = topK
(
f(Dtr[v]) | tval

))
⇐⇒

(
t′ ∈ f(Dtr[v]) ∧

∣∣f(Dtr[v])[≥σ(·,tval) t
′]
∣∣ = K

)
(21)

In other words, for t′ to be the tuple with the K-th highest similarity in f(Dtr[v]), it needs to be a
member of f(Dtr[v]) and the number of tuples with similarity greater or equal to t′ has to be exactly
K. Similarly, we can define the equivalence for tally(·|t′, tval):(

γ′ = tally
(
f(Dtr[v]) | t′, tval

))
⇐⇒

(
∀y ∈ Y, γ′

y =
∣∣f(Dtr[v])[≥σ(·,tval) t

′][=ℓ y]
∣∣) (22)

21

Published as a conference paper at ICLR 2024

This is simply an expression that partitions the set f(Dtr[v])[≥σ(·,tval) t′] based on y and tallies
them up. The next step is to define an equivalence for (t′ = topK(f(Dtr[v]) | tval)) ∧ (γ′ =
tally(f(Dtr[v]) | t′, tval)). We can notice that since |γ′| = K, if we have (∀y ∈ Y, γ′

y =
|f(Dtr[v])[≥σ(·,tval) t′][=ℓ y]|) then we can conclude that (|f(Dtr[v])[≥σ(·,tval) t′]| = K) is
redundant. Hence, we can obtain:(
t′ = topK

(
f(Dtr[v]) | tval

))
∧
(
γ′ = tally

(
f(Dtr[v]) | t′, tval

))
⇐⇒

(
t′ ∈ f(Dtr[v])

)
∧
(
∀y ∈ Y, γy =

∣∣f(Dtr[v])[≥σ t][=ℓ y]
∣∣)

(23)

According to Equation 22, we can reformulate the right-hand side of the above equivalence as:(
t′ = topK

(
f(Dtr[v]) | tval

))
∧
(
γ′ = tally

(
f(Dtr[v]) | t′, tval

))
⇐⇒

(
t′ ∈ f(Dtr)[v]

)
∧
(
γ′ = tally

(
f(Dtr[v]) | t′, tval

))
(24)

We can construct a similar expression for t′ and v[ai = 1] so we cover four out of five predicates in
Equation 7. The remaining one is simply the support of the value assignment v which we will leave
intact. This leaves us with the following equation for the counting oracle:

ω(α, γ′, γ′′ | ti, tval, t′, t′′) :=
∑

v∈VA\{ai}

·1
{
α = |supp(v)|

}
·1
{
t′ = topK

(
f(Dtr[v; ai ← 0]) | tval

)}
· 1

{
t′′ = topK

(
f(Dtr[v; ai ← 1]) | tval

)}
·1
{
γ′ = tally

(
f(Dtr[v; ai ← 0]) | t′, tval

)}
· 1

{
γ′′ = tally

(
f(Dtr[v; ai ← 1]) | t′′, tval

)}
.

(25)

We can use the Boolean function ϕ(v|ti, tval, t′, t′′) in Equation 8 to simplify the above equation.
Notice that the conditions t′ ∈ f(Dtr[v; ai ← 0]) and t′′ ∈ f(Dtr[v; ai ← 1]) are embedded in
the definition of ϕ(v|ti, tval, t′, t′′) which will return∞ if those conditions are not met. When the
conditions are met, ϕ(v|ti, tval, t′, t′′) returns exactly the same triple (α, γ′, γ′′). Therefore it is safe
to replace the five indicator functions in the above formula with a single one as such:

ω(α, γ′, γ′′ | ti, tval, t′, t′′) :=
∑

v∈VA\{ai}

1{(α, γ′, γ′′) = ϕ(v|ti, tval, t′, t′′)} (26)

Given our assumption that ϕ(v|ti, tval, t′, t′′) can be represented by an ADD with a root node
n(ti, tval, t

′, t′′), the above formula is exactly the model counting operation:

ω(α, γ′, γ′′ | ti, tval, t′, t′′) := count(α,γ′,γ′′)(n(ti, tval, t
′, t′′)) (27)

Theorem E.1. If we can represent the Boolean function ϕ(v|ti, tval, t′, t′′) defined in Equation 8
with an Additive Decision Diagram of size polynomial in |Dtr| and |f(Dtr)|, then we can compute
the counting oracle ω(· | ti, tval, t′, t′′) in time polynomial in |Dtr| and |f(Dtr)|.

Proof. This theorem follows from the two previously proved lemmas: Lemma E.1 and Lemma E.3.
Namely, as a result of Lemma E.3 we claim that model counting of the Boolean function
ϕ(v|ti, tval, t′, t′′) is equivalent to computing the oracle result. On top of that, as a result of Lemma E.1
we know that we can perform model counting in time linear in the size of the decision diagram. Hence,
if our function ϕ(v|ti, tval, t′, t′′) can be represented with a decision diagram of size polynomial in
the size of data, then we can conclude that computing the oracle result can be done in time polynomial
in the size of data.

E.3 DETAILS ON ADDITIVE MODEL QUALITY METRICS

False Negative Rate Apart from accuracy which represents a trivial example of an additive utility,
we can show how some more complex utilities happen to be additive and can therefore be decomposed
according to Equation 5. As an example, we use false negative rate (FNR) which can be defined as
such:

m(Dtr,Dval) :=

∑
tval∈f(Dval)

1{(A ◦ f(Dtr))(tval) = 0}1{y(tval) = 1}
|{tval ∈ Dval : y(tval) = 1}| . (28)

22

Published as a conference paper at ICLR 2024

In the above expression we can see that the denominator only depends on Dval which means it can
be interpreted as the scaling factor w. We can easily see that the expression in the numerator neatly
fits the structure of Equation 5 as long as we we define mT as mT (ypred, (xval, yval)) := 1{ypred =
0}1{yval = 1}. Similarly, we are able to easily represent various other utilities, including: false
positive rate, true positive rate (i.e. recall), true negative rate (i.e. specificity), etc. We describe an
additional example in subsection 3.3.

Equalized Odds Difference We show how slightly more complex utilities can also be represented
as additive, with a little approximation, similar to the one described above. We will demonstrate
this using the “equalized odds difference” utility, a measure of (un)fairness commonly used in
research Hardt et al. (2016); Barocas et al. (2019) that we also use in our experiments. It can be
defined as such:

m(Dtr,Dval) := max{TPR∆(Dtr,Dval), FPR∆(Dtr,Dval)}. (29)

Here, TPR∆ and FPR∆ are true positive rate difference and false positive rate difference respec-
tively. We assume that each tuple ttr ∈ f(Dtr) and tval ∈ f(Dval) have some sensitive feature g
(e.g. ethnicity) with values taken from some finite set {G1, G2, ...}, that allows us to partition the
dataset into sensitive groups. We can define TPR∆ and FPR∆ respectively as

TPR∆(Dtr,Dval) := max
Gi∈G

TPRGi
(Dtr,Dval)− min

Gj∈G
TPRGj

(Dtr,Dval), and

FPR∆(Dtr,Dval) := max
Gi∈G

FPRGi(Dtr,Dval)− min
Gj∈G

FPRGj (Dtr,Dval).
(30)

For some sensitive group Gi, we define TPRGi
and FPRGi

respectively as:

TPRGi
(Dtr,Dval) :=

∑
tval∈f(Dval)

1{(A ◦ f(Dtr))(tval) = 1}1{y(tval) = 1}1{g(tval) = Gi}
|{tval ∈ Dval : y(tval) = 1 ∧ g(tval) = Gi}|

, and

FPRGi(Dtr,Dval) :=

∑
tval∈f(Dval)

1{(A ◦ f(Dtr))(tval) = 1}1{y(tval) = 0}1{g(tval) = Gi}
|{tval ∈ Dval : y(tval) = 0 ∧ g(tval) = Gi}|

For a given training dataset Dtr, we can determine Equation 29 whether TPR∆ or FPR∆ is going
to be the dominant metric. Similarly, given that choice, we can determine a pair of sensitive groups
(Gmax, Gmin) that would end up be selected as minimal and maximal in Equation 30. Similarly to
the conversion shown in subsection 3.3, we can treat these two steps as a reduce operation over the
whole dataset. Then, if we assume that this intermediate result will remain stable over subsets of Dtr,
we can approximatly represent the equalized odds difference utility as an additive utility.
As an example, let us assume that we have determined that TPR∆ dominates over FPR∆, and
similarly that the pair of sensitive groups (Gmax, Gmin) will end up being selected in Equation 30.
Then, our tuple-wise utility uT and the scaling factor w become

mT (ypred, tval) := TPRGmax,T (ypred, tval)− TPRGmin,T (ypred, tval),

w := 1/|{tval ∈ Dval : y(tval) = 1 ∧ g(tval) = Gi}|,
where

TPRGi,T (ypred, tval) := 1{ypred = 1}1{y(tval) = 1}1{g(tval) = Gi}.
A similar approach can be taken to define mT and w for the case when FPR∆ dominates over
TPR∆. Then, if we plug them into Equation 5, we obtain an approximate version of the equalized
odds difference utility as defined in Equation 29. This approximation relies on the stability of the
choices of min and max in Equation 30 and on the choice between TPR and FPR in Equation 29
(both of which can be precomputed).

F SPECIAL CASE: COMPUTING SHAPLEY FOR 1-NEAREST-NEIGHBOR
CLASSIFIERS

We can significantly reduce the time complexity for 1-NN classifiers, an important special case of
K-NN classifiers that is commonly used in practice. For each validation tuple tval, there is always
exactly one tuple that is most similar to tval. Below we illustrate how to leverage this observation to
construct the counting oracle. In the following, we assume that ai is the variable corresponding to the
tuple for which we hope to compute the Shapley value.

23

Published as a conference paper at ICLR 2024

Let ϕt represent the event when t is the top-1 tuple:

ϕt := p(t) ∧
∧

t′∈f(Dtr)
σ(t′)>σ(t)

¬p(t′). (31)

For Equation 31 to be true (i.e. for tuple t to be the top-1), all tuples t′ where σ(t′) > σ(t) need to be
absent from the pipeline output. Hence, for a given value assignment v, all provenance polynomials
that control those tuples, i.e., p(t′), need to evaluate to false.
We now construct the event

ϕt,t′ := ϕt[ai/false] ∧ ϕt′ [ai/true],

where ϕt[ai/false] means to substitute all appearances of ai in ϕt to false. This event happens only
if if t is the top-1 tuple when ai is false and t′ is the top-1 tuple when ai is true. This corresponds to
the condition that our counting oracle counts models for. Expanding ϕt,t′ , we obtain

ϕt,t′ :=
(
p(t) ∧

∧
t′′∈f(Dtr)
σ(t′′)>σ(t)

¬p(t′′)
)
[ai/false] ∧

(
p(t′) ∧

∧
t′′∈f(Dtr)
σ(t′′)>σ(t′)

¬p(t′′)
)
[ai/true]. (32)

Note that ϕt,t′ can only be true if p(t′) is true when ai is true and σ(t) < σ(t′). As a result, all
provenance polynomials corresponding to tuples with a higher similarity score than that of t need
to evaluate to false. Therefore, the only polynomials that can be allowed to evaluate to true are
those corresponding to tuples with lower similarity score than t. Based on these observations, we can
express the counting oracle for different types of ML pipelines.
Map Pipeline. In a map pipeline, the provenance polynomial for each tuple t′i ∈ f(Dtr) is defined by
a single distinct variable ai ∈ A. Furthermore, from the definition of the counting oracle (Equation 7),
we can see that ω(·|ti, tval, t′, t′′) counts the value assignments that result in support size α and label
tally vectors γ′ and γ′′. Given our observation about the provenance polynomials that are allowed to
be set to true, we can easily construct an expression for counting valid value assignments. Namely,
we have to choose exactly α variables out of the set {t′ ∈ f(Dtr) : σ(t′, tval) < σ(ti, tval)}, which
corresponds to tuples with a lower similarity score than that of ti (measured by the similarity function
σ). This can be constructed using a binomial coefficient. Furthermore, when K = 1, the label tally γ′

is entirely determined by the top-1 tuple t′. The same observation goes for γ′′ and t′′. To denote this,
we define a constant ΓL parameterized by some label L. It represents a tally vector with all values
0 and only the value corresponding to label L being set to 1. We thus need to fix γ′ to be equal to
Γy(t) (and the same for γ′′). Finally, as we observed earlier, when computing ω(·|ti, tval, t′, t′′) for
K = 1, the provenance polynomial of the tuple t′′ must equal ai. With these notions, we can define
the counting oracle as

ω(α, γ′, γ′′|ti, tval, t′, t′′) =
(|{t′′′ ∈ f(Dtr) : σ(t′′′, tval) < σ(ti, tval)}|

α

)
1{p(t′′) = ai}

1{γ′ = Γy(t′)}
1{γ′′ = Γy(t′′)}.

(33)

Note that we always assume
(
a
b

)
= 0 for all a < b. Given this, we can prove the following corollary

about map pipelines:

Corollary F.1. For the 1-NN accuracy utility and a map pipeline, which takes as input a dataset of
size N , the Shapley value can be computed in O(N logN) time.

24

Published as a conference paper at ICLR 2024

Proof. We start off by plugging in the oracle definition from Equation 33 into the Shapley value
computation Equation 6:

φ(ti, tval) =
1

N

∑
t′,t′′∈f(Dtr)

N∑
α=1

(
N − 1

α

)−1 ∑
γ′,γ′′∈ΓY,K

m∆(γ
′, γ′′|tval)(|{t′′′ ∈ f(Dtr) : σ(t′′′, tval) < σ(ti, tval)}|

α

)
1{p(t′′) = ai}
1{γ′ = Γy(t′)}
1{γ′′ = Γy(t′′)}

(34)

As we can see, the oracle imposes hard constraints on the tuple t′′ and tally vectors γ′ and γ′′. We
will replace the tally vectors with their respective constants and the tuple t′′ we will denote as ti
because it is the only tuple associated with ai. Because of this, we can remove the sums that iterate
over them:

φ(ti, tval) =
1

N

∑
t′∈f(Dtr)

N∑
α=1

(
N − 1

α

)−1

m∆(Γy(t′),Γy(ti) | tval)
(|{t′′′ ∈ f(Dtr) : σ(t′′′, tval) < σ(ti, tval)}|

α

)
(35)

We could significantly simplify this equation by assuming the tuples in f(D) are sorted by decreasing
similarity. We then obtain:

φ(ti, tval) =
1

N

N∑
j=i

N∑
α=1

(
N − 1

α

)−1

m∆(Γy(tj),Γy(ti) | tval)
(
N − j

α

)
(36)

We shuffle the sums a little by multiplying 1
N with

(
N−1
α

)−1
and we expand m∆ based on its

definition in subsection E.1. We also alter the limit of the innermost sum because α ≤ N − j. Thus,
we obtain:

φ(ti, tval) =

N∑
j=i

(
mT (y(ti), tval)−mT (y(tj), tval)

)N−j∑
α=1

(
N

α

)−1(
N − j

α

)
(37)

The innermost sum in the above equation can be simplified by applying the so-called Hockey-stick
identity Ross (1997). Specifically,

(
N
α

)−1(N−j
α

)
becomes

(
N
j

)−1(N−α
j

)
. Then,

∑N−j
α=1

(
N
j

)−1(N−α
j

)
becomes

(
N
j

)−1(N
j+1

)
. Finally, we obtain the following formula:

φ(ti, tval) =

N∑
j=i

(
mT (y(ti), tval)−mT (y(tj), tval)

)(N − j

j + 1

)
(38)

As we can see, the above formula can be computed in O(N) iterations. Therefore, given that we
still need to sort the dataset beforehand, the overall complexity of the entire Shapley value amounts
to O(N logN). Here, we assume that we have a precomputed table of factorials from 1 to N that
allows us to compute the binomial coefficient in constant time.

Computing the Shapley Value for the Entire Training Dataset. Equation 38 represents a method
for computing the Shapley value for a single data example ti. When computing the Shapley value for
every tuple in a training dataset, given that the tuples are sorted according to similarity to tval, we
can notice that the sum in Equation 38 exhibits the following recursive structure:

φ(ti, tval) = φ(ti+1, tval) +
(
mT (y(ti), tval)−mT (y(tj), tval)

)(N − i

i+ 1

)
If we take advantage of the above recursive structure, we can see that it is possible to compute the
Shapley value for all data examples in a single pass that takes O(N) time. Hence, since the overall

25

Published as a conference paper at ICLR 2024

computation will still be dominated by the sorting procedure, the time to compute the Shapley value
for all training tuples with respect to a single validation tuple tval is O(N logN).
Fork Pipeline. As we noted, both map and fork pipelines result in polynomials made up of only
one variable. The difference is that in map pipeline each variable is associated with at most one
polynomial, whereas in fork pipelines it can be associated with multiple polynomials. However, for
1-NN classifiers, this difference vanishes when it comes to Shapley value computation:
Corollary F.2. For the 1-NN accuracy utility and a fork pipeline, which takes as input a dataset of
size N , the Shapley value can be computed in O(N logN) time.

Proof. We will prove this by reducing the problem of Shapley value computation in fork pipelines to
the one of computing it for map pipelines. Let us have two tuples t′j,1, t

′
j,2 ∈ f(D), both associated

with some variable aj ∈ A. That means that p(t′j,1) = p(t′j,2). If we examine Equation 31, we notice
that it will surely evaluate to false if either σ(t′j,1) > σ(t) or σ(t′j,2) > σ(t). The same observation
holds for Equation 32.
Without loss of generality, assume σ(tj,1) > σ(tj,2). Then, σ(tj,1) > σ(t) implies σ(tj,2) > σ(t).
As a result, we only ever need to check the former condition without paying attention to the latter.
The outcome of this is that for all sets of tuples associated with the same variable, it is safe to ignore
all of them except the one with the highest similarity score, and we will nevertheless obtain the same
oracle result. Since we transformed the problem to one where for each variable we have to consider
only a single associated tuple, we have effectively reduced the problem to the one of computing
Shapley value for map pipelines. Consequently, we can apply the same algorithm and will end up
with the same time complexity.

G DETAILS ABOUT THE EXPERIMENTAL PROTOCOL AND ADDITIONAL
EVALUATION RESULTS

Hardware and Platform. All experiments were conducted on an AMD EPYC 7742 2.25GHz CPU.
We ran each experiment in single-thread mode. All deep learning models were running on an NVIDIA
A100 GPU.
Datasets. We assemble a collection of widely used datasets with diverse modalities (i.e. tabular,
textual, and image datasets). Table 2 summarizes the datasets that we used. In each experiment, we
subsample the dataset to 1K training data examples by using different random seeds.

Table 2: Datasets characteristics

Dataset Modality # Examples # Features Label
Noise

UCI Adult (Kohavi et al., 1996) tabular 49K 14 injected
FolkUCI Adult (Ding et al., 2021) tabular 1.6M 10 injected
FashionMNIST (Xiao et al., 2017) image 14K 28× 28 injected
20NewsGroups (Joachims, 1996) text 1.9K 20K after TF-IDF injected

DataPerf Vision(Mazumder et al., 2022) tabular 1.1 2048
human
error

CIFAR− N (Wei et al., 2022) image 50K 32× 32× 3
human
error

Models. We use three downstream ML models following the previous feature extraction pipelines:
XGBoost, LogisticRegression, and KNearestNeighbor. We use the LogisticRegression and
KNeighborsClassifier provided by the sklearn package. We set max_iter to 5,000 for
LogisticRegression and set n_neighbors to 1 for KNearestNeighbor.
Protocol. We conduct a series of experimental runs that simulate a real-world importance-driven
data debugging workflow. In each experimental run, we select a dataset, pipeline, target model, and
data repair method. If a dataset does not already have human-generated label errors, we follow the
protocol of Li et al. (2021) and Jia et al. (2021) and artificially inject 50% of label noise. Label noise
injection is performed by selecting a random subset representing 50% of training data examples, and
replace the original label with some other valid label in a given dataset. Given the selected data repair
method, we compute the importance using a validation dataset. We use this computed iportance to
sort the training dataset. Data repairs will be conducted using this sorting order. If the repair method
is random, the data is sorted randomly. We divide the range between 0% data examined and 100%
data examined into 100 checkpoints. Specifically, at each checkpoint, we select the next batch out

26

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.582.88

38.93

2.70

37.95

Dataset: UCI Adult; Pipeline: Identity; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.92
1.70

15.91

1.17

13.29

Dataset: UCI Adult; Pipeline: Standard Scaler; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

5.26
2.24

20.34

1.18

12.87

Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]
0.05

5.02
2.34

25.02

1.62

18.01

Dataset: UCI Adult; Pipeline: PCA; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.14

8.347.68

182.10

1.11

17.86

Dataset: UCI Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

5.36

538.67
221.21

1947.04

7.55

63.80

Dataset: 20NewsGroups; Pipeline: TF-IDF; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

5.37

576.43
284.51

3061.53

6.76

53.48

Dataset: 20NewsGroups; Pipeline: ToLower + URLRemove + TF-IDF; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.45

46.31
20.19

94.01

19.35

77.01

Dataset: FashionMNIST; Pipeline: Gaussian Blur; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.40

39.98
90.29

1165.40

1.82

21.87

Dataset: FashionMNIST; Pipeline: Histogram of Oriented Gradients; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.65

0.70

0.75

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

1.10

105.48

3.05

18.71

2.01

14.06

Dataset: DataPerf Vision; Pipeline: PCA; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.7

0.8
A

cc
ur

ac
y

100

101

102

C
om

pu
te

T
im

e
[s

]

1.13

103.66

24.68

255.41

1.35

4.63

Dataset: DataPerf Vision; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.30

0.35

0.40

0.45

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

1.09

108.23

2546.86

23353.28

323.10

2854.83

Dataset: CifarN; Pipeline: Histogram of Oriented Gradients; Model: Logistic Regression

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 10: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for accuracy. The model is logistic regression.

of a 100 batches of data examples ordered based on the importance-based sorting order. We repair
the labels in the given batch and we measure the quality of the given target model on a separate test
dataset using some metric (e.g. accuracy). We also measure the time spent on computing importance
scores. At any given checkpoint, the label effort represents the portion of data that was covered in all
batches that were processed up to that checkpoint. We repeat each experiment 10 times with different
random seeds and report the median as well as the 90-th percentile range (either shaded or with error
bars).

G.1 ADDITIONAL LABEL REPAIR EXPERIMENTS

We present the results of an array of experiments that were conducted for the label repair scenario.
See section 5 for details on the experimental protocol. See Figure 10 to Figure 14 for experiments
where we focus on improving accuracy. See Figure 15 to Figure 19 for experiments that explore
the tradeoff between accuracy and fairness. Finally, in Figure 20 we show more results for the label
repair experiments over deep learning embedding models for image and text data.
Note about Fork Variants: We create a “fork” version of the above pipelines, by prepending each with
a DataProvider operator. It simulates distinct data providers, each providing a portion of the data.
The original dataset is split into a given number of groups (100 in our experiments). We compute the
importance of each group, and we conduct data repairs on entire groups all at once.

G.2 ADDITIONAL SCALABILITY EXPERIMENTS

We provide results of additional experiments where we attempt to measure the trends of both the label
repair efficiency and compute time, as a function of dataset size. To achieve this, instead of evaluating
on synthetic data, we evaluate on CIFAR-N, a real-world dataset with human-generated label noise
(Figure 23). We use logistic regression as a target model and the HOG transform pipeline for feature
extraction. We keep the training and test set size to 5K data exaples and we vary the training set size
from 1K to 32K. We can notice that for training set of size 32K, the TMC method requires around 1
day to complete with 10 Monte Carlo iterations and around 10 days with 100 iterations. At the same
time we can notice that the KNN approximation is able to complete in a matter of minutes.

27

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.706.28

59.33

5.22

56.32

Dataset: UCI Adult; Pipeline: Identity; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.686.41

71.16

5.79

60.43

Dataset: UCI Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.737.65

67.90

5.77

63.95

Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.836.10

54.02

5.99

53.73

Dataset: UCI Adult; Pipeline: PCA; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

102

C
om

pu
te

T
im

e
[s

]

0.14

7.909.48

109.31

4.80

58.69

Dataset: UCI Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

102

104

C
om

pu
te

T
im

e
[s

]

5.39

505.29

79.61

2061.40

125.96

1197.44

Dataset: 20NewsGroups; Pipeline: TF-IDF; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

102

104

C
om

pu
te

T
im

e
[s

]

5.17

529.06

71.45

1669.66

107.31

1275.37

Dataset: 20NewsGroups; Pipeline: ToLower + URLRemove + TF-IDF; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y
100

101

102

C
om

pu
te

T
im

e
[s

]

0.46

45.88

8.45

80.57

7.02

56.88

Dataset: FashionMNIST; Pipeline: Gaussian Blur; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.40

37.3961.99

597.56

8.03

68.69

Dataset: FashionMNIST; Pipeline: Histogram of Oriented Gradients; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.65

0.70

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

1.08

110.46

5.90

56.31

4.84

46.95

Dataset: DataPerf Vision; Pipeline: PCA; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]
1.07

102.70

30.55

300.86

4.37

35.47

Dataset: DataPerf Vision; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.25

0.30

0.35

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

1.07

111.61

1344.98

11979.99

60.85

602.60

Dataset: CifarN; Pipeline: Histogram of Oriented Gradients; Model: K-Nearest Neighbor

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 11: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for accuracy. The model is K-nearest neighbor.

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.48

47.94

2.47

22.45

2.23

20.70

Dataset: UCI Adult; Pipeline: Identity; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.49

51.93

1.33

13.24

1.12

11.37

Dataset: UCI Adult; Pipeline: Standard Scaler; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.51

50.64

1.22

13.97

0.89

10.01

Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.49

48.78

1.81

21.84

1.47

18.13

Dataset: UCI Adult; Pipeline: PCA; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.57

52.25

12.30

126.73

1.30

12.86

Dataset: UCI Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

5.16

539.94

80.80

851.82

1.90

17.68

Dataset: 20NewsGroups; Pipeline: TF-IDF; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

5.45

556.03

148.41

1502.17

2.58

21.71

Dataset: 20NewsGroups; Pipeline: ToLower + URLRemove + TF-IDF; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.89

93.02
47.70

1305.81

46.61

1230.24

Dataset: FashionMNIST; Pipeline: Gaussian Blur; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.84

78.9659.26

697.85

1.71

15.14

Dataset: FashionMNIST; Pipeline: Histogram of Oriented Gradients; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.65

0.70

0.75

A
cc

ur
ac

y

101

102

C
om

pu
te

T
im

e
[s

]

1.43

155.10

2.22

20.30

1.53

10.84

Dataset: DataPerf Vision; Pipeline: PCA; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.70

0.75

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

1.45

155.10

11.46

137.89

1.20

3.08

Dataset: DataPerf Vision; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.35

0.40

0.45

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

1.56

160.09
356.03

3131.05

52.02

487.42

Dataset: CifarN; Pipeline: Histogram of Oriented Gradients; Model: Logistic Regression

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 12: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is logistic regression.

28

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.47

49.09

2.57

26.54

2.69

25.57

Dataset: UCI Adult; Pipeline: Identity; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.50

51.89

3.22

34.59

2.92

30.96

Dataset: UCI Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.51

52.03

3.63

33.68

3.40

30.86

Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

101

C
om

pu
te

T
im

e
[s

]

0.49

47.49

2.85

27.00

2.53

26.33

Dataset: UCI Adult; Pipeline: PCA; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.58

55.77

6.25

62.19

2.42

24.43

Dataset: UCI Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

102

103

C
om

pu
te

T
im

e
[s

]

5.29

523.37
253.48

2127.61

183.46

1700.07

Dataset: 20NewsGroups; Pipeline: TF-IDF; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

101

102

103

C
om

pu
te

T
im

e
[s

]

5.50

563.76
230.94

2402.87

206.26

1769.45

Dataset: 20NewsGroups; Pipeline: ToLower + URLRemove + TF-IDF; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y
100

101

102

C
om

pu
te

T
im

e
[s

]

0.91

87.27

4.93

50.21

3.77

37.34

Dataset: FashionMNIST; Pipeline: Gaussian Blur; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.83

81.74
33.71

345.44

3.91

34.29

Dataset: FashionMNIST; Pipeline: Histogram of Oriented Gradients; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.65

0.70

A
cc

ur
ac

y

101

102

C
om

pu
te

T
im

e
[s

]

1.56

152.65

4.56

37.79

2.76

23.48

Dataset: DataPerf Vision; Pipeline: PCA; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.65

0.70

A
cc

ur
ac

y

101

102

C
om

pu
te

T
im

e
[s

]
1.51

143.54

9.77

118.61

2.37

13.99

Dataset: DataPerf Vision; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.25

0.30

0.35

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

1.56

142.07228.59

1824.77

11.13

82.05

Dataset: CifarN; Pipeline: Histogram of Oriented Gradients; Model: K-Nearest Neighbor

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 13: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is K-nearest neighbor.

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.51

51.04

8.29

95.66

8.53

105.69

Dataset: UCI Adult; Pipeline: Identity; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.51

49.92

9.88

102.99

8.76

106.68

Dataset: UCI Adult; Pipeline: Standard Scaler; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.48

51.70

12.26

102.17

11.36

103.91

Dataset: UCI Adult; Pipeline: Logarithmic Scaler; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.50

51.08

16.46

187.29

14.54

157.60

Dataset: UCI Adult; Pipeline: PCA; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

0.59

54.10

11.09

112.59

7.42

64.75

Dataset: UCI Adult; Pipeline: Missing Indicator + K-Means; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

102

104

C
om

pu
te

T
im

e
[s

]

5.25

539.40
199.71

2892.57

226.01

3399.57

Dataset: 20NewsGroups; Pipeline: TF-IDF; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

102

104

C
om

pu
te

T
im

e
[s

]

5.34

569.25
213.06

3066.80

262.37

3159.65

Dataset: 20NewsGroups; Pipeline: ToLower + URLRemove + TF-IDF; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.89

89.93

527.95

5870.95

504.72

5654.36

Dataset: FashionMNIST; Pipeline: Gaussian Blur; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

101

103

C
om

pu
te

T
im

e
[s

]

0.84

83.4068.75

1003.29

31.54

587.45

Dataset: FashionMNIST; Pipeline: Histogram of Oriented Gradients; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

101

102

103

C
om

pu
te

T
im

e
[s

]

1.60

153.86

32.77

370.45

88.25

1068.30

Dataset: DataPerf Vision; Pipeline: PCA; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.65

0.70

0.75

A
cc

ur
ac

y

100

101

102

C
om

pu
te

T
im

e
[s

]

1.57

152.39

17.92

250.14

3.70

36.36

Dataset: DataPerf Vision; Pipeline: Missing Indicator + K-Means; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.30

0.35

0.40

0.45

A
cc

ur
ac

y

101

103

105

C
om

pu
te

T
im

e
[s

]

1.50

144.28

5633.40

47739.80

5005.38

44448.92

Dataset: CifarN; Pipeline: Histogram of Oriented Gradients; Model: XGBoost

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 14: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for accuracy. The model is XGBoost.

29

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.09
2.14

22.91

1.86

20.67

Dataset: Folktables Adult; Pipeline: Identity; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.5

1.0

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.93

21.77

211.80

20.09

183.17

Dataset: Folktables Adult; Pipeline: Identity; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.53
1.73

22.28

1.73

15.97

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8
A

cc
ur

ac
y

0% 50% 100%
Portion of Labels Examined

0.0

0.5

1.0

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.84
12.23

103.93

6.98

70.32

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.34
2.07

26.72

1.36

17.65

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.5

1.0

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce
100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.93
13.48

127.57

8.59

78.77

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.50
2.67

30.07

2.28

18.86

Dataset: Folktables Adult; Pipeline: PCA; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.5

1.0

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]
0.05

5.34
14.86

162.26

11.23

103.68

Dataset: Folktables Adult; Pipeline: PCA; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.13

7.057.90

118.29

1.72

20.59

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.13

7.11

79.78

821.56

7.69

69.66

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression; Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 15: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for fairness. The model is logistic regression.

30

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.04

4.094.69

43.77

4.67

46.74

Dataset: Folktables Adult; Pipeline: Identity; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.07

6.08

33.50

326.60

34.06

325.78

Dataset: Folktables Adult; Pipeline: Identity; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.383.64

45.11

4.22

47.48

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7
A

cc
ur

ac
y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

0.6

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.07

6.43

43.49

438.40

42.36

409.07

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.05

4.303.84

53.62

4.07

47.04

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

0.6

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce
100

102

C
om

pu
te

T
im

e
[s

]

0.07

6.68

42.60

473.04

33.98

362.17

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

10−1

100

101

C
om

pu
te

T
im

e
[s

]

0.05

4.394.19

44.85

3.86

48.53

Dataset: Folktables Adult; Pipeline: PCA; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]
0.06

6.49

33.83

322.70

31.17

334.58

Dataset: Folktables Adult; Pipeline: PCA; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.13

6.878.28

86.88

4.61

47.72

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

102

C
om

pu
te

T
im

e
[s

]

0.15

7.84

92.26

1068.64

25.61

285.65

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 16: Label Repair experiment results over various combinations of datasets (1k samples) and
map pipelines. We optimize for fairness. The model is K-nearest neighbor.

31

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.47

47.05

1.38

14.52

1.34

14.31

Dataset: Folktables Adult; Pipeline: Identity; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.50

49.84

4.91

50.15

4.80

48.71

Dataset: Folktables Adult; Pipeline: Identity; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.2

0.4

0.6

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.50

46.58

1.33

10.32

1.04

8.19

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8
A

cc
ur

ac
y

0% 50% 100%
Portion of Labels Examined

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.49

50.45

3.14

30.86

2.38

24.65

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.51

48.22

1.46

10.95

0.97

7.93

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.50

51.79

3.20

30.48

2.37

23.94

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.2

0.4

0.6

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.50

49.47

1.82

13.03

1.18

10.54

Dataset: Folktables Adult; Pipeline: PCA; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.00

0.25

0.50

0.75

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]
0.52

50.52

4.50

44.51

3.58

33.93

Dataset: Folktables Adult; Pipeline: PCA; Model: Logistic Regression; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.54

51.56

9.57

110.68

1.14

10.04

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.61

54.00
22.63

228.92

2.70

24.57

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: Logistic Regression; Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 17: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for fairness. The model is logistic regression.

32

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.50

49.94

2.61

24.78

2.69

22.29

Dataset: Folktables Adult; Pipeline: Identity; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.50

52.05

15.09

153.66

14.67

147.50

Dataset: Folktables Adult; Pipeline: Identity; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.49

51.66

2.47

25.10

2.15

24.92

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7
A

cc
ur

ac
y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.54

51.83

17.18

186.52

16.60

187.28

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.48

50.70

2.73

26.90

2.41

23.17

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.52

50.38

18.34

180.17

15.62

172.59

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.49

47.18

2.65

24.03

2.45

24.22

Dataset: Folktables Adult; Pipeline: PCA; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]
0.51

51.80

15.96

155.05

15.30

146.79

Dataset: Folktables Adult; Pipeline: PCA; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

C
om

pu
te

T
im

e
[s

]

0.57

52.39

4.94

59.48

1.99

24.37

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.59

51.1837.36

369.67

13.16

135.70

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: K-Nearest Neighbor; Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 18: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for fairness. The model is K-nearest neighbor.

33

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.49

46.05

7.55

66.21

7.58

66.51

Dataset: Folktables Adult; Pipeline: Identity; Model: XGBoost; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.71

58.6359.77

611.17

58.08

627.03

Dataset: Folktables Adult; Pipeline: Identity; Model: XGBoost; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4
E

qu
al

iz
ed

O
dd

s
D

iff
er

en
ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.51

48.90

7.13

76.78

7.45

61.48

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: XGBoost; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

101

103

C
om

pu
te

T
im

e
[s

]

0.70

60.0262.32

632.32

64.09

634.02

Dataset: Folktables Adult; Pipeline: Standard Scaler; Model: XGBoost; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.50

47.93

7.46

67.21

7.69

70.83

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: XGBoost; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

101

103

C
om

pu
te

T
im

e
[s

]

0.70

58.6964.60

592.03

57.28

595.24

Dataset: Folktables Adult; Pipeline: Logarithmic Scaler; Model: XGBoost; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.50

51.48

7.36

100.32

8.11

92.03

Dataset: Folktables Adult; Pipeline: PCA; Model: XGBoost; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.2

0.4

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

101

103

C
om

pu
te

T
im

e
[s

]

0.78

70.43103.46

1076.85

110.23

1065.90

Dataset: Folktables Adult; Pipeline: PCA; Model: XGBoost; Optimize for: Equalized Odds Difference

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

0.3

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

100

101

102

C
om

pu
te

T
im

e
[s

]

0.57

52.39

10.68

107.53

4.85

71.09

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: XGBoost; Optimize for: Accuracy

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

A
cc

ur
ac

y

0% 50% 100%
Portion of Labels Examined

0.0

0.1

0.2

E
qu

al
iz

ed
O

dd
s

D
iff

er
en

ce

101

103

C
om

pu
te

T
im

e
[s

]

0.82

69.34111.54

1130.88

92.77

921.94

Dataset: Folktables Adult; Pipeline: Missing Indicator + K-Means; Model: XGBoost; Optimize for: Equalized Odds Difference

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN Datascope KNN Interactive

Figure 19: Label Repair experiment results over various combinations of datasets (1k samples) and
fork pipelines. We optimize for fairness. The model is XGBoost.

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

102

1.2× 102

1.4× 102

1.6× 102

1.8× 102

2× 102

2.2× 102

C
om

pu
te

T
im

e
[s

]

107.24

127.53

188.46

Dataset: FashionMNIST; Pipeline: ResNet-18 Embedding; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

102

2× 102

3× 102

C
om

pu
te

T
im

e
[s

]

105.86

142.04

214.86

Dataset: FashionMNIST; Pipeline: ResNet-18 Embedding; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

A
cc

ur
ac

y

102

103

104

C
om

pu
te

T
im

e
[s

]

108.99
150.89 159.04

Dataset: FashionMNIST; Pipeline: ResNet-18 Embedding; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

1.0

A
cc

ur
ac

y

3.2× 102

3.4× 102

3.6× 102

3.8× 102

4× 102

4.2× 102

4.4× 102

C
om

pu
te

T
im

e
[s

]

353.94
369.48

413.91

Dataset: 20NewsGroups; Pipeline: MiniLM Embedding; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

4× 102

6× 102

C
om

pu
te

T
im

e
[s

]

361.87
402.72

515.36

Dataset: 20NewsGroups; Pipeline: MiniLM Embedding; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

103

104

C
om

pu
te

T
im

e
[s

]

358.60

952.79

4244.06

Dataset: 20NewsGroups; Pipeline: MiniLM Embedding; Model: XGBoost

Random Datascope TMC x10 Datascope TMC x100 Datascope KNN

Figure 20: Label repair experiment executed over pipelines based on deep learning embedding
models: ResNet-18 for image data, and the transformer based MiniLM for text data. Even though
pipeline was executed on a GPU, this execution time dominates the overall importance compute
times. Due to the long compute time of these pipelines we omit the vanilla black-box TMC methods.

34

Published as a conference paper at ICLR 2024

0% 50% 100%
Portion of Labels Examined

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]

14.24

557.56

9003.94

15.8631.56

Dataset: FashionMNIST; Pipeline: MobileNetV2 Embedding; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.6

0.8

Ac
cu

ra
cy

102

103

104

Co
m

pu
te

 T
im

e
[s

]

15.11

1086.91

9497.48

17.86
54.51

Dataset: FashionMNIST; Pipeline: MobileNetV2 Embedding; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.6

0.8

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]

14.17

277.65

2603.59

34.1044.29

Dataset: FashionMNIST; Pipeline: MobileNetV2 Embedding; Model: XGBoost

0% 50% 100%
Portion of Labels Examined

0.6

0.8

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]

4.41

220.22

3579.22

6.04
27.84

Dataset: 20NewsGroups; Pipeline: ALBERT Small; Model: K-Nearest Neighbor

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

Ac
cu

ra
cy

101

102

103

Co
m

pu
te

 T
im

e
[s

]

4.16

316.06

3597.42

7.20
52.50

Dataset: 20NewsGroups; Pipeline: ALBERT Small; Model: Logistic Regression

0% 50% 100%
Portion of Labels Examined

0.4

0.6

0.8

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]

4.73

179.24

2893.56

45.67

996.36

Dataset: 20NewsGroups; Pipeline: ALBERT Small; Model: XGBoost

Random TMC x10 TMC x100 Datascope TMC x10 Datascope TMC x100 Datascope KNN

Figure 21: Label repair experiment executed over pipelines based on smaller deep learning embedding
models. This permitted us to run both the Canonpipe TMC and vanilla TMC methods, along with our
Canonpipe KNN method which still performs favorably compared to other baselines.

0% 50% 100%
Portion of Labels Examined

0.4

0.5

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]

3.36

1750.57
16292.36

Dataset: CifarN; Pipeline: Identity; Model: Matching Network

0% 50% 100%
Portion of Labels Examined

0.6

0.8

Ac
cu

ra
cy

102

104

Co
m

pu
te

 T
im

e
[s

]
3.30

76.58
641.24

Dataset: FashionMNIST; Pipeline: Identity; Model: Matching Network

Random Datascope TMC x10 Datascope TMC x100 Datascope KNN

Figure 22: Experiments where we use matching networks, a one-shot learning approach, as a target
model which we evaluate over the CifarN and FashionMNIST datasets.

1k 3k 10k 32k
Training Set Size

20%

40%

Da
ta

 R
ep

ai
re

d
to

 G
et

 5
0%

of
 M

ax
im

um
 A

cc
ur

ac
y

1k 3k 10k 32k
Training Set Size

103

106

Co
m

pu
te

 T
im

e
[s

]

Dataset: CIFAR-N; Pipeline: Histogram of Oriented Gradients
Target Model: Logistic Regression; Validation / Test Set Size: 5K

Random Datascope TMC x10 Datascope TMC x100 Datascope KNN

Figure 23: Evaluating how the label repair efficiency and compute time of Datascope scale as a
function of dataset size. On the left-hand side we show how many data examples need to be repaired
in order to recover 1/2 of the maximum possible accuracy on the given dataset. We can notice that
the KNN approximation is able to consistently achieve comparative label repair efficiency with orders
of magnitude less compute time.

35

	Introduction
	Problem: Computing the Shapley Value over ML Pipelines
	Canonical ML Pipelines
	Data Provenance for ML Pipelines
	Approximation: ML Pipelines are Canonical
	Approximating Real ML Pipelines

	Shapley Value over Canonical Pipelines
	Approximation: The Model is KNN and the Model Quality Metric is Additive
	Computing the Shapley Value

	Experimental Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion and Outlook
	Discussion about the Limitations of Prior Work
	Discussion about Types of ML Pipeline Operators
	Preliminary: Additive Decision Diagrams (ADD's)
	Constructing Polynomial-size ADD's for ML Pipelines
	Details of Algorithm 1

	Additional Proofs and Details
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Details on Additive Model Quality Metrics

	Special Case: Computing Shapley for 1-Nearest-Neighbor Classifiers
	Details about the Experimental Protocol and Additional Evaluation Results
	Additional Label Repair Experiments
	Additional Scalability Experiments

