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Abstract 
In recent years, evaluating graph distance has become more and more important in a variety of real applications 

and many graph distance measures have been proposed. Among all of those measures, structure-based graph 
distance has become the research focus due to its independence of the definition of cost function. However, the 
existing structure-based graph distance measures have low degree of precision because  only node and edge 
information of graphs are employed in these graphs metrics. To improve the precision of graph distance measure, we 
define a substructure abundance vector (SAV) to capture more substructure information of a graph. Furthermore, 
based on the SAV, we propose unified graph distance measures which are generalization of the existing 
structurebased graph distance measures. In general, the unified graph distance measures can evaluate graph distance 
in much finer grain. We also show that unified graph distance measures based on occurrence mapping and some of 
their variants are metrics. Finally, we apply the unified graph distance metric and its variants to  the population 
evolution analysis and construct distance graphs of marker networks in three populations, which reflect the single 
nucleotide polymorphism (SNP) linkage disequilibrium (LD) differences among these populations. 
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1   Introduction 

As a data structure, graph has been widely used to represent un-structured data, model complex interaction 
relations among objects and define concepts. Compared to other data structures such as sequence, tree, graph is 
more sophisticated and more general, and consequently studies on graph have been a research hotspot.  

Many real applications usually need to measure the similarity or distance between objects represented by graph. 
For example, in computer ?visualization and pattern recognition [26], similarity between unknown graph pattern and 
model graph pattern must be measured in the well known graph matching process. In chemical study, similarity 
searching based on 2D representation of molecular structure is one of the most common approaches to virtual 
screening [6, 12], where in some cases, appropriate measure of inter-molecular structural similarity is the key  of 
the searching task. 

Therefore, it is of great interest to measure the graph distance or similarity in various applications [23, 25, 28].  
Great efforts have been devoted to studying graph distance measures in different application fields over the past 
decades. As a result, various graph distance measures have been proposed in the literatures [1, 5, 6, 19, 24, 26, 27]. 
These graph distance measures can be classified into three classes: cost-based distance measures, structure-based 
distance measures and feature-based distance measures. In [13], cost-based distance and structure-based distance 
are considered as one class, because it has been proved in [2] that given certain cost functions, the structure-based 
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graph distance measures, such as graph distance measures based upon Maximal Common Subgraph (MCS) [1] 

*, are 
equivalent to corresponding edit distance measures with certain cost functions.  

In pattern recognition, considering error tolerance or error correcting, many cost-based graph distances [21, 22] 
have been proposed, which are measured by the minimum edit cost to transform one graph into another. However, 
due to the complexity in selection of cost functions, many recently published works [5, 6, 13, 23] adopted the 
structure-based distance measures, which do not rely on the cost functions. In structure-based distance measures, the 
common substructure or superstructure has been considered as the measure of the degree of the similarity between 
graph patterns. Besides these two kinds of distance measures, feature-based measures have also been widely studied 
in chemical-informatics and bio-informatics. In feature-based measures, distance or similarity has been measured 
according to the feature vectors derived from the chemical or biological structures. Hence, the effects of the 
feature-based measures heavily rely on the definition of the characteristic structures. 

Due to the presence of some effective algorithms [6] and the independence of cost functions or characteristic 
structures, structure-based measures, especially those measures based on maximal common subgraph have become 
the most popular graph distance measures in recent years.  

 

Figure 1: Three graphs G1,G2,G3 and two maximal common subgraph G12,G13 

Although various structure-based graph distance or similarity measures have been available, many graph pairs in 
some application domains can not be correctly measured using these measures. For example, as shown in Figure 1, 
given three graphs G1, G2 and G3, we need to evaluate the similarity or distance among these graphs. If MCES-based 
distance metric, a widely used graph distance metric, is used, the maximal common subgraph G12 (between G1 and 
G2) and the maximum common subgraph G13 (between G1 and G3) will have the same number of nodes and edges. 
Consequently, we can reach the conclusion that G2 is similar to G1 to the same extent as G3 similar to G1. 

However, in the following sections, we will show that G13 contains much richer substructure information than 
G12. As shown in Figure 2, G13 contains some unique substructures, such as triangle and star, which do not appear in 
G12. Hence, from such substructure abundance perspective, G13 is intuitively of more significance than G12; and 
consequently, G3 should be evaluated to be more similar to G1 than G2 to G1. Therefore, the richness of the unique 
substructures occurring in a graph can contribute to the evaluation of graph distance, which is the basic principle 
underlying the measures we proposed in this paper. 

Since nodes and edges are elementary constituents of a graph, size about nodes or edges in maximal common 
subgraphs will be a significant indication of the similarity between graphs, which is the fundamental idea of existing 
structure-based graph distance measures. For example, two representatives of them, MCIS-based graph distance[1] 
and MCES-based graph distance[12] use the number of nodes of MCIS, and the number of the edges of MCES, 
respectively, to evaluate the similarity between  two graphs. However, in our studies, besides node or edge 
information in maximal common subgraph, information about more complex and larger substructures that will occur 
in maximal common subgraph will be utilized to evaluate distance between a graph pair. 
                                                                 
* The term ‘Maximal Common Subgraph (MCS)’ has been widely used, but it also has brought much confusion to the existing literatures. 
Strictly speaking, the graph distance metric proposed in [1] is based on maximal common vertex induced subgraph, abbreviated as MCIS , 
and some following graph distance metrics are based on maximum common edge induced graph, abbreviated as MCES. In this paper, to 
distinguish these two concepts, we will explicitly use MCIS or MCES, instead of MCS. 
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In the following parts , we will show that structural differences between graphs can be amplified when 
considering information of larger substructures. Thus, if we evaluate graph distance in terms of certain larger or 
more complex substructure instead of some trivial substructures, such as nodes or edges, we can evaluate graph 
distance with higher degree of precision or in much finer grain than graph distance measures based on MCIS or 
MCES. 

Evaluating graph distance according to richness of the unique substructures is also practically meaningful in 
many real applications. For example, in the analysis  protein-protein interaction , protein-DNA and gene-gene 
interaction networks, it has been widely believed that substructures of these networks represent certain functional 
modules of cells or organisms. Thus, in Figure 1, if triangle and star appearing in G13 are considered as functional 
modules of biological networks, then G13 will contain more abundant functional modules than G12. Consequently, 
we can naturally come to the conclusion that G3 is more similar to G1 than G2 to G1. Hence, comparing protein 
networks in terms of substructure information is biologically meaningful.  

To accurately quantify graph distance is in great demand for many applications, especially for researches on 
evolution of biology networks. For example, we could use Bayesian Networks [10] to study SNPs [8] LD structure 
and their evolutions among different populations [18]. In such studies, how to measure similarity or distance among 
the constructed networks is an interesting but challenging problem. One of the great challenges is that traditional 
MCS-based graph distance metric can only evaluate the graph distance in much coarser grain, which can not satisfy 
the requirement of identifying the minute difference between different population structures. Hence, it’s of great 
need to devise new graph distance measures that can evaluate graph distances precisely.  

2   Preliminaries 

We begin this section with some basic notations. Let G= (V,E,L,l) be a labeled graph, where V is the set of vertices, 
E is the set of edges and E⊆V×V, L is the set of labels, and l:V∪E→L is a labeling function that assigns a label to 
an edge or a vertex. Note that graph labeling is one of key issues in problems related to graph isomorphism. However, 
in some contexts, where graph isomorphism is not significant, G also can be denoted as a 2-tuple (V, E). 

The vertex set of G is referred to as V(G), and its edge set as E(G). A path P in a graph is a sequence of vertices 
v1,v2,…,vk, where vi∈V and vivi+1∈E. The vertices v1 and vk are linked by P and are called the ends of path P. The 
number of edges of a path is its length, and the path of length k is denoted as Pk. A path is simple if its vertices are all 
distinct. A graph G is called connected if for any vertices u, v∈V (G), there exist a path with ends u, v. A graph G= 
(V,E) is called subgraph of G’=(V’, E’), denoted as G⊆G’, if and only if E⊆E’ and V⊆V’. If graph G=(V,E) is a 
subgraph of G’=(V’, E’) such that E=V×V∩(E’)，then G is a vertex induced subgraph of G’, in the contexts without 
confusions, it is often called as induced subgraph. If graph G(V,E) is a subgraph of G’ such that V=V(E)，then G is an 
edge induced subgraph of G’ . Obviously, as an edge induced subgraph, it will contain many isolated nodes, which 
are often considered as trivial in many real applications.  

Definition 2.1 (Graph isomorphism). Given graphs G = (V, E, L, l) and G’ = (V’, E’, L’, l’). A bijective function f : 
V→V’ is called a graph isomorphism from G to G’ if (1) for any vertex u∈V, l(u) = l’(f(u)); (2) for any edge (u, v)∈E, 
we have (f(u), f(v))∈E’ and l(u, v) = l’(f(u), f(v)); for any edge (u’, v’)∈E’, (f--1(u’), f--1(v’))∈E and l’(u’, v’) = 
l(f--1(u’), f--1(v’)). 

Definition 2.2 (Subgraph isomorphism). An injective function f : V→V’ is a subgraph isomorphism from G = (V, E, 
L, l) to G’ = (V’, E’, L’, l’), if there exists a subgraph S⊆G’ such that f is a graph isomorphism from G to S. 

If there exists a graph isomorphism between G and G’,we call G is isomorphic to G’, and denoted as G≌G’. If 
there exists a subgraph isomorphism from G to G’, we call G subgraph isomorphic to G’, and denoted as G≦G’. 
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Graph isomorphism and subgraph isomorphism are two essential concepts to describe relations between graphs, 
which underlie the study of the whole graph space. Hence, we first need to gain deeper insight into the properties of 
these two graph relations, which are described by the following two propositions that are immediate consequences of 
the definitions. 

Proposition 2.1: Graph isomorphism between graphs is an equivalence relation. 

Proposition 2.2: Subgraph isomorphism relation between graphs is transitive. 

Given a class of graphs, we can define measures on graphs, such as the number of nodes of a graph, the diameter 
of a graph and so on. In real applications, we expect that the two isomorphic graphs have the same values under 
certain measure on graphs. Graph measures satisfying such desired properties are referred to  as vertex invariants, 
which are formally defined as follows: 

Definition 2.3 (Graph Invariant). Let G be the set of graphs，f: ρ→G R  is called a (ρ-dimensional) graph 
invariant if G≌G’⇒f(G)=f(G’). If f(G)=f(G’)⇒G≌G’ is also true, then f is called a complete graph invariant. 

A graph G12 is a common edge induced subgraph of G1 and G2, if G12 is isomorphic to edge induced subgraphs of 

G1 and G2, respectively. A maximum*  common edge subgraph (MCES) is a common edge induced subgraph of G1 
and G2 with the largest number of edges. Without explicit statements, in the following discussions, MCS always 
indicates  MCES. 

In many real applications, it is desired that the graph distance measures possess certain properties. For example, 
one may wish that the distance from graph G1 to G2 is the same as that from G2 to G1. Generally speaking, it is often 
desired that a distance measure fulfill the properties of a metric, which is defined in Definition 2.4. But in some 
cases, the properties listed in Definition 2.4 are too restrictive, or incompatible with the problem domain under 
consideration.  

Definition 2.4(Graph Distance Metric)Let G be the set of graphs , the mapping d: G×G→R is called a graph 
distance metric，if ∀G1,G2,G3∈G，the following properties hold true: 

(1) d(G1,G2)≥0 (non-negativity) 
(2) d(G1,G2)=0⇔G1≌G2 (uniqueness) 
(3) d(G1,G2)=d(G2,G1) (symmetry) 
(4) d(G1,G2)+ d(G2,G3) ≥d(G1,G3) (triangle inequality) 

And the ordered pair (G, d) is a metric space. 

  In some specifications, uniqueness is equivalent to other  two properties: positiveness and reflexivity. 
d(G1,G2)=0⇒G1≌G2 is called as positiveness , because it is equivalent to that ∀G1,G2∈G, if G1 is not isomorphic to 
G2 , d(G1,G2)>0. G1≌G2⇒d(G1,G2)=0 is referred to  as reflexivity. If positiveness does not hold  for d, then d is a 
pseudo-metric and (G, d) is a pseudo-metric space. Obviously, pseudo-metric space is a generalization of a metric 
space in which we allow the possibility that d(G1,G2)=0 for non-isomorphic graphs G1 and G2. 
  Strictly speaking, the uniqueness of a graph distance measure only holds , when  isomorphic graphs can be 
considered as equal. But this assumption is certainly justified in most applications [1]. Another issue that needs to be 
addressed is that positiveness is usually too restrictive in real applications. As a result, many graph distance 

                                                                 
* Generally speaking, given a class of common graphs of G1 and G2, denoted as G={g1,g2,…,gn}, ‘maximum’ corresponds to a linear order 
defined on G according to the size of each common graph, ‘maximal’ corresponds to a partial order defined on G according to ‘⊆’ or 
‘≦’relation between graphs. 
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measures in real applications are only pseudo-metrics. 

3   Structure Abundance Vector 

Despite the importance of substructure information of graphs, no existing mathematic concepts can be utilized to 
describe them appropriately. In this section, we propose a new concept: Structure Abundance Vector, to capture the 
substructure information of a graph. 

Given a labeled graph G=(V,E,L,l), let S(G)={g|g≦G} be the set consisting of graphs that are subgraph 
isomorphic to G. Since graph isomorphic relation is an equivalent relation on graphs, we can obtain a quotient set of 
S(G) w.r.t graph isomorphism relation (≌). Such quotient set can be denoted as S(G)/≌={[g1],…,[gn]} with 
[gi]={g|g∈S(G),g≌gi} for each 1≤i≤n, where [gi] represents an equivalent class w.r.t graph isomorphic relation and 
gi is the representative of the equivalence class. We call [gi]  a pattern in G, and each graph belonging to [gi] is 
called  a pattern graph. Among these pattern graphs, those occurring in G, i.e. those subgraphs of G, are called  
occurrences in G of pattern [gi]. 

Generally speaking, in many application domains, not all pattern graphs of [gi] but those occurrences in G of 
pattern [gi] are of interests. Hence, without loss of generality, we can select one of occurrences in G of pattern [gi] 
to represent the pattern. In such way, we obtain a set Γ(G)={g1, …, gn} s.t. ∀gi, gj⊆G (i≠j), gi is not isomorphic to gj. 
In other words, Γ(G) consists of all subgraphs (subpatterns) of G that are non-isomorphic to each other. 

However, in some cases, different occurrences of the same pattern do make sense, we have to make an alternative 
choice. In these cases, we may define Γ(G) to be the set consisting of all the G’s subgraphs(subpatterns) that are not 
equal to each other, i.e., Γ(G)={g1, …, gm} s.t. for any two subgraphs gi,gj⊆G(i≠j), gi≠gi. 

Furthermore, Γ(G) can be partitioned according to the size of the subgraphs, here we use the number of edges to 
quantify the size of the graph. Thus, Γ(G) can be partitioned into {Γ(G)1, Γ(G)2…Γ(G)m} (m=|E(G)|) with Γ(G)i 

representing the subset of Γ(G) in which  each graph  has i edges. Naturally, Γ(G) and Γ(G)i can be associated 
with corresponding mappings, in the context without confusions denoted as Γ and Γi, which map each graph to its 
subgraphs or subpatterns (with size i). Thus, we get Γ(G)=Γ1 (G)∪…∪Γm(G), and we refer to each Γi as a 
substructure mapping of a graph. Since Γ(G) can be defined as the pattern set or occurrence set, we need to further 
subdivide substructure mappings into two elementary classes, one is pattern mapping corresponding to the 
non-isomorphic patterns, the other is occurrence mapping corresponding to the non-equal occurrence. The formal 
definition is given as follows. 

Definition 3.1(Pattern Mapping): A pattern mapping Γi is a substructure mapping such that for every graph G, 
Γi(G)( 0≤i≤|E(G)|) is the set of G’s edge-induced subgraphs with i edges and any two graphs in Γi(G) are 
non-isomorphic to each other. 

Definition 3.2(Occurrence Mapping): An occurrence mapping Γi is a substructure mapping such that for every 
graph G, Γi(G)( 0≤i≤|E(G)|) is the set of G’s edge-induced subgraphs with i edges and any two graphs in Γi(G) are 
non-equal to each other. 

Pleasenote that in the above definitions, i may equal to 0. In this case, edge-induced subgraphs with 0 edges 
indicate to nodes in a graph; and consequently Γ0(G) represent the node set of the graph. In the following discussion, 
without explicit statements, Γ0(G) always represents the node set of graph G.  

Let Γ={Γi|0≤i≤|E(G)| } be the set of all pattern mappings or occurrence mappings for graph G, then we can define 
a measure on graph G to summarize the information of substructures in G according to the substructure-mapping set 
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Γ. Such measure can be easily defined as a vector: V
uv

=(|Γ0(G)|,…, |Γm(G)|), where  denotes the number of 

elements in the set Γ, m=|E(G)|. Obviously, the vector expresses the abundance of the substructures of a graph G in 
terms of the size of the substructure, so we call this vector  a structure abundance vector of graph G.  

Definition 3.3 (SAV: Structure Abundance Vector). A structure abundance vector of a graph G is an 
(|E(G)|+1)-dimensional vector, whose i-th ( 0≤i≤|E(G)|) dimension is the number of the G’s edge-induced subgraphs 
with i edges such that these graphs not isomorphic/equal to each other. 

Theorem 3.1 .Structure Abundance Vector is a graph invariant. 

It’s easy to prove that if G≌G’, we have V
uv

(G)= (G’). Hence, VV
uv uv

is a graph invariant. 

Example 3.1: As shown in Figure 2, G2 and G3 have the same number of vertices and edges, while G3 has richer 

non-isomorphic substructures, especially, in columnΓ3. The structure abundance can be evaluated by in terms of 
pattern mapping. Thus we have V

V
uv

uv
(G2)=(1,1,2,1,1), V

uv

uv

uv

uv

(G3)=(1,1,2,3,1). Note that if the focus of the problem 
domain is not non-isomorphic patterns but non-equal occurrences of different patterns. We have (G2)=(4,4,6,4,1), 

(G3)=(4,4,6,4,1).  
V

V

Note that if structure abundance vector is defined in terms of occurrence mappings, the vector can be computed 

directly by (G)=(n, , ,…, ), where n=|V(G)| and m=|E(G)|.  V 1
mC 2

mC m
mC

In some real applications, disconnected substructures are often treated as trivial substructure or as noisy data. 
Therefore, in these applications, it is necessary to take into account the connectivity constraint of substructures to 
exclude those disconnected substructures. Thus, in Example 3.1, if the substructure mapping Γi is restricted to obtain 
only those connected substructures, then the disconnected substructures that are marked with dotted line in Figure 2 

will be discarded. Thus, when Γi is pattern mapping, we have V
uv

(G2)=(1,1,1,1,1) and V
uv

(G3)=(1,1,1,3,1); when Γi is 
occurrence mapping, we have V

uv
(G2)=(4,4,4,4,1), (G3)=(4,4,5,4,1). V

uv

         

 Figure 2: Substructures in G1, G2 (G12), and G3 (G13)      Figure 3: Relation among G, G’, Γi(G) and Γi(G’) 

  



- 7 - 

4   Graph Distance Measures based on SAV 

In this section we will first discuss graph relationship under substructure mapping, which is essential for study of 
the distance measures based on SAV. Before the detailed discussion, we first give some basic notations. Let G be the 
set of all distinct labeled graphs. Given two labeled graph G1 (V1,E1,L1,l1) and G2 (V2,E2,L2,l2) belonging to G, let 
G12=mces(G1,G2), and Γ={Γi|0≤i≤|E(G12)| }. 

4.1   Relations between Graphs under Substructure Mapping 

In the following discussion, it’s necessary to extend ‘≦’ from relation between graphs to relation between graph 
sets. For this purpose, we first define a property of any given graph with respect to ‘≦’ relation between graph sets. 

Property 4.1: Let H be a  labeled graphs set, a mapping pH: G→{0,1} is a property of graphs, which is defined 
in the way that pH (G∈G)=1 if ∀g∈H, g≦G; otherwise, pH (G∈G)=0. 

Lemma 4.1: Given a set of labeled graphs H, if pH (G) =1, then for any G≦G’, we have pH (G’) =1.  

Proof: From pH (G) =1, we have ∀g∈H, g≦G. Since ‘≦’ relation between graphs is transitive (Proposition 2.2), 
it follows naturally that ∀g∈H, g≦G’. Thus, we have pH (G’) =1.                                □ 

We can denote the statement that ∀g∈H, g≦G by H≦G. Similarly, the statement that ∀g∈H, ∀g’∈G, g≦g’ also 
can be denoted by H≦G. Obviously, transitive property of relation ‘≦’ also holds for graph sets. Based on extended 
graph relation ‘≦’, we can further study the relation between graphs under substructure mapping, which is stated in 
Theorem 4.1. 

Theorem 4.1: Given a pattern mapping Γi, for any two graphs G≦G’, the following statements hold： 
(1) There is an injective mapping φ: Γi(G)→Γi(G’) . for each g∈Γi(G), there is only one unique φ (g) 

∈Γi(G’) s.t. g≌φ(g). 
(2) |Γi(G)| ≤|Γi(G’)| 
(3) |Γi(G)| =|Γi(G’)| if G≌G’. 

Proof: Since ∀g∈Γi(G), g≦G, we have ∀g∈Γi(G), g≦G≦G’. Thus, for each g∈Γi(G), there exists a unique 
g’∈Γi(G’) s.t. g’≌g. Furthermore ∀g1,g2∈Γi(G), if g1≠g2, we have g1’≠g2’ , where g1’, g2’∈Γi(G’) and g1’≌g1, g2’≌
g2 (Note that since Γi is a pattern mapping, then for ∀g1,g2∈ Γi(G1), g1≠g2 also implies that g1 and g2 are 
non-isomorphic to each other). Hence, we can construct an injective mapping φ from Γi(G) to Γi(G’), as described in 
statement (1). 

It follows directly from statement (1) that |Γi(G)| ≤|Γi(G’)|. When G≌G’, |Γi(G)|=|Γi(G’)| and the mapping φ: 
Γi(G)→Γi(G’) is surjective, i.e. for each g’∈Γi(G’) there is some g∈Γi(G) s.t. φ(g)=g’. Hence φ: Γi(G)→Γi(G’) is 
bijective or one-to-one correspondence, when G≌G’. The relation among G, G’, Γi(G) and Γi(G’) that described in 
Theorem 4.1 is shown in Figure 3.                                                               

Note that in Theorem 4.1, if pattern mapping Γi is replaced by an occurrence mapping, all the statements still 
hold. Furthermore, statement (3) can be replaced with a stronger assertion, which is described in Theorem 4.2. 
Hence, to prove Theorem 4.2, we only need to show |Γi(G)|=|Γi(G’)|⇒G≌G’. |Γi(G)|=|Γi(G’)| implies that =  
(m=|E(G)| and m’=|E(G’)|), so m=m’. Since G≦G’, we have G≌G’. 

imC '
i

mC

Theorem 4.2: Given an occurrence mapping Γi, then for any two graphs G≦G’, the following statements hold： 
(1) There exists an injective mapping φ: Γi(G)→Γi(G’) such that for each g∈Γi(G), there is only one 

unique φ(g)∈Γi(G’) s.t. g≌φ(g). 
(2) |Γi(G)| ≤|Γi(G’)| 
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(3) |Γi(G)| =|Γi(G’)| if and only if G≌G’. 

Corollary 4.1: Given a substructure mapping (occurrence mapping or pattern mapping ) Γi, for any three graphs 
G1, G2 and G , if G1≦G, G2≦G and ∀g1∈Γi(G1), ∀g2∈Γi(G2), g1 is not isomorphic to g2, then the following 
statements hold: 

(1)There exist injective mappings φ1: Γi(G1)→Γi(G) and φ2: Γi(G2)→Γi(G) such that φ1(Γi(G1))∩φ2(Γi(G2))=∅ and 
φ1(Γi(G1))∪φ2(Γi(G2))⊆ Γi(G). 

(2) |Γi(G1)|+|Γi(G2)| ≤|Γi(G)| 
Proof: Since  G1≦G, according to Theorem 4.1and 4.2, there must exist an injective mapping φ1: Γi(G1)→Γi(G) 

s.t. ∀g∈Γi(G1), φ1(g)∈Γi(G) and g≌φ1(g).Similarly, there must exist an injective mapping φ2: Γi(G2)→Γi(G) s.t. 
∀g∈Γi(G2), φ2(g)∈Γi(G) and g≌φ2(g) . Obviously, φ1(Γi(G1))⊆Γi(G), φ2(Γi(G2))⊆Γi(G), so φ1(Γi(G1))∪φ2(Γi(G2))⊆ 
Γi(G) Hence, to prove the statement (1) hold true, we only need to show that φ1(Γi(G1))∩φ2(Γi(G2))=∅.  

Assume φ1(Γi(G1))∩φ2(Γi(G2))≠∅, there must exist g∈Γi(G) such that φ1
-1(g)∈Γi(G1) ,φ2

-1(g)∈Γi(G2) and g≌
φ1

-1(g)≌φ2
-1(g), which contradict to the known condition that ∀g1∈Γi(G1), ∀g2∈Γi(G2), g1 is not isomorphic to g2. 

Statement (2) can be directly inferred from Statement (1). The mapping relations of Γi(G1), Γi(G2) and Γi(G) are 
shown in Figure 4(a).                                                                        □ 

   
      (a)                                (b) 

Figure 4 Illustration of proof procedure of Corollary 1 and 2 

An immediate consequence of Corollary 4.1 is the following Corollary 4.2. The detailed proof of Corollary 4.2 is 
similar to that of Corollary 1 and is omitted in this paper. The illustration of the proof procedure is shown in Figure 
4(b). 

Corollary 4.2: Given an substructure mapping (occurrence mapping or pattern mapping ) Γi, for any three graphs 
G1, G2 and G , G1≦G, G2≦G, let A⊆Γi(G1) and B⊆Γi(G2), if ∀g1∈A, ∀g2∈B, g1 is not isomorphic to g2, then 
|A|+|B| ≤|Γi(G)|. 

4.2   Unified Graph Distance Measures based on SAV 

All the existing structure-based graph distance measures can be expressed in the common form: 
d(G1,G2)=1-m(G12)/M(G1,G2), with m(G1,G2) representing the similarity of graphs and M(G1,G2) representing the 
size of the problem. Generally, M(G1,G2) can be defined in the following three cases:  
 Case 1: max(|Γi(G1)|,|Γi(G2) |); 
 Case 2: min(|Γi(G1)|,|Γi(G2)|); 
 Case 3: |Γi(G1)|+|Γi(G2)|-|Γi(G12)|; 

Following this common form, we can give two elementary graph distance measures that are based on substructure 
abundance of graphs. 

Definition 4.1. The distance of two non-empty graphs G1 and G2 is defined as di(G1,G2)=1-|Γi(G12)|/M(|Γi(G1)|, 
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|Γi(G2)|) , where Γi is a pattern mapping with i≤|Ε(G12)|

*  and M(|Γi(G1)|,|Γi(G2)|) is defined as one of Case 1,2,3. 

Definition 4.2. The distance of two non-empty graphs G1 and G2 is defined as di(G1,G2)=1-|Γi(G12)|/M(|Γi(G1)|, 
|Γi(G2)|) , where Γi is an occurrence mapping with i≤|Ε(G12)| and M(|Γi(G1)|,|Γi(G2)|) is defined as one of Case 1,2,3. 

Example 4.1: We shall continue Example 3.1. Let Γ3 be a pattern mapping and M(|Γ3(G1)|,|Γ3(G2)|)= 
max(|Γ3(G1)|,|Γ3(G2)|), then d3(G1,G2)=1-Γ3(G12)/max(|Γ3(G1)|,|Γ3(G2)|)=1-1/max(4,1)=3/4. Similarly, we have 
d3(G1,G3)=1-Γ3(G13)/ max(|Γ3(G1)|,|Γ3(G3)|)=1-3/max(4,3)=1/4;  d3(G2,G3)=1-Γ3(G23)/max(|Γ3(G2)|,|Γ3(G3)|)=1- 
1/max(1,3)=2/3. 

Let Γ3 be an occurrence mapping , then d3(G1,G2)= d3(G1,G3)=1- /max( , )=1-4/max(20,4)=4/5. Similarly, 
we have d3(G2,G3)=1- / max( , )=1-1/max(4,4)=3/4. 

3
4C 3

6C 3
4C

3
3C 3

4C 3
4C

Theorem 4.3. For any graphs G1,G2 and G3, the following properties hold true for graph distance measure defined 
in Definition 4.1, (1)Non-negativity, (2) Reflexivity,(3)Symmetry,(4)Triangle Inequality  
Proof: We only give the proof for graph distance measure that is defined in Case 1. The proofs in Case 2 and 3 are 
similar to the proof in Case 1. In the remaining part of the paper, without explicit statements, all the proof is given 
for graph distance measure defined in Case 1. 
1. Non-negativity. 

From Theorem 4.1, it follows that |Γi(G12)| ≤|Γi(G1)| and |Γi(G12)| ≤ |Γi(G2)|, which implies that |Γi(G12)| ≤ max 
(|Γi(G1)|, |Γi(G2)|). 
2. Reflexivity.  

Recall that structure abundance vector is a graph invariant, which is shown in Theorem 3.1. Thus for any two 

isomorphic graphs G1≌G2, V
uv

(G1)= V
uv

(G2) and G12≌G1≌G2。 Consequently, the i-th dimensions of the vector of 
G12, G1, G2 are equal, i.e. |Γi(G1)| =|Γi(G2)|= |Γi(G12)|. Hence G1≌G2⇒d(G1,G2)=0. 
3. Symmetry 
 It follows directly from the definition of the graph distance measure. 
4. Triangle Inequality 

The detailed proof of triangle inequality is shown in Appendix A. □ 

Theorem 4.4. For any graphs ., the following properties hold true for graph distance measure defined in 
Definition 4.2, (1)Non-negativity, (2)Uniqueness,(3)Symmetry,(4)Triangle Inequality 
Proof: We only need to show that d(G1,G2)=0⇒ G1≌G2. The proof of other properties is the same as the proof of 
corresponding properties in Theorem 4.3. 

d(G1,G2)=0⇒|Γi(G12)| =max(|Γi(G1)|, |Γi(G2)|). Assume |Γi(G1)|≥|Γi(G2)|, then |Γi(G1)|= |Γi(G12)| . Since G12≦G1, 
then from statement 2 of Theorem 4.2, we have G12≌G1 . Similarly, by the assumption |Γi(G1)|≥|Γi(G2)|, we have 
|Γi(G12)| =|Γi(G1)| ≥|Γi(G2)|. On the other hand, from G12≦G2, we have |Γi(G12)| ≤|Γi(G2)|. Hence, we get |Γi(G12)| 
=|Γi(G2)| and G12≌G2 . Thus it follows that G12≌G1≌G2 . So d(G1,G2)=0⇒ G1≌G2. 

Through Theorem 4.3, we show that graph distance measure defined in terms of pattern mapping is a 
pseudo-metric. As a pseudo-metric, graph distance measure based on pattern mapping possesses most properties of a 
metric except for  uniqueness, which implies that we can not determine whether two graphs are isomorphic solely 
given the information that the distance between them is zero. Through Theorem 4.4, we show that graph distance 

                                                                 
* In general, when considering problems of evaluating distance among a class of graphs, for example G={G1,G2 ,…,Gn} (n≥2), the 

following condition supposed to be satisfied i≤min(|E(G1|,…,|E(Gn)|), otherwise M(|Γi(G1)|, |Γi(G2)|) may be zero. We also can let 
i≤min(|E(Gij)|)1≤i,j≤n , which is a stronger condition and make |Γi(Gij)| to be non-zero. 
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measure defined in terms of occurrence mapping is a metric. In some cases where each vertex is uniquely labeled, 
graph distance measure based on occurrence mapping is equivalent to that based on pattern mapping, due to the 
fact that in these cases isomorphic relation is equivalent to equal relation between graphs. 

In the existing structure-based graph distance metrics, only the node and edge information of a graph is used to 
evaluate graph distance. In other words, only occurrence mappings Γ0 and Γ1

 are employed. Thus, from the 
viewpoint of occurrence mapping, existing structured-based graph distance metrics can be considered as special 
cases of occurrence-based graph distance metrics. Therefore, the graph distance measures defined in Definition 4.1 
and 4.2 are generalization of existing structure graph distance metrics. It is just in this sense we call them unified 
structure-based graph distance measures. 

As it will be shown in the experimental part of the paper, the structure difference between different graphs can be 
amplified when suitable Γi is selected, and in general, Γ0 and Γ1 can’t capture the obvious structure difference 
between graphs. Hence, in real applications, rational selection of Γi can make the evaluation of graph distance more 
accurate. . Compared to the existing structure-based graph distance measures, the graph distance measures . based 
on substructure abundance can evaluate the graph distance in much finer grain. 

4.3   Variants of Graph Distance Measures Based on Substructure Abundance 

 For any graph, Γi(G) only captures information of those substructures with i edges. However, in some cases, the 
size of substructures varying in a range rather than being a fixed value will characterize the graphs better. Thus, the 
elementary graph distance measures that are based on substructure abundance need to be extended to include 
substructures with different sizes. For this purpose, it’s necessary to extend graph distance defined in Definition 4.1 
and 4.2 from Γi to ΓI, which can capture more substructure information of a given graph. For this purpose, we will 
first introduce Corollary 4.3, which is an extension of Theorem 4.1 and 4.2. Then based on Corollary 4.3, we 
provide two variants of the substructure abundance-based graph distance measures.  

Before the discussion of this section, we first give some essential notations. Let U={0,1,…,m}, where m=|E(G)|. 
Let I⊆U and ΓI=∪(i∈I)Γi s.t. ΓI(G)=∪(i∈I)Γi(G), where Γi is a substructure mapping(a pattern mapping or an 
occurrence mapping). Obviously, it follows that for any integer pair (i,j) s.t. i≠j, Γi(G)∩Γj(G)=∅. 

 Corollary 4.3: Given substructure mapping ΓI that get all substructures(patterns or occurrences) with i∈I edges. 
For any two labeled graphs G and G’ , if G≦G’ , then the following statements hold: 

(1)There exists an injective mapping φ: ΓI (G)→ΓI (G’) such that for each g∈ΓI(G), there is only one unique φ (g) 
∈ΓI(G’) s.t. g≌φ(g). 

(2) |ΓI(G)| ≤|ΓI(G’)|. 
(3) If ΓI is a pattern mapping, then it follows that G≌G’ ⇒ |ΓI(G)| =|ΓI(G’)|. 

     If ΓI is an occurrence mapping, then it follows that G≌G’⇔ |ΓI(G)| =|ΓI(G’)|. 

Definition 4.3: Given a substructure mapping ΓI (.a pattern mapping or an occurrence mapping), the distance of 
two non-empty graphs G1 and G2 is defined as dI(G1,G2)=1-|ΓI(G12)|/M(|ΓI(G1)|,|ΓI(G2)|) , where M(|ΓI(G1)|,|ΓI(G2)|) 
can be defined in three cases as above. 

Theorem 4.5: For any graphs G1,G2 and G3, the following properties hold true for graph distance measure defined 
in Definition 4.3, (1)Non-negativity, (2) Uniqueness (only Reflexivity when ΓI is a pattern mapping), 
(3)Symmetry,(4)Triangle Inequality. 
Proof：We only prove the theorem when ΓI is an occurrence mapping. When ΓI is a pattern mapping, it is 
unnecessary to show that d(G1,G2)=0 ⇒ G1≌G2, and proofs of other properties are the same as corresponding 
proofs for occurrence mapping.  

Since Γi(G)∩Γj(G)= ∅ (i≠j). We have the following transformation holds. 
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1-|ΓI(G12)|/M(|ΓI(G1)|, |ΓI (G2)|) =1-|(Γi1∪…∪Γik) (G12)|/M(|(Γi1∪…∪Γik) (G1)| ,| (Γi1∪…∪Γik) (G2)|) 
=1-|(Γi1(G12)∪…∪Γik(G12))|/M(|(Γi1(G1)∪…∪Γik(G1))|,| (Γi1(G2)∪…∪Γik(G2))|) 
=1-|Γi1(G12)|+…+|Γik(G12))|/M(|Γi1(G1)|+…+|Γik(G1))|,| Γi1(G2)|+…+|Γik(G2)|) 
=1- ∑i∈I |Γi (G12)|/M(∑i∈I |Γi (G1)|, ∑i∈I |Γi (G2)|) 
(1) Non-negativity. 

From Theorem 4.1, it follows that for each i, |Γi(G12)| ≤|Γi(G1)| and |Γi(G12)| ≤ |Γi(G2)|, which implies that ∑i∈I 
|Γi(G12)|≤∑i∈I|Γi(G1)|, and ∑i∈I|Γi(G12)|≤∑i∈I|Γi(G2)| (eq1). Hence, we have ∑i∈I |Γi (G12)| ≤max(∑i∈I |Γi (G1)|, ∑i∈I |Γi 
(G2)|) (eq2). 
(2) Uniqueness. 

First we prove '⇒'. d(G1,G2)=0⇒∑i∈I|Γi(G12)| =max(∑i∈I|Γi(G1)|, ∑i∈I|Γi(G2)|). Since for each i, |Γi(G12)|≤|Γi(G1)| 
and |Γi(G12)|≤ |Γi(G2)|, we have for each i, |Γi(G12)|=|Γi(G1)|=|Γi(G2)|. So we have G12≌G1≌G2. 

Then we prove '⇐'. If G1 ≌ G2, then for each i, we have |Γi(G12)|=|Γi(G1)|=|Γi(G2)|. Thus 
∑i∈I|Γi(G12)| =max(∑i∈I|Γi(G1)|, ∑i∈I|Γi(G2)|), so we have d(G1,G2)=0. 

(3) Symmetry. It follows directly from the symmetry of the equation as defined in the theorem. 
(4) Triangle inequality. The detailed proof of triangle inequality is shown in Appendix B.                  □ 

Definition 4.4. Given a substructure mapping ΓI ( a pattern mapping or an occurrence mapping), the distance of 
two non-empty graphs G1 and G2 is defined as d(G1,G2)= ∑i∈Iαidi(G1,G2) , where αi ≥0 and ∑i∈Iαi =1 and di(G1,G2) 
is a graph distance measure defined in Definition 4.1 or Definition 4.2. 

Theorem 4.6. The following properties hold true for graph distance measure defined in Definition 4.4 
(1)Non-negativity, (2) Uniqueness( only Reflexivity when ΓI is a pattern mapping), (3)Symmetry,(4)Triangle 
Inequality. 

Proof： 
(1) Non-negativity.  di(G1,G2)≥0⇒αidi(G1,G2) ≥0⇒ ∑i∈I αidi(G1,G2)≥0 
(2) Uniqueness. 

First we prove ‘⇒’. ∑i∈I αidi(G1,G2)=0 and αi ≥0, ∑i∈Iαi =1 and di(G1,G2) ≥0⇒ di(G1,G2)=0 for each i∈I ⇒ G1

≌G2. 

Then we prove ‘⇐’. G1≌G2⇒di(G1,G2)=0 for each i∈I ⇒ ∑i∈I αidi(G1,G2)=0. 

(3) Symmetry. It follows directly from the symmetry of the equation as defined in the theorem. 
(4) Triangle inequality. Triangle inequality holds true for di(G1,G2) ⇒ for each i∈I, di(G1,G2)+ di(G2,G3) ≥ 

di(G1,G3)⇒ for each i∈I,αidi(G1,G2)+ αidi (G2,G3) ≥αidi(G1,G3) ⇒ ∑i∈Iαidi(G1,G2)+ ∑i∈Iαidi(G2,G3) ≥ ∑i∈I 
αidi(G1,G3).                □ 

An immediate consequence of Theorem 4.6 is the following corollary. 

Corollary 4.4: The following properties hold true for graph distance measure defined as d(G1,G2)=(∑i∈I 
di(G1,G2))/k, (k=|ΓI|), (1)Non-negativity, (2) Uniqueness (only Reflexivity when ΓI is a pattern mapping), 
(3)Symmetry, (4)Triangle Inequality. 

4.4    Variants of Unified Graph Distance Measures in Real Applications 

When applying the above graph distance measures to real problems, we need to address two key issues. The first 
one is subgraph enumeration. The second oneis how to reasonably weight the substructure of each dimension in SVA 
of a graph.  

To enumerate all the non-isomorphic or non-equal subgraphs of a graph is non-trivial due to the exponential 
growth of number of subgraphs with the increase of the size of the subgraph. However, in real world applications, it 
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is usually not necessary to evaluate graph distance with such high precision.   It is unnecessary to enumerate 
subgraphs with large size. Hence, the rational way to solve this problem is to customize ΓI

 according to the 
requirements of the real applications, considering the tradeoff between the accuracy of the distance measure and 
computational complexity.  

Since enumerating all subgraphs with i edges is time-consuming for larger i, we can restrict Γi(G) to be a subset of 
substructures with i edges. Compared to trees and graphs, path is more simple and its enumeration is less 
time-consuming. Hence, we can construct substructure mappings P={Pi|0≤i≤|E(G)| } with each Pi geting all the 
non-isomorphic or non-equal paths with length i. Furthermore, for certain precision, it is also unnecessary to 
enumerate longer paths. And we will show that the graph distance measures defined according to P also possess 
most properties of a metric. 

 Corollary 4.5. V =(|P0|,…, | Pm|), m=|E(G)| is a graph invariant. 
uv

Corollary 4.6. Let U={0,1,…,m},m=|E(G12)|, I⊆U，then graph distance measure d(G1,G2)=1-|PI (G12)|/M(|PI 
(G1)|,|PI (G2)|) with G12=mces(G1,G2) and M(|PI (G1)|,|PI (G2)|) defined in three cases as before, satisfies the 
following properties (1)Non-negativity, (2) Uniqueness (only Partial Uniqueness when PI is a pattern mapping), 
(3)Symmetry,(4)Triangle Inequality. 

 Corollary 4.7. The following properties hold true for graph distance measure defined as  d(G1,G2)=(∑i∈I 
di(G1,G2))/k, (k=|PI|), (1)Non-negativity, (2) Uniqueness (only Reflexivity when PI is a pattern mapping), 
(3)Symmetry,(4)Triangle Inequality. 

To address the second issue, we must be aware that different substructures of a graph can not characterize the 
graph to the same extent. And a basic observation is that two graphs are more similar to each other if they share 
more complex and unique substructures instead of simple and trivial structures such as isolated nodes or edges. 
Hence, different subgraphs appearing in a common graph of G1 and G2 will have different contribution to the 
similarity of these two graphs, and the occurrence of complex and unique substructures in the common graph will be 
a significant indication of similarity between graphs.  

Thus, we need to give the definition of the uniqueness of a subgraph. Informally, similar to the uniqueness used in 
[9, 15], the uniqueness of a subgraph g⊆G can be evaluated according to the frequence of its occurrence in random 
graphs with size equivalent to G. Let frand(g) be the frequency of occurrence g in a randomized network Grandi, for 1
≤i≤N, where N is the number of randomized networks and each randomized network has |V(G)| nodes, and nodes 
are linked by probability p=2|E(G)|/(|V(G)|*(|V(G)|-1)). Then the uniqueness of subgraph g can be described by 
uniq(g,G)=1- frand(g)/N. 

In the definition of graph distance measure, we can assign to each dimensional substructure a weight, which is 
computed according to the uniqueness of substructures of the graph. For example, if the graph distance is defined 
according to Γ’⊆Γ, then for each Γi∈Γ’, we can get an average uniqueness avg(Γi)=(∑g∈Γi(G)uniq(g,G))/|Γi(G)|. 
Furthermore, we would normalize avg(Γi) and let ∇avg(Γi)=avg(Γi)/∑avg(Γi). Obviously, ∇avg(Γi)≥0 and 
∑∇avg(Γi)=1. Hence, it’s not difficult to get the following corollary. 

Corollary 4.8. Given a substructure mapping ΓI (a pattern mapping or an occurrence mapping), the following 
properties hold true for graph distance measure defined as d(G1,G2)=∑i∈I αidi(G1,G2), where αi =∇avg(Γi). , 
(1)Non-negativity, (2)Uniqueness (only Reflexivity when PI is a pattern mapping), (3) Symmetry, (4) Triangle 
Inequality. 
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Figure 5: Population Bayesian Network of HAN 

5   Application in Population Structure analysis 

In this section, we will apply the graph distance measures defined in the previous  sections to population 
structure analysis. We will demonstrate the precision of these graph distance measures through this example. 

5.1   Bayesian Marker Networks for Three Populations 

With the accomplishment of Human Genome Project and International HapMap Project [20], large amounts of 
sequences and genotype data are available and they provide good sources for the population structure study. Typed 
SNPs(Single nucleotide polymorphisms)[8] can be used to construct Bayesian marker network that models the 
dependence relations (linkage disequilibrium) among markers [10]. Due to evolutions, linkage disequilibrium 
between the markers varies across populations. The differences in the structure of Bayesian networks between 
populations imply the different history of population evolution. Therefore, the distance between the marker 
networks will correspond the distance between populations. To evaluate the performance of the proposed graph 
distance measures, we typed 30 SNPs from the Chromosome 21 for 48 individuals from African American 
population (AFA), 46 individuals from Chinese Han Population (HAN), and 40 individuals from European 
Caucasian population (CAU), to create three Bayesian marker networks for three populations. We use directed graph 
to represent the Bayesian networks, a node in the graph denotes a SNP marker. The mutual information between two 
markers is calculated, which approximately measures the linkage disequilibrium between two markers [11]. The 
constructed Bayesian network of HAN with 30 SNPs is shown in Figure 5. The other two networks are close to this 
one, thus not shown below. The numbers of edges of Bayesian marker networks for AFA, HAN and CAU 
populations are 89, 90,116, respectively. The average node degrees of three networks are 2.97, 3.00, and 3.87, 
respectively.  

5.2   Population Structure Analysis 

The graph distance measures are applied to measuring the distance between populations. We enumerate all the 
simple paths of three networks. The path length distributions of three marker networks are shown in Figure 6. From 
the figure, we can see that AFA contains the least number of paths, while HAN contains the longest paths. And it is 
clear that the difference of substructure abundance between these three networks is much more obvious when 
regarding to the middle size of substructures. Hence, it is rational to measure the graph distance with respect to the 
middle-size substructures of the graphs. 
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Figure 7 shows the path number distributions of the maximum common edge-induced subgraph of three pairs of 

networks. The path number of common graphs represents the absolute similarity between populations. Figure 8 
shows the relative similarity between three populations, which is the ratio of common path number to the problem of 
size. In this experiment, we use |Pi(G1)|+|Pi(G2)|-|Pi(G12)| to measure the size of problem. Note that for both relative 
and absolute distance, we can not discern the difference among three population pairs when path length is very small 
or very large. 
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Figure 8: Relative Similarities among populations 
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Figure 6: Path Distribution of Three Populations  
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Figure 9: Graph Distance among populations 
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  Figure 7: Absolute Similarities among 

populations for each Pi 
  

For 0≤i≤10, we work out the graph distance of each pair of three populations according to graph distance measures 
d(G1,G2)=1-|Pi (mces(G1, G2))|/max(|Pi (G1)|,|Pi (G2)|) for each Pi. The graph distances among populations for 
different path lengths are shown in Table 1 and corresponding plot is shown in Figure 9. For i>10, each common 
graph contains no substructure of size i, thus graph distance measured with respect to corresponding Pi is trivial. 

We also calculate graph distances according to the distance measures with respect to PI. The result is shown in 
Table 2. We use ‘sum[i, j]’ to denote the graph distance measure whose similarity is defined by the cardinality of PI 

(G) with I=[i, j], i.e. the graph distance measure defined in Corollary 4.6. We use ‘avg[i, j]’ to denote the average 
graph distance over PI with I=[i, j], i.e. the graph distance measure defined in Corollary 4.7. We compute ‘avg’ and 
‘sum’ in the range [2, 3], because from Figure 8 we can see that P2 and P3 can capture the most obvious substructure 
difference among three population networks. We also compute ‘sum[0,1]’, which is another usually used graph 
distance measures in many real applications. 
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Table 1: Graph distances among populations for each Pi 

Path Length 
Population 0 1 2 3 4 5 6 7 8 9 10 
AFA-CAU 0.125 0.386 0.580 0.709 0.817 0.900 0.953 0.982 0.994 0.999 1.000 
CAU-HAN 0.125 0.485 0.708 0.843 0.917 0.956 0.977 0.989 0.996 0.999 1.000 
AFA-HAN 0.182 0.556 0.793 0.916 0.972 0.994 0.999 1.000 1 1 1 

 
Table 2: Graph distances among populations of PI 

Path Length Range 
Population Sum[0,1] Avg[2,3] Sum[2,3] 
AFA-CAU 0.333 0.644 0.674 
CAU-HAN 0.417 0.776 0.811 
AFA-HAN 0.478 0.855 0.884 

 
Table 3: Graph distances with distance between AFA-HAN normalized as 1 

Path Length Range 
Population Node Edge Sum[0,1] Avg[2,3] Sum[2,3] 
AFA-CAU 0.687 0.694 0.697 0.753 0.762 
CAU-HAN 0.687 0.872 0.872 0.907 0.917 
AFA-HAN 1 1 1 1 1 

 

 
Figure 10: Distance graph of population structures under different distance measures 

At last, we draw out five distance graphs among these three populations for graph distance measure defined 
according to P0, P1 , sum(P[0,1]), avg(P[2,3]) and sum(P[2,3]), respectively. For the convenience of observation, we 
normalize the distance value between AFA and HAN to 1. The normalized detailed distance values are shown in 
Table 3 and the corresponding distance graphs are drawn in Figure 10.  

Among all these graph distance measures, we believe that ‘sum[2,3]’ is the most appropriate graph distance in this 
case, which can amplify the minute distance difference. In population structure analysis, this kind of minute 
difference can lead to the wrong qualitative assertion. For instance, if only Γ0 is used in the measurement of the graph 
distance, we can conclude that the distance between CAU and AFA is the same as it between CAU and HAN. 
However, when ‘sum[2, 3]’ is employed, it is clear that CAU is much closer to AFA than HAN.  

The results show that the distances between HAN and other two populations are the furthest.while the distance 
between CAU and AFA is shorter, which  implicates the SNPs linkage disequilibrium structure of HAN population 
is more complex.  

6   Related Works 

Structure-based graph distance measures have been widely studied in pattern recognition and chemical informatics 
area. Bunke and Shearer [1] first proposed graph distance metric based on maximal common graph, which underlies 
following structure-based graph distance measures. In their pioneering works, |max(|G1|,|G2|)| is used as the problem 
size, which ignores the influence of the smaller one of the two graphs. Bunke[2,3] also revealed the relation between 
MCS-based graph distance and graph edit distance, which bridges the structure-based graph distance and traditional 
graph edit distances that are based on cost functions.  

Hereafter, a variety of structure-based distance metrics have been proposed. Wallis et al [19] proposed graph 
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distance based on graph union, where |G1|+|G2|-|G12| is employed as the size of the problem. Then, Fernandez and 
Valiente [5] evaluated the distance between graphs by measuring the missing structural information expressed as the 
difference between minimal common supergraph and maximal common subgraph. Dzena Hidovic and Marcello 
Pelillo [6] developed two attributed graph distance metrics based on the precedent structured graph distance metric 
framework. 

All the above graph distance metrics except [6] have been systematically surveyed by John W. Raymond and Peter 
Willett [14]. A series of John W. Raymond ’s works [12,13,14,15] have focused on virtual screening through 
evaluating the distance of chemical compounds. The most important contribution of John W. Raymond ’s work is 
RASCAL[12], an efficient graph similarity calculation procedure, in which many efficient similarity filtering 
strategies have been employed and an efficient maximum common subgraph isomorphism detection algorithm has 
been devised. 

Bayesian Network is an abstract presentation of complex networks, which provide a new tool for studies of the 
structure of biological system. Many approaches based on Bayesian methods to study the gene regulation and 
protein-protein interaction network are brought forward [7, 16, 17]. However, these studies focused on the functional 
perspective, and the structure study of the sequences which constitute gene and translate to protein is very little. 
SNPs are common single base variation in the human genome sequence. They play an important role in the 
association analysis of complex diseases. The complexities of SNPs linkage disequilibrium are important features of 
population evolution. Constructing Bayesian network with SNPs from different populations is meaningful for the 
studies of population evolution. It turn out that Bayesian networks of SNPs will open a new field in the network 
approach to studies of population structure and evolution.  

7   Conclusion 

In this paper, to evaluate graph distance in high degree of precision, we proposed unified structure-based graph 
distance measures and their variants, utilizing substructure abundance vector. We employ these graph distance 
measures to calculate the distances between populations in population structure analysis, where accurate evaluation 
of graph distance is desired.  

In future ., it is of great interest to study the relation between substructure abundance and the symmetry of a graph 
so that more theoretic algebraic tools can be used to perform deeper research on graph distance measure theory. 
Another significant work is to use the graph distance measures proposed in this paper to construct the distance graph 
of more population structures, which will unravel more accurate population structures of the genetic data. The 
results in this paper are very limited, we plan to perform large-scale calculations of the graph distance measures 
proposed in this paper in more real applications. 
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Appendix A: 

Theorem A.1. Let Γi be a substructure mapping (pattern mapping or occurrence mapping), for any three graphs G1, 
G2 and G3 , triangle inequality holds true for graph distance measure di(G1,G2)=1-|Γi(G12)|/max(|Γi(G1)|,|Γi(G2)|).  

Proof: Suppose we have three graphs denoted by G1, G2, G3. For the notational convenience, let m1=|Γi(G1)|, 
m2=|Γi(G2)|, m3=|Γi(G3)|, m12=|Γi(G12)|, m23=|Γi(G23)|, m13=|Γi(G13)|. Then we have 
di(G1,G2)=1-m12/max(m1, m2), 
di(G2,G3)=1-m23/max(m2, m3), 
di(G1,G3)=1-m13/max(m1, m3). 
To prove the triangle inequality holds true for the graph distance measure equals to show:  
di(G1,G2)+ di(G2,G3) ≥ di(G1,G3)，i.e. 
(1-m12/max(m1, m2))+(1-m23/max(m2, m3))≥ 1-m13/max(m1, m3)                                         (*)  

There are six possible cases need to be distinguished and proven. 
Case 1: G12=G23=G13=∅. (Notice that if the graphs are unlabeled, this case will never happen.) 

This means m12=m23=m13=0. So (*) can be reduced to 1+1≥1, which is trivial. 

Case 2: Only one of G12, G23, G13 is non-empty 
(1)Suppose only G12≠∅, then m23= m13=0, (*) will be reduced to  
2-m12/ max(m1,m2)≥1 i.e. 1≥m12/max(m1,m2) 
Since G12≦G1 and G12≦G2, then m12≤m1 and m12≤m2 according to Theorem 4.1 and 4.2. Thus m12 ≤ max(m1,m2) 
and the above inequality holds. 
(2)Suppose only G23≠∅, then m12=m13=0, (*) will be reduced to  
2-m23/max(m2,m3)≥1, the following proof process is the same as (1). 
(3)Suppose only G13≠∅, then m12=m23=0, (*) will be reduced to 
2≥1-m13/max(m1,m3), i.e m13/max(m1, m3)≥-1, which is trivial. 

Case 3: Only one of G12, G23, and G13 is empty. 
(1)Suppose only G13=∅ , then m13=0, inequality (*) will be reduced to 
1-m12/max(m1,m2)-m23/max(m2, m3)≥0                                                           (3.1) 
a) m1≥m2≥m3 , then (3.1) is equivalent to 1-m12/m1 -m23/m2≥0, i.e. m1m2 - m2m12 - m1m23≥0. 
Since m1≥m2 , m1m2 - m2m12 - m1m23≥m1m2 - m1m12 - m1m23, i.e.   
m1m2 - m2m12 - m1m23≥m1(m2 -m12 -m23)                                                          (3.2) 

Since G13=∅, G1 and G3 have no common subgraphs. This implies that  ∀g∈Γi(G12) and ∀g’∈Γi(G23), g is not 
isomorphic to g’. Obviously, we have G12≦G2 and G23≦G2. According to Corollary 4.1, we have m12+m23≤ m2, 
which shows (3.2) ≥0. Thus we can prove that (3.1) holds. 
b) m1≥m3≥m2, then (3.1) is equivalent to 1-m12/m1-m23/m3≥0, i.e. m1m3 - m3m12 - m1m23≥0. 

Since m1≥m3, m1m3 - m3m12 - m1m23≥m1m3 - m1m12 - m1m23  
≥m1m2 - m1m12 - m1m23 ( due to m3≥m2), i.e. m1m3 - m1m12 - m1m23≥m1(m2 -m12 -m23 ) 
Notice that this is exactly the inequality (3.2), so the following proof is the same. 

c) m2≥m1≥m3 , then (3.1) is equivalent to 1-m12/m2 -m23/m2≥0, 
i.e. m2 - m12 - m23  ≥0, which we have proved in a). 
d) m2≥m3≥m1 , the proof is the same as c). 
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e) m3≥m1≥m2 , then (3.1) is equivalent to 1-m12/m1 -m23/m3≥0, i.e. m1m3 - m3m12 - m1m23≥0. 
 Since m1m3 - m3m12 - m1m23≥ m1m3 - m3m12 - m3m23 = m3(m1 - m12 - m23 )≥ m3 *(m2 -m12 -m23 ), which is the same as 
inequality(3.2), so the following proof is the same as a). 
f) m3≥m2≥m1 , then (3.1) is equivalent to 1-m12/m2 -m23/m3≥0,i.e. m2m3 -m3m12 -m2m23≥0.  
Since m2m3 - m3m12 - m2m23≥m2m3 - m3m12 - m3m23 = m3(m2 - m12 - m23 ), which is the same as inequality(3.2), so the 
following proof is the same. 
Problem: can we proof directly like this? To prove:  
1-m12/max(m1,m2)-m23/max(m2, m3)≥0                                                           (3.1) 
max(m1,m2)>= m2 max(m2, m3) )>= m2  m12/max(m1,m2)+m23/max(m2, m3)<=( m12/m2+ m23/m2) 

Since G13=∅, G1 and G3 have no common subgraphs. This implies that  ∀g∈Γi(G12) and ∀g’∈Γi(G23), g is not 
isomorphic to g’. Obviously, we have G12≦G2 and G23≦G2. According to Corollary 4.1, we have m12+m23≤ m2, 
which shows (3.2) ≥0. Thus we can prove that (3.1) holds. 

(2)Suppose only G12=∅ , then m12=0, (*) will be reduced to 
2-m23/max(m2 ,m3 )≥1-m13 / max(m1 ,m3).  
Since m23/max(m2 ,m3 )≤1, 2-m23 / max(m2 ,m3 )≥1≥1-m13 / max(m1 ,m3 ). 

(3) Suppose only G23=∅, then m23 =0, (*) will be reduced to 
2-m12/max(m1 ,m2 )≥1-m13/max(m1 , m3).  
Since m12/max(m1 ,m2 )≤1, 2-m12 /max(m1 ,m2 )≥1≥1- m13/max(m1 , m3), which accomplishes our proof of Case 3. 
 
Case 4: G12, G23, G13 all exist, i.e. G12≠∅, G23≠∅, and G13≠∅.  

We use G123 to denote the maximum common subgraph of G1, G2, G3. Obviously, G123≦G12, G123≦G23 and G123

≦G13 . The overlapping between Γi(G1), Γi(G2) and Γi(G3) is shown in Figure A.1. According to Theorem 4.1 and 
4.2, there is an injective mapping α:Γi(G123)→Γi(G12). Similarly, injective mapping  β:Γi(G123)→Γi(G23), γ:Γi(G123)
→Γi(G13) also exist.  

Let Γi(G’12)=Γi(G12)-α-1(Γi(G123))，Γi(G’23)= Γi(G23)- β-1(Γi(G123))，Γi(G’13)= Γi(G13)-γ-1(Γi(G123)) 
Let m12’=|Γi(G’12)|, m23’=|Γi(G’23)| and m13’=|Γi(G’13)|. 
Based on this definition, it’s easy to see that we have: 
m12 = m12’+m123         (4.a) 
m23 = m23’+ m123         (4.b) 
m13 = m13’+ m123                              (4.c) 
For notational convenience, we use ‘A∩B=∅’ to denote the statement that ‘for two graph sets A, B, 

∀g1∈A, ∀g2∈B, g1 is not isomorphic to g2’, which can be considered as an extension of set join operating from equal 
to isomorphic relation between elements of a set.  

Thus, we can see that the following equations (4.d)-(4.l) hold true. As an example, we will show the correctness 
of equation (4.d). Assume that Γi(G1)∩Γi(G’23)≠∅, then there exist graphs g, g1∈Γi(G1) and g2∈Γi(G’23), such that g
≌g1≌g2. Due to Γi(G’23)⊆Γi(G23), we have g≦G23, which implies that g≦G2 and g≦G3 . From g≌g1 ,g1∈Γi(G1),  
we also have g≦G1 . Thus we can conclude that g≦G123 , which contradict to g≌g2∈Γi(G’23)=Γi(G23)- 
β-1(Γi(G123)). 
Γi(G1)∩Γi(G’23)= ∅         (4.d) 
Γi(G2)∩Γi(G’13)= ∅         (4.e) 
Γi(G3)∩Γi(G’12)= ∅         (4.f) 
Γi(G123)∩Γi(G’12)= ∅         (4.g) 
Γi(G123)∩Γi(G’23)= ∅         (4.h) 
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Γi(G123)∩Γi(G’13)= ∅         (4.i) 
Γi(G’12)∩Γi(G’23)= ∅         (4.j) 
Γi(G’23)∩Γi(G’13)= ∅         (4.k) 

Γi(G’31)∩Γi(G’12)= ∅         (4.l) 

 
Figure A.1: Illustration of overlapping between Γi(G1), Γi(G2) and Γi(G3) 

There are six possible cases need to be discussed. 
a) m1≥m2≥m3  

In this case , inequality (*) will be reduced to (1-m12/m1)+(1-m23/m2 )≥1-m13/m1 , i.e. 1-m12/m1 -m23/m2 +m13/m1≥0, 
i.e. m1m2 - m2m12 - m1m23 + m2m13≥0, i.e. 
m1(m2 -m23 )+ m2(m13- m12 ) ≥0                                 (4.1) 

Since m1≥m2 , m1(m2 - m23 )+ m2(m13-m12 ) ≥ m2 (m2 -m23 )+ m2 (m13 -m12 ) ≥  
m2 (m2 - m23 + m13 - m12 ) .                 (4.2) 

Further more, due to (4.a), (4.b) and (4.c), m2 - m23 + m13 - m12 = 
m2 - (m23’+m123)+ (m13’ +m123)- (m12’ +m123)= m2 - m23’ +m13’ - m12’ -m123  
= (m2+ m13’)-( m23’+ m12’ + m123 ).                             (4.3) 

Due to (4.j), (4.g), (4.h), it follows that ∀g1∈Γi(G’12), ∀g2∈Γi(G’23) and ∀g3∈Γi(G123) , g1, g2 and g3 are pairwise 
non-isomorphic. Since Γi(G’12)⊆Γi(G12), Γi(G’23)⊆Γi(G23), according to corollary 2, we have m23’+m12’+m123 ≤ m2 . 
Hence we have (4.3) ≥0 and (4.1) holds. 

b) m1≥m3≥m2  
In this case, inequality (*) is equivalent to: (1-m12/m1 )+(1-m23/m3)≥1-m13/m1 , i.e. 1-m12 / m1 -m23 / m3 +m13 / m1 

≥0, i.e. m1 m3 - m3 m12 - m1 m23 + m3 m13  ≥0, i.e. 
m1 (m3 - m23 )+ m3 (m13 -m12 ) ≥0                         (4.4) 
Since m1 (m3 -m23)+ m3 (m13 -m12 ) ≥ m3 (m3 -m23 )+m3 (m13 -m12 )=m3 (m3 -m23 +m31 -m12 )≥m3 (m2 - m23 + m13 - 
m12 ), which is similar to (4.2) and the following proof is the same as a). 

c) m2≥m1 ≥m3  
In this case, inequality (*) will be reduced to: (1-m12/m2)+(1-m23/m2)≥1-m13/m1 , i.e. 1-m12/m2 -m23/m2 +m13/m1≥0, 

i.e. m1m2 - m1m12 - m1m23 + m2m13≥0. 
Since m2≥m1 , m1m2 - m1m12 - m1m23 + m2m13≥ m1m2 - m1m12 - m1m23 + m1m13 =m1( m2 - m23 + m13 - m12 ), which is 
similar to (4.2) and the following proof is the same as a). 

d) m2≥m3≥m1 
In this case, inequality (*) will be reduced to (1-m12/m2)+(1-m23/m2 )≥1-m13/m3 , i.e. 1-m12/m2 -m23/m2 +m13/m2 ≥0, 

i.e. m3m2 - m3m12 - m3m23 + m2m13≥0 
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Since m2≥m3 , m3m2 - m3m12 - m3m23 + m2m13≥ m3m2 - m3m12 - m3m23 + m3m13=m3 ( m2 - m23 + m13 - m12 ), which is 
similar to (4.2) and the following proof is the same as a). 

e) m3≥m1≥m2 
In this case, inequality (*) will be reduced to (1-m12/m1)+(1-m23/m3)≥1-m13/m3 , i.e. 1-m12/m1 -m23/m3 +m13/m3≥0, 

i.e. m3m1 - m3m12 - m1m23 + m1m13≥0, i.e. m3(m1 - m12 )+ m1( m13 -m23 )≥0. 
Since m3≥m1 , m3(m1 - m12 )+ m1( m13 -m23 )≥ m1(m1 -m12 )+ m1( m13 -m23 )= m1 (m1 -m12 +m13-m23 ) 
≥m1(m2 - m12 + m13 -m23 ), which is similar to (4.2) and the following proof is the same as a). 

f) m3≥m2≥m1  
In this case, inequality (*) will be reduced to (1-m12/m2)+(1-m23/m3)≥1-m13/m3 , i.e. 

1-m12/m2 -m23/m3 +m13/m3≥0, i.e. m3m2 - m3m12 - m2m23 + m2m13≥0, i.e. m3(m2 - m12 ) + m2(m13 -m23 )≥0 
Since m3≥m2 , m3(m2 - m12 ) + m2(m31  -m23 )≥ m2(m2 - m12 ) + m2(m13  -m23 )= m2(m2 - m12 +m31 -m23 ), which is 
exactly the inequality (4.2) and the following proof is the same as a). 

Appendix B: 
In this section, we would show that the triangle inequality holds true for the graph distance measure defined in 

Definition 4.3. For this purpose, we will first show that arbitrary graph space can be transformed into an equivalent 
simplified graph space when addressing those issues related to graph isomorphism, which will be discussed in 
Lemma B.1 and Theorem B.1. Specifically, arbitrary graph space G as well as a graph distance measure d defined on 
itself, denoted as (G, d), can be mapped to an isomorphic graph space (G’, d), such that the quantification relation 
implicated by d is conserved. In the new graph space, triangle inequality can be easily calculated by set theory. Then 
we will show that triangle inequality holds true for the corresponding distance measure defined on general set space, 
which will be discussed by Lemma B.2-B.6, At last, through Theorem B.2, we would show that triangle inequality 
holds true for the graph distance measure defined in Definition 4.3. 

Obviously, we have dI(G1,G2)= dI(G1’,G2’) if G1≌G1’ and G2≌G2’. Then we can assume that for any graphs 
under consideration, the vertex sets of these graphs are pairwise disjoint. In other words, for any graphs sharing 
common vertexes, we can find corresponding isomorphic graphs without common vertexes, such that the 
quantification relation between original graphs is conserved in these isomorphic copies. 

Let U be an universe vertex set, then we denote by  the set consisting of all graphs with vertex set V⊆U, i.e. 
={G|V(G)=V}. And we use G*(V) to denote the set of subgraphs of , i.e. G*(V)={G|V(G)⊆V }. Obviously, 

given any vertex set V , we can get a graph class G*(V)  

( )G V%

( )G V% ( )G V%

Lemma B.1. For any two graphs G1 and G2 , w.l.o.g let V(G1)∩V(G2)=∅, let H ={G1’, G2’}⊆G*(V), then there 
exist V⊆U with cardinality as |V(G1)|+ |V(G2)|-| V(G12)|, such that (1) Gi≌Gi’ (i=1,2) and (2) G12≌G1’∩G2’, where 
G12 is the maximum common edge induced graph between G1 and G2, and G12 is not necessarily to be non-empty 
graph. 

Proof: It’s clear that if G12=∅, the theorem holds true. If G12≠∅, Let g1⊆G1 , g2⊆G2 and g1≌g2≌G12 , then there is 
a one-to-one mapping φ: V(g1)→V(g2), such that the adjacent relations are conserved between g1 and g2. Let U be a 
vertex set disjoint to V(G1)∪V(G2), such that |U|>>|V(G1)|+|V(G2)|. Then we can construct a mapping γ from 
V(G1)∪V(G2) to U as follows.  

Let V⊆U and |V|=|V(G1)|+|V(G2)|- |V(G12)|. We construct a partition ={V1,V2,V3}, such that |V1|=|V(G1)-V(g1)|, 
|V2|=|V(G2)-V(g2)| and |V3|=|V(g1)|.  

V%

Thus we can easily construct two bijective mapping γ1: V(G1)-V(g1)→V1 and γ2: V(G2)-V(g2)→V2. We also can 
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construct a mapping γ3: V(g1)∪V(g2)→V3 , such that ∀v∈V(g1), γ3(v)= γ3(φ(v)). Then γ can be constructed as 
follows: 

1 11

2 22

1 23

( )  ( )- ( )
( ) ( )  ( )- ( )

( )  ( ) ( )

v v V G V g
v v v V G V g

v v V g V g

γ
γ γ

γ

⎧ ∈
⎪

= ∈⎨
⎪ ∈ ∪⎩

 

Obviously, we can find a graph g∈  s.t. g≌g1≌g2≌G12 .Then we need to construct two graphs G1’, G2’ in 

terms of vertex set V, i.e. G1’, G2’∈G*(V). We only need to show how to construct G1’ with vertex set γ(V(G1)) in the 
following way. First let G1’=(γ(V(G1)), ∅)∪ g , then ∀(u, v)∈E(G1), let E(G1’)= E(G1’)∪(γ (u), γ (v)). It’s not 
difficult to show that G1’ constructed in this way is isomorphic to G1. Similarly, we can construct G2’ such that 
G2’∈G*(V) and G2’≌G2 . 

3( )G V%

Then we need to show that G12≌G1’∩G2’ . From the construction process of G1’, G2’ , we have g ⊆G1’ and g 
⊆G2’, thus g ⊆G1’∩ G2’ Assume G12 is not isomorphic to G1’∩G2’, then it follows that G1’∩ G2’- g≠∅. Obviously, 
G1’∩ G2’ is a common graph larger than g , due to G1’≌G1 , G2’≌G2 and g≌G12, then we get the conclusion that 
G1 and G2 have a larger common graph than G12, which contradicts to the condition that G12 is a maximum common 
graph of G1 and G2. 

An immediate consequence of Lemma B.1 is the following Theorem B.1. 

Theorem B.1. For any three graphs G1, G2 and G3 , let H ={ G1’, G2’ G3’ }⊆G*(V), then there exist V⊆U with 
cardinality as |V(G1)|+|V(G2)|+|V(G3)|-|V(G12)|-|V(G12)|-|V(G12)|+|V(G123)|, such that (1) Gi≌Gi’ (i=1,2,3) and (2) 
Gij≌Gi’∩Gj’ for any i and j (i,j=1,2,3), where Gij is the maximum common edge induced graph between Gi and Gj, 
and Gij is not necessarily to be non-empty graph; G123 is the maximum common edge induced graph between G1, G2 
and G3, G123 is not necessarily to be non-empty graph. 

    
Figure B.1: Illustration of construction of a mapping γ from V(G1)∪V(G2) to U  

Example B.1 We use this example to illustrate the transformation of graph space discussed in Lemma B.1 and 

Theorem B.1. Given arbitrary two graphs G1 and G2, as shown in Figure B.2, we use f(fv,fe)5 to denote the 
isomorphism corresponding to the maximum common edge induced graph between G1 and G2, where 
fv={(1,1),(2,2),(3,3),(4,4)} and fe={((12),(12)), ((13),(13)), ((23),(23)), ((24),(24)), ((34),(34))}. If G1 and G2 come 

                                                                 
5 The isomorphism corresponding to the maximal common edge induced graph between G1 and G2 can be determined by a pair of 

mapping f(fv, fe), where fv is the vertex mapping from V(G1) into V(G2), fe is the edge mapping from V(G1) into V(G2). We use ordered 

pair (v1,v2), where v1∈V(G1) and v2∈V(G2), to represent fv, use ordered pair (e1,e2), where e1∈E(G1) and e2∈E(G2), to represent fe. 
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from the same vertex set, then by the assumption discussed as before, we can found two graphs G1’ and G2’ sharing 
no common vertexes, and isomorphic to G1 and G2 respectively. Furthermore, we can construct two graphs G1’’ and 
G2’’ with vertex set U3, such that G1’≌G1’’ and G2’≌G2’’ .Obviously, the join of G1’’ and G2’’ is just isomorphic to 
the maximum common edge induced subgraph of G1 and G2 

 

Figure B.2: Illustration of space transformation for any given arbitrary graph space  
Thus, we have constructed an isomorphic graph space for arbitrary three graphs G1, G2 and G3. The significance 

of the transformation described in Lemma B.1 and Theorem B.1 lies in the fact that in the original graph space, the 
maximum common subgraph is worked out by looking for a maximum graph isomorphism of graphs, whereas in the 
transformed graph space, the maximum common subgraph or maximum graph isomorphism is equivalent to the join 
of corresponding graphs that isomorphic to the original graphs. Consequently, we can discuss graph isomorphism 
related problems in the context of traditional set theory. 

The following lemmas (Lemma B.2 to B.6) will discuss triangle inequality defined on set space. We begin this 
section with some basic notations. Let X be a set consisting n elements, i.e. X={xi|i=1,…,n}, let Xk={B|B⊆X and 
|B|=k}. Let Ω(X) be the set of all subset of X.  

Lemma B.2. Let X be any set, let d(A,B)=1-|A∩B|/Max(|A|,|B|) be a distance measure defined on Ω(X), then for any 

three set A, B, C∈Ω(X), triangle inequality holds true for (Ω(X),d). 

Lemma B.3. For two sets A,B⊆X, if A⊆B, then  

(1) Ak⊆Bk, where k≤|A|. 

(2) A∈Ω(B) 

Lemma B.4. For two sets A,B⊆X, the following statements hold true: 

(1) (a) Ak∩Bk=(A∩B)k ; (b) Ak∪Bk⊆(A∪B)k , where k≤|X| 

(2) (a) AI∩BI=(A∩B)I ; (b) AI∪BI⊆(A∪B)I , where I⊆J and J={1,2,3…min(|A|,|B|)}, 

(3) Ai∩Bj=∅, for any pair (i, j), i≠j 

  The proof of Lemma B.2 is similar to the proof in Appendix A, it is omitted in this section. The details of the 

proof of Lemma B.3 and Lemma B.4 are not very difficult; we leave them to the reader. 

Lemma B.5. Let X be any set, for any three sets A, B, C⊆X, triangle inequality holds true for (Ω(X),di), where 

di(A,B)= 1-|Ai∩Bi|/Max(|Ai|, |Bi|) is a distance measure defined on Ω(X). 

Proof: For any three set A, B, C⊆X, we have Ai, Bi, Ci⊆Xi ,then Ai, Bi, Ci∈Xi .We can define a distance measure on 
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Ω(Xi) as d(Ai,Bi)= 1-|Ai∩Bi|/Max(|Ai|,|Bi|). According to Lemma B.2, triangle inequality holds true for (Ω(Xi) 

,d). Thus, we also have that triangle inequality holds true for (Ω(X), di), where di(A,B)= 1-|Ai∩Bi|/Max(|Ai|, 

|Bi|). 

 
Figure B.3: Illustration of three space (Ω(X),d) ,(Ω(Xi),d), (Ω(Xj),d) and (Ω(XI),d) 

Lemma B.6. Let X be any set, let J={1,2,3…|X|}, for any three sets A, B, C⊆X, then triangle inequality holds true 

for distance measure: dI(A,B)= 1-|AI∩BI|/Max(|AI|, |BI|), where AI=∪(i∈I)Ai and I⊆J. 

Proof: For any three sets A, B, C⊆X, it follows that for each i∈I, Ai, Bi, Ci⊆Xi, thus we have AI, BI, CI⊆XI , then AI, 

BI, CI∈Ω(XI) . Thus we can define a distance measure on Ω(XI) as d(AI,BI)= 1-|AI∩BI|/Max(|AI|,|BI|). 

According to Lemma B.2, triangle inequality holds true for (Ω(XI) ,d). Thus, we also have that triangle 

inequality holds true for (Ω(X) ,dI), where dI(A,B)= 1-|AI∩BI|/Max(|AI|, |BI|). 

Example B.2 As shown in Figure B.3, let X be any set, from Lemma B.1, it follows that triangle inequality holds 

true for (Ω(X),d), (Ω(Xi),d), (Ω(Xj),d) and (Ω(XI),d) where d follows the form defined in Lemma B.1 

Theorem B.2. For any three graphs G1, G2 and G3 , let J={1,2,3…|X|}, I⊆J, then triangle inequality holds true for 
distance measure: dI(G1,G2)=1-|ΓI (G12)|/Max(|ΓI (G1)|,|ΓI(G2)|), where ΓI=∪(i∈I) Γi. 

Proof: From theorem B.1, for graphs G1, G2 and G3, we can construct G1’, G2’ and G3’ with certain vertex set V, such 
that (1) Gi≌Gi’ (i=1,2,3) and (2) Gij≌Gi’∩Gj’ for any i and j (i,j=1,2,3). 

Clearly, it follows that dI(Gi,Gj)=1-|ΓI (Gij)|/Max(|ΓI (Gi)|,|ΓI(Gj)|)=1-|ΓI (Gi’∩Gj’)|/Max(|ΓI (Gi’)|,|ΓI(Gj’)|)= 

dI(Gi’,Gj’)=dI(Ei’,Ej’). From Lemma B.6, we have that triangle inequality holds true for (Ω(V×V), dI). Hence we 

can conclude that triangle inequality holds true for dI defined on graph space. 
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