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Precisely quantifying the heterogeneity or disorder of a network system is very important and
desired in studies of behavior and function of the network system. Although many degree-based
entropies have been proposed to measure the heterogeneity of real networks, heterogeneity impli-
cated in the structure of networks can not be precisely quantified yet. Hence, we propose a new
structure entropy based on automorphism partition to precisely quantify the structural heterogene-
ity of networks. Analysis of extreme cases shows that entropy based on automorphism partition
can quantify the structural heterogeneity of networks more precisely than degree-based entropies.
We also summarized symmetry and heterogeneity statistics of many real networks, finding that
real networks are indeed more heterogenous in the view of automorphism partition than what have
been depicted under the measurement of degree-based entropies; and that structural heterogeneity
is strongly negatively correlated to symmetry of real networks.

PACS numbers:

INTRODUCTION

In recent years, great efforts have been dedicated to the research on complex networks, due to the fact that many
complex systems can be modeled as networks consisting of components as well as relations among these components.
Previous studies primarily focus on finding various statistical properties of real networks, especially degree based
statistics, such as degree distribution@, E], degree correlationﬂg,ﬁ, ﬁ], degree-based structure entropiesﬂa, é] Studies
of many significant properties of networks, such as heterogeneity@], assortative mixingﬂg, @] and self-similarity @, ],
are based on these statistics.

Degree delivers to us the most important information about the number of interconnections of each individual
component in the network. However, degree only provides us a view of complex networks in a shallow level, for the
reason that vertex partition @] based on degree is coarser than many finer vertex partitions in many networks, e.g.,
automorphism partition — a core concept in the symmetry of network. In other words, in some networks, vertex
with the same degree would be further differentiated from each other, thus forming a finer partition. Consequently,
a fascinating problem arises, what will complex network looks like if automorphism partition is employed instead of
degree partition? Since degree-based statistics are the driving forces of many existing studies in complex networks.
We believe that studies of complex network in the view of symmetry will open a brand new field leading us to deeper
understanding about complex networks.

There is increasingly recognition that measuring heterogeneity of complex networks is very important in studies
of behavior and function of complex networks. It has been shown in E] that heterogeneity of degree is directly
related to the robust-yet-fragile property of scale-free networks , i.e., robustness against random failures of vertices
but vulnerability to target attacks. Furthermore, it has been found in ﬂﬂ] that the homogeneous networks are more
synchronizable than heterogeneous ones, even though the average network distance is large.

However, existing heterogeneity measures ﬂa, ﬁ] of complex networks are all based on degree. Specifically, entropy
in [6] is based on remaining degree |§, 9] distribution and entropy in [7] is based on degree distribution. In fact,
degree-based measures of heterogeneity are only the precise quantification of degree heterogeneity of networks, not
that of actual heterogeneity in the sense of structure of many networks. To some extent, degree heterogeneity of
networks is only the approximations of structural heterogeneity of networks. For example, as shown in Example [,
in some networks, vertices with the same degree still can be differentiated from each other through measurement on
some structural properties of individual vertex, such as the number of triangles passing through a vertex, the shortest
path passing through a vertex(also know as betweenness ﬂﬁ]) Hence, heterogeneity measured by degree partition can
not precisely describe the structural heterogeneity for all networks. Luckily, automorphism partition of the network
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FIG. 1: Ilustration of two 3-regular graphs. Figure (a) shows an abstract structure of molecule known as ’cuneane’, which is
not vertex transitive. Figure (b) shows an example of 3-cube graph, denoted as @3, which is vertex transitive.

naturally partitions the vertex set into structurally equivalent cells, thus offering us an ideal alternative to measure
the heterogeneity of network structure.

Example .1. As shown in Figure [, ’cuneane’ and Q3 are all reqular graphs with degree 3. Hence, structure of
‘cuneane’ and Q3 can be considered as completely homogeneous if degree-based entropy measures are utilized. However,
intuitively, we can see that homogeneity in ’cuneane’is different from that of Q3. All the vertices in Q3 are equivalent
from the structure perspective, thus forming a unit partition, and we can not further partition the vertex set. However,
in 'cuneane’, we can easily find that vertices 1 and 8 play a different role from that of vertices 4 and 5 or the remaining
vertices, for the reason that 1 and 8 are the only ones not involved in the two triangles, 4 and 5 are the only ones
connected by an edge between two different triangles. Therefore, for ’cuneane’, we can construct a verter partition
P ={{1,8},{4,5},{2,3,6,7}}, which is finer than degree partition. Furthermore, we can validate that partition P is
Just the automorphism partition of 'cuneane’.

SYMMETRY-BASED STRUCTURE ENTROPY

A graph is denoted as G = G(V, E), where V is the set of vertices and E C V' x V is the set of edges. If (v1,v2) € E,
then we say that v1 and ve are adjacent. An automorphism acting on the vertex set can be viewed as a permutation
of the nodes of the graph preserving the adjacency of the vertices. The set of automorphisms under the product of
permutation forms a group[14]. In general, a network is asymmetric if its automorphism group is the identity group,
which only contains a identity permutation; otherwise, the network is symmetric. A graph G = G(V, E) is vertex
transitive(or just transitive) if its automorphism group acts transitively on V', which means that for any two distinct
vertices of V, there is an automorphism mapping one to the other.

Let Aut(G) be the automorphism group acting on vertex set V. Then naturally, we can get a partition P =
{W1,Va, ..., Vi }, called as automorphism partition, in the way that x is equivalent to y if and only if 39 € Aut(G),
s.t. 29 = y. And each cell of the partition is called as an orbit of the automorphism group Aut(G). Automorphism
partition offers us an in-depth insight into the heterogeneity of networks. Compared to the degree partition of the
vertex set, automorphism partition is much finer than the degree partition for most of networks.

To accurately measure the structural heterogeneity of complex networks, we define an entropy based on automor-
phism partition, abbreviated as EAP, as follows:

EAP = — Z pilogpi (1)
1<i<[P|

, where P is the automorphism partition of the network, p; is the probability that a vertex belongs to the cell V; of
P. Note that given a network’s automorphism partition P = {V;, Va, ..., Vi }, we can calculate p; as:

vi v
PESWIT N @)

, where N is the number of vertices in a graph.

Obviously, the maximum value of EAP or EAP,,q, equals to log(N), obtained when p; = % for each 1 <i < [P,
i.e., the graph has a discrete automorphism partition. The minimum value of EAP or EAP,,;, equals to 0 and occurs
when the automorphism partition is a unit partition, implying that all the vertex belong to the same cell or all vertex
are equivalent in the structure of the network. The maximum value of EAP corresponds to the completely structure-
heterogeneous network, i.e. asymmetric network, and the minimum value of EAP corresponds to the completely
structure-homogeneous network, i.e. transitive networks(shown in Figure B]) .



FIG. 2: Illustration of an asymmetric graph. The degree partition D = {{1, 3,4}, {2,5}, {6}} is much coarser than automor-
phism partition, which is a discrete partition in this graph. In the cell {1,3,4} of degree partition, all vertices have degree 3,
however, vertex 4 is the only one adjacent to a vertex with degree 1, which could distinguish vertex 4 from {1,3,4}. Vertex 1 is
adjacent to two vertices with degree 3 , while vertex 3 is only adjacent to one vertex with degree 3, which could differentiate
vertex 1 from vertex 3. Hence, vertices 1,3,4 are not structure-equivalent to each other. Vertex 2 and 5 in the cell {2,5} of
degree partition also can be differentiated from each other, because adjacent nodes of vertex 2 and adjacent nodes of vertex 5
are not structural equivalent, i.e. vertex 1 and vertex 4 are not structural equivalent.

The normalized entropy based on automorphism partition (NEAP) can be defined as:

EAP — EAP,;,  EAP
NEAP = EAPq. — EAP,i,  logN 3)

, where IV is the number of vertices in the network.

For comparison, we denote entropy based on remaining degree distribution by ERDD [6] and entropy based on
degree distribution by EDD [7]. We also define their corresponding normalized entropy similar to Equation B which
are denoted by NERDD and NEDD respectively. Example [2] illustrates the computation of these three entropies.

Example .2. As shown in Figure [1, since ’cuneane’ is a regular graph, we have EDD = FERDD = NEDD =
NERDD = 0. However, the automorphism partition of ’cuneane’ is not a unit partition, and we have p1 = pa2 = %,

p3 = % Thus EAP = —% log% — %log% — %log% = %log 8, NEAP = %li(;gss = 0.5, which is a value larger than 0,

thus could quantify ’cuneane’ as heterogenous in a certain degree rather than completely homogenous. Hence, in this
case, EAP is more appropriate for quantifying structure-heterogeneity than ERDD and EDD.

The maximum values of ERDD or EDD are both log(N), however, the maximal values of two entropies correspond
to two different kinds of networks, respectively. For EDD, the maximal entropy value corresponds to the completely
degree-heterogenous networks, i.e., networks with N nodes partitioned into N non-empty cells. For ERDD, the
maximal entropy value corresponds to the completely remaining-degree-heterogenous networks, i.e., networks with
remaining degree equally distributed.

Completely degree-heterogenous networks are the most heterogenous cases under entropy measure of EDD. However,
as shown in Figure 2], completely structure-heterogenous networks are not necessarily completely degree-heterogenous,
note that the inverse statement necessarily holds true. As long as a network is asymmetric, i.e., the automorphism
group contains no non-trivial permutations, the network structure will be completely heterogenous. Hence, extreme
heterogenous cases should be extended to asymmetric networks provided that more precise evaluation of structural
heterogeneity is desired (shown in Figure B).

The minimum values of ERDD and EDD both equal to 0, both corresponding to regular networks, which are the
most homogeneous networks under these two entropy measures. However, as shown in Example [Il regular graphs
can be subdivided into transitive and non-transitive graphs, and only transitive graphs are the extreme structure
homogeneous networks. Hence, extreme homogeneous cases should be limited to transitive networks if more precise
evaluating of structural heterogeneity is desired (shown in Figure ().

According to the above facts, the relation between degree-based entropies and symmetry based entropy also can be
stated as following statements:

1. fepp(G) = EDDyox = fEAP(G) = EAP,,4., however, it does not necessarily hold true vice versa;
2. feap(G) = EAPyin = fEpp(G) = EDD, i, however, it does not necessarily hold true vice versa;
3. fEpp(G) = EDDyin < fErpD(G) = ERDDyin;

where fgpp, ferpp and fgap are the functions obtaining EDD, ERDD and EAP for each graph, respectively.
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FIG. 3: Illustration of extreme cases under different entropy measures. The dotted circles represent the two extreme cases
of NEDD. The solid circles represent the two extreme cases of NEAP. The embedding relation between circles express the
containment relation between network set. Note that, the minimal cases of NERDD also can be represented by the left dotted
circle, while the maximal case of NERDD should lie in the middle range of [0,1] in terms of the measurement of NEDD or
NEAP.

TABLE I: Statistics of some real networks and theoretic networks. Summarized statistics include some basic information about
the network (All the networks are preprocessed as an undirected, unweighted graphs without any self-loops and multi-edges)
including the number of the nodes N, the number of the edges M, the average degree z. The key measures quantifying
symmetry of the network are also summarized, including the automorphism group size of the real networks a¢|[15] (to simplify
the representation, we use lg ag); the ratio of ag to the maximal automorphism group size of graphs with N nodes, defined as

Be = (ac/N")YN 16, [17]; the ratio of number of nodes in the non-trivial orbits to N, defined as v = MHS] We

also generate four BA [1] networks with m (the number of nodes that a new node attach to)varying from 1 to 4 in increment
of 1. And we generate four ER[19] networks with average degree approximately as one of {2,4,6,8}, using PAJEK]|20].

Network N M z lgac Ba va (%) NEDD NERDD NEAP
Technique Network
USPowerGrid[21] 4942 6594 2.67 152.71 5.90 x 1074 16.7 0.20 0.25 0.98
InternetAS® 22443 45550 4.06 11346  3.8784 x 107* 76.1 0.16 0.39 0.84
Social Network
arXiv® 27771 352285 25.37 333.26 1.01 x 107* 3.51 0.41 0.51 0.99
USAir97[24] 332 2126 12.81 24.41 9.59 x 1072 26.20 0.539 0.68 0.95
PairsP[25] 10617 63782 12.02 632.80 2.90 x 107* 24.32 0.32 0.47 0.97
foldoc[26] 13356 91471 13.6974 17 2x 1074 0.80 0.32 0.39 1
Erdos02[27] 6927 11850 3.42 4222.5 1.6 x 1072 73.75 0.15 0.44 0.77
Biological Network
BioGrid-SACJ[28] 5438 73054 13.43 57.79 5.12 x 1074 3.2739 0.48 0.61 1.00
BioGrid-MUS|[28] 219 400 3.65 126.93 4.69 x 1072 77.98 0.28 0.47 0.64
BioGrid-HOM|[28] 7523 20029 5.32 935.09 4.81 x 1074 24.47 0.28 0.43 0.94
BioGrid-DROI28] 7529 25196 6.69 624.32 4.27 x 1074 21.36 0.30 0.45 0.96
BioGrid-CAE[28] 2781 4350 3.13 829.69 1.94 x 1073 51.08 0.21 0.411 0.85
ppi[29] 1870 2203 4.7123 518.6 2.7 %1073 53.32 0.21 0.34 0.82
Theoretic Networks
Star Graph 2000 1999 1.99 5732.2 0.9962 99.95 5.65 x 107* 0.09 5.65 x 1074
BA(1) 2010 2000 1.99 282.09 1.90 x 1073 56.37 0.17 0.30 0.91
BA(2) 2010 4000 3.98 0.60 1.40 x 1073 0.2 0.24 0.35 1
BA(3) 2010 6000 5.97 0 1.35 x 1073 0 0.28 0.39 1
BA(4) 2010 8000 7.96 0 1.35 x 1073 0 0.31 0.43 1
ER(1) 2000 2081 2.08 507.97 2.4 %1073 34 0.225 0.228 0.89
ER(2) 2000 4002 4 51.33 1.4 x 1073 2.65 0.276 0.274 0.99
ER(3) 2000 5923 5.90 2.07 1.36 x 1073 0.25 0.30 0.30 1
ER(4) 2000 8137 8.14 0 1.36 x 1073 0 0.32 0.32 1

“Here, the snapshot at 2006-07-10 of CAIDA|[22] is used
®Here, the snapshot at 2003-04 of HEPCTH (high energy physics theory) citation graph [23] is used

ANALYSIS

In this section, we first show that in the view of symmetry, or automorphism partition, most of real networks should
be characterized as more heterogenous than what have been shown in the view of degree partition. To show this, we
calculated NEDD, NERDD and NEAP for 125 real networks. As shown in Figure @, NEDD values of real networks
tend to lie in the range [0.2,0.8] (overall 87.2% networks lie in this range) and its mean value is 0.47; NERDD values
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FIG. 4: Distribution of values of three entropy measures, NEDD, NERDD and NEAP for 125 real networks.
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FIG. 5: Comparison of three entropy measures. The horizontal axis represent various networks in the ascending order of
corresponding NEAP values.

of real networks tend to lie in the range [0.4,0.8] (overall 75.2% real networks lie in this range) and its mean value is
0.53; while NEAP of real networks primarily lies in the range [0.8,1] (overall 80.8% real networks lie in this range)
and its mean value is 0.89, close to 1. In addition, for almost all the tested real networks, the value of NEAP is
larger than that of NEDD and NERDD, which is shown in Figure Hence, from these observations, we can see
that real networks are very heterogeneous in the view of automorphism partition, and real networks will have a larger
probability (larger than 80% in our samples) to be quantified with a NEAP value larger than 0.8.

We also need to note that some real networks characterized as very homogenous in the view of degree partition
have been quantified as very heterogenous in the view of symmetry. As shown in Table [l for almost all the real
networks, the corresponding values of the degree-based entropies are less than 0.5 , except for the NERDD of arXiv,
USAir97, BioGrid-SAC, and NEDD of USAir97; while for all the networks, the corresponding values of NEAP are
larger than 0.6 and most of them larger than 0.8. If the median value of range [0,1] is taken as the critical value
indicating whether a network is heterogenous, then many real networks under the measure of degree based entropies,
are all tend to be quantified as homogenous. On the contrary, real networks under the measure of symmetry-based
entropy tend to be quantified as very heterogenous.
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FIG. 6: . NEAP appears to be negatively correlated to 8¢ and v, and corresponding correlation coefficients are -0.703 and
-0.853, respectively. 125 Real networks and 28 theoretic networks, overall 153 samples, are used.

Since heterogeneity based on automorphism partition describes the structure heterogeneity more accurately than
degree-based heterogeneity, it’s reasonable to believe that most of real networks are very heterogenous in their struc-
ture.

In Table[l] statistics of some theoretic networks are also summarized. We can see that NEAP of star graph is close
to 0, indicating that star graph is very homogenous. Indeed, in a star graph, almost all nodes except for the central
node lie in same cell of automorphism partition and these nodes can not be differentiated from each other by any
means, thus it’s natural that star graph is very homogenous.

Generally, scale free networks are considered to be more heterogenous than ER random networks [1], which is
based on the intuitive observation that scale free networks are right-skewed in double-log degree distribution while the
degrees of ER random networks are exponentially distributed with an obvious scale. However, no quantification or
theoretic proof has been provided to verify the above notion, which can be partly attributed to the lack of appropriate
measures of heterogeneity of real networks. However, utilizing three entropy measures, we can clearly see that under
the measurement of NEDD and NERDD, the difference of heterogeneity between scale free and random networks
are very small(less than 0.05), and under the measure of NEAP, both scale free and random networks tend to be
quantified as very heterogenous without clear difference (less than 0.02).

Next, we will show that structural heterogeneity is strongly negatively correlated to the symmetry of networks,
which means that the less symmetric a network is, the more structure-heterogenous the networks is. As shown in
Figure [, strong negative relation could be observed from the g — NEAP and y¢ — NEAP correlation curves.
In fact, if a network is very symmetric, nodes of the graph will have higher probability to be equivalent in the
structure, thus the automorphism partition will be much closer to a unit partition, which is extremely homogenous.
Conversely, if the network is closer to a asymmetric network, vertex can be easily differentiated from each other from
the structural perspective, leading to a nearly discrete automorphism partition. Consequently, the whole network
tends to be structure-heterogenous.

CONCLUSION

We have shown that entropies based on degree partition can not precisely describe the structural heterogeneity of
complex networks in many cases due to its inability to differentiate vertices with the same degree. Instead, due to
the strength of automorphism partition that can naturally partition vertex set into equivalent cells from the structure
perspective, entropy based on automorphism partition can quantify the heterogeneity of networks more accurately.

Networks with extreme heterogeneity and homogeneity under different entropy measures, including two degree-based
entropy and symmetry based entropy, have been analyzed, showing that symmetry-based entropy is more accurate
in quantifying the heterogeneity or disorder of a network system than degree-based entropies. We also calculated
symmetry and heterogeneity statistics for hundreds of real networks and several theoretic networks, and found that
real networks are more heterogenous in the view of automorphism partition than what have been depicted under
the measurement of degree-based entropy. We also found that structural heterogeneity measured by automorphism
partition based-entropy is highly negatively correlated to the abundance of symmetry in real networks.

Generally, heterogeneity of networks is strongly correlated to the complexity of a network system, i.e., more het-



erogenous, more complex. Thus, we believe that precisely characterizing the heterogeneity of a network can definitely
allow us to gain deeper insight into the complexity of systems represented by network.
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