
Towards Predicting Query Execution Time for Concurrent
and Dynamic Database Workloads

Wentao Wu† Yun Chi‡ Hakan Hacıgümüş‡ Jeffrey F. Naughton†
†Department of Computer Sciences, University of Wisconsin-Madison

‡NEC Laboratories America
{wentaowu,naughton}@cs.wisc.edu, {ychi,hakan}@nec-labs.com

ABSTRACT
Predicting query execution time is crucial for many database man-
agement tasks including admission control, query scheduling, and
progress monitoring. While a number of recent papers have ex-
plored this problem, the bulk of the existing work either considers
prediction for a single query, or prediction for a static workload
of concurrent queries, where by “static” we mean that the queries
to be run are fixed and known. In this paper, we consider the
more general problem of dynamic concurrent workloads. Unlike
most previous work on query execution time prediction, our pro-
posed framework is based on analytic modeling rather than ma-
chine learning. We first use the optimizer’s cost model to estimate
the I/O and CPU requirements for each pipeline of each query in
isolation, and then use a combination queueing model and buffer
pool model that merges the I/O and CPU requests from concur-
rent queries to predict running times. We compare the proposed
approach with a machine-learning based approach that is a variant
of previous work. Our experiments show that our analytic-model
based approach can lead to competitive and often better prediction
accuracy than its machine-learning based counterpart.

1. INTRODUCTION
The ability to predict query execution time is useful for a number

of database management tasks, including admission control [32],
query scheduling [11], progress monitoring [19], and system siz-
ing [33]. The current trend of offering database as a service (DaaS)
makes this capacity even more attractive, since a DaaS provider
needs to honor service level agreements (SLAs) to avoid loss of
revenue and reputation. Recently, there has been substantial work
on query execution time prediction [3, 4, 7, 9, 15, 34]. Much of
this work focuses on predicting the execution time for a single stan-
dalone query [4, 9, 15, 34], while only a fraction of this work con-
siders the more challenging problem of predicting the execution
time for multiple concurrently-running queries [3, 7].

Predicting execution time for concurrent queries is arguably more
important than prediction for standalone queries, because database
systems usually allow multiple queries to execute concurrently. The

existing work on concurrent query prediction [3, 7], however, as-
sumes that the workload is static, namely, the queries participating
in the workload are known beforehand. While some workloads
certainly conform to this assumption (e.g., the report-generation
workloads described in [2]), others do not. Real-world database
workloads can be dynamic, in that the set of queries that will be
submitted to the system cannot be known a priori.

This paper takes a first step towards predicting query execution
times for database workloads that are both concurrent and dynamic.
Unlike the currently dominant paradigm of machine-learning based
approaches, which treat the underlying system as a black box, our
approach relies on analytic models that explicitly characterize the
system’s query evaluation mechanisms. We first use the optimizer’s
cost model to estimate the I/O and CPU requirements for each
query in isolation, and then use a combination queueing model and
buffer pool model that merges the I/O and CPU requests from con-
current queries to predict their running times.

Specifically, for a single query, the optimizer uses the query plan,
cardinality estimates, and cost equations for the operators in the
plan to generate counts for various types of I/O and CPU opera-
tions. It then converts these counts to time by using system-specific
parameters that capture the time each operation takes. In more de-
tail, for specificity consider the cost model used by the PostgreSQL
query optimizer:

EXAMPLE 1 (POSTGRESQL’S COST MODELS). PostgreSQL
uses a simple cost model for each operator O such that its execu-
tion cost (i.e., time) CO can be expressed as:

CO = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (1)

Here cs, cr , ct, ci, and co are cost units as follows:

1) cs: seq page cost, the I/O cost to sequentially access a page.

2) cr: random page cost, the I/O cost to randomly access a page.

3) ct: cpu tuple cost, the CPU cost to process a tuple.

4) ci: cpu index tuple cost, the CPU cost to process a tuple via
index access.

5) co: cpu operator cost, the CPU cost to perform an operation
such as hash or aggregation.

ns, nr , nt, ni, and no are then the number of pages sequentially
scanned, the number of pages randomly accessed, and so on, dur-
ing the execution of O. The total estimated cost of a query plan is
simply the sum of the costs of the individual operators in the plan.

For multiple concurrently-running queries, one could try to build
a generalization of the optimizer’s cost model that explicitly takes

1

Scan A Scan B

Scan B

Time
t1

q2

q1

t2 t3 t4 t5

Figure 1: Interactions between queries

into account the execution of other queries. For example, it could
make guesses as to what might be in the buffer pool; or what frac-
tion of the CPU this query will get at each point in execution; or
which sequential I/O’s will be converted to random I/O’s due to in-
terference, and so forth. But this seems very difficult if not impos-
sible. First, the equations capturing such a complex system will be
messy. Second, it requires very detailed knowledge about the exact
mix of queries that will be run and how the queries will overlap (in
particular, which parts of each query execution will overlap with
which parts of other query’s execution). This detailed knowledge
is not even available in a dynamic system.

Therefore, instead of building sophisticated extensions to the op-
timizer’s cost model, we retain the single query optimizer estimate,
but stop at the point where it estimates the counts of the opera-
tions required (rather than going all the way to time). We then use
a combination queueing model/buffer pool model to estimate how
long each concurrently running query will take.

More specifically, we model the underlying database system with
a queueing network, which treats hardware components such as
disks and CPU cores as service centers, and views the queries as
customers that visit these service centers. The n’s of a query are
then the numbers of visits it pays to the service centers, and the
c’s are the times spent on serving one single visit. In queueing
theory terminology, the c’s are the residence times per visit of a
customer, and can be computed with the well-known mean value
analysis technique [26, 29]. However, the queueing network cannot
account for the cache effect of the buffer pool, which might be
important for concurrent queries. Therefore, we further incorporate
a model to predict buffer pool hit rate [20], based on the “clock”
algorithm used by PostgreSQL.

However, queries are not uniform throughout, they change be-
havior as they go through different phases of their execution. Con-
sider a query q that is concurrently running with other queries. For
different operators of q, the cost units (i.e., the c’s) might have dif-
ferent values, depending on the particular operators running inside
q’s neighbors. Consider the following example:

EXAMPLE 2 (QUERY INTERACTIONS). Figure 1 shows two
queries q1 and q2 that are concurrently running. q1 starts at time
t1 and has 2 scan operators, with the first one scanning the tableA
and the second one scanning the table B. q2 starts at time t2 and
has only 1 scan operator that scans the table B. The I/O cost units
(i.e., cs and cr) of q1 between t2 and t3 are expected to be greater
than that between t1 and t2, due to the contention with q2 on disk
service after q2 joins. At time t3, the first scan of q1 finishes, and
the second one starts. The I/O cost units of q1 (and q2) are then
expected to decrease, since the contention on disk would be less
intensive for two scans over the same tableB than when one is over
A while the other is over B, due to potential buffer pool sharing.
At time t4, q1 finishes and q2 becomes the only query running in
the system. The I/O cost units of q2 are thus again expected to
decrease.

Therefore, to the queuing/buffer model, a query looks like a se-
ries of phases, each with different CPU and I/O demands. Hence,

rather than applying the models at the query level, we choose to ap-
ply them to each execution phase. The remaining issue is then how
to define the “phase” here. One natural choice could be to define
a phase to be an individual operator. However, a number of prac-
tical difficulties arise. A serious problem is that database queries
are often implemented using an iterator model [10]. When evalu-
ating a query, the operators are usually grouped into pipelines, and
the execution of operators inside a pipeline are interleaved rather
than sequential. For this reason, we instead define a phase to be
a pipeline. This fixes the issue of “interleaved phases” if a phase
were defined as an operator. By doing this, however, we implic-
itly assumed the requests of a query are relatively constant during
a pipeline and may only change at pipeline boundaries. In other
words, we use the same c’s for different operators of a pipeline. Of
course, this sacrifices some accuracy compared with modeling at
the operator level, and hence is a tradeoff between complexity and
accuracy. Nonetheless, modeling interactions at the pipeline level
is still a good compromise between doing it at the operator level
and doing it at the query level.

Nonetheless, this still leaves the problem of predicting the future.
Throughout the above discussion, we have implicitly assumed that
no knowledge is available about queries that will arrive in the fu-
ture, and our task is to estimate the running times of all concurrently
running queries at any point in time. If a new query arrives, the es-
timates for all other running queries will change to accommodate
that query. Of course, if information about future workloads were
available we could use that, but this is out of the scope of this paper.

We have compared our analytic-model based approach with a
machine-learning based approach that is a variant of the approach
used in [2, 3]. Our experimental evaluation over the TPC-H bench-
mark shows that, the analytic-model based approach can lead to
comparable and often better prediction accuracy than the machine-
learning based approach. Compared with machine-learning based
approaches, the benefit of using analytic models is three-fold:

• Universality: The analytic-model based approach does not rely
on any training data set and thus can work reasonably well even for
ad-hoc database workloads.

• Intelligibility: The analytic-model based approach provides a
white-box perspective that explicitly interprets the working mech-
anism of the database system and thus is easier to understand.

• Lightweight: By getting rid of the expensive training phase, the
analytic-model based approach is more efficient in terms of the
setup time required to deploy the system.

We thus regard the use of analytic models in query time prediction
for concurrent workloads as another contribution of this paper.

The rest of the paper is organized as follows. We first present
our predictive framework and give some analysis in Section 2. We
then describe the two approaches that combine cost estimates for
concurrently-running pipelines in Section 3, where Section 3.1 de-
scribes the machine-learning based approach, and Section 3.2 de-
scribes the analytic-model based approach, respectively. We present
experimental results in Section 4, summarize related work in Sec-
tion 5, and conclude the paper in Section 6.

2. THE FRAMEWORK
We present the details of our predictive framework in this sec-

tion. We first formally define the prediction problem we are con-
cerned with in this paper, then describe our solution and provide
some analysis.

2

q2

q3

Time
t1 t2 t3 t4 t5

q1

t6

(a) Execution of 3 queries

Time
t1

q1

(b) At time t1

q2

Time
t2

q1

t1

(c) At time t2

q2

q3

Time
t1 t2 t3

q1

(d) At time t3

Figure 2: Illustration of the prediction problem for multiple concurrently-running queries

2.1 Problem Definition
We use an example to illustrate the prediction problem. As shown

in Figure 2(a), suppose that we have three queries q1, q2, and q3 that
are concurrently running, which arrive at time t1, t2 and t3, respec-
tively. Accordingly, we have three prediction problems in total. At
t1, we need to predict the execution time for q1 (Figure 2(b)). Per-
fect prediction here would require the information of the upcoming
q2 and q3, which is unfortunately not available at t1. So the best
prediction for q1 at t1 has to be based on assuming that there will
be no query coming before q1 finishes. At t2, q2 joins and we need
to make a prediction for both q1 and q2 (Figure 2(c)). For q1, we
actually predict its remaining execution time, since it has been run-
ning for some time (the gray part). Perfect predictions would again
require the knowledge that q3 will arrive, which is unavailable at
t2. As a result, the best prediction at t2 needs the assumption that
no query will come before q1 and q2 end. The same argument can
be further applied to the prediction for q1, q2, and q3 at t3 (Fig-
ure 2(d)). We therefore define our prediction problem as:

DEFINITION 1 (PROBLEM DEFINITION). Let Q be a mix of
n queries Q = {q1, ..., qn} that are concurrently running, and
assume that no new query will come before Q finishes. Let s0 be
the start time of these n queries, and let fi be the finish time for the
query qi. Define Ti = fi − s0 to be the execution time of qi. The
problem we are concerned with in this paper is to build a predictive
modelM for {Ti}ni=1.

For instance, the prediction problem in Figure 2(d) is generated by
setting Q = {q1, q2, q3} and s0 = t3 in the above definition.

2.2 Query Decomposition
To execute a given SQL query, the query optimizer will choose

an execution plan for it. A plan is a tree such that each node of the
tree is a physical operator, such as sequential scan, sort, or hash
join. Figure 3 presents an example query and the execution plan
returned by the PostgreSQL query optimizer.

A physical operator can be either blocking or nonblocking. An
operator is blocking if it cannot produce any output tuple without
reading all of its input. For instance, the operator sort is a blocking
operator. In Figure 3, blocking operators are highlighted.

Based on the notion of blocking/nonblocking operators, the ex-
ecution of the query can then be divided into multiple pipelines.
As in previous work [6, 17], we define pipelines inductively, start-
ing from the leaf operators of the plan. Whenever we encounter
a blocking operator, the current pipeline ends, and a new pipeline
starts if any operators are remaining after we remove the current
pipeline from the plan. Therefore, a pipeline always ends with a
blocking operator (or the root operator). Figure 3 also shows the 5
pipelines P1 to P5 of the example execution plan.

By organizing concurrently running operators into pipelines, the
original plan can also be viewed as a tree of pipelines, as illustrated
in Figure 3. We assume that at any time, only one pipeline of the

Tables:

Students (sid, sname)

Enroll (sid, cid)

Courses (cid, cname)

SELECT S.sid, S.sname

FROM Students S, Enroll E, Courses C

WHERE S.sid = E.sid AND E.cid = C.cid

AND S.sid > 1 AND S.sid < 10

AND C.cid < 5 AND S.sname <> ‘Mike’

(a) Database and query

Hash_Join

Merge_Join

Hash

Sort Sort

Seq_Scan Index_Scan

Seq_Scan

Courses Enroll

Students

Hash

P1 P2

P3 P4

P5

(b) Execution plan

Figure 3: Example query and its execution plan.

plan is running in the database system, which is a common way
in current database implementations. The execution plan thus de-
fines a partial order over the pipelines. For instance, in the example
plan, the execution of P1 and P2 must precede P3, while the or-
der between P1 and P2 is arbitrary. Similarly, the execution of P3

and P4 must precede P5. The execution order of the pipelines can
usually be obtained by analyzing the information contained in the
plan. For example, in our implementation with PostgreSQL, we or-
der the pipelines based on estimating their start times by using the
optimizer’s running time estimates. We then decompose the plan
into a sequence of pipelines, with respect to their execution order.
For the example plan, suppose that the optimizer specifies that P1

precedes P2 and P3 precedes P4. Then the plan can be decomposed
into the sequence of pipelines: P1P2P3P4P5.

We further note here that, while in PostgreSQL each time there
is only one pipeline running for each query (since each query is
a single process in PostgreSQL), it is reasonable that multiple in-
dependent pipelines in a query could be executed in parallel on
multi-core machines. To incorporate this into the current frame-
work, we would require further information from the query plan
about the parallelism of operators in their execution. We might then
be able to represent the execution of a query as a dependency graph
of pipelines (currently it is a chain of pipelines), and the queue-
ing model (see Section 3.2.1) would sometimes have more than n

3

P11 P12 P13

P21 P22 P23

P31 P32

Time
s0 f21 f11 f22 f12 f31 f23 f32 f13

q1

q2

q3

Figure 4: Progressive predictor

pipelines (suppose that we have n queries). However, since we
have not tried such database systems yet, it is difficult for us to fig-
ure out the details at this time. We leave the investigation of this
aspect on parallel pipelines within the same query as one for inter-
esting future work.

2.3 Progressive Predictor
For the given mix of queries q1, ..., qn, after decomposing their

execution plans into sequences of pipelines, the mix of queries can
be viewed as multiple stages of mixes of pipelines. We illustrate
this with the following example:

EXAMPLE 3 (MIX OF PIPELINES). As presented in Figure 4,
suppose that we have a mix of 3 queries q1, q2, and q3. After de-
composition of their plans, q1 is represented as a sequence of 3
pipelines P11P12P13, q2 is represented as a sequence of 3 pipelines
P21P22P23, and q3 is represented as a sequence of 2 pipelines
P31P32. We use Pij to denote the jth pipeline of the ith query, and
use fij to denote the time when Pij finishes. It is easy to see that
whenever a pipeline finishes, we will have a new mix of pipelines.
For the example query mix in Figure 4, we will thus have 8 mixes of
pipelines in total, delimited by the red dash lines that indicate the
finish timestamps for the pipelines.

If we could know the fij’s, then it would be straightforward to
compute the execution time of the Pij’s and hence the qi. Suppose
that we have some model Mppl to predict the execution time of
a pipeline by assuming that its neighbor pipelines do not change.
We can then progressively determine the next finishing pipeline
and therefore its finish time. For example, in Figure 4, we first
callMppl for the mix of pipelines {P11, P21, P31}. Based on the
prediction fromMppl, we can learn that P21 is the next finishing
pipeline and we have a new mix of pipelines {P11, P22, P31} at
time f21. We then call Mppl for this new mix again. Note that
here we also need to adjust the prediction for P11 and P31, since
they have been running for some time. We then learn that P11 is
the next finishing pipeline for this mix and it finishes at time f11.
We proceed in this way until all the pipelines finish. The details of
this idea are presented in Algorithm 1.

Each pipeline Pij is associated with two timestamps: sij , the
(predicted) start timestamp of Pij ; and fij , the (predicted) finish
timestamp of Pij . The (predicted) execution time of Pij is thus
Tij = fij − sij . We also maintain the remaining ratio ρrij for
Pij , which is the percentage of Pij that has not been executed yet.
Algorithm 1 works as follows. For each query qi, we first call
the query optimizer to generate its execution plan Plani, and then
decompose Plani into a sequence of pipelines Pi, as illustrated in
Section 2.2 (line 1 to 4). The first pipeline Pi1 in each Pi is added
into the current mix CurrentMix. Its start timestamp si1 is set to
be 0, and its remaining ratio ρri1 is set to be 1.0 (line 6 to 10).

Algorithm 1 then proceeds stage by stage. It makes a prediction
of the initial mix of pipelines by calling the given modelMppl (line
13). As long as the current mix is not empty, it will determine the

Algorithm 1: Progressive Predictor
Input: Q = {q1, ..., qn}, a mix of n SQL queries;Mppl: a

model to predict the execution times for a mix of
pipelines

Output: {Ti}ni=1, where Ti is the predicted execution time of
the query qi

1 for 1 ≤ i ≤ n do
2 Plani ← GetP lan(qi);
3 Pi ← DecomposeP lan(Plani);
4 end
5
6 CurrentMix← ∅;
7 for 1 ≤ i ≤ n do
8 Add Pi1 ∈ Pi into CurrentMix;
9 si1 ← 0; ρri1 ← 1.0;

10 end
11
12 CurrentTS ← 0;
13 MakePrediction(CurrentMix,Mppl);
14 while CurrentMix 6= ∅ do
15 tmin ←MinPredictedT ime(CurrentMix);
16 CurrentTS ← CurrentTS + tmin;
17 Pij ← ShortestP ipeline(CurrentMix);
18 fij ← CurrentTS;
19 Tij ← fij − sij ;
20 Remove Pij from CurrentMix;
21 foreach Pik ∈ CurrentMix do
22 trik ← tik − tmin; // tik isMppl’s prediction for Pik

23 ρrik ← ρrik ·
trik
tik

;
24 end
25 if HasMoreP ipelines(Pi) then
26 Add Pi(j+1) into CurrentMix;
27 si(j+1) ← CurrentTS;
28 ρri(j+1) ← 1.0;
29 end
30 MakePrediction(CurrentMix,Mppl);
31 foreach Pik ∈ CurrentMix do
32 tik ← ρrik · tik;
33 end
34 end
35
36 for 1 ≤ i ≤ n do
37 Ti ← 0;
38 foreach pipeline Pij in qi do
39 Ti ← Ti + Tij ;
40 end
41 end
42 return {Ti}ni=1;

pipeline Pij with the shortest (predicted) execution time tmin. The
current (virtual) timestamp CurrentTS is forwarded by adding
tmin. The finish time fij of Pij is then set accordingly, and Pij is
removed from the current mix (line 15 to 20). For each remaining
pipeline Pik in the current mix, we update its remaining ratio ρrik
by multiplying it by trik

tik
, where tik is the predicted time of Pik

(at the beginning time of the current mix of pipelines), and trik is
the remaining (predicted) time of Pik when Pij finishes and exits
the current mix. trik = tik − tmin by definition (line 21 to 24).
Intuitively, trik

tik
is the relative remaining ratio of Pik at the end of

4

the current mix. If Pi contains more pipelines after Pij finishes,
we add the next one Pi(j+1) into the current mix, set si(j+1) to be
the current timestamp, and set ρri(j+1) to be 1.0 since the pipeline
is just about to start (line 25 to 29). Note that now the current mix
changes, due to removing Pij and perhaps adding in Pi(j+1). We
thus callMppl again for this new mix (line 30). However, we need
to adjust the prediction tik for each pipeline, by multiplying it with
its remaining ratio ρrik (line 31 to 33). The iteration then repeats by
determining the next finishing pipeline.

We call this procedure the progressive predictor. The remain-
ing problem is to develop the predictive modelMppl for a mix of
pipelines. We discuss our approaches in Section 3.

2.4 Analysis
We give some analysis to Algorithm 1, in terms of its efficiency

and prediction errors as the number of mixes increases.

2.4.1 Efficiency
WheneverMppl is called, we must have one pipeline in the cur-

rent mix that finishes and exits the mix. So the number of times
thatMppl is called cannot exceed the total number of pipelines in
the given query mix. Thus we have

LEMMA 1. Mppl is called at most
∑n

i=1 |Pi| times, where Pi

is the set of pipelines contained in the query qi.

It is possible that several pipelines may finish at the same (pre-
dicted) time. In this case, we remove all of them from the cur-
rent mix, and add each of their successors (if any) into the current
mix. We omit this detail in Algorithm 1 for simplicity of exposi-
tion. Note that if this happens, the number of times callingMppl

is fewer than
∑n

i=1 |Pi|.

2.4.2 Prediction Errors
Let the mixes of pipelines in the query mix be M1, ..., Mn. For

the mix Mi, let Ti and T ′i be the actual and predicted time for
Mi. The prediction error Di is defined as Di =

T ′
i−Ti

Ti
. So T ′i =

Ti(1 +Di). If Di > 0, then T ′i > Ti and it is an overestimation,
while if Di < 0, then T ′i < Ti and it is an underestimation. We
can view D1, ..., Dn as i.i.d. random variables with mean µ and
variance σ2. Let D be the overall prediction error. We have

D =
T ′ − T
T

=

∑n
i=1(T

′
i − Ti)

T
=

∑n
i=1 TiDi

T
,

where T =
∑n

i=1 Ti and T ′ =
∑n

i=1 T
′
i , and thus:

LEMMA 2. E[D] = µ, and V ar[D] =
∑n

i=1 T2
i(∑n

i=1 Ti

)2 σ2.

Since
(∑n

i=1 Ti

)2
=
∑n

i=1 T
2
i + 2

∑
1≤i<j≤n TiTj , we have(∑n

i=1 Ti

)2 ≥ ∑n
i=1 T

2
i and hence V ar[D] ≤ σ2, according

to Lemma 2. This means that the expected overall accuracy is no
worse than the expected accuracy of Mppl over a single mix of
pipelines. Intuitively, it is because Mppl may both overestimate
and underestimate some mixes of pipelines, the errors of which are
canceled with each other when the overall prediction is computed
by summing up the predictions over individual pipeline mixes. So
the key to improving the accuracy of the progressive predictor is to
improve the accuracy ofMppl.

3. PREDICTIVE MODELS
In this section, we present the predictive modelMppl for a mix

of pipelines. Mppl is based on the cost models used by query op-
timizers, which basically applies Equation (1) to each pipeline. As

discussed in the introduction, the key challenge is to compute the
c’s in Equation (1) when the pipelines are concurrently running.
In the following, we present two alternative approaches. One is
a new approach based on previously proposed machine-learning
techniques, and the other is a new approach based on analytic mod-
els reminiscent of those used by query optimizers. As in previous
work [3, 7], we target analytic workloads and assume that queries
are primarily I/O-bound.

3.1 A Machine-Learning Based Approach
The c’s are related to the CPU and I/O interactions between

pipelines. These two kinds of interactions are different. CPU inter-
actions are usually negative, namely, the pipelines are competing
with each other on sharing CPU usage. On the other hand, I/O in-
teractions can be either positive or negative [2] (see Example 2 as
well). Therefore, we propose separating the modeling of CPU and
I/O interactions.

For CPU interactions, we derive a simple model for the CPU-
related cost units ct, ci, and co. For I/O interactions, we extend the
idea in [2] based on machine-learning techniques to build regres-
sion models for the I/O-related cost units cs and cr . Ideally, we
need to handle cs and cr separately, and hence we need the ground
truth of cs and cr in the training data. Unfortunately, while we can
know the total I/O time of a query, we have no idea of how much
time is spent on sequential and random I/O’s respectively. There-
fore, we are not able to build separate predictive models for cs and
cr . Instead we build a single model to predict cdisk, and the I/O
time is computed as (ns + nr)cdisk. cdisk thus can be thought of
as the average I/O time per request.

3.1.1 Modeling CPU Interactions
In the following discussion, we use ccpu to represent ct, ci, or co.

Suppose that we havem CPU cores and n pipelines. Let the time to
process one CPU request be τ for a standalone pipeline. If m ≥ n,
then each pipeline can have its own dedicated CPU core, so the
CPU time per request for each pipeline is still τ , namely, ccpu = τ .
If m < n, then we have more pipelines than CPU cores. In this
case, we assume that the CPU sharing among pipelines is fair, and
the CPU time per request for each pipeline is therefore ccpu =
n
m
τ . Of course, the model here is simplified. In practice, the CPU

sharing among pipelines is not perfect, and some CPU cores may
become bottlenecks due to the unbalanced assignment of pipelines
to CPU cores. On the other hand, it may be too pessimistic to
assume that CPU contention will always happen. In practice, due
to CPU and I/O interleaving, not every pipeline is trying to seize
the CPU at the same time. So the real CPU contention can be less
intense than assumed by the model. We leave the improvement of
modeling CPU interactions for future work.

3.1.2 Modeling I/O Interactions
In previous work [2], the authors proposed an experiment-driven

approach based on machine learning. The idea is, assuming that
we know all possible queries (or query types/templates whose in-
stances have very close execution time) beforehand, we can then
run a number of sample mixes of these queries, record their exe-
cution time as ground truth, and train a regression model with the
data collected. This idea, however, cannot be directly applied to
dynamic workloads, since the number of possible unknown queries
can be infinitely many.

We now extend this idea to mixes of pipelines. As a first approx-
imation, we assume the only I/O’s performed by a query are due
to scans. Later, we relax this assumption. We have the following
observation:

5

OBSERVATION 1. For a specific database system implementa-
tion, the number of possible scan operators is fixed.

Basically, there are two kinds of scan operators when accessing a
table. One is sequential scan (SS), which directly scans the ta-
ble, one page after another. The other is index scan (IS), which
first finds the relevant search keys via some index, and then fetches
the corresponding records from the table if necessary. A particu-
lar database system may also have other variants of these two scan
operators. For example, PostgreSQL also implements another ver-
sion of index scan called bitmap index scan (BIS). It first builds
a list for the qualified record ID’s by looking up the index, and
then fetches the corresponding table pages according to their phys-
ical order on the disk. If the number of qualified records is big
(but still much smaller than the total number of records in the ta-
ble), then bitmap index scans can be more efficient than pure index
scans. Nonetheless, the total number of scan operators in a specific
database system is fixed.

We define a scan type to be a specific scan operator over a spe-
cific table. It is easy to see that:

OBSERVATION 2. For a specific database system implementa-
tion and a specific database schema, the number of possible scan
types is fixed.

For example, since the TPC-H benchmark database contains 8 ta-
bles, and PostgreSQL has 3 scan operators (i.e, SS, IS, and BIS),
the number of scan types in this case is 24.

Based on these observations, we can use the previous machine-
learning based approach for scan types instead of queries. Specif-
ically, in the training stage, we collect sample mixes of scans and
build regression models. For each mix of pipelines, we first iden-
tify the scans within each pipeline, and then reduce the problem
to mixes of scans so that the regression models can be leveraged.
Next, we discuss the feature selection and model selection problem
for this learning task.

Feature Selection. In [2], the following features were used. Let
Q1, ..., Qm be the query types, and let {q1, ..., qn} be the mix of
queries to predict. The feature vector of the mix is then (N1, ..., Nm),
where Nj is the number of qi’s that are instances of the type Qj .
However, this is based on the assumption that the instances of Qj

have very similar execution time. In our case, different instances
from the same scan type can have quite different execution time.
For example, an index scan with an equality predicate is expected
to be much faster than one with a range predicate.

We therefore add additional information from the query plan as
features as well. Intuitively, the I/O interactions are related to the
tables that the scans touch. If two scans are over different tables,
then they will interact negatively due to contention for the buffer
pool. Furthermore, if the two tables are on the same disk, this may
introduce additional random I/O’s into the scans and hence cause
more negative interactions between these two scans.However, if
two scans are over the same table, then they may also benefit each
other due to buffer pool sharing.

Moreover, the I/O interactions are also related to the number of
I/O’s the scans perform. For instance, two huge scans over different
tables are likely to suffer more severe buffer pool contention than
two small scans, while two huge scans over the same table may
perhaps benefit more on buffer pool sharing than two small scans.
For these reasons, we use the features in Table 1 to represent an
(instance) scan si in the mix, where tbli is the table accessed by si,
and N(si) is the set of neighbor scans of si in the mix.

The features F3 to F8 might be further split for each different
scan type. For example, F3 can be split into the number of neighbor

ID Description
F1 # of sequential I/O’s of si
F2 # of random I/O’s of si
F3 # of scans in N(si) that are over tbli
F4 # of sequential I/O’s from scans in N(si) that are over tbli
F5 # of random I/O’s from scans in N(si) that are over tbli
F6 # of scans in N(si) that are not over tbli
F7 # of sequential I/O’s from scans in N(si) that are not over tbli
F8 # of random I/O’s from scans in N(si) that are not over tbli

Table 1: Features of si

SS, IS and BIS instances that are over tbli. We compared both
options in our experiments. In addition, there is a special case when
a scan is over the inner relation of a nested-loop join operator. In
this case, the scan is performed multiple times, and therefore the
associated feature values such as F1 and F2 should be scaled up
accordingly.

Model Selection. We tested representatives of both linear mod-
els and nonlinear models. For linear models, we used multivari-
ate linear regression (MLR), and for nonlinear models, we used
REP regression trees (REP) [24]. We also tested the well-known
boosting technique that combines predictions from multiple mod-
els, which is generally believed to be better than a single model.
Specifically, we used additive regression [8] here, with shallow
REP trees as base learners. All of these models can be obtained
from the WEKA software package [12].

Training. To train the model, we constructed a set of training
mixes of queries. The queries were designed to be scans, and we
achieved this by using the very simple query template:

SELECT * FROM R WHERE condition

Here R is a table, and condition is a selection predicate over
the attributes of R. We used predicates with different selectivities
so that the query optimizer could pick different scan operators.

For each scan type, we generated a number of instance scans.
For each multiprogramming level (MPL), we then generated mixes
of instance scans via Latin Hypercube Sampling (LHS) [3, 7]. LHS
creates a hypercube with the same dimensionality as the given MPL.
Each dimension is divided into T equally probable intervals marked
with 1, 2, ..., T , where T is the number of scan types. The interval i
represents instances of the scan type i. LHS then selects T sample
mixes such that every value in every dimension appears in exact
one mix. Intuitively, LHS has better coverage of the space of mixes
than uniformly random sampling, given that the same number of
samples are selected.

After generating the training mixes of scans, we need to run them
to collect their execution times. Note that, the phrase “the execu-
tion time of a scan when it is running with other scans” implicitly
assumes that the neighbors will not change during the execution of
the scan. To simulate this, we kept on running each scan in the
mix, until every scan finished at least k times (we set k = 3 in
our experiments). This means, whenever a scan finished, we would
immediately run it again. We took the average of the k execution
times recorded as the ground truth for the scan.

Discussion. We assumed for simplicity that the I/O’s of a query
were only from scans. We now return to this issue. In practice, the
I/O’s from certain operators (e.g., hash join) due to spilling interme-
diate results to disk are often not negligible. We have observed in
our experiments that completely eliminating these additional I/O’s
from the model can harm the prediction accuracy by 10% to 30%.

6

Therefore, we choose to incorporate these I/O’s into the current
model as much as possible. Specifically, we treat the additional
I/O’s as if they were scans over the underlying tables. For example,
PostgreSQL uses the hybrid hash join algorithm. If the partitions
produced in the building phase cannot fit in memory, they will be
written to disk and read back in the probing phase. This causes ad-
ditional I/O’s. Now suppose that R ./ S is a hash join between the
table R and S. The additional I/O’s are then deemed as additional
sequential scans over R and S, respectively.

3.2 An Analytic-Model Based Approach
The machine-learning based approach suffers the same problem

of infinite number of unknown queries as before. Specifically, the
sample space of training data moves from mixes of queries to mixes
of (instance) scans. Note that, although the number of scan types
is finite, each scan type can have infinitely many instances. So the
number of mixes of instance scans is still infinite. It could be imag-
ined (and also verified in our experimental evaluation) that if the
queries contain scans not observed during training, then the predic-
tion is unlikely to be good.

In this section, we present a different approach based on analytic
models. Specifically, we model the underlying database system
with a queueing network. The c’s in Equation (1) are equivalent
to the resident times per visit of the pipelines within the network,
and can be computed with standard queueing-network evaluation
techniques. Since the queueing network is incapable of character-
izing the cache effect of the buffer pool, we further incorporate an
analytic model to predict the buffer pool hit rate.

3.2.1 The Queueing Network
As shown in Figure 5, the queueing network consists of two ser-

vice centers, one for the disks, and the other for the CPU cores.
This is a closed model with a batch workload (i.e., a terminal work-
load with a think time of zero) [14]. The customers of this queueing
system are the pipelines in the mix. In queueing theory terminol-
ogy, the execution time of a pipeline is its residence time in the
queueing network.

If both service centers only contain a single server, then it is
straightforward to apply the standard mean value analysis (MVA)
technique [26] to solve the model. In practice, we usually use the
approximate version of MVA for computational efficiency. The re-
sults obtained via exact and approximate MVA are close to each
other [14]. However, if some service center has multiple servers,
the standard technique cannot be directly used, and we instead use
the extended approach presented in [29].

The queueing system shown in Figure 5 can be described by the
following set of equations:

Rk,m = τk + Ykτk
∑
j 6=m

Qk,j , (2)

Qk,j =
Vk,jRk,j∑K
i=1 Vi,jRi,j

, (3)

Yk =
1

Ck
ρ4.464(C

0.676
k −1), (4)

ρk =
τk
Ck

M∑
j=1

Vk,j∑K
i=1 Vi,jRi,j

, (5)

where k ∈ {cpu, disk}, and 1 ≤ m ≤ M (M is the number
of customers). Table 2 illustrates the notations used in the above
equations. Our goal is to compute the residence time Rk,m per
visit for each customer m at each service center k.

.

.

.

Disk CPU

.

.

.

Figure 5: A queueing network

Notation Description
Ck # of servers in (service) center k
τk Mean service time per visit to center k
Yk Correction factor of center k
ρk Utility of center k
Vk,m Mean # of visits by customer m to center k
Qk,m Mean queue length by customer m at center k
Rk,m Mean residence time per visit by customer m to center k

Table 2: Notations used in the queueing model

The input parameters of the equations are the τk’s and Vk,m’s.
τk is the mean service time per visit to the service center k. For
example, τdisk is the average time for the disk to perform an I/O
operation. The τk’s should be the same as the cost units used for
estimating the execution time of a single standalone query. For
PostgreSQL, however, we have 5 cost units but we only need 2
τk’s. We address this issue by picking a base cost unit and trans-
form all the other cost units into equivalent amounts of base cost
units, with respect to their relative ratios. For example, for the spe-
cific machine used in our experiments (see Table 4 in Section 4),
we know that cr = 11.3cs, which means the time of 1 random I/O
is equivalent to 11.3 sequential I/O’s. In our experiments, we pick
τdisk = cr and τcpu = ct as the base I/O and CPU cost unit (the
other choices are also OK). Then the number of I/O and CPU visits
Vk,m of a pipeline are (nr + ns · cscr) and (nt + ni · cict + no · coct).
The n’s of a pipeline are computed based on the n’s of each oper-
ator in the pipeline. Specifically, suppose that a pipeline contains
l operators O1, ..., Ol. Let nj (nj can be any of the ns, nr , etc)
be the optimizer’s estimate for the operator Oj . The corresponding
quantity for the pipeline is then

∑l
j=1 nj .

If there is only one server in the service center k (i.e., Ck = 1),
then Yk = 1 by Equation (4). Equation (2) is then reduced to
the case of standard MVA, which basically says that the residence
time Rk,m is sum of the service time τk and the queueing time
τk
∑

j 6=mQk,j . The expression of the queueing time is intuitively
the sum of the queueing time of the customers other than the cus-
tomer m, each of which in turn is the product of the queue length
for each class (i.e., Qk,j) and their service time (i.e., τk).

When there are multiple servers in the service center, intuitively
the queueing time would be less than if there were only one server.
The correction factor Yk is introduced for this purpose. The for-
mula of Yk in Equation (4) was derived in [29], and was shown to
be good in their simulation results.

By substituting Equation (3) to (5) into Equation (2), we can
obtain a system of nonlinear equations where the only unknowns
are the Rk,m’s. We use the fsolve function of Scilab [27] to
solve this system. Any other equivalent solver can be used as well.

3.2.2 The Buffer Pool Model
The weakness of the queueing network introduced above is that

it does not consider the effect of the buffer pool. Actually, since
the buffer pool plays the role of eliminating I/O’s, it cannot be
viewed as a service center and therefore cannot be modeled within

7

Notation Description
n0 Mean # of buffer pages with count 0
m Overall buffer pool miss rate
Sp # of pages in partition p
rp Probability of accessing partition p
Ip Maximum value of the counter of partition p
Np Mean # of buffer pool pages from partition p
hp Buffer pool hit rate of partition p

Table 3: Notations used in the buffer pool model

the queueing network. We hence need a special-purpose model
here to predict the buffer pool hit rate. Of course, different buffer
pool replacement policies need different models. We adapt the ana-
lytic model introduced in [20] for the “clock” algorithm that is used
in PostgreSQL. If a system uses a different algorithm (e.g., LRU,
LRU-k, etc), a different model should be used.

The clock algorithm works as follows. The pages in the buffer
pool are organized in a circular queue. Each buffer page has a
counter that is set to its maximum value when the page is brought
into the buffer pool. On a buffer miss, if the requested page is not
in the buffer pool and there is no free page in the buffer, a current
buffer page must be selected for replacement. The clock pointer
scans the pages to look for a victim. If a page has count 0, then this
page is chosen for replacement. If a page has a count larger than
0, then the count is decreased by 1 and the search proceeds. On a
buffer hit, the counter of the page is reset to its maximum value.

The analytic approach in [20] models this procedure by using a
Markov chain. Suppose that we have P partitions in the system (we
will discuss the notion of partition later). Let hp be the buffer pool
hit rate for the partition p, where 1 ≤ p ≤ P . hp can be obtained
by solving the following system of equations:

P∑
p=1

Sp

(
1− 1

(1 + n0
m

rp
Sp

)Ip+1

)
−B = 0, (6)

Np = Sp

(
1− 1

(1 + n0
m

rp
Sp

)Ip+1

)
, (7)

hp =
Np

Sp
. (8)

The notations used in the above equations are illustrated in Table 3.
By Equation (7) and (8),

mp = 1− hp = [(1 +
n0

m

rp
Sp

)Ip+1]−1

represents the buffer miss rate of the partition p. Note that n0 can
be thought of as the number of buffer misses that can be handled in
one clock cycle. As a result, n0

m
is the number of buffer accesses

(including both buffer hits and misses) in one clock cycle. Hence
n0
m

rp
Sp

is the expected number of accesses to a page in the parti-
tion p. Intuitively, the higher this number is, the more likely the
page is in the buffer pool and hence the smaller mp could be. The
expression of mp thus captures this intuition.

It is easy to see that we can determine the quantity n0
m

from
Equation (6), since it is the only unknown there. We can then figure
out Np and hence hp by examining Equation (7) and Equation (8),
respectively. To solve n0

m
from Equation (6), define

F (t) =

P∑
p=1

Sp

(
1− 1

(1 + t · rp
Sp

)Ip+1

)
−B.

We have F (0) = −B < 0, and F (+∞) = limt→+∞ F (t) =(∑P
p=1 Sp

)
− B > 0, since we except the size of the database

∑P
p=1 Sp is bigger than the size of the buffer pool B (in pages).

Since F (t) is strictly increasing as t increases, we know that there
is some t0 ∈ [0,+∞) such that F (t0) = 0. We can then use a
simple but very efficient bisection method to find t0 [20]. Here, B,
{Sp}Pp=1, and {Ip}Pp=1 are measurable system parameters. {rp}Pp=1

can be computed based on {Sp}Pp=1 and the number of I/O accesses
to each partition, which can be obtained from the query plans.

The remaining issue is how to partition the database. The par-
titioning should not be arbitrary because the analytic model is de-
rived under the assumption that the access to database pages within
a partition is uniform. An accurate partitioning thus requires infor-
mation about access frequency of each page in the database, which
depends on the particular workload to the system. For the TPC-H
workload we used in our experiments, since the query templates are
designed in some way that a randomly generated query instance is
equally likely to touch each page,1 we simplified the partitioning
procedure by treating each TPC-H table as a partition. In a real de-
ployed system, we can further refine the partitioning by monitoring
the access patterns of the workload [20].

3.2.3 Put It Together
The complete predictive approach based on the analytic models

is summarized in Algorithm 2. We first call the analytic model
Mbuf to make a prediction for the buffer pool hit rate hp of each
partition p (line 1). Since only buffer pool misses will cause actual
disk I/O’s, we discount the disk visits Vdisk,i,p of each partition
p accessed by the pipeline i with the buffer pool miss rate (1 −
hp). The disk visits Vdisk,i of the pipeline i is the sum of its visits
to each partition (line 2 to 7). We then call the queueing model
Mqueue to make a prediction for the residence time per visit of
the pipeline i in the service center k, where k ∈ {cpu, disk} (line
8). The predicted execution time Ti for the pipeline i is simply
Ti = Vcpu,iRcpu,i + Vdisk,iRdisk,i (line 10).

Algorithm 2:Mppl based on analytic models

Input: {P1, ..., Pn}, a mix of n pipelines;Mqueue: the
queueing model;Mbuf : the buffer pool model

Output: {Ti}ni=1, where Ti is the predicted execution time of
the pipeline Pi

1 {hp}Pp=1 ← PredictHitRate(Mbuf);
2 for 1 ≤ i ≤ n do
3 Vdisk,i ← 0;
4 foreach partition p accessed by Pi do
5 Vdisk,i ← Vdisk,i + Vdisk,i,p(1− hp);
6 end
7 end
8 {Rk,i}ni=1 ← PredictResT ime(Mqueue, {Vk,i}ni=1);
9 for 1 ≤ i ≤ n do

10 Ti ← Vcpu,iRcpu,i + Vdisk,iRdisk,i;
11 end
12 return {Ti}ni=1;

It might be worth noting that, the queueing model here is equiv-
alent to the optimizer’s cost model when there is only one single
pipeline. To see this, notice that the

∑
j 6=mQk,j in the second

summand of Equation (2) vanishes if there is only one customer.
1Specifically, the TPC-H benchmark database is uniformly gener-
ated. The TPC-H queries usually use pure sequential scans or index
scans with range predicates to access the tables. If it is a sequential
scan, then clearly the access to the table pages is uniform. If it is an
index scan, the range predicate is uniformly generated so that each
page in the table is equally likely to be touched.

8

Therefore, we simply have Rk,m = τk in this case. Due to the use
of base cost units, no information is lost when multiplying Vk,m by
τk. Specifically, for example, suppose that k = disk. We have

Vdisk,m · τdisk = (nr + ns ·
cs
cr

) · cr = nr · cr + ns · cs,

which is the same as the optimizer’s estimate. Since the progres-
sive predictor degenerates to summing up the predicted time of
each individual pipeline if there is only one query, the predicted
execution time of the query is therefore the same as what if the
optimizer’s cost model is used. In this regard, for single-query exe-
cution time prediction, the analytic-model based approach here can
also be viewed as a new predictor based on the optimizer’s cost
model, with the addition of the buffer pool model.

4. EVALUATION
In this section, we present our experimental evaluation results of

the proposed approaches. We measure the prediction accuracy in
terms of mean relative error (MRE), a metric used in [3, 7]. MRE
is defined as

1

N

N∑
i=1

|T pred
i − T act

i |
T act
i

.

Here N is the number of testing queries, T pred
i and T act

i are the
predicted and actual execution time of the testing query i. We mea-
sured the additional overhead of the prediction approaches as well.

4.1 Experimental Setup
We evaluated our approaches with the TPC-H 10GB benchmark

database. We used TPC-H workloads as well as workloads for
micro-benchmarking purposes. In our experiments, we varied the
multiprogramming level (MPL), i.e., the number of queries that
were concurrently running, from 2 to 5.All the experiments were
conducted on a machine with dual Intel 1.86 GHz CPU and 4GB
of memory. We ran PostgreSQL 9.0.4 under Linux 3.2.0-26.

4.1.1 Workloads
We used the following two TPC-H-based workloads and three

micro-benchmarking workloads in our experiments:

I. TPC-H workloads

• TPC-H1: This is a workload created with 9 TPC-H query tem-
plates that are of light to moderate weight queries. Specifically, the
templates we used are TPC-H queries 1, 3, 5, 6, 10, 12, 13, 14, and
19. We choose light to moderate queries because they allow us to
explore higher MPL’s without overloading the system [7]. For each
MPL, we then generated mixes of TPC-H queries via Latin Hyper-
cube Sampling (LHS) [3, 7]. LHS creates a hypercube with the
same dimensionality as the given MPL. Each dimension is divided
into T equally probable intervals marked with 1, 2, ..., T , where
T is the number of templates. The interval i represents instances
of the template i. LHS then selects T sample mixes such that ev-
ery value in every dimension appears in exact one mix. Intuitively,
LHS has better coverage of the space of mixes than uniformly ran-
dom sampling, given that the same number of samples are selected.
The purpose of TPC-H1 is to compare different approaches over
uniformly generated query mixes.

• TPC-H2: This workload is generated in the same way as we cre-
ated TPC-H1. In addition to the 9 templates there, we added 3 more
expensive TPC-H templates 7, 8, and 9. The purpose is to test the

approaches under a more diverse workload, in terms of the distri-
bution of query execution times. Figure 6 compares the variance in
query execution times of TPC-H1 and TPC-H2, by presenting the
mean and standard deviation (shown as error bars) of the execution
times of queries in each TPC-H template. As we can see, the exe-
cution times of some queries (e.g., Q3 and Q5) are much longer in
TPC-H2 than in TPC-H1, perhaps due to the more severe interac-
tions with the three newly-added, long-running templates.

 200

 300

 400

 500

 600

 700

 800

 900

1 3 5 6 10 12 13 14 19

E
xe

cu
tio

n
T

im
e

(s
)

TPC-H Template

(a) TPC-H1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 3 5 6 7 8 9 10 12 13 14 19

E
xe

cu
tio

n
T

im
e

(s
)

TPC-H Template

(b) TPC-H2

Figure 6: Variance in query execution times

II. Micro-benchmarking workloads

• MB1: This is a workload with 36 mixes of queries, 9 for each
MPL from 2 to 5. A mix for MPL m contains m queries of the
following form:

SELECT * FROM lineitem
WHERE l_partkey > a and l_partkey < b.

Here l partkey is an attribute of the lineitem table with an unclus-
tered index. The values of l partkey is between 0 and 2,000,000.
We vary a and b to produce index scans with data sharing ratio 0,
0.1, ..., 0.8. For example, when MPL is 2, if the data sharing ratio
is 0, the first scan is generated with a = 0 and b = 1, 000, 000,
and the second scan is generated with a = 1, 000, 000 and b =
2, 000, 000; if the data sharing ratio is 0.2, then the first scan is
generated with a = 0 and b = 1, 111, 111, while the second scan
is generated with a = 888, 888 and b = 2, 000, 000. The purpose
of MB1 is to compare different approaches over query mixes with
different data sharing ratios.

•MB2: This is a workload with mixes that mingle both sequential
and index scans. We focus on the two biggest tables lineitem and
orders. For each table, we include 1 sequential scan and 5 index
scans, and there is no data sharing between the index scans. For
each MPL from 2 to 5, we generate query mixes by enumerating

9

Optimizer Parameter Calibrated µ (ms) Default
seq page cost (cs) 8.52e-2 1.0
rand page cost (cr) 9.61e-1 4.0
cpu tuple cost (ct) 2.04e-4 0.01
cpu index tuple cost (ci) 1.07e-4 0.005
cpu operator cost (co) 1.41e-4 0.0025

Table 4: Actual values of PostgreSQL optimizer parameters

all possible combinations of scans. For example, when MPL is 2,
we can have 10 different mixes, such as 2 sequential scans over
lineitem, 1 sequential scan over lineitem and 1 sequential scan over
orders, and so on. Whenever an index scan is required, we ran-
domly pick one from the five candidates. The purpose of MB2 is to
compare different approaches over query mixes with different pro-
portion of sequential and random accesses.

• MB3: This is a workload similar to MB2, for which we replace
the scans in MB2 with TPC-H queries. We do this by classifying
the TPC-H templates based on their scans over the lineitem and
orders table. For example, the TPC-H Q1 contains a sequential
scan over lineitem, andQ13 contains a sequential scan over orders.
When generating a query mix, we first randomly pick a TPC-H
template containing the required scan, and then randomly pick a
TPC-H query instance from that template. The purpose of MB3 is
to repeat the experiments on MB2 with less artificial, more realistic
query mixes.

4.1.2 Calibrating PostgreSQL’s Cost Models
Both the machine-learning and analytic-model based approaches

need the c’s and n’s from the query plan as input. However, the
crude values of these quantities might be incorrect and hence are
not ready for use. The default values of the c’s are usually arbitrar-
ily set by the optimizer developers based on their own experience,
and therefore are often not correct for a specific hardware config-
uration. Meanwhile, the n’s are closely related to cardinality es-
timation, which are also likely to be erroneous, if the assumptions
used by the optimizer such as uniformity and independence do not
hold on the real data distribution. We can use the framework pro-
posed in our recent work [34] to calibrate the c’s and n’s. For the
c’s, a set of calibration queries are used to profile the underlying
database system. Table 4 presents the calibrated values for the 5
cost units on the machine used in our experiments. For the n’s, a
sampling-based approach is used to refine the cardinality estimates.
In our following experiments, we set the sampling ratio to be 0.05
(i.e., the sample size was 5% of the database size).

4.1.3 Settings for Machine Learning
As mentioned before, the TPC-H benchmark database consists

of 8 tables, 6 of which have indexes. Also, there are 3 kinds of
scan operators implemented by PostgreSQL, namely, sequential
scan (SS), index scan (IS), and bitmap index scan (BIS). There-
fore, we have 8 SS scan types, one for each table, and 6 IS scan
types, one for each table with some index. Since BIS’s are rare, we
focus on the two biggest tables lineitem and orders for which we
observed the occurrences of BIS’s in the query plans. By including
these 2 BIS scan types, we have 16 scan types in total. We then use
Latin Hypercube Sampling (LHS) to generate sample mixes of scan
types. For a given sample mix, we further randomly generate an in-
stance scan for each scan type in the mix. Since we have 16 scan
types, each run of LHS can generate 16 sample mixes. While we
can run LHS many times, executing these mixes to collect training
data is costly. Hence, for each MPL, we run LHS 10 times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

LR REP AR

R
el

at
iv

e
E

rr
or

Machine-Learning Model

Feature Set 1 (F1 to F8)
Feature Set 2 (Split F3 to F8)

Figure 7: Prediction error on 5-way cross validation

Impact of Features. In Figure 7, we compare the average MRE
and the standard deviation (shown as error bars) over the 16 scan
types for different machine-learning models. Here, LR, REP and
AR are linear regression, REP trees, and additive regression, re-
spectively. For each machine-learning model, we tested two dif-
ferent sets of features. For the first set the features F1 to F8 (see
Section 3.1.2) are used, and for the second set the features F3 to
F8 are further split with respect to different scan types (i.e., SS, IS,
and BIS).

As we can see, using more features does not help reduce the pre-
diction error. In fact, the observed prediction errors when more fea-
tures are used are even a little bit larger than their counterparts. One
possible reason might be that the correlation between the features
and the target variable does not change much or is even weaker
when splitting F3 to F8. Therefore, in our following experiments
we use the features F1 to F8 without further split.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

LR
REP
AR

(a) TPC-H1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

LR
REP
AR

(b) TPC-H2

Figure 8: Prediction errors on the TPC-H workloads for differ-
ent machine-learning models

Impact of Machine-Learning Models. We tested the pre-
diction accuracy of different machine-learning models over the two

10

TPC-H workloads. Figure 8 presents the results. We find that REP
trees outperform linear regression across the four MPL’s we tested,
which implies the nonlinear correspondence between the features
and the target variable cdisk. Moreover, it is a bit surprising that
REP trees are also better than additive regression. One possible
reason might be, although boosting is believed to be better than a
single learner, this belief is based on the assumption that the testing
data and training data are generated following the same distribu-
tion. In our case, this assumption does not hold. We collect training
scans via LHS, but this distribution may not match the distribution
of scans in the TPC-H workload. Therefore, in our following exper-
iments we choose to use REP trees as the machine-learning model.

4.1.4 Settings for Analytic Models
The queueing model needs the calibrated c’s (in Table 4) and n’s

as input. In addition, the buffer pool model also requires a dozen
parameters. Table 5 lists the values of these parameters for the
system and database configurations used in our experiments.

Parameter Description Value
B # of buffer pool pages 439,463
Ip Max counter value (for all p) 5
Slineitem # of pages in lineitem 1,065,410
Sorders # of pages in orders 253,278
Spartsupp # of pages in partsupp 170,916
Spart # of pages in part 40,627
Scustomer # of pages in customer 35,284
Ssupplier # of pages in supplier 2,180
Snation # of pages in nation 1
Sregion # of pages in region 1

Table 5: Values of buffer pool model parameters

4.2 Prediction Accuracy
We evaluated the accuracy of our approaches with the five work-

loads described in Section 4.1.1. To see the effectiveness of our
approaches, in our evaluation we also included a simple baseline
approach:

Baseline: For each query in the mix, predict its execution time as
if it were the only query running in the database system, by using
the method described in [34]. Then multiply it with the MPL (i.e.,
the number of queries in the mix) as the prediction for the query.
Intuitively, this approach ignores the impact of interactions from
different neighbors of the query. It will produce the same prediction
for the query as long as the MPL is not changed.

4.2.1 Results on TPC-H Workloads
Figure 9 and 10 present the prediction errors over the two TPC-

H workloads TPC-H1 and TPC-H2. On TPC-H1, the accuracy of
the analytic-model based and the machine-learning based approach
are close, both outperforming the baseline approach by reducing
the error by 15% to 30% (Figure 9). This performance improve-
ment may not be very exciting, regarding the simplicity of the base-
line approach. However, we note here that this is because of the
way the workload is generated rather than the problem of our ap-
proaches. The workload TPC-H1 turns out to be relatively easy to
predict (the errors of all approaches are relatively small). When we
move to the more diverse workload TPC-H2, the prediction accu-
racy of the baseline approach deteriorates dramatically (Figure 10),
while its two competitors retain close prediction accuracy as what
is observed on TPC-H1. Nonetheless, it is important to include
the baseline to show that sometimes it does surprisingly well, and

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 9: Prediction error on TPC-H1 for different approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 10: Prediction error on TPC-H2 for different ap-
proaches

makes it challenging to improve substantially over that baseline.
We also observe that, on TPC-H2, the analytic-model based ap-
proach slightly outperforms the machine-learning based approach
by improving the prediction accuracy by about 10%.

We further compared the prediction accuracy by using the true
cardinalities instead of using the refined ones via sampling. The
purpose is to investigate the effectiveness of the proposed approaches
if we were able to get perfect cost estimates. Figure 11 presents the
results. As we can see, the prediction accuracy by using the refined
cardinalities via sampling is quite close to that by using the true
cardinalities.

4.2.2 Results on Micro-Benchmarking Workloads
Since the TPC-H workloads were generated via LHS, they only

covered a small fraction of the whole space of possible query mixes.
As a result, many particular kinds of query interactions might not
be captured. We therefore evaluated the proposed approaches over
the three micro-benchmarking workloads as well, which were more
diverse than the TPC-H workloads in terms of query interactions.
Figure 12 to 14 present the results.

On MB1, the prediction errors of the machine-learning based
and the baseline approach are very large, while the errors of the
analytic-model based approach remain small (Figure 12). The base-
line approach fails perhaps because it does not take the data sharing
between queries into consideration. We observed consistent overes-
timation made by the baseline approach, while the analytic-model
based approach correctly detected the data sharing and hence lever-
aged it in buffer pool hit rate prediction. The machine-learning
based approach is even worse than the baseline approach. This is
because we train the model with mixes of scans generated via LHS,
which are quite different from the mixes of scans in MB1. MB1 fo-
cuses on heavy index scans over a particular table. In typical LHS
runs, very few samples can be obtained from such a specific region
since the goal of LHS is to uniformly cover the whole huge space

11

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model-Sampling
Analytic-Model-True-Card
ML-Sampling
ML-True-Card

(a) TPC-H1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model-Sampling
Analytic-Model-True-Card
ML-Sampling
ML-True-Card

(b) TPC-H2

Figure 11: Comparison of prediction errors on the TPC-H
workloads by using the true cardinalities v.s. the refined car-
dinalities via sampling

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 12: Prediction error on MB1 for different approaches

of query mixes.
The prediction errors of the baseline approach remain large on

the workloads MB2 and MB3 (Figure 13 and 14). This is not
surprising, since the query interactions in MB2 and MB3 are ex-
pected to be much more complicated and diverse than they are in
the TPC-H workloads. It is hard to believe that a model ignoring
all these interactions can work for these workloads. Meanwhile,
the analytic-model based approach is still better than the machine-
learning based approach on MB2, by reducing the prediction errors
by 20% to 25%, and they are comparable on MB3. One possi-
ble reason for this improvement of the machine-learning based ap-
proach may be that the interactions in MB2 and MB3 are closer
to what it learnt during training. Recall that we intentionally en-
force no data sharing among the index scans used to generate MB2
and MB3, and hence the index scans are somewhat independent of
each other. This is similar to what LHS did in training, for which
the scans in a mix are independently generated. This is quite differ-
ent for MB1, however, where the queries are correlated due to data
sharing.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 13: Prediction error on MB2 for different approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 14: Prediction error on MB3 for different approaches

4.2.3 Sensitivity to Errors in Cardinality Estimates
Both the machine-learning based and the analytic-model based

approach rely on the n’s from the query plans. Since the accuracy
of the n’s depends on the quality of cardinality estimates, which
are often erroneous in practice, a natural question is then how sen-
sitive the proposed approaches are to the potential errors presented
in cardinality estimates.

We investigated this question for the analytic-model based ap-
proach, which, as we have seen, outperformed its machine-learning
counterpart on the workloads we tested. We studied this by feeding
the optimizer with cardinalities generated by perturbing the true
cardinalities. Specifically, consider an operator O with true input
cardinality NO . Let r be the error rate. In our perturbation experi-
ments, instead of usingNO , we usedN ′O = NO(1+r) to compute
the n’s of O. We considered both biased and unbiased errors. The
errors are biased if we use the same error rate r for all operators
in the query plan, and the errors are unbiased if each operator uni-
formly randomly draws r from some interval (−R,R).

Figure 15 shows the results on the TPC-H1 workload. We ob-
serve that in the presence of biased errors, the prediction errors in-
crease in proportion to the errors in cardinality estimates. However,
the prediction errors often increase more slowly than the cardinality
estimation errors. For example, in Figure 15(a), the mean predic-
tion error increases from 0.36 to 0.47 for MPL 5 when r increases
from 0 to 0.6. On the other hand, the prediction accuracy is more
stable in the presence of unbiased errors. As shown in Figure 15(b),
the prediction errors are almost unchanged when R increases from
0 to 0.4. The intuition for this is that if the errors are unbiased, then
for each operator in the query plan, it is equally likely to overesti-
mate or underestimate its cardinalities. Therefore, the errors might
cancel each other when making prediction for the entire query. Fig-
ure 16 further presents results on the TPC-H2 workload, which are
similar to that observed on TPC-H1.

The robustness of the proposed approach to small or medium
errors in cardinality estimates might be partially attributed to the

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

R
el

at
iv

e
E

rr
or

r

MPL = 2
MPL = 5

(a) Biased errors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e
E

rr
or

R

MPL = 2
MPL = 5

(b) Unbiased errors

Figure 15: Sensitivity of prediction accuracy on TPC-H1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

R
el

at
iv

e
E

rr
or

r

MPL = 2
MPL = 5

(a) Biased errors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e
E

rr
or

R

MPL = 2
MPL = 5

(b) Unbiased errors

Figure 16: Sensitivity of prediction accuracy on TPC-H2

robustness of the progressive predictor (Section 2.3) in determin-
ing the next pipeline to be finished. As long as every time it can
make the right choice, the predicted transitions between consecu-
tive pipeline combinations will be the same as that in the real ex-
ecution, and therefore the prediction errors will intuitively be pro-
portional to the errors in cardinality estimates. To verify this, we

further conducted experiments to analyze the variation in the tran-
sitions of pipeline combinations with respect to cardinality estima-
tion errors.

Specifically, we use the following encoding scheme to represent
the execution of a query mix. As in Example 3 (Section 2.3), let
Pij be the jth pipeline of the ith query. We use the string “(i,j)”
to encode Pij . A pipeline combination is represented by sorting
its pipelines {Pij} with respect to i then j. For example, the first
combination in Figure 4 {P11, P21, P31} is encoded with the string
“(1,1)(2,1)(3,1)”. The execution of a query mix is then rep-
resented by cascading the pipeline combinations with “-”. For in-
stance, the execution of the query mixes in Figure 4 is encoded as
“(1,1)(2,1)(3,1)-(1,1)(2,2)(3,1)-(1,2)(2,2)
(3,1)-(1,2)(2,3)(3,1)-(1,3)(2,3)(3,1)-(1,1)
(2,3)(3,2)-(1,3)(3,2)-(1,3)”. We then measure the
similarity of two executions with the edit distance2 between their
string representations.

Figure 17 presents the results with respect to biased errors. Here,
the edit distance is between the predicted execution (i.e., transitions
of pipeline combinations) by using the perturbed cardinalities and
that by using the true cardinalities. As we can see, the average
distance is usually below 2 when MPL is 2 and below 25 when
MPL is 5. Since we used 5 characters to encode one pipeline, it
implies that there is almost no change in the transitions of pipeline
combinations when MPL is 2 and up to 5 changes when MPL is 5.
Therefore, transition change is more likely to happen with higher
MPL’s. However, the number of transition changes is still small
compared with the number of pipeline combinations during the ex-
ecution (usually more than 20) when MPL is 5. This demonstrates
certain kind of robustness of the proposed approach to cardinal-
ity errors. The intuition is that, while there might be errors in the
predicted execution times for each pipeline in the combination, the
predictive predictor only cares about the one with the minimum ex-
ecution time. As long as the errors do not cause changes in the
ranking of the pipelines with respect to their execution times, the
predictor can still make the right decision. This is akin to the case
of query optimization, in which the optimizer only cares about the
ranking of the query plans based on their costs, and many times it
can succeed in picking the right plan even if there might be signifi-
cant errors in the cost estimates.

Figure 18 further presents the results with respect to unbiased
errors. An interesting observation here is that the distances seem to
be larger than that with respect to biased errors. This is because un-
biased errors actually make it harder for the predictor to make the
correct decision since the ranking of the pipelines based on their
finish time is more sensitive to unbiased errors than biased errors.
When the errors are biased, the predictions for the execution times
of the pipelines will also be biased towards one direction, and hence
it is more likely that the correct ranking is preserved. When the er-
rors are unbiased, the predictor may underestimate the execution
times for some pipelines while overestimate the others, making it
easier to break the correct ranking. However, the overall prediction
errors with respect to unbiased cardinality estimation errors could
still be smaller, due to the cancelation of prediction errors for dif-
ferent operators in the query plan.

Of course, although edit distances provide some insights into the
variation of pipeline combination transitions, it is still far from per-
fect in capturing all the differences. For instance, some pipeline
combinations may be more important than the others for accurate
predictions, and hence a mistake there will cause more severe im-
pacts. Edit distances do not consider this effect. Moreover, as we

2http://en.wikipedia.org/wiki/Edit distance

13

 0

 2

 4

 6

 8

 10

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

E
di

t D
is

ta
nc

e

r

TPC-H1
TPC-H2

(a) MPL = 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

E
di

t D
is

ta
nc

e

r

TPC-H1
TPC-H2

(b) MPL = 5

Figure 17: Edit distances with respect to biased errors

 0

 2

 4

 6

 8

 10

 12

 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
di

t D
is

ta
nc

e

R

TPC-H1
TPC-H2

(a) MPL = 2

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
di

t D
is

ta
nc

e

R

TPC-H1
TPC-H2

(b) MPL = 5

Figure 18: Edit distances with respect to unbiased errors

have seen, the relationship between the overall prediction accuracy
and the cardinality estimation errors is quite complicated. Larger
variation in the transitions of pipeline combinations does not nec-
essarily mean larger overall prediction errors. Other factors, such
as the cancelation of prediction errors on different operators, may
also play an important role and cannot be ignored. A thorough

theoretical study on all these issues is beyond the scope of the cur-
rent paper, and we leave the formal sensitivity analysis, such as the
worst-case and the average-case prediction accuracy, as one inter-
esting direction for future exploration.

4.2.4 Comparison with Previous Work on Queueing
Networks

Queueing networks have been extensively used in computer sys-
tem modeling, including database systems (e.g., [1, 21, 22, 28, 30,
31]). However, the focus in this work is quite different from ours.
Previous work used queueing networks to predict macro perfor-
mance metrics such as the throughput and mean response time for
different workloads. Their goal, as pointed out by Sevcik [28], was
“predicting the direction and approximate magnitude of the change
in performance caused by a particular design modification.” As a
result, the models were useful as long as they could correctly pre-
dict the trend in system performance, although “significant errors
in absolute predictions of performance” were possible. In contrast,
our goal is to predict the exact execution time for each individual
query. Due to this discrepancy, we applied queueing networks in
a quite different manner. Previous work modeled the system as
an open network [21, 22, 30, 31], the evaluation of which heavily
relies on assumptions about query arrival rates and service time
distributions (e.g., M/M/1 and M/G/1 queues). In contrast, we
do not assume any additional workload knowledge except for the
current query mix to be predicted, since we target dynamic work-
loads. Therefore, we modeled the system as a closed network, and
used the mean value analysis (MVA) technique to solve the model.
Moreover, we treated pipelines rather than the entire queries as cus-
tomers of the queueing network, motivated by the observation that
query interactions happen at the pipeline level rather than at the
query level. We further incorporated the progressive predictor (Sec-
tion 2.3) to stitch together the predictions for pipeline mixes and
the buffer pool model (Section 3.2) to account for the effect of the
buffer pool. Without these constructs, the prediction accuracy by
directly applying queueing network theory would often be awful.

To demonstrate this, we compared the prediction accuracy of our
proposed approach with one based on a straightforward application
of queueing models, which simply treats each query (instead of
each pipeline) as a customer to the queueing network described in
Section 3.2.1. We call this approach “naive queueing”. Figure 19
compares the prediction accuracy of our proposed approaches with
naive queueing. While naive queueing performs quite well on TPC-
H1 (not very surprisingly since even the baseline can give rea-
sonable predictions), its prediction accuracy is much worse on the
other workloads, especially for TPC-H2, MB1, and MB2.

4.3 Additional Overhead
Both the machine-learning based and the analytic-model based

approach need to calibrate the optimizer’s cost model. As shown
in [34], calibrating the c’s is a one-time procedure and usually can
be done within a couple of hours. The overhead of calibrating the
n’s via sampling depends on the sample size. For the sampling
ratio 0.05, it takes around 4% of the query execution time, when
the samples are disk-resident. This overhead could be drastically
reduced if the samples could be kept in memory [25].

In addition to the overhead in calibrating the cost model, the
machine-learning based approach needs to collect the training data.
Although the training is offline, this overhead is not trivial. The
time spent in the training stage depends on several factors, such as
the number of sample scan mixes and the overhead of each scan in-
stance. For the specific settings used in our experiments, the train-
ing stage usually takes around 2 days.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Naive-Queueing
Baseline

(a) TPC-H1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Naive-Queueing
Baseline

(b) TPC-H2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Naive-Queueing
Baseline

(c) MB1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Naive-Queueing
Baseline

(d) MB2

 0

 0.5

 1

 1.5

 2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Naive-Queueing
Baseline

(e) MB3

Figure 19: Comparison with naive queueing

 0

 20

 40

 60

 80

 100

 120

2 3 4 5

T
im

e
O

ve
rh

ea
d

(m
s)

Multiprogramming Level (MPL)

TPC-H1
TPC-H2
MB1
MB2
MB3

Figure 20: Runtime overhead in evaluating analytic models

Optimizer Parameter Calibrated µ (ms) Default
seq page cost (cs) 5.06e-2 1.0
rand page cost (cr) 9.07e-1 4.0
cpu tuple cost (ct) 1.55e-4 0.01
cpu index tuple cost (ci) 1.23e-4 0.005
cpu operator cost (co) 9.22e-5 0.0025

Table 6: Calibrated cost units on the 8-core machine

On the other hand, the analytic-model based approach needs to
evaluate the analytic models when making the prediction. This in-
cludes the time of solving the systems of nonlinear equations re-
quired by both the queueing model and the buffer pool model. Fig-
ure 20 presents the average total time spent in the evaluation as
well as the standard deviation (as error bars). As expected, the time
overhead increases as the MPL grows, since the queueing model
becomes more complicated. However, the overall time overhead is
ignorable (e.g., around 120 ms when MPL is 5), compared with the
execution time of the queries (usually hundreds of seconds).

4.4 Discussion
The approaches proposed in this paper relies on the optimizer’s

cost model to provide reasonable cost estimates. Although we have
used the framework in [34] to calibrate the cost model, it still con-
tains some flaws. For example, in the current implementation of
PostgreSQL, the cost model does not consider the heterogeneous
resource usage at different stages of an operator. This may cause
some inaccuracy in the cost estimates. For instance, the I/O cost
per page in the building phase of hash-based joins might be longer
than that predicted by the cost model, due to potential read/write in-
terleaves if spilling occurs. In this case, the current approach might
underestimate the execution time of a hash join operator. One way
to fix these issues is to improve the cost model.

For example, in [23], the authors proposed a more accurate an-
alytic model for the hybrid hash join algorithm, by further consid-
ering the read/write interleavings in the building phase. A thor-
ough revision to the PostgreSQL’s cost model, however, might re-
quire considerable development efforts and is beyond the scope of
the current paper. Our goal here is just to see how effective the
proposed approach is, based on the currently-used imperfect cost
models. We believe that an improved cost model could further en-
hance our approach by delivering more accurate predictions, and
we leave the development of a better cost model as an interesting
future work.

4.5 Repeatability of the Results
We further tested the analytic-model based approach on a differ-

ent machine configured with a quad-core (8 threads) Intel 2.40GHz
CPU and 4GB of memory. Table 6 lists the calibrated values for the

15

cost units, and the parameter values of the buffer pool model are the
same as that in Table 5. As shown in Figure 21, the prediction accu-
racy on this quad-core machine for the two TPC-H workloads and
the three micro-benchmarking workloads is close to that observed
on our previous dual-core machine.

5. RELATED WORK
Predicting query execution time has recently gained significant

interest in database research community [3, 4, 7, 9, 15, 34]. In [9],
the authors considered the problem of predicting multiple perfor-
mance metrics such as execution time and disk I/O’s for database
queries, by representing the queries with a set of handpicked fea-
tures and using Kernel Canonical Correlation Analysis (KCCA) [5]
as the predictive model. A similar idea was proposed in [4], where
the authors advocated the use of support vector machines (SVM)
instead of KCCA as the specific machine-learning model. They fur-
ther proposed a different approach by first building individual pre-
dictive models for each physical operator and then combining their
predictions. In [15], the authors focused on using machine learning
to estimate CPU time and logical I/O’s of a query execution plan,
and addressed the problem of robust estimation for queries not ob-
served in the training stage. Different from these machine-learning
based approaches, in [34] we proposed approaches based on refin-
ing the query optimizer’s cost estimates and showed comparable or
even better prediction accuracy. None of them, however, addressed
the problem of concurrent queries.

The problem of predicting concurrent query execution time was
studied in [3] and [7]. In [3], the authors proposed an experiment-
driven approach by sampling the space of possible query mixes and
fitting statistical models to the observed execution time of these
samples. Specifically, they used Gaussian processes as the partic-
ular statistical model. A similar idea was used in [7], where the
authors proposed predicting the buffer access latency (BAL) of a
query, which is the average delay between the time when an I/O
request is issued and the time when the requested block is returned.
BAL was found to be highly correlated with the query execution
time, and they simply used linear regression mapping BAL to the
execution time. To predict BAL, the authors collected training data
by measuring the BALs under different query mixes and then built a
predictive model based on multivariate regression. The key limita-
tion of both work is that they both assumed static workloads, which
is usually not the case in practice. To the best of our knowledge,
we are the first that addresses the concurrent query execution time
prediction problem under dynamic workloads.

One closely related line of studies is query progress indicators,
which has been extensively studied in literature [6, 13, 16, 17, 18].
Progress indicators for a single query were first proposed simul-
taneously and independently in [6] and [17]. Recent work fur-
ther improved their accuracy [16] and robustness [13]. Moreover,
Luo et al. [18] investigated multi-query progress indicators. The
key difference between query execution time prediction and query
progress indicators is that queries are not allowed to run when the
prediction needs to be made. As a result, runtime information
such as the real input/output cardinality for each physical opera-
tor, which is important for the accuracy of progress indicators, is
not available in execution time prediction.

Concurrent query time prediction has also been leveraged in so-
lutions to admission control [32] and query scheduling [2]. In [32],
the authors proposed an admission control framework based on a
linear regression model of expected query execution time that ac-
counts for the mix of queries being executed. In [2], similar idea
was used to develop a query scheduler by solving a linear pro-
gramming problem. However, for the predictive model to work,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Dual-Core
Quad-Core

(a) TPC-H1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Dual-Core
Quad-Core

(b) TPC-H2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Dual-Core
Quad-Core

(c) MB1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Dual-Core
Quad-Core

(d) MB2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Dual-Core
Quad-Core

(e) MB3

Figure 21: Prediction accuracy on a multi-core machine16

both work still assumed that the workload needs to be static. It
is interesting future work to develop admission control and query
scheduling frameworks for dynamic query workloads, based on the
predictive models proposed in this paper.

6. CONCLUSION
In this paper, we studied the problem of predicting query execu-

tion time for concurrent and dynamic database workloads. Our ap-
proach is based on analytic models, for which we first use the opti-
mizer’s cost model to estimate the I/O and CPU operations for each
individual query, and then use a queueing model to combine these
estimates for concurrent queries to predict their execution times. A
buffer pool model is also incorporated to account for the cache ef-
fect of the buffer pool. We show that our approach is competitive to
and often better than a variant of previous machine-learning based
approaches, in terms of prediction accuracy.

We regard this paper as a first step towards this important but
challenging problem. To improve the prediction accuracy, one could
either try new machine-learning techniques or develop better ana-
lytic models. While previous work favored the former option, the
results shown in this paper shed some light on the latter one. More-
over, a hybrid approach combining the merits of both approaches
is worth consideration for practical concern, since most database
workloads are neither purely static nor purely dynamic. All these
directions deserve future research effort.

7. REFERENCES
[1] E. J. Adams. Workload models for dbms performance evaluation. In

ACM Conference on Computer Science, pages 185–195, 1985.
[2] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.

Interaction-aware scheduling of report-generation workloads. The
VLDB Journal, 20:589–615, 2011.

[3] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu. Predicting
completion times of batch query workloads using interaction-aware
models and simulation. In EDBT, pages 449–460, 2011.

[4] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik.
Learning-based query performance modeling and prediction. In
ICDE, pages 390–401, 2012.

[5] F. R. Bach and M. I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1–48, 2002.

[6] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. Estimating
progress of execution for SQL queries. In SIGMOD, 2004.

[7] J. Duggan, U. Çetintemel, O. Papaemmanouil, and E. Upfal.
Performance prediction for concurrent database workloads. In
SIGMOD, 2011.

[8] J. H. Friedman. Stochastic gradient boosting. Comput. Stat. Data
Anal., 38(4):367–378, 2002.

[9] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I.
Jordan, and D. A. Patterson. Predicting multiple metrics for queries:
Better decisions enabled by machine learning. In ICDE, 2009.

[10] G. Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73–170, 1993.

[11] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and
K. Pruhs. Adaptive scheduling of web transactions. In ICDE, 2009.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10–18, 2009.

[13] A. C. König, B. Ding, S. Chaudhuri, and V. R. Narasayya. A
statistical approach towards robust progress estimation. PVLDB,
5(4):382–393, 2011.

[14] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik.
Quantitative system performance - computer system analysis using
queueing network models. Prentice Hall, 1984.

[15] J. Li, A. C. König, V. R. Narasayya, and S. Chaudhuri. Robust
estimation of resource consumption for sql queries using statistical
techniques. PVLDB, 5(11):1555–1566, 2012.

[16] J. Li, R. V. Nehme, and J. F. Naughton. GSLPI: A cost-based query
progress indicator. In ICDE, pages 678–689, 2012.

[17] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Toward a
progress indicator for database queries. In SIGMOD, 2004.

[18] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL progress
indicators. In EDBT, 2006.

[19] C. Mishra and N. Koudas. The design of a query monitoring system.
ACM Trans. Database Syst., 34(1), 2009.

[20] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the generalized
clock buffer replacement scheme for database transaction processing.
In SIGMETRICS, pages 35–46, 1992.

[21] R. Osman, I. Awan, and M. E. Woodward. Queueing networks for the
performance evaluation of database designs. In UKPEW, pages
172–183, 2008.

[22] R. Osman, I. Awan, and M. E. Woodward. Application of queueing
network models in the performance evaluation of database designs.
Electr. Notes Theor. Comput. Sci., 232:101–124, 2009.

[23] J. M. Patel, M. J. Carey, and M. K. Vernon. Accurate modeling of the
hybrid hash join algorithm. In SIGMETRICS, pages 56–66, 1994.

[24] J. R. Quinlan. Simplifying decision trees, 1986.
[25] R. Ramamurthy and D. J. DeWitt. Buffer-pool aware query

optimization. In CIDR, pages 250–261, 2005.
[26] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed

multichain queuing networks. J. ACM, 27(2):313–322, 1980.
[27] Scilab Enterprises. Scilab: Free and Open Source software for

numerical computation. Scilab Enterprises, Orsay, France, 2012.
[28] K. C. Sevcik. Data base system performance prediction using an

analytical model (invited paper). In VLDB, pages 182–198, 1981.
[29] R. Suri, S. Sahu, and M. Vernon. Approximate mean value analysis

for closed queueing networks with multiple-server stations. In IERC,
2007.

[30] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H. Taylor,
P. J. B. King, and P. Broughton. Some results from a new technique
for response time estimation in parallel dbms. In HPCN Europe,
pages 713–721, 1999.

[31] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H. Taylor,
P. J. B. King, and P. Broughton. Analytical response time estimation
in parallel relational database systems. Parallel Computing,
30(2):249–283, 2004.

[32] S. Tozer, T. Brecht, and A. Aboulnaga. Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads. In ICDE, 2010.

[33] T. J. Wasserman, P. Martin, D. B. Skillicorn, and H. Rizvi.
Developing a characterization of business intelligence workloads for
sizing new database systems. In DOLAP, 2004.

[34] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacıgümüş, and J. F.
Naughton. Predicting query execution time: are optimizer cost
models really unusable? In ICDE, 2013.

17

