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1 Introduction

Social networks represent relationships between individuals when they take part in
some social activities. For example, a telephone communication network could be built
according to the phoning record from residents in a city. The WWW and MSN communi-
cation network are other examples of social networks. Recently, due to the availability of
more and more social network datasets, inspecting the properties of these networks has
been attracting more and more researchers in different areas such as sociology, physics,
and computer science. Previous work has shown that although different social networks
are built according to different rules, they share some ubiquitous properties such as small
world phenomenon [1], the scale-free degree distribution [2], assortative mixing [3] and
self-similarity [4]. These properties are quite different compared with the random net-
works of the same scale, which implies that the real networks are evolving under certain
self-organization rules. Deeper studies then demand the publication of more social net-
works.

However, many social networks contain sensitive information which is relevant to
the individuals’ personal privacy. If they are published without any preprocessing, or
just preprocessed by removing the identifier (i.e., replacing the identifier by a randomly
chosen integer, and this strategy is called naive anonymization) from each node, there will
be privacy leakage problems for the individuals recorded by the network. For instance,
Potterat et al. [5] published a social network which shows a set of individuals related by
sexual contacts and shared drug injections. While scientists could know more on how HIV
spreads by using the information provided in this network, the privacy of the individuals
in this network may be possibly comprised due to unknown attacks. In fact, as shown
in [6], a simple model named active attack could be used to expose considerable amount
of relationship information between different individuals with high probability of success
and not much overhead, even in very large social networks. As a result, the sensitivity of
the data often prevents the data owner from publishing it.

Fortunately, although the active attack is very powerful, the case where an intended
adversary would use it is limited since it requires the adversary to do the attack before the
network is published. A more natural model named passive attack is also mentioned in [6],
which simply probes relationship information by re-identifying individuals in the network
according to some background structural knowledge which is unique in the published
network with respect to the targeted nodes. As pointed out in [6], this method may even
be used by an ordinary user of the network who is just a bit more curious about his
neighbors and thus could hardly be condemned morally.

In this paper, we focus on the problem of resisting re-identification of individuals
from naively anonymized social networks through structural background knowledge. We
generalize the attack model described in [7] and propose a new anonymization strategy.



We also analyze the utility problem of the network after anonymization in detail and
propose a sampling method to achieve good approximation of the statistical properties
of the original network. Extensive study through a series of experimental evaluations
demonstrates the effectiveness of the sampling method.

The rest of the paper is organized as follows: Section 2 gives our attack model which
is a generalization of the model proposed in [7] and also introduces basic concepts and
notations that will be used throughout the paper; Section 3 describes the anonymization
strategy, with detailed analysis. The utility problem is also studied here, with both the-
oretical and experimental examinations; Section 4 further describes two variants of the
basic model proposed in Section 3, by introducing more flexibilities; Section 5 discusses
two related problems and gives some remarks; Section 6 summarizes related work; Section
7 concludes the paper and points out future work.

2 Preliminaries

In this section, we first introduce basic concepts and notations that will be used
throughout this paper and then formalize the attack model.

2.1 Basic Concepts And Notations

An unlabeled, unweighed simple graph G can be represented as G = (V (G), E(G)),
where V (G) is the set of vertices and E(G) ⊆ V (G)× V (G) is the set of edges. G is said
to be undirected if we don’t distinguish the edge (u, v) from (v, u), where u, v ∈ V (G).
If u is connected to v through an edge (u, v), then u is called a neighbor of v. We use
N(v) to denote the set of all neighbors of v. The degree of a vertex v is then defined to
be |N(v)|. A vertex sequence v1, v2, ..., vn of V (G) is a path in G if vi ̸= vj(i ̸= j) and
(vi, vi+1) ∈ E(G). G is connected if for any u, v ∈ V (G), there is a path between u and v.
Formally and without loss of generality, we now model a social network as an unlabeled,
unweighed, undirected and connected simple graph.

A subgraph S of a graph G is a graph whose set of vertices and set of edges are all
subsets of G. A (vertex) induced subgraph is one that consists of some of the vertices of
the original graph and all of the edges that connect them in the original.

A set of subsets of V (G), V = {V1, ..., Vm}, is said to be a partition of V (G), if
∪m

i=1Vi = V (G) and Vi ∩ Vj = ∅, ∀i ̸= j. The elements of V are also called cells. A
trivial cell is the cell with cardinality one. If every cell of a partition is trivial, then
the partition is a discrete partition. V is said to be equitable if ∀i, j ∈ {1, 2, ...,m}, the
numbers |N(v) ∩ Vj| are constant on each cell, i.e. depend on the cell index i only and
not on the vertex v ∈ Vi. So for an equitable partition V, |V| = m, we can define a m×m
cell-level adjacency matrix CAdjM(V) such that CAdjM(V)[i, j] = |N(v)∩ Vj|, ∀v ∈ Vi.
Given two partitions V1, V2 of V (G), V1 is finer than V2 (denoted as V1 4 V2), if for any
cell V ∈ V1, there exists some cell U ∈ V2 such that V ⊆ U . V2 is then called coarser
than V1.

Let S be any finite set. A permutation on S is defined as a bijection π : S → S. We use
π(s) or sπ to denote the image of s under π, for any s ∈ S. Now let π be a permutation on
V (G), and V = {v1, v2, ..., vn} ⊆ V (G) be any subset of V (G). We then define the image
of V under π to be V π = {vπ1 , vπ2 , ..., vπn}. Next let V = {V1, V2, ..., Vm} be any partition
of V (G), then similarly, we define the image of V under π to be Vπ = {V π

1 , V
π
2 , ..., V

π
m}.

If Vπ = V, then V is said to be invariant under the action of π.



Now suppose π is a permutation on V (G), and define graph Gπ = (V (G)π, E(G)π),
where E(G)π = {(uπ, vπ)|(u, v) ∈ E(G)}. An automorphism of G is a permutation π on
V (G) such that Gπ = G. It is easy to see that all the automorphisms of G forms a group,
namely, the automorphism group of G. We denote it as Aut(G).

Based on the definition of Aut(G), we now introduce a relation R on V (G) such that
∀u, v ∈ V (G), uRv if and only if there exists some automorphism g ∈ Aut(G) such
that ug = v. It is easy to check that R is an equivalence relation by noticing the fact
that Aut(G) is a group. R then induces a partition on V (G), namely, the automorphism
partition. Each cell of the automorphism partition is also called as an orbit of the auto-
morphism group Aut(G). We hence denote the automorphism partition of G as Orb(G).
It’s clear that Orb(G) is equitable. Furthermore, Orb(G) is invariant under the action of
any g ∈ Aut(G).

Two graphs G and G′ are said to be isomorphic if there is a bijection f between V (G)
and V (G′) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′). f is then called an
isomorphism mapping between G and G′. We denote G ∼= G′ if G and G′ are isomorphic.

2.2 The Attack Model

Hay et al. [7] proposed the concept of candidate set as follows. Let G be a social
network, Ga be the corresponding graph after naive anonymization, and v ∈ V (Ga) be
an individual in the network, called the target. Suppose P is some background structural
knowledge about v. Then the candidate set of v is defined as C(v) = {u|u ∈ V (Ga) ∧
P (u) = P (v)}. Obviously, the larger C(v) is , the harder that v could be re-identified
from Ga. In particular, the target v could be definitely re-identified from Ga by using the
background structural knowledge P if and only if |C(v)| = 1.

Example 1 (Candidate Set). Figure 1 gives a network G and its naively anonymized
version Ga. Suppose the background structural knowledge of Bob is that Bob has 4
neighbors, then C(Bob) = {2, 4, 7, 8}. Now suppose the background structural knowledge
of Bob becomes that Bob has 2 neighbors with degree 1, then C(Bob) = {8} and thus
Bob is re-identified from Ga in this case.

Alice Bob Carol

Dave Ed

Fred Greg Harry
(a) The network G

1 2 3

4 5

6 7 8
(b) The naively

anonymized network
Ga

Fig. 1. Illustration of the candidate set.

The attack model proposed in [7] is then by restricting the background structural
knowledge P to different levels of neighborhood information of the target, where the
radius of the neighborhood is measured by the distance (i.e. shortest path length) of



the farthest vertices in the neighborhood from the target. Background structural knowl-
edge involving larger neighborhood then will lead to a possibly smaller candidate set.
Our attack model generalizes this by dropping the above restriction to allow P to be
any background structural knowledge of a target individual. Based on the definition of
automorphism partition, we see that two vertices in the network Ga are structurally
equivalent if and only if they belong to the same orbit of Orb(Ga). In other words, sup-
pose Orb(Ga) = {V1, V2, ..., Vm}, and the target v ∈ Vi, then |Cv| ≥ |Vi|, no matter
which background structural knowledge P is used. So if we could modify Ga so that each
Vi ∈ Orb(Ga) contain at least k vertices, where k is a specified threshold to control the
anonymization granularity, then we have |Cv| ≥ k and thus the probability of any target
individual being re-identified from the network would be at most 1

k
. Based on this intu-

ition, we propose the k-symmetry model in the next section to achieve the anonymity of
the network. Since G ∼= Ga, for notational convenience, we use G instead of Ga in the
rest of this paper.

3 The k-Symmetry Model

This section gives formal descriptions of our k-symmetry model. We formalize the
motivation in 3.1 which has been shortly mentioned in the previous part. We then in-
troduce an operation in 3.2 which is important in the description of the model. We also
set up several key properties of the introduced operation which seem to be useful when
analyzing the anonymization procedure. 3.3 sets up the model formally and 3.4 discusses
the utility problem in detail. Finally, 3.5 gives experimental results which demonstrate
the effect of the sampling method used to preserve the utility of the original network.

3.1 Motivation

Intuitively, if two vertices u and v belong to the same orbit of Orb(G), then they
cannot be distinguished by any structure-based properties. We would then say u and
v are structurally equivalent. Therefore, if the size of each orbit in the automorphism
partition is at least k, then each vertex of G will have at least k−1 structurally equivalent
counterparts. As a result, to distinguish any individual in the social network, just using
any structure-based background knowledge will suffer a cost of k−1. Or equivalently, the
success probability of such attacks are at most 1

k
.

We now give a formal definition to the above intuition.

Definition 1. Given a graph G and an integer k, if ∀Vi ∈ Orb(G), |Vi| ≥ k, then G
is called k-symmetric. The requirement that ∀Vi ∈ Orb(G), |Vi| ≥ k is called the k-
symmetry constraint.

Then the problem becomes: Given a graph G and an integer k, how to modify G so
that G is k-symmetric? In this paper, we will only consider vertex/edge addition as the
graph modification operations. As a result, the original graph G then must be a subgraph
of the anonymized graph G′.

3.2 The Orbit Copying Operation

The basic idea to make the given graph G k-symmetric is to enlarge each orbit in
Orb(G) until its size is larger than k. The key point here is then how to do the enlargement



so that the vertices in the augmented orbit are still structurally equivalent. In this section,
we introduce an operation which we named as orbit copying, and we will show that the
resulted graph by applying this operation will satisfy the above requirement.

Definition 2 (Sub-automorphism partition). Let G be a graph, Aut(G) be its auto-
morphism group and Orb(G) be its automorphism partition. Suppose a vertex partition V

of V (G) satisfies the condition: ∀O ∈ V, and ∀u, v ∈ O, ∃g ∈ Aut(G) such that ug = v
and Vg = V. Then V is called a sub-automorphism partition of G.

Clearly, if V is a sub-automorphism partition of G, then V 4 Orb(G). Furthermore,
V is also equitable. In particular, Orb(G) is also a sub-automorphism partition of G.

Definition 3 (Orbit Copying). Given a graph G and a sub-automorphism partition V

of G. Suppose V ∈ V, an orbit copying operation Ocp(G,V, V ) is defined as follows:
For each v ∈ V , introduce a new vertex v′ into graph G and:

1. if (u, v) ∈ E(G), u ∈ U , U ∈ V and U ̸= V , then add an edge (u, v′) into G;
2. if (u, v) ∈ E(G), u ∈ V , then add an edge (u′, v′) into G.

Note that, in the resulted graph G′ after an orbit copying operation Ocp(G,V, V ),
the vertex set V and its copied counterpart V ′ cannot be distinguished from each other.
Therefore, we say that the corresponding vertices v and v′ could be copied to each other
and this relation is symmetric.

Example 2. As shown in Fig 2(a), the original graph G has the automorphism partition
Orb(G) = {V1, V2, V3, V4}, where V1 = {v1, v2}, V2 = {v3}, V3 = {v4, v5}, and V4 =
{v6, v7, v8, v9}. Fig 2(b) shows the graph after the orbit V2 is copied.

v1 v2

v3
v4 v5

v6 v9v7 v8
(a) The original graph G

v1 v2

v3
v4 v5

v6 v9v7 v8

v'2v'1

(b) The graph after orbit {v1, v2} is copied

Fig. 2. Illustration of the orbit copying operation: the vertex partition of G is exactly Orb(G), and vertices in
the same orbit are colored by the same color.

We next show an important theorem which will be the foundation of the anonymiza-
tion procedure introduced in the next section. But before that, we shall first prove several
lemmas.

The first lemma (Lemma 1) states that a single orbit copying operation Ocp(G,V, V )
will obtain a sub-automorphism partition of the resulted graph.

Lemma 1. Let G be any given graph, and V is any sub-automorphism partition of G.
Suppose V = {V1, V2, ..., Vm}, and the vertex partition after applying an orbit copying



operation Ocp(G,V, Vi) is V′
i = {V1, V2, ..., V

′
i , ..., Vm}. Now let G′

i be the corresponding
graph after the orbit copying operation on Vi, then V′

i is a sub-automorphism partition of
G′

i, ∀1 ≤ i ≤ m.

Proof. We need to show that, for each cell V ∈ V′
i, and ∀u, v ∈ V , there is an h ∈ Aut(G′

i)
such that uh = v and (V′

i)
h = V′

i. We first consider the case that V = V ′
i .

Suppose Vi = {v1, v2, ..., vs}, then the vertices in V ′
i could be represented as V ′

i =
{v1, v2, ..., vs, v′1, v′2, ..., v′s}. For notational convenience, we useWi to denote the set {v1, v2,
..., vs} (actually, Wi = Vi), and use W ′

i to denote the set {v′1, v′2, ..., v′s}, which lead to
V ′
i = Wi ∪W ′

i and Wi ∩W ′
i = ∅ under this representation. Namely, Wi and W ′

i forms a
partition of V ′

i , and furthermore, V (G′
i) = V (G)∪W ′

i . We then define a mapping f , such
that f : Wi → W ′

i , where f(vj) = v′j, for 1 ≤ j ≤ s. It’s clear that f is a bijection, and
we use f−1 to denote its inverse mapping.

Now suppose u and v are two arbitrary vertices in V ′
i . Without loss of generality, there

are two cases we need to follow, namely, whether u and v are both in Wi, or u and v are
in Wi and W ′

i respectively. We next prove these two cases one by one. The idea is that
in each case we shall construct an h ∈ Aut(G′

i) such that uh = v and (V′
i)
h = V′

i.

Case 1 Both u and v belong to Wi.
SinceWi = Vi, there is a g ∈ Aut(G) such that ug = v and Vg = V, due to the fact
V is a sub-automorphism partition of V (G). Now construct a new permutation
h on V (G′) such that h acts in the same way as g on V (G) and (v′j)

h = f(vgj )

(remember that vgj ∈ Wi = Vi), for 1 ≤ j ≤ s. Clearly uh = ug = v. We now
show that h ∈ Aut(G′

i).
Suppose e = (a, b) ∈ E(G′

i) is an arbitrary edge of G′
i. We need to show that

eh = (ah, bh) ∈ E(G′
i). There are totally three different cases:

(1) e ∈ E(G). Then a ∈ V (G) and b ∈ V (G), and eh = (ah, bh) = (ag, bg) = eg ∈
E(G) ⊆ E(G′

i).
(2) e ̸∈ E(G), but a ∈ V (G) and b ∈ W ′

i (the case b ∈ V (G) and a ∈ W ′
i is

the same). Then eh = (ah, bh) = (ag, f((f−1(b))g)). Since b ∈ W ′
i , f

−1(b) ∈
Wi = Vi, thus (a, f−1(b)) ∈ E(G), otherwise (a, b) ̸∈ E(G′

i). Therefore,
(ag, (f−1(b))g) ∈ E(G) and what’s more, (f−1(b))g ∈ Vi, since Vg = V. As a
result, (ag, f((f−1(b))g)) ∈ E(G′

i).
(3) e ̸∈ E(G), and both a and b are in W ′

i . Then we have eh = (ah, bh) =
(f((f−1(a))g), f((f−1(b))g)). Since f−1(a) ∈ Vi and f−1(b) ∈ Vi, we must
have (f−1(a), f−1(b)) ∈ E(G), otherwise (a, b) ̸∈ E(G′

i). Thus, we have
((f−1(a))g, (f−1(b))g) ∈ E(G), and then (f((f−1(a))g), f((f−1(b))g)) ∈ E(G′

i)
since both (f−1(a))g and (f−1(b))g are in Vi (again due to Vg = V).

We now prove that (V′
i)
h = V′

i. But since h acts in the same way as g on V (G),
and since Vg = V, we need only to prove that (V ′

i )
h = V ′

i . According to the
definition of h, (V ′

i )
h = {vh1 , ..., vhs , (v′1)h, ..., (v′s)h} = {vg1 , ..., vgs , f(v

g
1), ..., f(v

g
s)}.

Since Wi = Vi = V g
i = {vg1 , ..., vgs}, and W ′

i = f(Wi) = f(Vi) = f(V g
i ) =

{f(vg1), ..., f(vgs)}, we thus have (V ′
i )

h = Wi ∪ W ′
i = V ′

i , which completes the
proof of Case 1.
(Note: The case both u and v belong to W ′ is proved in the same way.)

Case 2 u ∈ Wi and v ∈ W ′
i .

Since v ∈ W ′
i , we have f−1(v) ∈ Wi. Then there is an automorphism h1 ∈

Aut(G′
i) such that uh1 = f−1(v) and (V′

i)
h1 = V′

i, as described in the proof
of Case 1. Now construct a permutation h2 on V (G′

i) such that vh2
j = v′j and



(v′j)
h2 = vj, for 1 ≤ j ≤ s and vh2 = v for any v ∈ (V (G′

i) \ V ′
i ). Let h = h1 · h2

and we then have uh = uh1h2 = (uh1)h2 = (f−1(v))h2 = f(f−1(v)) = v. We next
prove that h ∈ Aut(G′

i) and (V′
i)
h = V′

i. But since h1 ∈ Aut(G′
i) and (V′

i)
h2 = V′

i,
if we can show h2 ∈ Aut(G′

i) and (V′
i)
h2 = V′

i, then we are done, due to the
fact Aut(G′

i) is a group and (V′
i)
h = ((V′

i)
h1)h2 = (V′

i)
h2 . To prove h2 ∈ Aut(G′

i),
we only need to prove that, for each edge e = (a, b) ∈ E(G′

i), we must have
eh2 = (a, b)h2 ∈ E(G′

i). Actually, since h2 just exchanges the corresponding
vertices in Wi and W ′

i , we only need to consider the edges having at least one
end in Wi or W

′
i . There are two different cases:

(1) Both a and b are in Wi. Then eh2 = (ah2 , bh2) = (f(a), f(b)) ∈ E(G′
i).

(Note: The case both a and b are in W ′
i is proved in the same way.)

(2) a in Wi and b ∈ (V (G′
i) \ V ′

i ). Then eh2 = (ah2 , bh2) = (f(a), b) ∈ E(G′
i).

(Note: The case both a in W ′
i and b ∈ (V (G′

i) \ V ′
i ) is proved in the same

way.)

Notice that the case a ∈ Wi and b ∈ W ′
i (or a ∈ W ′

i and b ∈ Wi) is impossible.
Therefore, we now have proved that h2 ∈ Aut(G′

i) and hence h ∈ Aut(G′
i).

Finally, since h2 fixes vertices in the cells other than V ′
i , to prove (V′

i)
h2 =

V′
i, we again only need to prove that (V ′

i )
h2 = V ′

i . Actually, we have (V ′
i )

h2 =
{vh2

1 , ..., vh2
s , (v′1)

h2 , ..., (v′s)
h2} = {v′1, ..., v′s, v1, ..., vs} = V ′

i , which completes the
proof of Case 2.
(Note: The case u ∈ W ′

i and v ∈ Wi is proved in the same way.)

Suppose now V ̸= V ′
i , then ∀u, v ∈ V , ∃g ∈ Aut(G) such that ug = v and Vg = V.

Construct a permutation h on V (G′
i) such that h acts in the same way as g on V (G),

and (v′j)
h = f(vgj ). As shown in Case 1, the h so constructed is an automorphism of G′

i

satisfying (V′
i)
h = V′

i, and clearly uh = ug = v. This completes the whole proof.

Remark 1. According to Lemma 1, given a graph G and its automorphism partition
Orb(G), an orbit copying operationOcp(G,Orb(G), Vi) onG will result a sub-automorphism
partition V′

i of the resulted graph G′
i. Sometimes V′

i = Orb(G′
i) (as the case shown in

Fig 2) but sometimes it is not the case. Fig 3 shows a trivial counterexample. Here,
Orb(G) = {{v1}, {v2, v3}} and V′

1 = {{v1, v′1}, {v2, v3}}. But if we take another view of
G′

1 (as in Fig 3(c)), it’s easy to see that all the four vertices of G′
1 must belong to the

same orbit of G′
1, namely, Orb(G′

1) = {{v1, v′1, v2, v3}} and therefore, V′
1 ̸= Orb(G′

1).

v1

v2 v3
(a) The original graph G

v1
v2 v3

v'1

(b) The graph G′
1 after

orbit {v1} is copied

v1
v2

v3
v'1

(c) Another view of G′
1

Fig. 3. A trivial counterexample that V′
i ̸= Orb(G′

i)

The next lemma (Lemma 2) generalizes the result of Lemma 1, which says that if
we successively apply the orbit copying operations on the same cell, the conclusion of
Lemma 1 will still hold.



Lemma 2. Let G be any given graph, and V be any sub-automorphism partition of G.
Suppose V = {V1, V2, ..., Vm}, and the vertex partition after applying N ≥ 0 orbit copying

operations Ocp(G,V, Vi) on the same cell Vi is V
(N)
i = {V1, V2, ..., V

(N)
i , ..., Vm}. Now let

G
(N)
i be the corresponding graph, then V

(N)
i is a sub-automorphism partition of G

(N)
i ,

∀1 ≤ i ≤ m.

Proof. If N = 0, G
(0)
i = G and V

(0)
i = V, thus the lemma holds trivially. Now let N ≥ 1.

Suppose Vi = {v1, v2, ..., vs} and V
(N)
i = {v1, ..., vs, v(1)1 , ..., v

(1)
s , ..., v

(N)
1 , ..., v

(N)
s } where

v
(n)
1 , ..., v

(n)
s are vertices copied from v1, ..., vs in the n-th operation, 1 ≤ n ≤ N . Similarly

as in the proof of Lemma 1, we use W
(0)
i = Vi to denote the set {v1, ..., vs}, and use

W
(n)
i to denote the set {v(n)1 , ..., v

(n)
s }. Also, we define a mapping fn : W

(0)
i → W

(n)
i for

each 1 ≤ n ≤ N , such that fn(vj) = v
(n)
j where 1 ≤ j ≤ s. For convenience, we just

define f0 : W
(0)
i → W

(0)
i to be the identical mapping on W

(0)
i , namely, f0(vj) = vj where

1 ≤ j ≤ s. Clearly each fn is a bijection. To prove the lemma, we again need to show
that, for each cell V ∈ V

(N)
i , and ∀u, v ∈ V , there is an h ∈ Aut(G

(N)
i ) such that uh = v

and (V
(N)
i )h = V

(N)
i . The idea is so similar to the proof of Lemma 1 that in the following

process we just give some sketch and not repeat the details again.
We first consider the case V = V

(N)
i , and there are again two types of situation, namely

whether u and v are in the same W
(j)
i or not, where 0 ≤ j ≤ N . In the first situation,

without loss of generality, suppose u, v ∈ W
(0)
i . Then there is a g ∈ Aut(G) such that

ug = v and Vg = V. We next construct a permutation h on V (G
(N)
i ) such that h acts in the

same way as g on V (G), and (v
(n)
j )h = fn(v

g
j ), for 1 ≤ j ≤ s, and 1 ≤ n ≤ N . We then show

that h ∈ Aut(G
(N)
i ) and (V

(N)
i )h = V

(N)
i . In the second situation, without loss of generality,

suppose u ∈ W
(p)
i and v ∈ W

(q)
i , p ̸= q. Let u0 = f−1

p (u), v0 = f−1
q (v), then u0 ∈ W

(0)
i ,

v0 ∈ W
(0)
i , and there is a g ∈ Aut(G) such that ug

0 = v0 and Vg = V. Construct an

h1 ∈ Aut(G
(N)
i ) as in the first situation. Construct a permutation h2 on V (G

(N)
i ) such that

h2 just exchanges corresponding vertices in W
(p)
i and W

(q)
i , and fixing any other vertex

in V (G
(N)
i ). Formally, (v

(p)
j )h2 = v

(q)
j , (v

(q)
j )h2 = v

(p)
j , and vh2 = v, ∀v ∈ V (G

(N)
i ) \ V (N)

i .

We then prove that h2 ∈ Aut(G
(N)
i ) and (V

(N)
i )h2 = V

(N)
i . Now let h = h1 · h2, then

h ∈ Aut(G
(N)
i ), (V

(N)
i )h = V

(N)
i and uh = uh1h2 = (uh1)h2 = (fp(v0))

h2 = fq(v0) = v.

Now consider the case that V ̸= V
(N)
i , then ∀u, v ∈ V , there is a g ∈ Aut(G) such

that ug = v and Vg = V. We can construct a h ∈ Aut(G
(N)
i ) in the same way as we do

in the proof of the first situation of the case V = V
(N)
i , which gives uh = ug = v and

(V
(N)
i )h = V

(N)
i . This completes the whole proof.

The next two lemmas (Lemma 3 and 4) claim that if we rearrange the order of
operations in a given orbit copying operation sequence, the resulted graph remains the
same.

Lemma 3. Let G be any given graph, and V = {V1, V2, ..., Vm} is any sub-automorphism
partition of G. Suppose Ocp1(G,V, Vi1), ..., OcpN(G,V, ViN ) is any orbit copying operation
sequence performed on G, with N ≥ 1 and in ∈ {1, 2, ...,m} where 1 ≤ n ≤ N and let the
resulted graph be GN . If we interchange the order of any two successive operations (which
is called as an operation transposition), without loss of generality, say, Ocpj(G,V, Vij)
and Ocpj+1(G,V, Vij+1

), where 1 ≤ j ≤ N − 1 and let the so resulted graph be G′
N , then

GN and G′
N are actually the same graph, or equivalently speaking, GN

∼= G′
N .



Proof. Let the graph after the n-th operation be Gn and G′
n under the two operation

sequences, respectively, and let the vertex partition after the n-th operation be V(n) and
(V(n))′, respectively, where 1 ≤ n ≤ N . To prove the lemma, we need only to prove that
Gj+1

∼= G′
j+1. There are two cases to be considered:

(1) ij = ij+1, then Ocpj(G,V, Vij) and Ocpj+1(G,V, Vij+1
) are in fact operated on the

same cell. Therefore it is trivial to see that Gj+1 and G′
j+1 must be the same.

(2) ij ̸= ij+1, but CAdjM(V(j−1))[ij, ij+1] = 0. Then Ocpj(G,V, Vij) and Ocpj+1(G,V,
Vij+1

) are actually independent. More specifically, let Vij = {v1, ..., vs}, Vij+1
=

{u1, ..., ut}, and let V(j−1) = (V(j−1))′ = {V (j−1)
1 , ..., V

(j−1)
m }. We suppose V

(j−1)
ij

=

{v1, ..., vs, v
(1)
1 , ..., v

(1)
s , ..., v

(p−1)
1 , ..., v

(p−1)
s }, and V

(j−1)
ij+1

= {u1, ..., ut, u
(1)
1 , ..., u

(1)
t , ...,

u
(q−1)
1 , ..., u

(q−1)
s }, where p, q ≥ 1 are positive integers. After the two operations in the

order Ocpj(G,V, Vij) and Ocpj+1(G,V, Vij+1
), we suppose V

(j+1)
ij

= {v1, ..., vs, v(1)1 , ...,

v
(1)
s , ..., v

(p)
1 , ..., v

(p)
s }, and V

(j+1)
ij+1

= {u1, ..., ut, u
(1)
1 , ..., u

(1)
t , ..., u

(q)
1 , ..., u

(q)
t }. And if we

exchange the order of two operations, then we suppose V
(j+1)
ij

= {v1, ..., vs, v(1)1 , ..., v
(1)
s ,

..., (v
(p)
1 )′, ..., (v

(p)
s )′}, and V

(j+1)
ij+1

= {u1, ..., ut, u
(1)
1 , ..., u

(1)
t , ..., (u

(q)
1 )′, ..., (u

(q)
t )′}. We

now construct a mapping from V (Gj+1) to V (G′
j+1) such that f(v

(p)
k ) = (v

(p)
k )′

and f(u
(q)
l ) = (u

(q)
l )′ where 1 ≤ k ≤ s and 1 ≤ l ≤ t, and f(v) = v for any

v ∈ V (Gj−1) = V (G′
j−1). We next show that f is an isomorphism mapping between

Gj+1 and G′
j+1. First, it’s trivial to see that f is a bijection. Next, to prove that f is

an isomorphism mapping, then we should show that for each e = (u, v) ∈ E(Gj+1),
(f(u), f(v)) ∈ E(G′

j+1). Then there are four different types of e which we now handle
one by one.

(a) Both u and v in V (Gj−1). Then (f(u), f(v)) = (u, v) ∈ E(Gj−1), so (f(u), f(v)) ∈
E(G′

j+1), since orbit copying operations will not remove any edges from the graph.

(b) u ∈ V (Gj−1) and v ∈ {v(p)1 , ..., v
(p)
s }(or u ∈ V (Gj−1) and v ∈ {u(q)

1 , ..., u
(q)
t }).

Then v is added by Ocpj(G,V, Vij). Without loss of generality, let v = v
(p)
k , then

(f(u), f(v)) = (u, (v
(p)
k )′). Since we add (u, v) through Ocpj(G,V, Vij) when the

order of the two operations is Ocpj(G,V, Vij), Ocpj+1(G,V, Vij+1
) because (u, vk) ∈

E(Gj−1), (u, (v
(p)
k )′) must also be added when Ocpj(G,V, Vij) is performed after

we exchange the order of the two operations.
(c) Both u and v in {v(p)1 , ..., v

(p)
s }(or both u and v in {u(q)

1 , ..., u
(q)
t }). Let u = v

(p)
l

and v = v
(p)
k , then (f(u), f(v)) = ((v

(p)
l )′, (v

(p)
k )′). Since we add (u, v) through

Ocpj(G,V, Vij) when the order of the two operations is Ocpj(G,V, Vij), Ocpj+1(G,

V, Vij+1
) because (vl, vk) ∈ E(Gj−1) (in fact, because (vl, vk) ∈ E(G), ((v

(p)
l )′, (v

(p)
k )′)

must also be added when Ocpj(G,V, Vij) is performed after we exchange the order
of the two operations.

(d) u ∈ {v(p)1 , ..., v
(p)
s } and v ∈ {u(q)

1 , ..., u
(q)
t } (or u ∈ {u(q)

1 , ..., u
(q)
t } and v ∈ {v(p)1 , ...,

v
(p)
s }). Let u = v

(p)
l and v = u

(q)
k , then (f(u), f(v)) = ((v

(p)
l )′, (u

(q)
k )′). Since u is

added through Ocpj(G,V, Vij) and v is added through Ocpj+1(G,V, Vij+1
) when

the order of the operations is Ocpj(G,V, Vij), Ocpj+1(G,V, Vij+1
), (u, v) is cre-

ated must due to the fact that (vl, uk) ∈ E(Gj−1) (actually, due to the fact that
(vl, uk) ∈ E(G)). Therefore, after we exchange the order of the two operations,

we now add (u
(q)
k )′ first in the operation Ocpj+1(G,V, Vij+1

), and add the edge

((u
(q)
k )′, vl) (also ((u

(q)
k )′, v

(1)
1 ), ..., ((u

(q)
k )′, v

(p−1)
1 )) simultaneously (sine (u

(q)
k )′ is



copied from uk). Then, (v
(p)
l )′ is added in the operation Ocpj(G,V, Vij), and the

edge ((v
(p)
l )′, (u

(q)
k )′) will be added simultaneously because (v

(p)
l )′ is copied from vl

and now ((u
(q)
k )′, vl) has existed in the graph. This completes the whole proof of

Lemma 3.

Lemma 4. Let G be any given graph, and V = {V1, V2, ..., Vm} is any sub-automorphism
partition of G. Suppose Ocps = Ocp1(G,V, Vi1), ..., OcpN(G,V, ViN ) is any orbit copying
operation sequence performed on G, with N ≥ 1 and in ∈ {1, 2, ...,m} where 1 ≤ n ≤ N .
Now let π be any permutation on {1, 2, ..., N}, then the operation sequence π(Ocps) =
Ocpπ(1)(G,V, Viπ(1)

), ..., Ocpπ(N)(G,V, Viπ(N)
) on G produces the same resulted graph as

Ocps.

Proof. Due to the well known result in basic permutation group theory that any permu-
tation could be represented as a composition of a series of transpositions, we can then
obtain the operation sequence π(Ocps) through a series of operation transpositions on
Ocps. Since each operation transposition will not affect the graph resulted, by Lemma 3,
we conclude that π(Ocps) will produce the same graph as Ocps.

Now it’s ready for us to give the fundamental theorem related to the orbit copying
operation, which is just a generalization of Lemma 1 and 2.

Theorem 1. Let G be any given graph, and V = {V1, V2, ..., Vm} is any sub-automorphism
partition of G. Suppose Ocps = Ocp1(G,V, Vi1), ..., OcpN(G,V, ViN ) is any orbit copying
operation sequence performed on G, with N ≥ 1 and in ∈ {1, 2, ...,m} where 1 ≤ n ≤ N .
Let the resulted vertex partition and the corresponding graph be V(N) and GN , respectively.
Then V(N) is a sub-automorphism partition of GN .

Proof. Suppose in the indices i1, i2, ..., iN , 1 occurs k1 times, 2 occurs k2 times, ..., and
m occurs km times, where each kj ≥ 0, for 1 ≤ j ≤ m. Then according to Lemma 4, if we
first perform Ocp(G,V, V1) k1 times, then perform Ocp(G,V, V2) k2 times, and so on until
we finally perform Ocp(G,V, Vm) km times, the so resulted graph will also be GN . After we
first perform Ocp(G,V, V1) k1 times, the resulted partition V(k1) is a sub-automorphism
partition of Gk1 , according to Lemma 2. But notice that, now, the hypothesis of Lemma 2

holds on Gk1 and V(k1) = {V (k1)
1 , V

(k1)
2 , ..., V

(k1)
m } = {V (k1)

1 , V2, ..., Vm}. So after we perform
Ocp(Gk1 ,V

(k1), V2) k2 times, the resulted partition V(k1+k2) is again a sub-automorphism
partition of Gk1+k2 , also according to Lemma 2. This process then could be repeated until
we perform Ocp(G,V, Vm) km times and obtain the partition V(

∑m
j=1 kj) = V(N), which is

a sub-automorphism partition of G∑m
j=1 kj

= GN .

3.3 The Anonymization Procedure

Given the network G that needs to be anonymized before releasing and its automor-
phism partition Orb(G) = {V1, V2, ..., Vm}, we now propose the following anonymization
procedure (as shown in Algorithm 1) to produce a graph G′ which is k-symmetric. The
idea is simply repeating the orbit copying operation on Vi ∈ Orb(G) if |Vi| ≤ k, for
1 ≤ i ≤ m.

We next prove that the graph G′ produced by Algorithm 1 is k-symmetric and unique,
as claimed in Theorem 2 and 3. For uniqueness of G′, we mean that if we change the
processing order of the cells in the anonymization procedure, the resulted graph remains
the same as G′.



Algorithm 1: Anonymization
Input: the network G to be anonymized and its automorphism partition Orb(G) = {V1, V2, ..., Vm}; the

specified threshold k
Output: an anonymized graph G′ w.r.t G, which is k-symmetric

1 for 1 ≤ i ≤ m do
2 if |Vi| ≥ k then
3 Continue;
4 end
5 else
6 Let V ′

i = Vi;
7 while |V ′

i | < k do
8 Ocp(G,Orb(G), Vi);
9 V ′

i = V ′
i ∪ Vi;

10 end

11 end

12 end

Theorem 2. The graph G′ produced by the anonymization procedure is k-symmetric.

Proof. The anonymization procedure could actually be treated as a series of orbit copying
operations. Suppose the resulted partition is V′, then according to Theorem 1, V′ is a sub-
automorphism partition of G′, and therefore V′ 4 Orb(G′). Since ∀V ∈ V′, |V | ≥ k, then
∀U ∈ Orb(G′), |U | ≥ k either. Hence G′ is k-symmetric.

Theorem 3. The graph G′ produced by the anonymization procedure is unique. More
specifically, let π be any permutation of {1, 2, ...,m}. If in the anonymization procedure,
we process cells in the order Vπ(1), Vπ(2), ..., Vπ(m) instead of V1, V2, ..., Vm, then the resulted
graph Gπ is the same as G′, or equivalently speaking, Gπ

∼= G′.

Proof. Similarly as in the proof of Theorem 2, we could actually treat the anonymization
procedure as a series of orbit copying operations. Without loss of generalization, sup-
pose V1 is copied k1 times, V2 is copied k2 times, ..., and Vm is copied km times in the
anonymization procedure, where each kj ≥ 0, for 1 ≤ j ≤ m. Let N =

∑m
j=1 kj, then we

could represent the orbit copying operations as a sequence: Ocps = Ocp1(G,Orb(G), V1),
..., Ocpk1(G,Orb(G), V1), Ocpk1+1(G,Orb(G), V2), ..., Ocpk1+k2(G,Orb(G), V2), ...,
Ocp∑m−1

j=1 kj+1(G,Orb(G), Vm), ..., Ocp∑m−1
j=1 kj+km

(G,Orb(G), Vm). Now suppose the pro-

cessing order becomes Vπ(1), Vπ(2), ..., Vπ(m). According to the anonymization procedure,
the number of operations Ocp(G,Orb(G), Vπ(i)) remains unchanged, for each Vπ(i), and
therefore the new operation sequence Ocpsπ = Ocp1(G,Orb(G), Vπ(1)), ..., Ocpkπ(1)

(G,
Orb(G), Vπ(1)), ..., Ocp∑m−1

j=1 kπ(j)+1(G,Orb(G), Vπ(m)), ..., Ocp∑m−1
j=1 kπ(j)+kπ(m)

(G,Orb(G),

Vπ(m)) is just a rearrangement of the operations in Ocps. Hence according to Lemma
4, the resulted graph Gπ after Ocpsπ is the same as the resulted graph G′ after Ocps,
namely, Gπ

∼= G′.

Theorem 3 is a nice result. Given a graph G, we could use different methods to find
its automorphism partition Orb(G). But in general, different methods may result Orb(G)
with different orbit orders, and it’s hard for us to enforce a consistent ordering since
we even don’t know how many different automorphism partition generating algorithms
existing at present. Theorem 3 solves this problem and make our anonymization procedure
independent of the underlying automorphism partition generator. Therefore, given G and
Orb(G), the resulted graph G′ is determined uniquely.



Example 3. As shown in Fig 4(a), we have Orb(G) = {W1,W2,W3,W4,W5}, where W1 =
{v1, v2},W2 = {v3},W3 = {v4, v5},W4 = {v6, v7},W5 = {v8}. Suppose now k = 2,
then W2 and W5 need to be copied if we want to produce a 2-symmetric graph based
on G. Fig 4(b) shows the graph G′ after the anonymization procedure. Now we get a
vertex partition V′ = V1, V2, V3, V4, V5 of V (G′), where V1 = {v1, v2}, V2 = {v3, v′3}, V3 =
{v4, v5}, V4 = {v6, v7}, V5 = {v8, v′8}. Each cell of V′ contains at least 2 vertices that are
structurally equivalent and we can easily check that V is a sub-automorphism partition
of G′. Actually, in this case Orb(G′) = V′, and thus G′ is 2-symmetric. Fig 4(c) shows
the graph G′ after the anonymization procedure when k = 3. Here, since none of the 5
orbits of Orb(G) satisfies the k-symmetry constraint, all of them should be copied in the
anonymization procedure.

v1 v2

v3
v4 v5

v6 v7

v8
(a) The original graph G

v1 v2

v3
v4 v5

v6 v7

v8 v'8

v'3

(b) The anonymized graph
G′ when k = 2

v1 v2
v3

v6 v7

v8

v4 v5

v'1 v'2
v'3 v''3

v'4 v'5
v'6 v'7

v'8 v''8
(c) The anonymized graph G′

when k = 3

Fig. 4. Illustration of the anonymization procedure

The time complexity of the anonymization procedure is polynomial if the time required
by computing the automorphism partition of the original graph G is not considered.
Specifically, suppose the number of cells in V which contain less than k vertices is N , and
let these cells to be Vi1 , ..., ViN . Suppose the number of orbit copying operation performed
is k1, ...kN , respectively. Then the total number of vertices introduced is

∑N
j=1 kj|Vij | ≤

(k − 1)|V (G)|, since each kj ≤ k − 1 and
∑N

j=1 |Vij | ≤ |V (G)|. And the total number of

edges introduced is less than
∑N

j=1 kj|Vij |(k|V (G)|) ≤ k(k− 1)|V (G)|2. Since usually k is
much less than |V (G)|, we then have that the worst case running time of the anonymiztion
procedure is O(|V (G)|2). However, computing the automorphism partition of G is not
trivial and we shall give some remarks on this problem later in this paper.

3.4 Utility

A critical problem that needs to be considered in any privacy protection model is
the utility of the published data. So do our k-symmetry model. Since new vertices and
edges would be introduced during the anonymization procedure, the resulted graph G′ is
unlikely to share similar statistical properties as the original graph G. We consider the
utility problem in this section.

Orbit Linkage Pattern Recall the anonymization procedure, and note that besides
the property that the resulted graph is k-symmetric, it also preserves the linkage pattern
between different orbits of the original graph.



We argue here that the properties of graph is highly influenced by this linkage pat-
tern. Although we could not give theoretical analysis at the current time, the following
experimental example strongly supports this argument.

Example 4 (An experiment). Fig 5 shows two link patterns between two orbits each con-
taining 4 vertices. Each vertex has degree 2.

(a) Link Pattern 1 (b) Link Pattern 2

Fig. 5. Link patterns used in Example 4

We now construct graphs having exactly 100 such orbits (namely, 400 vertices). Sup-
pose Oi denotes the i-th orbit, 1 ≤ i ≤ 100 and the edges of the following mentioned
graphs are only between Oj and Oj+1, for 1 ≤ j ≤ 99. We construct following three type
of graphs:

(1) G1 is a graph such that O1 and O2 are linked by Link Pattern 2 (just for G1 to be
connected), and Oj and Oj+1 are linked by Link Pattern 1, for 2 ≤ j ≤ 99.

(2) G2 is a graph such that Oj and Oj+1 are linked by Link Pattern 2, for 1 ≤ j ≤ 99.
(3) Gs is a graph such that Oj and Oj+1 are linked by Link Pattern 1 or 2, with equal

probability, for 1 ≤ j ≤ 99.
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(b) Network Resilience

Fig. 6. Network properties for graphs generated in Example 4

Fig 6 shows the experimental results of some network properties of the three graphs
generated above. Two property measures are used here. One is Shortest Path Length
Distribution, which is calculated by randomly sampling 500 vertex pairs from the graph



and computing the length of the shortest path between them. The other is Network
Resilience, which is to compute the relative size of the largest connected component
when vertices of the graph are removed in a decreasing order of their degrees.

We can see from the result that the properties of graphs are quite different, especially
for G1 and G2, which supports our argument that the properties of graph are highly
influenced by the linkage pattern between different orbits.

Graph Backbone The concept of orbit linkage pattern described in the last part so
far is intuitive and not theoretically strict, which makes it hard to go any further based
on just this intuition. In this part, we shall give deeper insight into the notion of orbit
linkage pattern by generalizing it into what we call as graph backbone.

Definition 4 (Graph Generalization and Reduction).

Let G be a given graph, V = {V1, V2, ..., Vm} be a sub-automorphism partition of G.

Suppose Ocps = Ocp1(G,V, Vi1), ..., OcpN(G,V, ViN ) be an orbit copying operation
sequence on G with respect to V, where N ≥ 1 is a positive integer and in ∈ {1, 2, ...,m}
for 1 ≤ n ≤ N . Then the resulted graph after Ocps is called a generalization of G, with
respect to V and Ocps, and we denote it as G(V, Ocps).

Conversely, if there exists a subgraph H of G, a sub-automorphism partition VH of
H, and an orbit copying operation sequence OcpsH on H, with respect to VH , such that
G ∼= H(VH , OcpsH), then H is called a reduction of G, with respect to V, and we denote
H as G−1(V, OcpsH).

In particular, G is both a generalization and reduction of itself, with respect to V and
an empty orbit copying operation sequence.

In terms of Definition 4, the resulted graph G′ of the anonymization procedure is a
generalization of the input graph G, with respect to Orb(G) and the corresponding orbit
copying operation sequence Ocps, namely, G′ = G(Orb(G), Ocps).

We now focus on the discussion of graph reduction since it is more related to the
concept of graph backbone, which we will define shortly. For convenience, we introduce
the following notation 5: If H is a reduction of G, with respect to V, and VH is the
corresponding sub-automorphism partition of H, as in Definition 4, then (H,VH) 5
(G,V). Furthermore, if (H,VH) 5 (G,V), then there is a vector k = (k1, k2, ..., km) such
that ki ≥ 0 is the number of operation Ocp(H,VH , V H

i ) performed. We call k as the
orbit copying frequency vector, or briefly, the ocf-vector. Since the graph after each orbit
copying operation is uniquely determined, and rearranging the order of the operations
will not affect the result, the vector k is then unique if G, V, H and VH are given. We
hence use the notation kH,VH ,G,V to emphasize this uniqueness relation. In the context
where V and VH are clear, we also use the notation kH,G, for abbreviation. Furthermore,
we use the notation (H,VH ,kH,G) → (G,V) to emphasize the fact that (G,V) could be
obtained from (H,VH) by applying corresponding number of orbit copying operations
according to kH,G.

First, it’s clear that a graph G may have multiple reductions, with respect to the
given sub-automorphism partition V. Let R(G,V) be the set containing all the reductions
of G with respect to V, namely, R(G,V) = {H|(H,VH) 5 (G,V)}. Since G ∈ R(G,V),
R(G,V) is not empty, we can then define a relation ≤ on R(G,V) such that H1 ≤ H2

if and only if (H1,V
H1) 5 (H2,V

H2), for any H1 and H2 in R(G,V). It’s trivial to check
that ≤ is reflexive, asymmetric, and transitive and hence it is a partial order.



Suppose H1 and H2 are two elements in R(G,V). If there is an Hu ∈ R(G,V) such
that H1 ≤ Hu and H2 ≤ Hu, then Hu is called an upper bound of H1 and H2. Similarly,
if there is an Hl ∈ R(G,V) such that Hl ≤ H1 and Hl ≤ H2, then Hl is called a lower
bound of H1 and H2. Our next result is that for any two H1 and H2 are two elements in
R(G,V), there is a least upper bound and a greatest lower bound of H1 and H2 in R(G,V),
with respect to ≤. Therefore, the poset (R(G,V);≤) is indeed a lattice. But before we
show this in Theorem 4, we shall give some preliminaries first.

Lemma 5. Let A be a finite set, |A| = n and R be a binary equivalence relation defined
on A. Suppose p|n, q|n, p ̸= q and n = p · s = q · t. Assume that the following two
conditions hold:

1. The elements in A could be partitioned into s disjoint subsets Ai, such that ∀a ∈
Ai, b ∈ Ai, we have (a, b) ∈ R, where |Ai| = p for each 1 ≤ i ≤ s.

2. The elements in A could be partitioned into t disjoint subsets Bj, such that ∀a ∈
Bj, b ∈ Bj, we have (a, b) ∈ R, where |Bj| = q for each 1 ≤ j ≤ t.

Then the elements in A could be partitioned into gcd(s, t) disjoint subsets Ck, such that
∀a ∈ Ck, b ∈ Ck, we have (a, b) ∈ R, where |Ck| = lcm(p, q) for each 1 ≤ k ≤ gcd(s, t).
Here gcd(x, y) and lcm(x, y) means the greatest common divisor and least common mul-
tiple of x and y, respectively.

Proof. Suppose A/R is the quotient set induced by R on A. Let E ∈ A/R, then |E| =
m·lcm(p, q) wherem ≥ 1 is a positive integer. In other words, the size of every equivalence
class must be a multiple of lcm(p, q). We show this by contradiction. Suppose this is not
the case, then there is an F ∈ A/R, |F | = M such that lcm(p, q) - M . Thus either
p - M or q - M . Without loss of generality, suppose p - M , then M = k · p + r, where
k ≥ 1 is some non-negative integer and 1 ≤ r ≤ M − 1. Pick a1 ∈ F . According to
the first condition, since Ais forms a partition of A, a1 ∈ Ai1 for some 1 ≤ i1 ≤ s.
But now every y in Ai1 must also be in F , since (a1, y) ∈ R. So we have Ai1 ⊂ F .
Let F1 = F \ Ai1 . Next we pick a2 ∈ F1, and similarly a2 ∈ Ai2 for some i2 ̸= i1 and
henceAi2 ⊂ F1. Let F2 = F1 \ Ai2 = F \ (Ai1 ∪ Ai2). We can then pick a3 ∈ F2 and
repeat the previous process. Since M = k · p + r, this process could repeat k times and
we have |Fk| = r, where Fk = F \ (∪k

j=1Aij). But if we now choose aik+1
∈ Fk, the above

argument shows that aik+1
∈ Aik+1

, where ik+1 ̸= ij for 1 ≤ j ≤ k. Hence Aik+1
∈ Fk

and therefore |Fk| ≥ |Aik+1
| = p > r, contradict to |Fk| = r. The case q - M could be

showed similarly. Thus, M must be a multiple of lcm(p, q), namely lcm(p, q)|M . Since F
is arbitrarily chosen, we conclude that each equivalence class E ∈ A/R must have size
which is a multiple of lcm(p, q). Since A/R is also a partition of A, we can then obtain
the partition {Ck} by partitioning each E ∈ A/R into disjoint subsets each with size
lcm(p, q). Since n = p · s = q · t, n is a common multiple of p and q and thus lcm(p, q)|n.
Suppose n = lcm(p, q) · l, then l is the number of Cks. Let lcm(p, q) = l1 · p = l2 · q. Here
gcd(l1, l2) = 1. Since n = p · s = lcm(p, q) · l, we have p · s = l1 · p · l, namely s = l1 · l.
Similarly, since n = q · t = lcm(p, q) · l, we have q · t = l2 · q · l, namely t = l2 · l. Therefore,
l|s, l|t, then l|gcd(s, t). Let l3 be any common divisor of s and t, namely, l3|s and l3|t.
Suppose s = ks · l3, t = kt · l3. Since p · s = lcm(p, q) · l, we have p · l3 · ks = p · l1 · l, i.e.,
l3 · ks = l1 · l; and since q · t = lcm(p, q) · l, we have q · l3 · kt = q · l2 · l, i.e., l3 · kt = l2 · l.
Therefore, l3 · ks · l2 = l3 · kt · l1, i.e.,ks · l2 = kt · l1. Since gcd(l1, l2) = 1, we must have
l1|ks, l2|kt. Hence l3|l since l3 · ks = l1 · l and l3 · kt = l2 · l. Because l3 is chosen arbitrary,
if we let l3 = gcd(s, t), we then have gcd(s, t)|l. Therefore, l = gcd(c, d), which completes
the proof of the lemma.



Lemma 6. Suppose H1 and H2 are any two elements in R(G,V). Then there is a graph
H ∈ R(G,V) such that H ≤ H1, H ≤ H2, and what’s more, for any other H ′ ∈ R(G,V)
such that H ′ ≤ H1 and H ′ ≤ H2, it holds that H ′ ≤ H. We denote H = H1 ∧ H2. In
other words, any two elements in R(G,V) has a greatest lower bound in R(G,V).

Proof. Let VH1 and VH2 be the corresponding sub-automorphism partition of H1 and H2,
respectively. Let kH1,G and kH2,G be the corresponding ocf-vector. Then (H1,V

H1 ,kH1,G) →
(G,V) and (H2,V

H2 ,kH2,G) → (G,V). We define a binary relation Ri on each Vi ∈ V such
that ∀u, v ∈ Vi, (u, v) ∈ Ri if and only if u = v or u and v could be copied to each
other. Then it is easy to check that Ri is an equivalence relation. Since Vi could be
obtained by applying Ocp(H1,V

H1 , V H1
i ) kH1,G

i times, the vertices in Vi could be parti-
tioned into |V H1

i | disjoint subsets with each containing kH1,G
i mutually equivalent ver-

tices according to Ri. On the other hand, since Vi could also be obtained by applying
Ocp(H2,V

H2 , V H2
i ) kH2,G

i times, the vertices in Vi could be partitioned into |V H2
i | disjoint

subsets with each containing kH2,G
i mutually equivalent vertices according to Ri. Then

according to Lemma 5, the vertices in Vi could then be partitioned into gcd(|V H1
i |, |V H2

i |)
disjoint subsets with each containing lcm(kH1,G

i , kH2,G
i ) mutually equivalent vertices ac-

cording to Ri. We then form a vertex partition VH by picking one vertex from each of
these gcd(|V H1

i |, |V H2
i |) subsets to consist the cell V H

i , for each Vi, and refer the corre-
sponding graph to be H. It is easy to show that VH is a sub-automorphism partition of H,
by using a similar trick as in the proof of Lemma 1. Define two vectors kH,H1 and kH,H2

such that kH,H1

i = |V H1
i |/gcd(|V H1

i |, |V H2
i |) and kH,H2

i = |V H2
i |/gcd(|V H1

i |, |V H2
i |). Then

(H,VH ,kH,H1) → (H1,V
H1) and (H,VH ,kH,H2) → (H2,V

H2). Hence H ≤ H1 and H ≤
H2. Define vector k

H,G to be kH,G
i = kH,H1

i ·kH1,G
i = kH,H2

i ·kH2,G
i = |Vi|/gcd(|V H1

i |, |V H2
i |).

Then (H,VH ,kH,G) → (G,V) and thus H ∈ R(G,V). Now suppose H ′ ∈ R(G,V) be any
element thatH ′ ≤ H1 andH ′ ≤ H2. Then similarly we have (H ′,VH′

,kH′,H1) → (H1,V
H1)

and (H ′,VH′
,kH′,H2) → (H2,V

H2). Since H ′ ∈ R(G,V), we also have (H ′,VH′
,kH′,G) →

(G,V) and therefore kH′,G
i = kH′,H1

i · kH1,G
i = kH′,H2

i · kH2,G
i = |Vi|/|V H′

i |. Since kH′,H1

i =

|V H1
i |/|V H′

i | and kH′,H2

i = |V H2
i |/|V H′

i |, we have (|V H′
i |) | gcd(|V H1

i |, |V H2
i |). And since

|Vi| = kH,G
i · gcd(|V H1

i |, |V H2
i |) = kH′,G

i · |V H′
i |, then kH,G

i | kH′,G
i . Define vector kH′,H to

be kH′,H
i = kH′,G

i /kH,G
i . Then (H ′,VH′

,kH′,H) → (H,VH). Therefore, H ′ ≤ H and this
completes the whole proof of the lemma.

Lemma 7. Suppose H1 and H2 are any two elements in R(G,V). Then there is a graph
H ∈ R(G,V) such that H1 ≤ H, H2 ≤ H, and what’s more, for any other H ′ ∈ R(G,V)
such that H1 ≤ H ′ and H2 ≤ H ′, it holds that H ≤ H ′. We denote H = H1 ∨ H2. In
other words, any two elements in R(G,V) has a least upper bound in R(G,V).

Proof. Let VH1 and VH2 be the corresponding sub-automorphism partition of H1 and
H2, respectively. Let kH1,G and kH2,G be the corresponding ocf-vector. Define vector
kH,G such that kH,G

i = gcd(kH1,G
i , kH2,G

i ), and define vector kH1,H and kH2,H to be
kH1,H
i = kH1,G

i /kH,G
i and kH2,H

i = kH2,G
i /kH,G

i , respectively. Let the graph produced by
applying orbit copying operations on H1 with respect to VH1 , according to kH1,H , be G1,
and let the corresponding sub-automorphism partition be VG1 . Similarly, let the graph
produced by applying orbit copying operations on H2 with respect to VH2 , according
to kH2,H , be G2, and let the corresponding sub-automorphism partition be VG2 . Since
(H1,V

H1 ,kH1,G) → (G,V), then (H1,V
H1 ,kH1,H) → (G1,V

G1), and (G1,V
G1 ,kH,G) →

(G,V). Similarly, since (H2,V
H2 ,kH2,G) → (G,V), then (H2,V

H2 ,kH2,H) → (G2,V
G2),

and (G2,V
G2 ,kH,G) → (G,V). Therefore, we must have G1 = G2 and VG1 = VG2 .



We then use H to denote this common graph and use VH to denote the correspond-
ing common sub-automorphism partition. It’s now clear that H1 ≤ H and H2 ≤ H,
since (H1,V

H1 ,kH1,H) → (H,VH) and (H2,V
H2 ,kH2,H) → (H,VH). And it’s also clear

that H ∈ R(G,V) since now (H,VH ,kH,G) → (G,V). Suppose H ′ ∈ R(G,V) is any other
element such thatH1 ≤ H ′, andH2 ≤ H ′. Then similarly we will have (H1,V

H1 ,kH1,H′
) →

(H ′,VH′
), (H ′,VH′

,kH′,G) → (G,V) and (H2,V
H2 ,kH2,H′

) → (H ′,VH′
), (H ′,VH′

,kH′,G) →
(G,V). Therefore we must have kH′,G

i |kH1,G
i and kH′,G

i |kH2,G
i . Hence kH′,G

i |gcd(kH1,G
i , kH2,G

i ),

i.e., kH′,G
i |kH,G

i . Since kH1,G
i = kH1,H

i · kH,G
i = kH1,H′

i · kH′,G
i , and kH2,G

i = kH2,H
i · kH,G

i =

kH2,H′

i · kH′,G
i , we thus have kH1,H′

i /kH1,H
i = kH2,H′

i /kH2,H
i = kH,G

i /kH′,G
i . Therefore, if we

define vector kH,H′
to be kH,H′

i = kH,G
i /kH′,G

i , then we have (H,VH ,kH,H′
) → (H ′,VH′

),
which means H ≤ H ′ and thus completes the proof of the lemma.

Theorem 4 is then a straightforward result according to Lemma 6 and 7.

Theorem 4. The poset (R(G,V);≤) is a lattice.

Since (R(G,V);≤) is a lattice, we can then deem ∨ and ∧ as two binary algebraic
operations and also denote R(G,V) as [R(G,V);∨,∧], in which R(G,V) is treated as an
algebraic structure. Furthermore, since R(G,V) is finite, it is also bounded with the great-
est element (or the top) ∨H∈R(G,V)H and the least element (or the bottom) ∧H∈R(G,V)H.
Actually, ∨H∈R(G,V)H = G since G ∈ R(G,V). The element ∧H∈R(G,V)H is then called as
the backbone of G, with respect to V, which is formally defined in Definition 5.

Definition 5 (Graph Backbone). Given a graph G and a sub-automorphism partition
V of G. The least element ∧H∈R(G,V)H in the lattice [R(G,V);∨,∧] is called the backbone
of G, with respect to V, and we denote it as BG,V, namely, BG,V = ∧H∈R(G,V)H.

Fig 7 illustrates several graphs and their backbones, with respect to the given sub-
automorphism partitions.

(a) G1 (b) G2 (c) G3

(d) backbone of G1 (e) backbone of G2 (f) backbone
of G3

Fig. 7. Examples of graphs and their backbones

Theorem 5 states an important property of graph backbones.

Theorem 5. Suppose G is a graph and V is a sub-automorphism partition of G. Let
H ∈ R(G,V) , and VH be the corresponding sub-automorphism partition of H. Then
BG,V = BH,VH

.



Proof. Since H ∈ R(G,V), then BG,V ≤ H and therefore BG,V ∈ R(H,VH). Hence we
must have BH,VH

≤ BG,V. But then we have (BH,VH
,VBH,VH ,kBH,VH

,BG,V) → (BG,V,V
BG,V).

Define vector kBH,VH
,G to be k

BH,VH
,G

i = k
BH,VH

,BG,V

i ·kBG,V,G
i . Then (BH,VH

,VBH,VH ,kBH,VH
,G)

→ (G,V) and therefore BH,VH
∈ R(G,V). So we must have BG,V ≤ BH,VH

and thus
BG,V = BH,VH

.

Furthermore, since orbit copying operations only introduce new vertices and edges,
the following theorem then is straightforward.

Theorem 6. Graph generalization conserves the backbone of the original graph, with
respect to the corresponding sub-automorphism partitions of the original graph and the
generalized graph.

Proof. Suppose G is a graph and V is a sub-automorphism partition of G. Let G′ be any
generalization of G, with respect to V, and let the resulted sub-automorphism partition
of G′ be V′. Then G ∈ R(G′,V′) and thus BG,V = BG′,V′ , according to Theorem 5.

As a result of Theorem 6 , the graphG′ produced by the anonymization procedure con-
serves the backbone of the original graph G with respect to the given sub-automorphism
partition V of G and the resulted sub-automorphism partition V′ of G′.

Utility Preservation By Graph Backbone-Based Sampling Method The impor-
tance of the backbone is that it conserves the basic orbit linkage pattern of the original
graph. In other words, removing any vertices (and their induced edges) from the backbone
will lose orbit linkage pattern information of the original graph, namely, we cannot then
recover the original graph back through a series of orbit copying operations. As we have
shown in the previous experiment, the linkage pattern is highly related to the statistical
property, the backbone is then also highly related to the statistical property of the original
graph. Since our anonymization procedure preserves the backbone of the original graph,
in this part, we will propose a backbone-based sampling method to approximate the sta-
tistical properties of the original graph by sampling subgraphs preserving the backbone
of the original graph, from the anonymized graph.

Definition 6 (Possible World). Let G be a given graph and V = {V1, V2, ..., Vm} be
a sub-automorphism partition of G. Suppose the corresponding sub-automorphism par-
tition of BG,V is B = {B1, B2, ..., Bm}. Let P be a set of properties of G, then the
set PW (G,V,P) = {GB,B|(∃Ocps,GB,B = BG,V(B, Ocps) ∧ (GB,B ̸= G) ∧ (P (GB,B) =
P (G),∀P ∈ P)} is called the possible world of G, with respect to V and P. The size of
the possible world is then naturally defined to be |PW (G,V,P)|+ 1 (1 for G itself).

We now formalize our idea of backbone based sampling according to the definition of
possible world.

Definition 7 (Backbone-Based Sampling). Given the anonymized graph G′, the cor-
responding sub-automorphism partition V′ and the property set P (these are also the in-
formation released by the network publisher), a backbone-based sampling samples a
graph from PW (G,V,P) uniformly.

From now on in this paper, we shall just consider two property sets, namely, P1 =
{|V (G)| = n, |E(G)| = m}, and P2 = {|V (G)| = n}, due to their simplicity, and for
each property set investigated, we will analyze both the size of the possible world and



the extent of similarity for the graphs in the same possible world. But remember that in
general, the set P in Definition 6 could contain any properties of G.

Let’s analyze PW (G,V,P1) first. Suppose |Vi| = ki|Bi|, where ki ≥ 1 is some positive
integer. Then GB,B ∈ PW (G,V,P1) should satisfy the following two equations:

m∑
i=1

ki|Bi| = n (1)

m∑
i=1

m∑
j=1

kikj|Bi|CAdjM(B)[i : j] = 2m (2)

Every feasible solution (k1, k2, ..., km) with respect to Equation 1 and 2 corresponds
to a valid GB,B. As a result, the number of feasible solutions with respect to Equation
1 and 2 then is the size of the possible world PW (G,V,P1) (note that G automatically
satisfies Equation 1 and 2).

The analysis of PW (G,V,P2) is similar. The size of the possible world now becomes
the number of feasible solutions (k1, k2, ..., km) with respect to Equation 1.

Clearly, different possible world has different size, and thus sampling from different
possible world may obtain graphs with quite different statistical properties, which may
or may not be close to the desired properties of the original network. Therefore, the ac-
tual things the network publisher should do is then to find a proper tradeoff between
anonymity and utility, by preserving the backbone and using a proper set P of prop-
erty constraints which achieves moderately large PW (G,V,P) and acceptable utility. In
the experimental part, we will see that even just using the property set P2 provides a
reasonable tradeoff.

We next propose the following graph backbone detection algorithm, as shown in Al-
gorithm 2. Suppose G is a given graph and V is a sub-automorphism partition of G given.
Here, GV denotes the subgraph G induced by a subset V of V (G), and C(G) denotes the
set containing all the connected components of G. Let V ∈ V, and let v ∈ V . The list
L(v) containing all the vertices u such that u ∈ V and N(v)∩ V̄ = N(u)∩ V̄ , i.e., u and
v shares the same neighbors outside V . For each u ∈ L(v), we maintain a vertex pair
(v, u) and we use L(V ) to denote all such pairs between vertices in V . What’s more, we
use G ∼=L G′ by restricting the isomorphism mapping between G and G′ to map vertices
conforming to the vertex pairs contained in L. That is, if v ∈ V (G) and v′ ∈ V (G′),
but (v, v′) ̸∈ L, then v′ is not considered to match v, even if actually there is such an
isomorphism f mapping that f(v) = v′. Furthermore, by saying removing a subset V of
V (G) from G, we mean removing every vertex v ∈ V from V (G), and also removing all
the edges induced by v from E(G).

In order to test the isomorphism between the connected components in each cell of
V, with respect to L(V ), we simply check all the possible vertex mappings. For each
mapping, we test the edge preservation that is required by an isomorphism. By this,
we could then remove the duplicate connected components in each cell. Note that the
removed components in each cell actually could be recovered through corresponding orbit
copying operations, and thus the resulted graph is a reduction of G, with respect to V.
The resulted graph must be the backbone of the original graph simply because it could
not be reduced any further.

We then propose a graph backbone based sampling strategy where the backbone is
computed using the above algorithm.



Algorithm 2: Graph Backbone Detection
Input: G, V
Output: BG,V

1 foreach V ∈ V do
2 foreach v ∈ V do
3 Compute L(v);
4 foreach u ∈ L(v) do
5 Add (v, u) into L(V );
6 end

7 end
8 foreach C ∈ C(GV ) do
9 if ∃C′ ∈ C(GV ), G′

C
∼=L(V ) GC then

10 Remove C′ from G;
11 end

12 end

13 end
14 return The resulted graph, which must be BG,V;

Algorithm 3: Graph Backbone Based Sampling
Input: G′,V′, n = |V (G)|, SPD(1...|V′|)
Output: A connected subgraph Gs of G′ such that Gs ∈ PW (G,V, P2)

1 Compute BG′,V′ ;
2 N = n− |V (BG′,V′)|;
3 while N > 0 do
4 Randomly pick i with respect to SPD(i) such that (CPN(i) + 1) · |Bi| ≤ |V ′

i |, where 1 ≤ i ≤ |V′|,
Bi ∈ B and V ′

i ∈ V′;
5 CPN(i) = CPN(i) + 1;
6 N = N − |Bi|
7 end
8 for 1 ≤ i ≤ |B| do
9 Repeat Ocp(BG′,V′ ,B, Bi) CPN(i) times;

10 end
11 return The resulted graph as Gs;

As shown in Algorithm 3, here SPD(1...|V′|) is an array containing the sampling prob-
ability from each cell of V′. In general, SPD(1...|V′|) could be any probability distribution.
However, since real social networks usually exhibit a heterogenous degree distribution,
the number of vertices with larger degree will be less than the number of vertices with
smaller degree. As a result, in V, the size of cells that contain vertices with larger degree
will be smaller, compared with those cells containing vertices with smaller degree. Hence,
in practice we could tune SPD so that cells containing vertices with smaller degree will
receive higher sampling rate (e.g.SPD(i) = d−1

i /
∑|V′|

j=1 d
−1
j , where di is the degree of those

vertices contained in V ′
i ). We also maintain an array CPN(1...|V′|) to record the number

of orbit copying operations that should be performed on each cell of the corresponding
partition B of BG′,V′ . The basic idea of the algorithm is then to randomly copying the
cells in B with respect to SPD, until the total number of vertices achieves |V (G)|. Note
that the resulted graph may have a number of vertices slightly more than |V (G)|, but
the additional number of vertices inserted will not exceed the size of the cell chosen at
the last iteration of the while loop, which could usually be ignored since most cells in
the automorphism partition of a real network are of very small size, compared with the
whole population.

A big defect of this sampling strategy is its efficiency. We should first detect the
backbone in the anonymized graph, which may be substantially larger than the original



network. When processing each cell in Algorithm 2, we are indeed solving a set of graph
isomorphism testing problems, whose complexity is still not determined and remains a
open question. Specifically, neither we have found a polynomial time algorithm, nor we
can prove that the problem is NP-complete. Therefore, in worst case, it is unlikely that
there exists an efficient algorithm outperforming the brute-force search. What’s more, the
complexity of a series of orbit copying operations is O(|V (BG′,V′)|2), which also suffers
heavy cost when the network becoming larger.

To avoid these computational overhead, in the following we propose an optimal sam-
pling strategy with linear time complexity in worst case. This strategy tries to conserve
the backbone as much as possible, in which we also use P2 as the property set. As
shown in Algorithm 4, here S(1...V′) is an array that records the number of vertices
should be sampled from each cell in V′, with respect to SPD, V isited(1...|V (G′)|) and
Selected(1...|V (G′)|) are two boolean arrays which will be used in the DFS procedure
represented in Algorithm 5, and the other notations have the same meaning as they are
in Algorithm 3.

Algorithm 4: Graph Backbone Approximated Sampling
Input: G′, V′, n = |V (G)|, SPD(1...|V′|)
Output: A connected subgraph Gs of G′ such that |V (Gs)| = n

1 N = n− |V′|;
2 while N > 0 do
3 Randomly pick i with respect to SPD(i) such that S(i) < |V ′

i |, where 1 ≤ i ≤ |V′| and V ′
i ∈ V′;

4 S(i) = S(i) + 1;
5 N = N − 1;

6 end
7 Uniformly pick a vertex r ∈ V (G′), and suppose r in V ′

j ;
8 V isited(r) = true;
9 Selected(r) = true;

10 S(j) = S(j)− 1;
11 n = n− 1;
12 DFS(r, n, V isited, Selected, S,V′);
13 return The subgraph of G′ induced by the vertices selected as Gs (i.e., Gs = GV where

V = {v|v ∈ V (G) ∧ Selected(v) = true});

The main idea of the sampling procedure is to try to approximate the number of
vertices in each cell of the original sub-automorphism partition V. To make the sampling
graph connected, we do a depth-first traversal on the graph G′, as shown in Algorithm 5.
Here v denotes the current vertex to be visited, and n is the remaining number of vertices
that need to be sampled. We randomly select a vertex in G′ as the root of the resulted
DFS-tree. When testing whether a neighbor u of the current visiting vertex v should be
selected, we check the remaining number of vertices that needs to be selected in the cell
u belonging to. If the remaining number is greater than 0, we then select u and visit u
recursively. This is illustrated from line 8 to 13 in Algorithm 5. We also keep track of
the total remaining number n of vertices that need to be select, and before testing the
selection of any vertex, we check whether n < 1 (from line 2 to 4 in Algorithm 5). If it is
the case, then no more vertex needs to be chosen and the whole process terminates.

The philosophy here is that since G′ preserves the backbone of G, the basic linkage
pattern of G is reflected statistically more significant in G′ than other linkage patterns.
So when we run the random sampling procedure, the elements in the possible world has
a higher chance to be obtained (or approximated) than other graphs outside the possible



world. Actually, we may use more complicated randomizing strategy when sampling, to
capture the backbone of G better. But as we shall see in the experimental part, the
sampling strategy shown in Algorithm 4 already works quite well. Another advantage of
the proposed sampling procedure is its efficiency. Since it is in fact a depth-first traversal
of G′ plus some preprocessing, the worst case running time is O(V (G′) + E(G′)), which
is linear.

Algorithm 5: DFS(v, n, V isited, Selected, S,V′)
Input: v, n, V isited, Selected, S, V′

1 foreach u ∈ N(v) do
2 if n < 1 then
3 return;
4 end
5 if !V isited[u] then
6 V isited[u] = true;
7 //Suppose u ∈ V ′

t .
8 if S(t) > 0 then
9 Selected[u] = true;

10 S(t) = S(t)− 1;
11 n = n− 1;
12 DFS(u, n, V isited, Selected, S,V′);

13 end

14 end

15 end

3.5 Experimental Results Of The Basic k-Symmetry Model

In this section, we give extensive studies on the k-symmetry model proposed. Three
real network datasets, Hep-Th, Enron and Net-trace are used in our experiments,
which are kindly provided by the authors of [7] and also used in the experimental evalu-
ation of their work. Table 1 summarizes some statistics of the networks studied.

Table 1. Statistics of networks used.

Statistic Network

Hep-Th Enron Net-trace

Number of vertices 2510 111 4213
Number of edges 4737 287 5507
Minimum degree 1 1 1
Maximum degree 36 20 1656
Median degree 2 5 1
Average degree 3.77 5.17 2.61

As in [7], here we consider an analyst who estimates a graph property by drawing
sample graphs from G′, measuring the property of each sample, and then aggregating
measurements across samples. In other words, we only focus on the utility of the statis-
tical properties of the original graph. We examine four properties commonly measured
and reported on network data. Degree is a distribution of the degrees of all vertices in
the graph. Path length is a distribution of the lengths of the shortest paths between 500
randomly sampled pairs of vertices in the network. Transitivity (or, clustering coefficient
is a distribution of values where, for each vertex, we find the proportion of connected



neighbor pairs among all possible neighbor pairs. Network resilience is measured by plot-
ting the fraction of the number of vertices contained in the largest connected component
as vertices are removed in decreasing order of degree [8].

We measured each of these characteristics for the original graph G and for a set of 20
output graphs produced by the sampling strategies with k = 5. We test both Algorithm
3 and 4. To some extent of our surprise, the results produced by the two strategies are
almost the same, and what’s more, the approximation algorithm (Algorithm 4) performs
even a bit better than Algorithm 3 in the case of Hep-Th and Net-trace by introducing
less new edges into the graph. This is due to the fact that Algorithm 3 will copy all of
the links when deciding to sample a vertex, which may introduce many edges if a vertex
with large degree (but unfortunately not included in the original graph) is decided to be
copied. Therefore, due to the similarity of the results produced by the two algorithms, in
Figure 8, we only show the results coming from the approximation strategy (Algorithm
4).
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Fig. 8. Experimental results of the basic k-symmetry model

Discussion: As shown in Figure 8, in most cases except the case that the graph has
an extremely heterogeneous degree distribution (e.g. theNet-trace, also see Table 1), the
sampling strategies proposed perform quite well. The problem suffered from a extremely
heterogeneous graph could be stated in an analytical way. If a graph has an extremely
heterogeneous degree distribution, then it usually has some vertices with very large degree,
and many vertices with very small degrees (say, 1 or 2), and what’s more, vertices with
large degrees are connected to many vertices with small degrees, to consume the degrees
and form the graph (recall the well known result that

∑
v∈V (G) d(v) = 2|E(G)|). As

mentioned above, these vertices with huge degree are very likely to be contained in a
trivial orbit (namely, with cardinality 1), and those vertices with very small degrees are
very likely to be contained in orbits with much larger cardinalities. To make the graph
k-symmetric, according to our anonymization procedure, it is then very likely that we will
enlarge the former orbits each by k times, but leave the later orbits untouched, especially



when k is set to be small (say, 5). When we use the sampling procedure to get a sample
graph, it is much harder for us to predict the size of the orbit containing vertices with
small degrees, since their degrees are increased by the anonymization procedure but those
vertices with large degrees are not.

We also do the above experiments by setting k = 10, which gives similar results and
thus we omit the details here to save space.

An interesting question is, when the number of sampling graphs increases, what is
the behavior trend that these utility measures will follow? Would they keep on improving
until converging to a steady point which may or may not match the actual properties
of the original graph? Or they rather behaves in a random way so that the result would
oscillate? It seems very difficult to give theoretical analysis at present and thus we conduct
a further experimental study to probe this question.

Here, we use the Kolmogorov-Smirnov statistic in the case of degree and shortest path
distribution to test the utility change, which measures the maximum vertical distance
between two cumulative distributions. The smaller this statistic is, the better the sampled
graphs match the original graph on the compared distribution. We test the average value
of this statistic on the two distributions considered, by increasing the number of sampling
graphs from 1 to 100. Figure 9 gives the results.
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(a) Degree Distribution(k = 5)
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(b) Shortest Path Distribution(k = 5)
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(c) Degree Distribution(k = 10)
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(d) Shortest Path Distribution(k = 10)

Fig. 9. Utility trend when the number of sampling graphs increasing

As shown in Figure 9, in all the cases tested, the value of the utility measure used
will converge to a steady value quickly. It’s a strong proof of the efficiency and reliability
of our sampling method. We thus could achieve a reasonably good approximation to the
original graph’s properties by sampling a very small set of subgraphs from the anonymized
network.



4 Variants of The Basic k-Symmetry Model

As we discussed in the last section, the proposed sampling procedure suffers from
the extremely heterogeneous degree distribution of some graph. Actually, heterogeneous
degree distribution is a property shared by most real world networks. The difference is
just to what extent the heterogeneity would be. But in social networks, vertices with
extremely large degrees are usually to be some well-known hubs. For example, in an
email network of a company, the most connected vertex is very likely to be the email box
address of the CEO. Here, we argue that these hubs are not deserved the effort to protect
them from re-identification from revealed social network. There are three main reasons
for this argument:

1 The hubs are well-known individuals. The relationships between hubs are very likely
to be also well-known to the public (say, the communication between CEO and VP,
in the previous example), even without the publication of the network. So there is no
privacy leak(or even no privacy) in such cases.

2 The ultimate goal of privacy protection in social network is to block inferring relation-
ships between individuals. Even the adversary knows the individuals represented by
hubs, he cannot inspect relationships easily between hubs and un-hubs if any un-hub
has at least k counterparts.

3 Technically, to make each hub have at least k counterparts, much more edges should
be added, which make the published network much denser than the original graph.

Based on the above argument, in this section we will modify the basic k-symmetry
model to allow no-copy for hubs in the graph. In the experimental part, we will see that
such variation will improve the utility of the sampled graph.

4.1 k-Symmetry Model Excluding Hubs

In this version of the k-symmetry model excluding hubs, the only modification to
Algorithm 1 is to decide which orbits containing hubs. Actually here, hubs mean those
heavily connected vertices in the network. We should give an explicit definition for the
term heavily connected. Formally, let G = (V (G), E(G)), and suppose the degree distri-
bution of G is PG(d). Then the expectation and variance of PG(d) is

ExpG(d) =
∑

1≤d≤MD(G)

d · PG(d) =
1

|V (G)|
∑

1≤d≤MD(G)

d · FreqG(d),

(V arG(d))
2 = Exp((d− ExpG(d))

2) =
1

|V (G)|
∑

1≤d≤MD(G)

(d− ExpG(d))
2,

where MD(G) is the maximum degree value and FreqG(d) is the frequency of the degree
value d.

Now let δ ≥ 0, we specify a threshold t = ExpG(d)+δ·V arG(d) and treat those vertices
with degree exceeding t as hubs. Note that the value of δ could help us to control the
threshold t, which again controls the number of vertices that are excluded from protection
consideration. This makes our model more flexible for the consideration of the trade-off
between anonymization and utility.

Based on this mechanism, our k-symmetry model excluding hubs is now simply the
basic model plus a test of orbits containing hubs. Specifically, for any orbit C of the



automorphism partition of the original graph G, we first see whether C is trivial. if it
is, we than compare the degree dC of the vertices (recall that all the vertices in C have
the same degree) in C and the threshold t. If dC > t, then we eliminate C from further
processing and consider the next orbit.

4.2 Experimental Results of Excluding Hubs

In this section, we give experimental results of the variant model which excludes pro-
tection on some hub vertices. We only consider the Net-trace network since its degree
distribution is extremely heterogeneous and the basic k-symmetry model doesn’t per-
form well. We first investigate the relationship between the anonymization cost (i.e., the
number of new vertices and edges inserted) and the percentage of vertices not protected.
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Fig. 10. Anonymization cost when some hub vertices are excluded from protection

Since the number of edges inserted dominates the overall overhead, we then ignore
the cost of the new vertices introduced in the following discussion. As shown in Figure
10, when the fraction of vertices excluded (in degree decreasing order) increases slowly,
the anonymization cost decreases dramatically. For instance, when k = 10, if 5% of
vertices with largest degrees are excluded from protection, then the number of inserted
edges decreases from 201,913 to 13,444, saved nearly 94% overhead. What’s more, 61.5%
overhead will be saved (the number of edge inserted decrease from 201,913 to 77,749)
even if we just not consider protecting only 1% hub vertices, which is an impressive
achievement.

Another question is about the utility. Intuitively, since we now introduce less vertices
and edges into the graph, the sampled graphs will now approximate the original graph
more accurately. Figure 11 demonstrates this intuition.

Here we also use the average Kolmogorov-Smirnov statistic value as the measure of
the utility quality. We still test this statistic on the degree and shortest path distribution.
Since we have previously shown that this statistic will converge to a steady value fast when
the number of samples increases, through a detailed experimental evaluation, we thus now
simply use the value when the number of sampling graphs is 100 as the representative.

Don’t forget that, the anonymity power of the model is not degraded much since
now all vertices except some hub vertices still has at least k − 1 structural equivalent
counterparts in the network, and the number of vertices excluded are very small, compared
to the overall population.
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Fig. 11. Utility improvements when excluding some hub vertices

4.3 A More Generalized Model

In this section, we propose a more generalized model, which simply specifies different
size-constraints for different orbits. Formally, let Orb(G) = {V1, V2, ..., Vm} be the auto-
morphism partition of graph G, and di be the degree of vertices in the orbit Vi. We define
an orbit size constraint function f : Orb(G) → I+, with two constraints. One is that
1 ≤ f(Vi) ≤ k, where k ≥ 1 is a specified positive integer, and the other is that f should
be an non-increasing function with respect to di, that is, if di ≥ dj then f(Vi) ≤ f(Vj).
This generalized model provides further flexibility for the network publisher. The pub-
lisher could then test different fs and choose the one with which the sampling procedure
on the anonymized graph could achieve the best utility results.

5 Discussion And Remarks

In this section, we discuss two problems related to all the models that we’ve proposed.
The first problem is the computation of the automorphism partition of the original graph
G, and the second problem is the optimization of the model. We shall give some remarks
to each of these two problems.

5.1 Computation of The Automorphism Partition

It has been shown that the problem of determining the automorphism partition of
a graph is polynomially equivalent to the graph isomorphism problem GI [9]. It’s well
known that the complexity of GI has not been determined. Specifically, GI ∈ NP , but
neither we know it is in P , nor we can prove that it is NP-complete. But in practice, very
efficient algorithms exist that could solve GI quickly even for relatively large graphs. The



famous program nauty is one of these [10], whose implementation is based on the algo-
rithm discussed in [11]. What’s more, nauty also provides the functionality to compute
the automorphism group of the given graph so the automorphism partition could also be
determined. For extremely large graphs, nautymay not scale well. In such cases, a general
approach called graph stabilization [12] may be used to obtain a good approximation to
the automorphism partition of the graph. Specifically, the vertex partition named total
degree partition TDV(G) which is the unique coarsest equitable partition finer than the
degree partition (i.e., the partition obtained by grouping vertices according to their de-
grees), provides a good approximation to Orb(G). Since the total degree partition could
be determined in time O(n3 log(n)) by using the graph stabilization method(in practice
it will usually be much faster than this), where n is the number of vertices in the graph,
and since some approximation is acceptable for our purpose, then we could use TDV(G)
to replace Orb(G) when computing Orb(G) seems very inefficient. In fact, although in
general, TDV(G) ̸= Orb(G), but to our surprise, in the real networks we’ve studied, no
counterexample has been found. In other words, in all the real network we’ve studied,
the total degree partition is just the same as the automorphism partition!

5.2 Minimizing The Number Of New Vertices Introduced

A quick look at Figure 1 gives us the following impression that it seems we in-
troduce more vertices than required to achieve the k-symmetry constraint. For exam-
ple, in Figure 1, when k = 3, the orbit V1 = {v1, v2} is copied once and results a
new cell V ′

1 = {v1, v2, v′1, v′2}. But if we just introduce the vertex v′1, the resulted cell
V ′′
1 = {v1, v2, v′1} also satisfies the k-symmetry constraint. In other words, the vertex v′2

is not necessary to be introduced. Then the question how to achieve the k-symmetry
constraint by introducing the minimal number of vertices arises. The ultimate observa-
tion here is that in Figure 1, v1 and v2 could be copied to each other. Based on the
concept of graph backbone, we could answer the above question that if we first compute
the backbone BG,Orb(G) of the original graph G, with respect to Orb(G), and then apply
the anonymization procedure (Algorithm 1) on BG,Orb(G), the introduced new vertices
are then minimized, since in any cell of the associated sub-automorphism partition of
BG,Orb(G), no two vertices could be copied to each other.

6 Related Work

The problem of protection of privacy in social networks was first proposed in [6], where
they demonstrates that the naive anonymization strategy is not sufficient by studying
both the active and passive model in depth. While active attacks are actually hard to
carry out in many real social networks, passive attacks are much easier to do and thus
have been more extensively studied. Some researchers focus on measures of anonymity
(e.g. [13] and [14]), and others concerns various anonymization techniques. In [15], a
technique based on random edge deletions and insertions was proposed, which is effective
to resist some kind of attacks but suffers a significant cost in utility. Edge randomization
techniques are further explored in [16], whose goal is to preserve the spectral properties.
While the network utility is much improved, the effect on anonymity is not quantified.
Other anonymization techniques based on the classic framework of k-anonymity([17],
[18] and [19]) which is widely adopted in the privacy preserving release of traditional
tabular data, have also been proposed. Zhou et al. [20] introduce a method to insert



edges into the network until any vertex has a local neighborhood which is isomorphic to
at last k − 1 others. Liu et al. [21] present an efficient algorithm to make the network
k-degree anonymous (i.e., for each vertex, there are at least k − 1 other vertices sharing
the same degree), also by inserting edges into the network. A variant version which
allows simultaneously inserting and deleting edges from the network are also mentioned
in [21], to achieve better utility. Both of these methods restrict the background structural
knowledge to be the local properties of the target, and the utility problem is not handled
very well since new introduced edges may significantly change the topology of the original
network. To address these problems, Hay et al. [7] generalize the notion of background
structural knowledge based attack model and propose an anonymization technique which
first partitions the vertex set into subsets with size at least k and then publishes a
generalized network on the partition level. They also proposed a strategy to achieve
good approximation of the statistical properties of the original network, by sampling a
set of graphs with same number of vertices and edges as the original network from the
generalized graph, measuring their property values and then taking the average. But the
time required by the anonymization algorithm is somewhat long. As reported in [7], on
the network Net-trace with only 4213 vertices and 5507 edges, a few hours are needed
for the algorithm to produce the result. This may be due to the large number of iteration
steps used by the algorithm to search for an optimal vertex partition.

7 Conclusion And Future Work

This paper proposes a new framework to address the problem of protecting privacy
of individuals in the published social network, where arbitrary background structural
knowledge of individuals is considered possible to be used by the adversary. The pro-
posed anonymization algorithm is efficient to produce a k-symmetric version of the origi-
nal network in which the probability to re-identify any individual is at most 1

k
. The utility

problem is also carefully studied, and two effective graph backbone based sampling strate-
gies have been proposed. Experimental evaluation demonstrates both the efficiency of the
anonymization procedure, and the good approximation of the original network achieved
by the sampled graphs.

As future work, it is firstly interesting to see that how to extend the current model
to achieve higher granularity of protection against more powerful attack model such as
active attack. In privacy protection techniques of traditional tabular data, more powerful
framework such as l-diversity [22] has been proposed and it is worth the effort to investi-
gate whether the current model could absorb some ideas from these techniques. Secondly,
since k-symmetry model is a general framework, it is also very interesting to seek other
algorithms which could make a network k-symmetric, with different restrictions on the
operations allowed (e.g., edge insertion only or simultaneously edge insertion and dele-
tion). Thirdly, given a network, how to choose a proper set of property constraints to
achieve the best tradeoff between anonymity and utility is an important open problem.
Fourthly, the sampling procedures as shown in Algorithm 3 and 4 are just two of the pos-
sible random sampling strategies and it is an interesting problem to try other strategies
as well. Finally, the notion of graph backbone proposed in this paper may be used in the
solution of other graph related applications since it reflects the basic linkage pattern of
the original graph.
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