
Context-aware Search for Personal Information Management Systems

Jidong Chen 1,2 Wentao Wu 1 Hang Guo 2 Wei Wang 1

1Fudan University, Shanghai, China
2EMC Research China, Beijing, China

jidong.chen@emc.com, wentaowu@fudan.edu.cn,
hang.guo@emc.com, weiwang1@fudan.edu.cn

Abstract
With the fast growth of disk capacity in personal computers,
keyword search over personal data (a.k.a. desktop search)
is becoming increasingly important. Nonetheless, desktop
search has been shown to be more challenging than tradi-
tional Web search. Modern commercial Web search engines
heavily rely on structural information (i.e., hyperlinks be-
tween Web pages) to rank their search results. However, such
information is not available in the circumstance of desktop
search. Therefore, state-of-the-art desktop search systems
such as Google Desktop Search usually leverage pure text-
based ranking approaches (e.g., TF-IDF), which often fail to
give promising rankings due to the misinterpretation of user
intention.

We observed that in desktop search, the semantics of
keyword queries are often context-aware, i.e., they are re-
lated to the current activity state (e.g., writing a paper, navi-
gating a website, etc.) of the user. In this paper, we present a
novel context-aware search framework by taking this activ-
ity information into consideration. Specifically, we use Hid-
den Markov Model (HMM) to capture the relationships be-
tween user’s access actions (e.g., opening/closing files, send-
ing/receiving emails, etc.) and activity states. The model is
learned from user’s past access history and is used to predict
user’s current activity upon the submission of some keyword
query. We further propose a ranking scheme with this pre-
dicted context information incorporated. Experimental eval-
uation demonstrates both the effectiveness of the proposed
context-aware search method and the enhancement to user’s
search experience.

1 Introduction
With the fast advance in storage technologies, disks with ca-
pacity from hundreds of gigabytes to even several terabytes
are now very common in personal computers. As a result,
the number of documents stored in the local file system also
grows very quickly, and functionalities that support effective

search for a particular document is of ever growing impor-
tance. However, achieving such kind of functionalities turns
out to be quite challenging. Unlike in the case of Web search,
where powerful ranking schemes such as PageRank [22] and
HITS [19] can be employed, there is no structural informa-
tion (i.e., hyperlinks between webpages) that can be directly
used to rank documents inside personal computers in simi-
lar ways. Therefore, state-of-the-art desktop search engines,
such as Google Desktop Search, usually adopt pure text-
based ranking approaches (e.g., TF-IDF scores).

Nonetheless, TF-IDF scores do not always work well,
for the following two reasons:

• The same keyword query can have multiple meanings.
For example, “apple” may stand for the name of either
a fruit or a company. “Michael Jordan” may refer
to either a basketball player or a computer science
professor. TF-IDF scores only consider the frequency
that the keyword appears in the documents, and cannot
distinguish such ambiguities. This problem has already
been extensively studied in Web search. For instance,
in [21], clickthrough data is analyzed to learn user’s
preference over different semantics of the query. But
to the best of our knowledge, there is still no previous
work on distinguishing query semantics in desktop
search.

• The goal of desktop search is to find some particular
item. Even if the keyword query is not ambiguous
(i.e., its meaning is unique), a document with high TF-
IDF score often does not mean it is the particular item
that the user is trying to find. Consider, for example,
a computer science student studying machine learning
can keep hundreds of related papers in his personal
computer. Suppose he wants to find some recent paper
about Bayesian Network that he has downloaded from
the ACM digital library. Using “Bayesian Network”
as keywords may not help since there may be still
dozens of papers talking about this topic, and those



documents with high TF-IDF scores are most likely
classic papers or surveys in this area. Note that this is
quite different from Web search, in which users usually
are interested in seeking relevant pieces of information
(a.k.a. navigation). The goal of seeking particular items
in desktop search has also been phrased as re-finding
known items [12] in the literature.

We observed that, the semantics of keyword queries are
often highly related to the context when they are issued.
For example, a computer science student John may wish
to search for a related paper written by “Michael Jordan”
when he is writing his thesis, while he may be interested in
the playing history of “Michael Jordan” when he is reading
some NBA news. While intuitively this context information
is valuable in addressing the first problem listed above, it
is also helpful in resolving the second one. For instance, the
paper about “Bayesian Network” may be downloaded several
days ago when John was also writing his thesis. It thus
provides important evidence for us to infer that this paper
is highly relevant to the context “writing thesis”. As a result,
it is reasonable to boost the rank of this paper when the same
context happens again.

A natural question is then whether it is practical to
leverage this kind of context information. In the case of
Web search, such context information usually cannot be
automatically captured by Web search engines, since due
to security consideration, Web browsers are not allowed to
monitor user’s behavior outside the browser. Therefore,
the Web browser is unaware of context information such as
“writing thesis”, and this piece of information is lost when
the query is issued. However, desktop search engines, on the
other hand, do not have such security issues since everything
they are concerned with is confined within user’s personal
computer. As a result, they can have more access privilege
to the local system, and thus have higher chance to record
this context information, which can then be probably used to
help learn the semantics of the query.

In this paper, we address the problem of improving
the quality of keyword search over personal data by taking
context information into consideration. To achieve this,
we have developed a novel desktop search system called
iMecho. Figure 1 illustrates its architecture.

The context here is defined as the user’s activity state,
such as writing a paper, navigating a website, etc., which
will be referred to as task in this paper. When performing
a task, the user may have a series of access events. For
example, when writing a paper, the user may first open the
document file, then type in some text, and finally save and
close the file. Before closing the file, he may also browse
some web pages and copy a couple of references into the
paper. Based on this observation, we propose to infer the
current task by analyzing these access events. As shown
in Figure 1, in iMecho, such events are recorded by various

Figure 1: System Architecture

user activity monitors1. We then build a user model upon the
events collected. As will be elaborated in Section 2, we use
Hidden Markov Model (HMM) to capture the relationships
between user’s access events and (latent) tasks. The model is
built and periodically updated offline. At runtime, when user
submits a keyword query, his recent access events are used
by the model to predict the current task. This information
is finally incorporated into iMecho’s ranking scheme, which
will promote those items that are more related to user’s
current task.

The rest of the paper is organized as follows: In Sec-
tion 2 and Section 3, we discuss the user model and context-
aware ranking scheme in details, respectively. Experimental
results are presented in Section 4, and related work is sum-
marized in Section 5. We conclude the paper in Section 6.

2 User Model
The user model lies in the core of iMecho. We assume that
at any time, the user is performing some task, and we use
an empty task to address the special case when the user is
idle. Under this perspective, the behavior of the user could

1The user activity monitors are application-specific. For example, we
use VSTO (Visual Studio Tools for Office) to implement monitors for
Microsoft Word/Excel/Powerpoint/Outlook.



be viewed as a sequence of tasks. However, these tasks are
latent. What could be directly observed and recorded are the
access events of the user, which also consist of a sequence.
It is then quite natural to make the Hidden Markov Model
(HMM) [23] a good candidate for the user model, which
elegantly captures the relationship between one observable
sequence and one hidden sequence. Meanwhile, another
basic hypothesis lying behind HMM is that the current task
should only depend on its previous task, which also makes
sense in most cases under the circumstances of desktop
activities.

An HMM can be formally represented as λ =
(T,R, π,A,B), in which

• T is a set of tasks;
• R is a set of resources, e.g., files, Web pages, emails,

etc.;
• π stands for the initial probability vector of tasks,

i.e., π(i) is the probability that the user is currently
performing task i when no access event is observed;
• A denotes the |T | × |T | transition matrix of tasks, i.e.,
A(i, j) is the transition probability from task i to task
j;
• B is the |T | × |R| association matrix between tasks and

resources, i.e., B(i, j) is the probability that resource j
is accessed when the current task is i.

Training an HMM is a well-known process in re-
search community. After appropriately initializing param-
eters π,A,B, running the Baum-Welch algorithm [25] will
give us a locally optimized HMM λ′ = (T,R, π′,A′,B′),
with respect to the user activity log. This optimized HMM
will be used as the user model in iMecho. According to pre-
vious researches (e.g., [23]), giving uniform initial estimates
to the π and A parameters is adequate in almost all cases,
which therefore is also done in iMecho. The challenge here
is to give good estimates to the B parameter.

In this section, we elaborate how to estimate B. Specif-
ically, we propose a burst-based task mining framework to
establish the relationships between tasks and resources. A
burst is an impulse of access events in the user activity log,
which intuitively indicates the start of a new task. The whole
framework is divided into two steps: i) burst detection; and
ii) burst-task mapping. Next, we first describe the user activ-
ity log, which is closely related to our framework, and then
illustrate each of the above two steps in details.

2.1 User Activity Log Here we briefly describe the infor-
mation we recorded in the user activity log L. Logically, L
can be viewed as a sequence of access events. Each event e
is represented as a triple e = (re, te, ae), where re is the URI
(for Uniform Resource Identifier) of the resource, te is the
time when the access event e occurs, and ae is the particular
type of action. For example, the action on a Microsoft Word

Figure 2: Bursts for John’s one afternoon

document may be Open, Close, Save, etc.. For all the appli-
cation monitors we implemented, re and te can be precisely
recorded for every e. Actually, this can be done even if we
do not develop specific monitors for most applications, since
nearly all modern operating systems now provide some API
to notify access events, which can be used to implement a
monitor overseeing the entire file system. Due to this general
setting, we assume that the availability of re and te is inde-
pendent of our specific implementation in iMecho. However,
ae may be specific to different applications, depending on
the API exposed by the software provider. Therefore, for ap-
plications that do not have fine-granularity event notification
API, we simply set ae to be the default type Access. The
user model described in this paper will not rely on the avail-
ability of ae, and we will discuss some possible refinements
in Section 2.4.1 if ae is also available.

2.2 Burst Detection We first use an example to illustrate
the concept of a burst. Suppose Figure 2 shows the activities
in one afternoon of John, our computer science student
introduced in Section 1.

EXAMPLE 1. (JOHN’S ONE AFTERNOON) At 1 pm John
began to do some investigation on Machine Learning, he
read some papers and web pages. That was the first burst
of his activities. At around 1:30 he felt tired so he took
a nap. There was no user activities when he was sleep-
ing. Half an hour later he woke up and began to work on
his demo program. He started his editor and opened sev-
eral documents for references. At 2:30 he began to write
the code. He focused on programming so he opened fewer
documents at that time. At 3 he encountered some problem
with a software package that was used in his code. There-
fore he searched his PC and read some documents. Finally
the problem was solved at 3:30. At 4 John received an im-
portant email from his co-author, who found a subtle issue
in their paper. John had to pause his current task by saving
the code already written. He read the paper mentioned in
his co-author’s email and got the problem. He remembered
that the solution was in a web page. So he accessed Internet
and found that web page. Then he replied to his co-author at
4:10. After that John made himself a cup of coffee and had
some relax. Almost no activities were detected between 4:10



and 4:30. John continued writing his code after 4:30, and
there were quite a few activities from 4:30 to 4:45. Finally
he finished his work at 5.

In the above example, John conducted three tasks in that
afternoon:

• t1: investigation on Machine Learning, which was
started at 1 and ended at 1:30.

• t2: code writing, which was started at 2 and paused at
4. At 4:30 it was resumed and finally finished at 5.

• t3: replying email, which was lasted from 4:00 to 4:10.

We observed that, each time a new task is started or
resumed, there is a burst of activities. A burst can be part
of a task, or a complete task. Previous research [18] has also
shown that “the appearance of a topic in a document stream
is signaled by a burst of activity, with certain features rising
sharply in frequency as the topic emerges”. Therefore, by
employing some burst detection technology, it is possible to
discover tasks from the stream of access events.

Formally, a burst b can be represented as a time interval
b = [τs, τe], where τs and τe are the start and end time of
the burst, respectively. We use the burst detection algorithm
proposed in [18]. Figure 2 also shows bursts detected by
applying this algorithm2. Here, bursts could be located at
different levels, with respect to their intensiveness. The
intensiveness of a burst is measured by computing the length
of the time gap between successive access events within
the burst. The higher level the burst is at, the higher
intensiveness it has. For example, the highest level (Level
3) in Figure 2 consists of time periods involving intensive
activities of John, such as writing code and replying email.

Due to the nature of the algorithm, any burst at level
k + 1 will be completely contained in some burst at level
k. As a result, these bursts can be further organized into a
hierarchical structure called burst tree, as shown in Figure 3.
A burst b at level k+1 becomes a child of a burst b′ at level k
if b is contained in b′. The root of the tree is actually a virtual
burst that spans the whole time interval.

Our next step is to identify tasks from the bursts de-
tected.

2.3 Burst-Task Mapping As illustrated in Example 1,
bursts at higher levels are usually signals of some tasks.
However, the mapping from bursts to tasks is not one-to-
one. Rather, it is quite common that a task may contain
several bursts. For example, the code writing task (t2) of
John contains the bursts B3a, B3b and B2c. On the other

2Each rectangle stands for a single burst. The label of the rectangle
represents the identity and the level of the burst. For example, the first burst
of level 1 is marked with B1a, the second burst of level 3 is marked with
B3b, and so forth.
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Figure 3: Burst Tree

hand, it is very unlikely that a burst could belong to multiple
tasks at the same time. Therefore, the mapping from bursts
to tasks should be many-to-one.

Formally, let B and T be the set of bursts and tasks,
respectively. Equivalently, B could also be viewed as the
set of nodes in the burst tree. A burst-task mapping m is a
surjective function from some subset B′ ⊆ B to T . A further
comparison of Figure 2 and 3 leads to the following property
of m.

PROPERTY 2.1. Let Child(b) = {c1, c2, ..., ck} be the
children of node b in the burst tree, and Child(b) ⊆ B′.
If m(c1) = m(c2) = · · · = m(ck) = t ∈ T , then b ∈ B′

and m(b) = t.

Intuitively, Property 2.1 says that, if all children of some
burst b could be mapped to the same task t, then b itself could
also be mapped to task t. This is due to the observation that,
some long tasks may be paused and resumed several times
during the whole time period.

EXAMPLE 2. (BURST-TASK MAPPING) In Figure 3, sup-
pose B2a is mapped to t1; B3a, B3b, and B3d are mapped
to t2; and B3c is mapped to t3. Since B2a is the only child of
B1a, according to Property 2.1, B1a could also be mapped
to t1. Similarly, B2c could be mapped to t2, since B3d is its
unique child.

Property 2.1 then naturally suggests a bottom-up ap-
proach to find the burst-task mapping m. We first determine
corresponding tasks for the bursts at the leaf nodes of the
tree. We then climb up the tree and inductively determine the
tasks for each non-leaf node, with respect to Property 2.1.
The remaining problem is how to determine tasks for each
leaf node. This is difficult, since at the beginning we even
have no idea of how many tasks there are at all! The tasks t1,
t2, and t3 in Example 1 are actually the result from the task
detection algorithm instead of the prior knowledge we have.



To overcome this issue, we need to use some informa-
tion beyond merely time in the user activity log. Recall
that as described in Section 2.1, the user activity log L also
records the URI for each resource accessed in the event. In-
tuitively, if two bursts could be mapped to the same task,
then it is highly likely that the sets of resources accessed in
the two bursts are similar. Therefore we could identify tasks
by checking the similarity of bursts.

Formally, let R(b) be the set of resources accessed in
the burst b3. Two bursts b1 and b2 are said to be similar,
denoted as Sim(b1, b2), if s(R(b1), R(b2)) > δ, where
s(A,B) is some similarity function computing the similarity
of the sets A and B, and δ is some prespecified threshold.
Any reasonable similarity function could be used. In our
implementation, we define

(2.1) s(A,B) =
|A ∩B|

max(|A|, |B|)
,

and set δ = 0.5.
Algorithm 1 summarizes the task mining framework

discussed so far. Line 3 to 5 first mark all m(b) as Nil,
i.e., the mapping from burst b to some task is not defined
yet. Line 6 to 14 try to determine the mapping for leaf nodes
of the burst tree, while Line 15 to 20 try to determine the
mapping for non-leaf nodes, with respect to Property 2.1.
When determining the mapping for a leaf node b, we check
whether there is some other leaf burst b′ that is similar to b
and has already been mapped to some task t (line 8). If such
a b′ exists, we simply map b to t as well (line 9), otherwise
we map b to a new task (line 11). Finally, we obtain tasks
by merging corresponding bursts (line 21 to 30). A burst b
is considered as (part of) some task if: i) m(b) is determined
(i.e., m(b) ̸= Nil); and ii) m(Parent(b)) is not determined
(i.e., m(Parent(b)) = Nil), where Parent(b) is the parent
burst of b in the burst tree. Figure 3 also shows the bursts
that will be treated as (part of) some task in the end (circled
by the red ellipses), after running Algorithm 1 on the burst
tree. The sets of resources of these bursts will be merged to
form the set of resources of the corresponding task (line 25).
In Figure 3, B1a will be merged to t1; B3a, B3b and B2c
will be merged to t2; and B3c will be merged to t3.

The set of tasks T returned by Algorithm 1 is then
used to initialize the HMM λ = (T,R, π,A,B), where
R = ∪t∈TR(t). Suppose t ∈ T . For any resource r ∈ R,
if r ∈ R(t), we define p(r|t) = n(r, t)/n(t), where n(r, t)4

represents the number of accesses to r in task t, and n(t) =∑
r′∈R(t) n(r

′, t). If r ̸∈ R(t), we simply set p(r|t) = 0.
This completes the initialization of the parameter B, and we
have discussed the initialization of the parameters π and A
at the beginning of Section 2.

3We also use R(t) to denote the set of resources accessed in the task t.
4n(r, t) is obtained by summing up the number of events involving r in

the corresponding bursts that are mapped to t.

Algorithm 1: Task Mining
Input: L: the user activity log
Output: T : the set of tasks

1 /* Let T be the burst tree. */
2 T ← BurstDetection(L)
3 foreach b ∈ Nodes(T ) do
4 m(b)← Nil
5 end
6 i← 1
7 foreach b ∈ Leafs(T ) do
8 if ∃b′ ∈ Leafs(T ) s.t. Sim(b, b′) and m(b′) = t

then
9 m(b)← t

10 else
11 m(b)← ti
12 i← i+ 1

13 end
14 end
15 foreach b ∈ NonLeafs(T ) do
16 /* Let Child(b) = {c1, c2, ..., ck}. */
17 if m(c1) = m(c2) = · · · = m(ck) = t then
18 m(b)← t
19 end
20 end
21 T ← ∅
22 foreach b ∈ Nodes(T ) do
23 if m(b) ̸= Nil and m(Parent(b)) = Nil then
24 if m(b) ∈ T then
25 R(m(b))← R(m(b)) ∪R(b)
26 else
27 T ← T ∪ {CreateTask(b)}
28 end
29 end
30 end
31 return T

2.4 Discussion We discuss two related issues in this sec-
tion, namely, i) possible refinements to tasks and ii) updates
to the user model.

2.4.1 Task Refinements If more information is available
in the user activity log, some possible refinements of the
tasks could be performed. Here we only discuss the case
when the action type ae of an event e is known, since it is
true in iMecho (although it is not required in the framework
discussed in this section). Since we use some similarity
function to determine whether we should merge two bursts
according to the overlap of their sets of resources, it is likely
that sometimes two bursts not merged could actually be
mapped to the same task. The semantic information of action
types may help in this situation. For example, if we find that



resource r (e.g., some Microsoft Word document) is opened
in burst b1, but is never closed until burst b2, where b1 and b2
are successive, then b1 and b2 are likely to be mapped to the
same task, even if their similarity fails to pass the threshold
δ.

2.4.2 Model Update The user model is trained using the
user activity log. However, the access history will evolve
over time, and as a result, new tasks beyond those used in
the training stage will appear as time goes by. An immediate
question is then how often the model should be updated. It
is hard to imagine that a particular task would be repeated
one year later. On the other hand, if we update the model
every day, effective predication will then be difficult to
achieve, since only limited number of repeated tasks could be
observed. Therefore the time interval between two updates
should be neither too long nor too short. We argue that one
week may be a good choice and this setting is currently used
in iMecho, although the user is allowed to change it freely.
The reason is simply that people usually organize their work
schedule week by week. A related question is whether there
is certain number of repeated tasks during a week. Actually,
according to the user study in [12], about 40% tasks are re-
performed by the user within a week.

3 Context-aware Ranking
Based on the user model introduced in the previous section,
we propose a context-aware ranking framework. Top-ranked
items then stand for desktop resources that are most likely to
be accessed next by the user at the time when he submits the
query. In this section, we first formalize the context-aware
ranking problem, and then propose our ranking function.

3.1 Problem Definition Suppose user submits a keyword
query q at time k. Fix some length l5 such that 0 ≤ l ≤ k,
and let Lk be the snippet of the user activity log consisting
of events occurring in the time window [k − l + 1, k]. The
context-aware ranking problem is defined as follows:

DEFINITION 1. (CONTEXT-AWARE RANKING) Given the
user model λ = (T,R, π,A,B), the log snippet Lk, and
the keyword query q, the context-aware ranking problem is
to find some function f : R → R+ ∪ {0} such that for any
r1, r2 ∈ R, f(r1) > f(r2) if and only if r1 is more relevant
than r2, with respect to λ, q and Lk. Here R+ is the set of
all positive real numbers.

3.2 Ranking Function Without loss of generality, we
could require that 0 ≤ f ≤ 1. It is then quite natural to

5We set l = 10 in iMecho by default, which is adjustable.

let f be the conditional probability p(r|q, λ, Lk). We have

p(r|q, λ, Lk) =
p(r, q, λ, Lk)

p(q, λ, Lk)

=

∑
t∈T p(r, q, t, λ, Lk)

p(q, λ, Lk)
.(3.2)

Since p(r, q, t, λ, Lk) = p(r, q|t, λ, Lk) · p(t|λ,Lk) ·
p(λ,Lk), and p(q, λ, Lk) = p(q|λ,Lk) · p(λ,Lk), we then
have

(3.3) p(r|q, λ, Lk) =
∑
t∈T

p(r, q|t, λ, Lk) · p(t|λ, Lk)

p(q|λ,Lk)
.

What’s more, since

p(r, q|t, λ, Lk) =
p(r, q, t, λ, Lk)

p(t, λ, Lk)

=
p(q, t|λ, Lk, r) · p(λ,Lk, r)

p(t, λ, Lk)
,(3.4)

and we assume that given λ, Lk and r, q and t are indepen-
dent of each other, therefore

(3.5) p(q, t|λ,Lk, r) = p(q|λ, Lk, r) · p(t|λ,Lk, r).

Substituting Eq. (3.4) and (3.5) into Eq. (3.3), and notice
the fact that

p(r|t, λ, Lk) =
p(t|λ,Lk, r) · p(λ,Lk, r)

p(t, λ, Lk)
,

we obtain
(3.6)

p(r|q, λ, Lk) =
∑
t∈T

p(q|λ, Lk, r) · p(r|t, λ, Lk) · p(t|λ,Lk)

p(q|λ,Lk)
.

Clearly, q is independent of λ and Lk. Thus

(3.7) p(q|λ, Lk) = p(q).

On the other hand,

(3.8) p(q|λ,Lk, r) =
p(q, λ, Lk, r)

p(λ,Lk, r)
=

p(q, λ, Lk|r)
p(λ,Lk|r)

,

and again due to the independence of q with λ and Lk,

(3.9) p(q, λ, Lk|r) = p(q|r) · p(λ,Lk|r).

Therefore, by substituting Eq. (3.7), (3.8), and (3.9) into
Eq. (3.6), we get
(3.10)

p(r|q, λ, Lk) =
p(q|r)
p(q)

·
∑
t∈T

[p(r|t, λ, Lk) · p(t|λ,Lk)].



Since p(q|r) · p(r) = p(r|q) · p(q), we finally have
(3.11)

p(r|q, λ, Lk) =
p(r|q)
p(r)

·
∑
t∈T

[p(r|t, λ, Lk) · p(t|λ, Lk)].

Eq. (3.11) can be interpreted quite naturally. p(r|q)
could be viewed as the relevance of r and q when context
information is not considered, while p(r) is the prior proba-
bility that r is accessed even without the query q. The sum-
mation in Eq. (3.11) is the relevance of r and the current
context information of the user, namely, the probability that
user may next access r with respect to the user model λ and
the most recent access history Lk.

For notational convenience, we now define

(3.12) f1(r) =
p(r|q)
p(r)

,

and

(3.13) f2(r) =
∑
t∈T

[p(r|t, λ, Lk) · p(t|λ,Lk)].

As a result, f(r) = p(r|q, λ, Lk) could be simply rewritten
as

(3.14) f(r) = f1(r) · f2(r).

However, directly using Eq. (3.14) suffers some prob-
lems. First, f1(r) and f2(r) may have different magnitude
scales. Second, user may desire some control over f(r),
by making the context-free part (i.e., f1(r)) and the context-
aware part (i.e., f2(r)) tunable. We thus introduce some tun-
ing factor α (0 ≤ α ≤ 1), and refine f(r) to be

(3.15) f(r) = f1(r)
1−α · f2(r)α.

In our implementation, given λ = (T,R, π,A,B), Lk,
and q, to compute f1(r), we set p(r|q) = s(r, q), where
s(r, q) represents the cosine similarity score (i.e., TF-IDF
score) between r and q, which is widely used in term-vector
based information retrieval models. s(r, q) could be directly
obtained by querying the full-text index in iMecho, which is
implemented by using the Lucene6 library (See Figure 1).
p(r) is simply set to be 1

|R| , i.e., we do not have prior
knowledge of user’s preference over resources, which is hard
to measure. In practice, we could even set p(r) = 1 since it
does not affect the ranking result, and we then simply have
f1(r) = s(r, q). To compute f2(r), we first get the current
task tnow by applying the well-known Viterbi algorithm [23]
to λ and Lk. We then compute each summand in f2(r)
by setting p(t|λ,Lk) = p(t|tnow), which could be obtained
from A, and setting p(r|t, λ, Lk) = p(r|t), which could be
obtained from B.

6http://lucene.apache.org/java/docs/index.html

4 Experimental Evaluations
We now experimentally evaluate our context-aware search
approach from two aspects: i) the search overhead, and ii)
the effectiveness of the context-aware ranking.

4.1 Experiment Design As pointed out in [12], evalua-
tion of personal search systems is an extremely difficult task,
due to the privacy issues concerning personal information.
Meanwhile, incorporating tasks into the evaluation makes
the problem even harder, since different people may under-
stand the concept of task in slightly different ways. For in-
stance, in Example 1, some people may not treat t3 as a task.

To overcome the privacy issue, we developed a logging
module (different from the application monitors and user
activity log) in iMecho to record the query history of the user,
which could be browsed by the user in the query viewer (see
Figure 1). To overcome the multiple interpretation problem
of tasks, we have to do some individual user studies.

We invited 10 volunteers to take part in the experiment.
Each of the participants installs iMecho on his own personal
computer. We first help them be familiar with iMecho’s func-
tionality and user interface. Each user then uses iMecho’s
indexing module to index the resources (files, emails, etc.)
that are expected to be related to the user’s daily work in the
following week. iMecho will also automatically update the
index when new resources appear in the directories specified
by the user. The experiment lasts for one week. The user
activity log of the first three days is used to train the model,
and the system is tested in the later two days.

During the training phase, the participants just perform
their daily work as usual. In the testing phase, participants
are encouraged to submit 10 queries to iMecho when they
want to search some resource in their computer. For each
query submitted, iMecho’s logging module will record the
information of the query, the set of resources retrieved
and their rankings, and also user’s click actions on these
resources. To see the effect of the tuning factor α in the
ranking function, we have to ask participants to adjust α
to be 0, 0.2, 0.5, and 0.8, respectively, and check ranking
results for each of these rankings. By setting α = 0,
we actually ignore the context-aware part in the ranking
function, and in this case the items are purely ranked by
their TF-IDF scores (i.e., f(r) = f1(r) = s(r, q)). After
some anonymization (e.g., replacing URI’s by integers), such
information is collected to analyze the effectiveness of the
proposed ranking framework.

4.2 Performance Evaluation Due to the diversity of the
configuration of participants’ personal computers and the
privacy issue, here we only report some performance statis-
tics on a typical laptop with 2.0 GHz Intel Dual Core CPU
and 2GB main memory, which is used by one of the authors
(not in the 10 participants).



Figure 4: Comparison of the Average Overhead

Data Set. The data set contains 9,431 desktop files in
1,019 directories. The average directory depth is 9 with the
longest being 15. On average, directories contain 10.3 sub-
directories and files, with the largest containing 241 ones.
75% of the files are smaller than 16 KB, and 95% of the files
are smaller than 40 KB. The largest file is of size 21.5MB.
The user log produced by the event monitor records totally
1,601 desktop events.

Since the user’s context is computed at the query time,
there is some overhead for query context estimation. We
compare the overhead with the search cost of Lucene. The
results are given in Figure 4. In the case of desktop search,
it is not common that the number of search results will
grow to above 500. Therefore the overhead introduced by
the context-aware search module is trivial (less than 10%)
comparing to overall search costs.

4.3 Effectiveness Evaluation We next compare the effec-
tiveness of our context-aware ranking scheme with the rank-
ing scheme based on TF-IDF score (i.e., ranking scheme
used by Lucene and other commercial desktop systems). Our
evaluation consists of two parts. First, we present a case
study of some user’s search experience with iMecho, and the
information released here is upon his agreement. Second, we
analyze the feedbacks (i.e., clickthrough history recorded by
iMecho’s logging module) on the search results from all the
10 participants, to give quantitative comparisons between the
two ranking schemes.

4.3.1 Case Study Participant A issued the query “PageR-
ank model” twice in the testing phase of the experiment when
he was performing two different tasks:

• Task 1: To implement the PageRank model in his
program.

• Task 2: To compare different ranking models.

Though the query terms are the same, they were used
for quite different purposes. His first task was to write some
code that implements the PageRank algorithm, while the
second task was to compare PageRank with other ranking
models like HITS.

The ranking results of the two queries are given in
Table 1. To save space, only the top 5 results are shown in
each case. The first row gives the results ranked by pure TF-
IDF scores got from Lucene (i.e., by setting α = 0), while
iMecho’s results (by setting α = 0.8) under Task 1 and 2
are shown in the second and third row, respectively. Both the
final score (i.e., f(r)) and the context-aware part of the score
(i.e., f2(r)) are shown in the last column of Table 1.

Here are some explanations about the results. The
ranking in the second row (when the user was in Task 1) is
exactly the same as the ranking returned from Lucene. This
is because no results were ever accessed by the user when
the query was issued, which means these resources are not
closely relevant to Task 1. But when the user was in Task
2, according to Table 1, the context-aware scores (f2(r)) of
some documents are increased although their context-free
scores (f1(r)) are relatively low. User A recalled that he
accessed these promoted documents when he was in Task 2.

The above case study shows that taking context infor-
mation into consideration could sometimes better serve the
user queries by correctly predicting user’s search intention.
Traditional desktop search engines will return the same re-
sults under both Task 1 and Task 2, which are not what the
user wants in both cases.

4.3.2 Quantitative Comparison We next quantitatively
compare the effectiveness of the two ranking schemes,
namely, the ranking scheme based on pure TF-IDF scores
and the one by also considering context information.

Precision and Recall

We first apply the well-known measures precision and
recall to evaluate ranking quality. In general, precision
measures the ability of a system to return only relevant
results. It is defined as:

Precision =
# of relevant results

# of results returned by the scheme
.

On the other hand, recall measures the ability of a
system to return all relevant results, and is defined as:

Recall =
# of relevant results

# of relevant results returned by both schemes
.

The definition of recall here follows [9], since in general
it is extremely difficult to measure the total number of



Table 1: The ranking results of User A
Ranking Scheme Ranking Result List f1(r) f(r) / f2(r)

Lucene (TF-IDF)
i.e. α = 0

Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896

N/A
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786
openrdf-sesame-2.1.3/docs/system/ch06.html 0.709
Jena-2.5.5/doc/images/Ont-model-layers-import.png 0.616
Jena-2.5.5/doc/images/Ont-model-layers.png 0.616

iMecho (T1)
α = 0.8

Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896 0.0246 / 0.010
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786 0.0239 / 0.010
openrdf-sesame-2.1.3/docs/system/ch06.html 0.709 0.0234 / 0.010
Jena-2.5.5/doc/images/Ont-model-layers-import.png 0.616 0.0227 / 0.010
Jena-2.5.5/doc/images/Ont-model-layers.png 0.616 0.0227 / 0.010

iMecho (T2)
α = 0.8

The PageRank Citation Ranking- Bringing Order to the Web (1998).pdf 0.142 0.289 / 0.345
Inside PageRank.pdf 0.427 0.263 / 0.233
RandomWalks.ppt 0.267 0.211 / 0.199
Jena-2.5.5/doc/javadoc/com/hp/hpl/jena/rdf/model/Model.html 0.896 0.0019 / 0.0004
openrdf-sesame-2.1.3/docs/system/ch03.html 0.786 0.0018 / 0.0004
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Figure 5: Comparison of average precision and recall

relevant resources to the query in the entire system. Instead,
we define this set of relevant resources to be the union of
the results treated as relevant by the user under each ranking
scheme.

For each query, we get the top 10 results returned by
each ranking scheme. The results that are actually clicked by

the users are marked as relevant. We then compute average
precision and recall over the 100 queries in total for both
ranking schemes.

Figure 5 compares the average precision and recall of
top-k results returned by both ranking schemes, where k
increases from 1 to 10. For the HMM based context-aware
ranking scheme used in iMecho, the statistics are computed
over the results returned when setting α = 0.5. We can
see that the context-aware ranking method outperforms the
TF-IDF based ranking method in terms of both precision
and recall.

MRR and Top-k% Clicks

We then use the Mean Reciprocal Rank 7 (MRR for
short) and the Top-k% Clicks as the metrics. In our scenario,
the reciprocal rank of a query is defined as the reciprocal
of the rank of the first relevant result. The mean reciprocal
rank is then the average of the reciprocal ranks over all the
queries. Formally, supposing there are N queries q1, . . . , qN
and the rank of user’s first choice in the result list of qi is ri,
MRR is computed as:

MRR =
1

N
∗

N∑
i=1

1

ri
.

The top-k% clicks metric denotes the percentage of the
user’s clicks that fall into the top k% results returned by the
ranking algorithm. For example, if the user chooses the first
and third result out of the ten retrieved results, the top-10%
and top-20% clicks are 0.5, while the top-30% clicks (and

7http://en.wikipedia.org/wiki/Mean reciprocal rank
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Figure 6: MRR and Top k% Clicks
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Figure 7: Average precision and recall with different α’s

also top-k% clicks with k > 30) is 1. Formally, we define

Top-k% Clicks =
# of clicks in top k% of the results

# of total clicks
.

Intuitively, MRR and top-k% clicks measure the user’s
preference over the top-ranked results. Figure 6(a) shows
the MRR of iMecho (α = 0.5) and Lucene, respectively. It
is clear that iMecho’s ranking results are more favorable by
the users. The average top-k% clicks of iMecho and Lucene
are shown in Figure 6(b). We can see that iMecho’s top-10%
clicks is almost 2 times higher than that of Lucene. We
thus conclude that top ranked results in iMecho are more
preferable than those in Lucene.

Impact of the tuning factor α

We further investigate the impact of the tuning factor α
to the ranking results in iMecho. As shown in Figure 7, when
α increases, i.e., the weight of context-aware part of the score
is increased, the precision is significantly improved while the
recall is also slightly improved as well. This implies that
many times, our ranking scheme is successful in predicting
user’s search intention when the query is issued.

5 Related Work
In our previous work [8] and [6], we developed XSearcher
(renamed as the current name iMecho in [6]), an associa-
tive memory based desktop search system to enhance tra-
ditional keyword-based desktop search. However, the goal
of XSearcher is quite different from the work described in
this paper. XSearcher focuses on helping users in finding
resources accessed a long time ago. The basic idea is to es-
tablish semantic associations among resources. For example,
a document can be associated with an email if it once served
as an attachment of that email. The key insight here is that,
the associations among resources can play the same role as
hyperlinks among Web pages, and ranking algorithms akin
to PageRank could then be applied in desktop search. In
this way, it is possible for users to find relevant items that
may not contain the keywords in the issued query, as long
as they are reachable by following paths starting from some
resources hit by the keywords. Nonetheless, the approach
used in that work cannot solve the two problems highlighted
in Section 1, and the work in this paper can be viewed as
complementary to that work, which helps users better seek-
ing resources recently accessed by considering the context
information. Figure 8 illustrates the big picture of our work
on personal search. The effectiveness of the iMecho sys-
tem by leveraging the context-aware search framework in-
troduced in this paper has also been shown in our very recent
demo [7].

Many research prototypes and commercial systems have
been developed to support various forms of search on per-



Figure 8: The big picture of our work on personal search

sonal desktop resources. The most prominent desktop search
applications for Windows include Google desktop search and
Microsoft Windows Desktop Search, and the Beagle open
source project for Linux [1]. Apple Inc. also integrated
an advanced desktop search application (named Spotlight
Search) into their operating system, Mac OS Tiger. All these
industrial desktop search engines support search over a vari-
ety of file types, yet none of them incorporates personaliza-
tion, i.e. no user preferences are discovered to provide per-
sonalized results. In addition, there are currently only lim-
ited insights into the question of how to rank desktop search
results. When ranking is available in some of these appli-
cations, it is usually performed according to some variations
of TF-IDF, a textual-relevance-based criterion used in classic
information retrieval.

Some PIM systems have been constructed in order to fa-
cilitate re-finding of various stored resources on the desktop.
Stuff I’ve Seen [11] for example provides a unified index of
the data that a person has seen on his computer, regardless
of its type. Based on the fact that the user has already seen
the information, contextual cues such as time, author, thumb-
nails and previews can be used to search for and present in-
formation. Similarly, MyLifeBits [13] targets storing locally
all digital media of each person, including documents, im-
ages, audio and videos. They organize these data into collec-
tions and connect related resources with links. Haystack [16]
emphasizes the relationship between a particular individual
and her corpus. It automatically creates connections between
documents with similar content and it exploits usage analysis
to extend the desktop search results set. Feldspar [5] is a link-
based desktop search prototype with new interface. Users
can propose associative queries via a well-designed inter-
face rather than simple keywords. But user activities are not
tracked in Feldspar for associations and no activity-based as-

sociations are mined from user access patterns. Semex [10]
is also a link-based personal information system. It employs
a fancy reference reconciliation algorithm to integrate data
from different sources and construct content-based associ-
ations by extracting metadata. Beagle++ [9] is a semantic
desktop search prototype, which proposed various activity
specific heuristics to generate links between resources that
associate desktop resources. Beagle++ also logs user activi-
ties, such as attachment saving and file downloading, to gen-
erate associations, but it only focuses on associations from
predefined user actions between web pages, email messages
and files, not mining from a sequence of user access activ-
ities. Their approach was also limited to specific desktop
contexts (e.g., publications, or web pages), whereas in our
methods we explore much more general information sources
such as file access patterns, which are applicable to any desk-
top resource.

Unlike traditional “one-size-fits-all” search engines,
personalized search systems attempt to take into account
preferences of individual users in order to improve the rel-
evance of search results and the overall retrieval experience.
Personalization techniques have been developed in diversi-
fied ways for web search. In a nutshell, the techniques can be
classified into three categories, namely, content based per-
sonalization, link-based personalization, and function-based
personalization [17]. Content-based personalization deals
with the “relevance” measure of Web pages and the user’s
queries. In this approach, the query is modified to adapt the
search results for the specific user. In order to manage user
interests, a content-based personalization technique is used
to construct user profiles, which store user interests derived
from each user’s search history [20]. Link-based personal-
ization performs personalization based on link analysis tech-
niques. Traditional link analysis techniques, like the PageR-
ank algorithm, compute scores that reflect a “democratic”
importance with no preferences in regard to any particular
pages. However, in reality, a user may have a set of pre-
ferred pages in mind. The link-based personalized searching
techniques redefine the importance of Web pages according
to different users’ preferences such as bookmarks as a set
of preferred pages [14]. The function-based personalization
first discovers user preferences on the search results from
clickthrough data and then the ranking function is optimized
according to the discovered preferences [15, 21]. However,
these personalized techniques still miss contextual informa-
tion often resulting or inferable from explicit and implicit
user activities. For the personalization in desktop search, the
desktop environment is comparably “limited” in the sense
that we will be able to describe most relevant contexts more
easily. It is possible to obtain the complete trace of user ac-
tivity on his desktop, and therefore his accurate interests,
goals, and preferences can be discovered for the context-
aware search.



Context-aware search has been mainly presented in web
search for query suggestions [4] and query classification [2].
Search contexts from users’ search or browsing logs are ef-
fective for disambiguating Web queries and can help improve
the quality of multiple search services [20]. However, in
their approaches, only clickthrough information is consid-
ered as an important part of context. They also take little
consideration of the user behavior at the time of querying.
Though a recent work [3] also applied the HMM model in
context-aware search, it only focused on Web search by con-
sidering only the query strings and simple clickthrough data.
In comparison, we exploit the task context by analyzing the
access events in the user activity log and use the Hidden
Markov Model to capture the relationships between tasks
and resources, which models the user’s behavior at a higher
level of semantics. In [24], besides clickthrough informa-
tion, the authors also propose to treat preceding queries as
implicit user feedback when considering the ranking of the
documents. Nonetheless, the study was still confined in the
sense of Web search, and it could be an interesting future
work for iMecho to also incorporate preceding user queries
as additional context information.

6 Conclusion
In this paper, we propose an HMM based context-aware
search approach to help users improve search experience
on personal desktop systems. The user model is built by
analyzing the access events recorded in the user activity
log, which captures the semantic relationship between user
behaviors (tasks in this paper) and resources. In particular,
we propose a task mining algorithm to detect tasks from the
log, which are then used to initialize the user model. Based
on this model, we further propose a novel ranking scheme
by taking the context information into consideration when
answering user queries. The proposed framework has been
implemented in the iMecho system, and the experimental
evaluation shows that many times iMecho could outperform
traditional TF-IDF based ranking schemes.
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