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Modern database systems offer index-tuning advisors that automatically identify a set of indexes to improve

workload performance. Advisors leverage the optimizer’s what-if API to optimize a query for a hypothetical

index configuration. Because what-if calls constitute a major bottleneck of index tuning, existing techniques,

such as workload compression, help reduce the number of what-if calls to speed up tuning. Unfortunately,

even with small workloads and few what-if calls, tuning can still take hours due to the complexity of the

queries (e.g., the number of joins, filters, group-by and order-by clauses), which increases their optimization

time. This paper introduces workload reduction, a new complementary technique aimed at expediting index

tuning by decreasing individual what-if call time without significantly affecting the quality of index tuning.

We present an efficient workload reduction algorithm, calledWred, which rewrites each query in the original

workload to eliminate column and table expressions unlikely to benefit from indexes, thereby accelerating

what-if calls. We study its complexity and ability to maintain high index quality. We perform an extensive

evaluation over industry benchmarks and real-world customer workloads, which shows that Wred results in

a 3× median speedup in tuning efficiency over an industrial-strength state-of-the-art index advisor, with only

a 3.7% median loss in improvement—where improvement is the total workload cost as estimated by the query

optimizer—and results in up to 24.7× speedup with 1.8% improvement loss. Furthermore, combiningWred
and Isum (a state-of-the-art workload compression technique for index tuning) results in higher speedups

than either of the two techniques alone, with 10.5× median speedup and 5% median improvement loss.
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1 INTRODUCTION
Indexing is a crucial technique in database systems to accelerate query processing. However, iden-

tifying the optimal set of indexes for a workload is a challenging task. To address this, database

management systems provide index advisors [9, 10, 21, 38] to automatically recommend an appro-

priate index configuration (i.e., set of indexes) for a given workload, subject to constraints such as

the number of indexes and available storage space [26, 34].
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Fig. 1. The average what-if call time (𝑦-axis) grows with the query complexity, estimated (𝑥-axis) by the

average number of column references (left) and table references (right). Each point is a workload that has

been tuned with an industrial-strength index advisor. The Pearson product-moment correlation coefficients

between the two axes are high, with negligible 𝑝-values smaller than 0.05.

Index advisors leverage the what-if call API, which is supported in most query optimizers of

existing database systems [11, 21]. A what-if call enables the advisor to submit a hypothetical index

configuration and a query, and optimize the query as though the indexes in the configuration had

already been constructed, without actually constructing them. By utilizing what-if calls, the advisor

is able to estimate the potential cost improvement that can be achieved for a given configuration.

Unfortunately, most of the tuning time is spent on executing what-if calls [9, 30, 34, 35, 43], for

two main reasons: (1) what-if calls are slow since they are similar to regular query optimizer calls

and (2) the advisor typically issues a large number of what-if calls during index tuning.

Since the number of what-if calls grows with the number of candidate configurations and the

number of queries, index advisors use heuristics to reduce both. For example, they restrict the set

of candidate configurations to only include columns that are most likely to benefit from indexes [1].

Additionally, they can reduce the number of queries by only tuning for queries that, together, can

represent most of the workload—an approach referred to as workload compression [7, 12, 34].

While existing approaches can speed up index tuning significantly by reducing the total number

of what-if calls, each what-if call remains expensive. Even small workloads can have complex

queries—e.g., with many joins, filter predicates, group-by and order-by clauses—which typically

require long optimization times, and tuning these workloads can still take hours [43]. A simple

approximation of the query complexity is given by the number of column and table references

in each query, as depicted in Figure 1. The figure, created with our synthetic benchmarks and

real-world customer workloads using an industrial-strength index advisor [1], shows that the

average what-if call time grows proportionally to the average number of column references (left

figure) and table references (right figure) per query. This indicates that index tuning could benefit

from a method capable of simplifying each individual query, thereby accelerating what-if calls.

To this end, we propose workload reduction, which rewrites queries to reduce their complexity,

e.g., by eliminating some filters, joins, etc. In comparison to prior techniques [1, 7, 12, 34, 35, 43] that

only reduce the number of what-if calls, workload reduction attacks a different dimension of the

complexity of index tuning, i.e., the optimization complexity of each individual query, therebymaking

what-if calls faster. Workload reduction is complementary to prior techniques, including workload

compression [34], and can be used in conjunction with them. Similar to workload compression,

workload reduction can be used as a pre-processing step for index tuning, requiring no changes

to the optimizer or the index advisor. Unlike workload compression, workload reduction can also

modify queries, rather than just keeping or eliminating them entirely. Workload reduction can

speed up tuning even when eliminating queries is not a viable option—e.g., in small but complex

workloads—while still retaining high index quality, as the following example illustrates.

Illustrative example. Figures 2 and 3 present an example of workload reduction in action. In

this example, eliminating either of the original queries from Figure 2, 𝑄1 or 𝑄2, would make the
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𝑄1: SELECT S_Name,
COUNT(*) AS numwait

FROM LineItem, Supplier, Nation
WHERE L_SuppKey = S_SuppKey
AND S_NationKey = N_NationKey
AND N_Name = 'INDIA'

GROUP BY S_Name

𝑄2: SELECT SUM(L_ExtendedPrice * (1 - L_Discount))
AS revenue

FROM LineItem, Orders
WHERE L_OrderKey = O_OrderKey

AND O_OrderDate >= '1994-05-01'
AND O_OrderDate < DATEADD(mm,3,'1994-05-01')
AND L_ReturnFlag = 'R'

Best configuration for {𝑄1,𝑄2} improves total cost by 95%:
(1) LineItem(L_ReturnFlag, L_OrderKey, L_ExtendedPrice, L_Discount)
(2) LineItem(L_SuppKey)
(3) Orders(O_OrderDate, O_OrderKey)
(4) Supplier(S_NationKey, S_SuppKey, S_Name)

Best configuration for𝑄1 improves𝑄1 by 97%, but both queries by only 44%:
(1) LineItem(L_SuppKey)
(2) Supplier(S_NationKey, S_SuppKey, S_Name)

Best configuration for𝑄2 improves𝑄2 by 95%, but both queries by only 51%:
(1) LineItem(L_ReturnFlag, L_OrderKey, L_ExtendedPrice, L_Discount)
(2) Orders(O_OrderDate, O_OrderKey)

Fig. 2. Example workload on the TPC-H schema. Tuning on 𝑄1 alone (𝑄2, resp.), causes a great loss in

improvement: from 95%, with both queries tuned, to 44% (51%, resp.).

improvement over the original queries drop substantially, from 95% to either 44% or 51%, using an

industrial-strength index advisor [1]. Instead, workload reduction (Figure 3) keeps both queries,

but it rewrites them to eliminate references to the Nation and Orders tables and their columns.

This reduces the complexity of the queries, and results in a much higher 86% improvement than

eliminating queries. Notice how the new queries do not retain the semantics of the original queries,

but only some of the original expressions (e.g., projections, aggregates, filter predicates, joins,

group-by’s), and they can include new expressions that were not part of the original query (e.g.,

the new group-by clause in 𝑄 ′
2
).

Challenges of workload reduction. While the above example shows the potential of workload

reduction to simplify queries and still retain high improvement for the original queries, achieving

this presents several challenges. First, it is unclear how to define a space of possible query rewritings
that is expressive enough to contain good rewritten queries, while being, at the same time, amenable

to efficient solutions. Prior work on query rewriting focuses on maintaining the query semantics [6,

31], which is not a requirement in our setting and does not offer a framework for simplifying

queries by eliminating expressions. To the best of our knowledge, this paper is the first to introduce

a framework for workload reduction, and we show its NP-hardness (Section 2). Second, workload

reduction must be extremely fast and, in particular, it must avoid any costly operations such as

optimizer calls or computing complex statistics, otherwise we would lose the very purpose of

reducing a workload in the first place. Third, workload reduction must preserve index quality by

ensuring that the best configuration for the new reduced workload is also good for the original

workload. This, in itself, introduces further challenges: (1) identifying columns and tables that can

greatly benefit from indexes (e.g., LineItem) without executing costly what-if calls (Section 3.1);

(2) avoiding inadvertent introduction of cross-products that could inflate query cost and divert

tuning resources from other queries (Section 4.1); (3) ensuring that columns potentially benefiting

from indexing (e.g., L_OrderKey in 𝑄2) are not overlooked by the index advisor when others in the

same join predicate (i.e., O_OrderKey) are eliminated (Section 4.2). Finally, the amount of reduction—

i.e., how many expressions to remove from the queries—has a major impact on the index tuning

quality: removing too many expressions would result in poor configurations, and removing too

few would not provide any major speedups. Unfortunately, we do not know the exact effect of

reduction without executing expensive what-if calls (Section 5).
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𝑄 ′
1
: SELECT S_Name, S_NationKey,

COUNT(*) AS numwait
FROM LineItem, Supplier
WHERE L_SuppKey = S_SuppKey

GROUP BY S_Name, S_NationKey

𝑄 ′
2
: SELECT L_OrderKey,

SUM(L_ExtendedPrice * (1 - L_Discount))
AS revenue

FROM LineItem
WHERE L_ReturnFlag = 'R'

GROUP BY L_OrderKey

Best configuration for {𝑄 ′
1
,𝑄 ′

2
} improves {𝑄1,𝑄2} by 86%:

(1) LineItem(L_ReturnFlag, L_OrderKey, L_ExtendedPrice, L_Discount)
(2) LineItem(L_SuppKey)
(3) Supplier(S_NationKey, S_Name, S_SuppKey)

Fig. 3. Example of workload reduction in action: (1) keep both queries, but remove some table and column

expressions; (2) keep tables and columns likely to need indexes in the original queries. The improvement over

the original workload jumps to 86%.

Our proposed technique. We present Wred, a technique for efficiently reducing a workload to

speed up index tuning while ensuring that the quality of the resulting configuration is not affected

significantly compared to tuning the original workload directly. Wred is guided by a column
selection phase, which identifies a set of important indexable columns (i.e., columns that are likely to

benefit from indexes) from the entire original workload. Wred then rewrites each query, retaining

only references to these columns and associated tables. While index advisors perform a similar

column selection to limit the number of candidate configurations (e.g., column-group restriction in

Microsoft SQL Server’s DTA [1]), they seek to minimize both false positives and negatives, and

they achieve this through query optimizer interrogation. However, because this approach is too

costly in our setting, we optimize our column selection to include all possibly relevant columns,

limiting only false negatives, and delegate the task of eliminating irrelevant ones to the advisor.

Wred efficiently finds relevant columns by only using readily available statistics, such as table

sizes and frequency of table references in the queries.

To rewrite queries,Wredmodifies the Abstract Syntax Tree (AST) of the original query via a set

of rules that eliminate unwanted expressions (nodes in the AST) that correspond to the non-selected

columns, while ensuring the SQL validity of the resulting query. Because the new queries are never

executed, but only used during tuning to identify good indexes for the original queries, Wred
does not need to preserve query semantics, i.e., the query generated byWred is not required to

produce the same result as the original query.Wred avoids the creation of new cross-products

in the queries with an efficient algorithm that gradually eliminates nodes from the join graph,

ordered by increasing number of edges, as long as the elimination does not create new connected

components. This algorithm proves very effective in our experimental evaluation. Furthermore,

Wred mitigates the loss of join keys when eliminating join predicates with a simple yet effective

heuristic: adding the keys to the group-by clause, which proves effective at improving the tuning

quality in all our experiments.

Wred automatically decides on the right amount of reduction by identifying the knee [33] of a
curve that estimates improvement based on a low-overhead statistical analysis of the workload,

without requiring input from the user. We show that this technique is effective across all our

workloads.

We perform a comprehensive evaluation of workload reduction with both synthetic benchmarks

and real-world customer workloads. We show that Wred is able to speed up the Microsoft

SQL Server index advisor DTA by 3× (median across workloads) with only a 3.7% loss in total

improvement, compared to using the advisor directly on the original workload. If Wred is tuned

optimally, it can speed up index tuning by up to 24.7× with 1.8% loss. For large and complex

workloads, such as a customer workload with more than 300 complex queries, where the advisor

reaches the specified time limit of 8 hours,Wred can also help the advisor find configurations with
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18.8% better improvement than tuning the original workload directly in the same amount of time.

When used in conjunction with workload compression techniques, such as the state-of-the-art

Isum [34],Wred achieves higher speedups thanWred alone or Isum alone with comparable loss,

or higher improvements with the same speedup, obtaining median speedup of 10.5× with median

loss of 5%. In this paper, we consider a simple sequential combination of Isum withWred, and
discuss limitations in section 6.5.

In summary, this paper makes the following contributions:

(i) To the best of our knowledge, we are the first to speed up index tuning by speeding up what-if

calls rather than by reducing the number of what-if calls. To this end, we propose workload

reduction, and study its complexity.

(ii) We propose Wred, an efficient algorithm that produces reduced workloads of high quality.

Wred breaks computation into two phases: column selection and query rewriting. We study the

hardness of each and design efficient algorithms.

(iii) We perform a comprehensive experimental evaluation over industry benchmarks as well as

real-world customer workloads, using industrial-strength [1] and open-source [22] index tuners.

Paper organization. In Section 2, we formulate the workload reduction problem formally and

discuss its complexity. Section 3 presents Wred, while Section 4 provides efficient improvements.

Section 5 presents a technique to automatically set the reduction amount. Section 6 presents our

experimental evaluation, and Section 7 discusses related work. In Section 8, we discuss limitations

and opportunities for future work. The paper concludes in Section 9.

2 WORKLOAD REDUCTION
In this section, we introduce workload reduction. We first establish its design goals, and then

formally define the problem (Section 2.1), as well as its complexity and challenges (Section 2.2).

Design goals. At a high level, workload reduction rewrites each query in the original workload to

speed up index tuning. To do so, it must strike a balance between the following three goals:

(𝐺1) Tuning Speedup: Workload reduction should reduce tuning time substantially compared to

tuning the original workload.

(𝐺2) Low Quality Loss: The reduced workload should let the advisor find a configuration that

also improves the performance (measured using optimizer estimated cost) for the original queries.

(𝐺3) Reduction Efficiency: Reduction must operate fast. Using reduction in combination with

compression (Section 6.5) imposes even more stringent requirements on the efficiency of reduction.

To this end, our goal is to never rely on costly operations such as optimizer calls, or computation

of complex statistics and histograms.

2.1 Problem Definition
We first recap the index tuning problem. Let𝑊 B {𝑄1, . . . , 𝑄𝑁 } be a workload consisting of 𝑁

queries. Let I𝑊 B {𝐼1, . . . , 𝐼𝑀 } be the𝑀 syntactically-relevant indexes for𝑊 , i.e., indexes applicable

to columns referenced in one or more queries in𝑊 . The search space of index tuning, denoted by

Γ(𝑊 ), is the set of all possible index configurations, i.e., all subsets of I𝑊 . Let C(𝑄𝑖 ) be the original
cost of 𝑄𝑖 prior to tuning, obtainable via an optimizer call, and C(𝑄𝑖 ,𝐶) the cost of 𝑄𝑖 if (only)
configuration 𝐶 ∈ Γ(𝑊 ) is used, obtainable with a what-if call. A what-if call, which is supported

in most database systems, enables the advisor to submit a hypothetical index configuration and

a query, and optimize the query as though the indexes in the configuration had already been

constructed, without actually constructing them. By utilizing what-if calls, the advisor is able to

estimate the potential cost improvement that can be achieved for a given configuration. What-if
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calls are typically as expensive as normal optimizer calls. The improvement given by configuration

𝐶 on𝑄𝑖 is I(𝑄𝑖 ,𝐶) B C(𝑄𝑖 ) − C(𝑄𝑖 ,𝐶), and index tuning looks for a configuration that maximizes

the sum of improvements for all queries in𝑊 , subject to a set of constraints such as the maximum

configuration size and the limit on the storage space.

Workload reduction speeds up optimizer calls by rewriting each query𝑄𝑖 into a reduced𝑄
′
𝑖 with

fewer column and table references. The space of possible rewritings is very large. For instance, we

could write new queries from the ground up by combining columns across tables, including them

in various operations such as filters, group-bys, order-bys, etc., in all possible ways. This would

make the problem space unmanageable. Instead, we design rewriting to eliminate expressions from
the original query. The choice of which expressions to keep is guided by a column selection phase.

Column selection identifies a set of columns referenced in the workload that are most likely to

need indexes.We select a single set of columns for the entire workload to obtain amanageable search

space and allow for efficient solutions. A more general approach that can select a different set of

columns per query might include better solutions, but its search space would be exponentially larger

in𝑁 , the number of queries. We compare these two approaches in the extended version [3] and show

that selecting a single set of columns for the entire workload can offers the same improvements as

the general approach under some conditions on the query cost model.

Query rewriting transforms the Abstract Syntax Tree (AST) of the original query into another

AST that includes at least the previously selected columns, while still ensuring SQL validity. Query

rewriting applies the minimal transformations to the original AST that are necessary to achieve

these goals. The transformations include: elimination of nodes, modifications, or addition of new

nodes. For example, query rewriting may remove all expressions referring to columns that were

not selected. We discuss the caveats and challenges of query rewriting in Section 2.2.

Formally, if 𝑄 is a SQL query, denoted by 𝑄 ∈ SQL, let 𝜋 (𝑄) be the set of columns referenced in

𝑄 . A reference to a column can appear in any part of the query, including sub-queries, common

table expressions, etc. For a subset of columns 𝐾 ⊆ 𝜋 (𝑄), let 𝜌 (𝑄,𝐾) be a rewriting algorithm that

rewrites 𝑄 into a new valid SQL query that includes, at least, all columns in 𝐾 . A reduced version of

𝑄 is a valid SQL query, produced by 𝜌 , that refers to a subset of the columns of 𝑄 :

Definition 1: ReducedQuery
Let 𝑄 ∈ SQL. 𝑄 ′ is a reduced version of 𝑄 , denoted by 𝑄 ′ ⊑𝜌 𝑄 , iff ∃𝐾 : 𝐾 ⊆ 𝜋 (𝑄 ′) ⊆ 𝜋 (𝑄),
𝑄 ′ = 𝜌 (𝑄,𝐾), and 𝑄 ′ ∈ SQL.
A reduced query can also reference no columns, i.e., when 𝜋 (𝑄 ′) = ∅. This corresponds to

eliminating the original query, like workload compression might do. While workload compression

can only either keep or eliminate a query, reduction can create many reduced versions of the same

query by eliminating different subsets of its columns. Since we do not replace the original queries

for execution, but only for improving the index tuning efficiency, we do not pose any restrictions

on query semantics.

We extend our definitions to a workload in the obvious way:𝑊 ′ ⊑𝜌 𝑊 iff ∀𝑖 ∈ [1..𝑁 ], 𝑄 ′𝑖 ⊑𝜌 𝑄𝑖 ;
𝜋 (𝑊 ) B ⋃𝑁

𝑖=1
𝜋 (𝑄𝑖 ) is the set of columns referenced in𝑊 ; 𝐿 B |𝜋 (𝑊 ) | its size; similarly, for

𝑊 ′, 𝜋 (𝑊 ′) B ⋃𝑁
𝑖=1
𝜋 (𝑄 ′𝑖 ) and 𝐿′ B |𝜋 (𝑊 ′) |; we have that if𝑊 ′ ⊑𝜌 𝑊 , then 𝜋 (𝑊 ′) ⊆ 𝜋 (𝑊 ). The

objective of workload reduction is to identify the optimal set of columns and rewriting algorithm

that will maximize the sum of improvements achieved on the original queries when the advisor

is applied to the reduced workload.

Problem 1: Workload Reduction for Index Tuning
Given a configuration size limit 𝑘 , an advisor A, and an upper bound 𝑙 on the total number of

columns referenced in the reduced workload, 1 ≤ 𝑙 ≤ 𝐿, the optimal reduced workload𝑊 A
𝑙,𝑘

is the
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solution to the following constrained optimization problem:

𝑊 A
𝑙,𝑘
B argmax

𝑾 ′⊑𝜌𝑊

∑𝑁
𝑖=1I(𝑄𝑖 ,𝐶A𝑾′,𝑘

)

s.t. |𝜋 (𝑾 ′) | ≤ 𝑙
and 𝜋 (𝑸 ′

𝒊) ⊇ 𝜋 (𝑾 ′) ∩ 𝜋 (𝑄𝑖 ), ∀𝑖 ∈ [1..𝑁 ],
where 𝐶A

𝑊 ′,𝑘 is the configuration given by A for a reduced𝑊 ′.

The parameter 𝑙 serves as a trade-off between tuning speed and the quality of the solution,

which are two of our primary goals, i.e., (𝐺1) and (𝐺2). When 𝑙 equals the maximum value 𝐿, there

is no reduction, leading to no improvement loss, but also no speedup, where 𝐿 is the total number

of columns referenced in the original workload. Conversely, when 𝑙 equals the minimum value

of 1, the speedup is maximal, but the loss may be unacceptably high. Setting this parameter is

hard for a user. In Section 5, we propose a technique for automatically determining an appropriate

value of 𝑙 based on the input workload.

The constraints 𝜋 (𝑄 ′𝑖 ) ⊇ 𝜋 (𝑊 ′) ∩ 𝜋 (𝑄𝑖 ) enforce a workload-level column selection. They work

in the following manner: if a column 𝑐 is included in the reduced workload (i.e., 𝑐 ∈ 𝜋 (𝑊 ′)), then 𝑐
must also be included in all queries that originally referred to it, i.e., 𝑐 must be included in 𝜋 (𝑄 ′𝑖 )
for all 𝑖 such that 𝑐 ∈ 𝜋 (𝑄𝑖 ).

Notice that an alternative formulation of Problem 1 that minimizes |𝜋 (𝑊 ′) | s.t. ∑𝑁𝑖=1I(𝑄𝑖 ,𝐶A𝑊 ′,𝑘) =∑𝑁
𝑖=1I(𝑄𝑖 ,𝐶A𝑊,𝑘

) is not viable because constraining the improvement is not possible without running

the index advisor.

2.2 Complexity and Challenges
Claim 1: Problem 1 is NP-hard.

We prove the claim in the extended version [3], with a reduction from minimum 𝑘-median,

following a similar approach to proving the NP-hardness of workload compression [7]. There

are exponentially many candidate subsets of columns to choose from, and we cannot exactly

measure the improvement each set would yield without expensive what-if calls; instead, we must

select columns by estimating the improvement. For our efficiency goal (𝐺3), selection must also be

extremely fast. Therefore, we only want to use statistics readily available in the database or quickly

computable at runtime, and avoid optimizer calls altogether.

Query rewriting is also non-trivial. Eliminating a table reference that acts as a bridge between

two tables in the join graph may introduce a cross-product between the remaining tables; new

cross-products may excessively increase the cost of the query and mislead a cost-based index

advisor to focus on tuning that particular query, ignoring the other queries. Additionally, in order

to maintain valid SQL syntax, the elimination of expressions from a query may cascade to other

expressions. For example, eliminating column C1 from a join predicate C1 = C2 requires the whole
predicate to be eliminated, cascading the elimination to column C2, and the advisor would not be

able to recommend indexes for C2.

3 WRED: EFFICIENT WORKLOAD REDUCTION
In this section, we introduce Wred, our efficient algorithm for workload reduction that addresses

its challenges.Wred has two phases, shown in Figure 4: first, it selects a set of columns to keep

globally across the entire workload; then, it processes each query one at a time, creating a new

reduced query that includes at least the columns selected in the previous phase. Algorithm 1 depicts

these steps in pseudo-code. Following our efficiency goal (𝐺3), we present our efficient techniques
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Section 3.1 Section 3.2

Fig. 4. Phases of Workload Reduction. Column selection (Section 3.1) selects the index-needy columns, and

Query Rewriting (Section 3.2) rewrites each query to only reference those columns.

Algorithm 1Wred

Input: Input workload𝑊 , max number of columns 𝑙 ≤ 𝐿
Output: Reduced workload𝑊 ′

1: 𝑊 ′ ← ∅
2: 𝐾 ← ColumnSelection(𝑊, 𝑙) ⊲ Target set of columns in𝑊 ′

3: for all 𝑖 ∈ [1..𝑁 ] do
4: 𝑄 ′

𝑖
←QueryRewriting(𝑄𝑖 , 𝐾)

5: 𝑊 ′ ←𝑊 ′ ∪ {𝑄 ′
𝑖
}

6: return𝑊 ′

for ColumnSelection (Section 3.1) and QueryRewriting (Section 3.2) to produce good results in

practice (Section 6), leveraging our understanding of index tuning.

3.1 ColumnSelection
The goal of ColumnSelection is to quickly identify a good set of index-relevant columns to include

in the reduced queries. Advisors also perform column selection as part of their search strategy to

generate candidate indexes for the workload. As their objective is to find an optimal set of columns,

i.e., with both few false negatives and few false positives, they use optimizer calls to obtain the

cost of the queries [2]. Our objective is to perform an efficient column selection without invoking

the optimizer. For this reason, we only focus on reducing false negatives in our selected columns,

which we can achieve, as we show later, by only relying on readily-available statistics, such as

the table sizes and the frequency of table references in the workload. This has two advantages:

(1) it simplifies our ColumnSelection without the need to interrogate the optimizer, and (2) it

also speeds up the advisor’s column selection procedure, since it reduces the set of columns the

advisor must consider. With this objective in mind, we design our ColumnSelection to exclude

columns that may not need indexes. We observe that these are usually columns from smaller tables

(as noted by [2]), or tables that are accessed very rarely in the workload:

Observation 1: “The more rows, the more an index can help”

The number of rows in a column is generally proportional to the improvement an index can

provide for that column.

Observation 2: “The more frequently a table is accessed to answer a query, the more an index on
the same table can help”

The number of times a table is referenced in the queries is generally proportional to the improve-

ment an index can provide.

Based on these observations, we define indexable data to capture the importance of a column for

index tuning.
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Fig. 5. Percentage improvement (𝑦-axis) obtained by reducing a workload withWred using the corresponding

indexable data (𝑥-axis). Indexable data is a good estimate for improvement as indicated by the high correlation

between the two.

Algorithm 2 ColumnSelection

Input: Input workload𝑊 , max number of columns 𝑙 ∈ [0..𝐿]
Output: Subsets of columns 𝐾 ⊆ 𝜋 (𝑊 ) s.t. |𝐾 | ≤ 𝑢
1: 𝐾 ← ∅
2: 𝑇 ← GetTables(𝑊 ) ⊲ Array of tables referenced in𝑊
3: 𝐷 ← Array(count : |𝑇 |) ⊲ Array of indexable data scores
4: for all 𝑖 ∈ [1..|𝑇 |] do
5: 𝐷𝑖 ← 𝑇𝑖 .RowCount ×𝑇𝑖 .NumRefs(𝑊 )
6: 𝐼 ← ArgSort(𝐷) ⊲ Indexes of sorted 𝐷 (desc. order)
7: for all 𝑖 ∈ [1..|𝐼 |] do
8: 𝑡 ← 𝑇𝐼𝑖 ⊲ 𝑖-th best table
9: 𝐶 ← 𝑡 .GetColumns(𝑊 ) ⊲ Columns of 𝑡 referenced in𝑊
10: if |𝐾 | + |𝐶 | ≤ 𝑙 then
11: 𝐾 ← 𝐾 ∪𝐶
12: else break
13: return 𝐾

Definition 2: Indexable Data
Given a column 𝑐 ∈ 𝜋 (𝑊 ), let |𝑐 | be its “size”, i.e., the number of rows of the table where 𝑐 belongs;

let 𝑓 (𝑐,𝑊 ) be its “frequency” in𝑊 , i.e., the number of times 𝑐’s table is referenced in𝑊 .

D(𝑐) B |𝑐 | · 𝑓 (𝑐,𝑊 )
The indexable data of a column estimates the total amount of data, measured in the number of

rows, that the system needs to access in order to answer all the queries in the workload involving

that column if no indexes were involved, i.e., the total cost of scanning the table where the column

belongs to, for as many times as the table is referenced in the workload. The higher this measure, the

more rows the system accesses, and therefore the more rows may benefit from indexing. Therefore,

this measure captures the opportunity for indexes to reduce access time of tables. Computing it is

extremely efficient, with readily available statistics such as table sizes, and counting the frequency

of references in the workload. ColumnSelection computes D(𝑐) for each column 𝑐 in the input

workload, sorts columns by this measure, and picks the first 𝑙 with the highest scores. Algorithm 2

depicts these steps in detail.

This measure does not take into account the selectivity of predicates. However, since we are

only interested in constructing new queries, and letting the advisor do the hard job of checking

selectivity, we only need to construct queries that have a good chance to be indexed. If some

unselective predicates are also included, we leave to the advisor the job of filtering them out. This

has the advantage of simplifying workload reduction, while maintaining the quality of the resulting

configuration. For similar reasons, this measure also ignores whether data needs to be sorted

for group-by’s, order-by’s, or merge joins. However, as we discuss later in Section 3.2, Wred’s
rewriting keeps these operations if they involve selected columns, giving them a chance to be

considered for indexing.
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Algorithm 3QueryRewriting

Input: Query 𝑄 ∈ SQL, target columns to keep 𝐾

Output: New query 𝑄 ′ ⊑ 𝑄 s.t. 𝜋 (𝑄 ′) ⊇ 𝐾
1: (𝐶,𝑇 ) ← MarkForRemoval(𝑄,𝐾) ⊲ Column and table expressions marked for removal according to 𝐾
2: return RewriteQuery(𝑄,𝐶,𝑇 )

We further support our intuition as to why indexable data well captures improvement in Figure 5.

We run Wred on our evaluation workloads (Section 6) with increasing values of 𝑙 , and report the

workload-level indexable data (D) percentage on the 𝑥-axis, computed asD(%) B D(𝑊 ′)/D(𝑊 )∗
100%, where D(𝑊 ) B ∑

𝑐∈𝜋 (𝑊 ) D(𝑐) and D(𝑊 ′) B
∑
𝑐∈𝜋 (𝑊 ′ ) D(𝑐), such that D(%) = 100%

means that the reduced workload is identical to the original workload (no reduction). We then

run the advisor on the reduced workload obtained for each D value, and report on the 𝑦-axis the

percentage improvement (I) obtained on the original workload. We show the Pearson product-

moment correlation coefficient between indexable data and improvement on the bottom (the

associated 𝑝-value is always smaller than 0.05). All correlations are high, not due to chance,

showing that indexable data is a good estimate for improvement.

Given the high correlation betweenD and I, a natural question is whetherD is a good estimate

for I in Problem 1 to produce optimal reduced workloads, where we replace I(𝑄𝑖 ,𝐶A𝑊 ′,𝑘) with
D(𝑄 ′𝑖 ) B

∑
𝑐∈𝜋 (𝑄 ′

𝑖
) D(𝑐). A sufficient condition forD(𝑄 ′𝑖 ) to produce optimal results for Problem 1

is that for any two reduced workloads𝑊 ′ = {𝑄 ′
1
, . . . , 𝑄 ′

𝑁
} and𝑊 ′′ = {𝑄 ′′

1
, . . . , 𝑄 ′′

𝑁
}, ∀𝑖 ∈ [1..𝑁 ]:

I(𝑄𝑖 ,𝐶A𝑊 ′,𝑘) > I(𝑄𝑖 ,𝐶A𝑊 ′′,𝑘) ⇒ D(𝑄 ′𝑖 ) > D∗ (𝑄 ′′𝑖 ). Indexable data only satisfies these conditions if

𝑊 ′ has strictly more columns than𝑊 ′′ (proof in the extended version [3]), which only constitutes

a small fraction of the cases. While D is not a good estimate for I if used directly in Problem 1, it

is powerful for identifying important columns for workload reduction, as Figure 5 shows. Devising

an optimal or approximate estimate is challenging due to the hardness of index tuning.

3.2 QueryRewriting
Given a query 𝑄 and a set of columns 𝐾 computed by ColumnSelection, QueryRewriting

constructs 𝑄 ′ ⊑𝜌 𝑄 by removing table and column expressions according to 𝐾 . The steps of the

algorithm are shown in Algorithm 3. First, the algorithm marks columns and tables in𝑄 for removal,
according to 𝐾 . For now, we assume that a column is marked for removal if it is not included
in 𝐾 , and that a table is marked for removal if none of its columns is included in 𝐾 . Later, in

Section 4, we discuss the drawbacks of blindly removing all columns and tables according to 𝐾 , as

doing so may introduce new cross-product in the resulting query, or prevent certain columns from

being considered for candidate indexes, thereby worsening the results produced by an advisor;

we will then modify the algorithm to avoid these pitfalls and improve the results. After this step,

the algorithm calls the RewriteQuery method to produce a valid SQL reduced query in output.

RewriteQuery operates syntactically on the query, by traversing its AST.

The AST for the original query is obtained by executing the SQL language parser on the SQL

string. The specific form the AST takes depends on the SQL dialect and DBMS being used. While

we base our implementation around the T-SQL parser of Microsoft SQL Server, the algorithm we

present is not tied to a particular dialect and easily extendable to other dialects (e.g., PostgreSQL,

see Section 6.8). The method works in three main phases:

(1) Parse obtains the AST of 𝑄 , denoted by 𝑇 ;

(2) Rewrite creates a new AST tree 𝑇 ′ from 𝑇 , such that 𝑇 ′ only references columns and tables

not marked for removal;

(3) Print outputs 𝑄 ′ in the target SQL dialect, by simply traversing 𝑇 ′ in the obvious way.
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Fig. 6. Join graph of TPC-H 𝑄21. Supplier acts as a bridge between LineItem L1 and Nation. Removing it

would introduce a cross-product between LineItem and Nation.

Parse is provided as part of the DBMS library; Print is trivial, and thus we omit its details.

Rewrite traverses the AST 𝑇 , and applies a set of rules that depend on the specific node that the

algorithm is currently visiting. These rules determine which node to produce in the output AST 𝑇 ′.

AST Nodes. For brevity, we only describe some of the main AST node types. The root of 𝑇 is a

QueryBatch node, i.e., a list of Query nodes. Each Query node contains: a list of CTE nodes, a list of

Select nodes, a list of From nodes, a list of GroupBy nodes, a list of OrderBy nodes, a Where node,

a Having node, a Topk node, a Distinct Boolean value. CTE includes a CTE name and a Query
node. Select is an expression combining Column nodes, Function nodes, primitive types, etc. From
is an expression including Table nodes. Function includes a function name and the parameters

being passed to the function. Column represents either a column from a table, a view, a CTE, or a

sub-query. Table represents either a table, view, CTE or sub-query with an alias name.

The other nodes follow the standard SQL syntax in the obvious way. For example, Where is

a Boolean expression with leaves Column, strings, numbers, etc. Having is a Boolean expression

that also allows for Function that represent aggregates. Query can also be a Union, Intersect or

Except of two SubQuery nodes.

Rewrite Rules. Rewrite traverses the AST 𝑇 depth-first, and for each node N , it outputs a

new node N ′ for the resulting AST 𝑇 ′. There are three types of decisions: (1) keep: N ′ = N ; (2)

remove: do not output any node; and (3) modify: N ′ ≠ N . Rewrite performs different operations

based on the type of N . Here, we only show some of the major operations and list the remaining

ones in the extended version [3].

• Column. IfN is a reference to a column in𝐶 , remove; if it is a reference to some other expressions

(e.g., alias or column in a CTE or sub-query), and if all such expressions were removed, remove;
else, keep.
• Table. If N is a reference to a table in 𝑇 , remove; else, keep.
• Function. Rewrite each argument of N . Depending on the function name (some functions can

be called with fewer arguments), if too many arguments are removed to form a valid call to the

function, remove; else keep.

4 IMPROVING REDUCTION QUALITY
In this section, we discuss the drawbacks of removing all expressions marked for removal, and

present techniques to address them.

4.1 Preventing Creation of Cross-products
In Section 3.2, we developed a rewriting algorithm that marks for removal every column and table

expressions related to𝐾 , the set of columns picked by the column selection step. However, removing
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Fig. 7. Hard instances forMaxRemoval. (a–c): optimal solutions can require removal of nodes with higher

degrees; (d–e): more removal nodes may make previously infeasible solutions feasible.

a set of tables from a query without considering the structure of the join graph can introduce

cross-products in the query, which may affect the quality of index tuning.

Consider𝑄21 from TPC-H [37] and its join graph as depicted in Figure 6. The join graph includes a
node for each individual table reference in the query; if a table is accessed multiple times throughout

the query, either in the same FROM clause, or in sub-queries and CTEs, the graph includes one

individual node for each such reference. The graph includes an edge between two nodes if the

respective table references have a join predicate.

Notice that Supplier acts as a bridge between LineItem L1 and Nation (similar to our example

query 𝑄1 from Figure 2). This means that, although LineItem and Nation are not explicitly joined

by a join predicate, there is no cross-product between the two tables. A possible query plan for this

query may first join LineItem with Supplier, and then join the result of this join with Nation.

If we removed Supplier from the query, we would introduce a cross-product between LineItem

and Nation. As LineItem is large, introducing a cross-product may excessively increase the cost of

the query. Because index advisors typically use query costs to guide the search [1, 22], this may

inadvertently cause the advisor to focus on tuning this particular query and ignore many others.

For reduction to be effective for index tuning, the distribution of the costs of the new queries should

be similar to that of the original queries, with the higher-cost queries still be the higher-cost ones

in the reduced workload.

In this section, we develop an improved version of theMarkForRemoval procedure, which only

marks tables for removal if doing so does not introduce a new cross-product. Formally, we say that

two table expressions are in a cross-product if there is no path between them in the join graph. Notice

that we do not require a direct join predicate (i.e., a direct edge in the graph) between two tables to

conclude that they are not in a cross-product. Detecting whether our transformations introduce

new cross-products is equivalent to checking whether the number of connected components in the

graph increases after eliminating the nodes and edges corresponding to the table expressions to

remove. This is because: (1) our transformation can only remove nodes (and edges) from the graph,

thus only creating sub-graphs; (2) if the number of connected components in a sub-graph is the

same as in the original graph, then for every pair of nodes, there is still a path if there was a path

in the original graph. Therefore, our goal is to allow the removal of nodes (and edges) from the

graph subject to the constraint of not introducing new connected components.

Algorithm 4 shows how to achieve this objective. The algorithm first marks nodes in the join

graph for removal according to 𝐾 . Then, in Line 3, it computes the largest subset of marked nodes

that, if removed, do not introduce new connected components in the resulting join graph. Finally,

it removes those nodes, to produce a new join graph that includes all table expressions that can be

safely removed from 𝑄 .
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Algorithm 4MarkForRemoval avoiding cross-product creation

Input: Query 𝑄 ∈ SQL, target columns to keep 𝐾

Output: Columns and tables, 𝐶 and 𝑇 resp., to remove from 𝑄

1: 𝐺 ← JoinGraph(𝑄)
2: 𝑁𝐾 ← RemovalNodes(𝐺,𝐾) ⊲ Nodes marked for removal in 𝐺 according to 𝐾
3: 𝐺 ′ ← MaxRemoval(𝐺, 𝑁𝐾 ) ⊲ Maximal removal that avoids introduction of new cross-products (i.e., new

connected components)
4: (𝐶,𝑇 ) ← ColumnsAndTables(𝑄,𝐺 ′)
5: return (𝐶,𝑇 )

Given a graph𝐺 = (𝑉 , 𝐸), let 𝜈 (𝐺) be the number of connected components in 𝐺 . MaxRemoval

finds the largest subset of removal nodes 𝑁 ′ ⊆ 𝑁𝐾 such that the sub-graph 𝐺 ′ obtained from 𝐺 by

removing 𝑁 ′ has at most the same number of connected components as 𝐺 , i.e., 𝜈 (𝐺 ′) ≤ 𝜈 (𝐺), and
then returns 𝐺 ′.

Claim 2: MaxRemoval is NP-hard.

We prove the claim in the extended version [3], with a reduction from the Steiner tree problem [23,

24]. This problem is only easy if all removal nodes have one edge, in which case they can all be

removed as they can never “split” the graph and create new connected components. In general,

there are up to 2
|𝑁𝐾 |

possible feasible sets of removal nodes, and to find the optimal set, we may

have to test them all by removing the nodes and counting the resulting number of connected

components, which is clearly impractical. One may think that removing nodes with lower degrees

(number of edges) is always better than removing nodes with higher degrees, as lower degrees are

less likely to split the graph. Unfortunately, Figure 7 shows why this is not the case: in the top

example, the optimal solution is to remove the node with the highest degree. Another factor that

makes MaxRemoval hard is shown in the bottom example of the figure: adding more removal

nodes may make previously infeasible solutions feasible, as removing node 3 is now feasible thanks

to the removal of node 1. Hard instances of MaxRemoval are not rare in practice. For example, in

TPC-DS queries, more than half of attempted node removals would introduce new cross-products

and, thus, need to be prevented.

We propose a greedy technique, called GreedyMaxRemoval, that quickly outputs a feasible

subset of nodes whose removal does not introduce new cross-products, but may not be the largest.

While we do not provide approximation guarantees, we observe its good behavior in all our

experiments (Section 6). The procedure first removes all nodes marked for removal that have fewer

than two edges—these are safe to remove as their removal cannot create new connected components.

Then, the algorithm tries to remove one node at a time, in increasing order of degree (ties can

be broken at random or with the indexable data metric of the corresponding table), checking

whether its removal creates new connected components in the resulting graph; if it does not, the

removal proceeds, otherwise the algorithm greedily terminates without removing other nodes. The

algorithm exploits the intuition that the fewer edges a node has, the less likely removing it will

create new connected components. Algorithm 5 shows these steps in detail, where we use 𝑒 (𝑛) to
denote the number of edges incident to a node 𝑛.

4.2 Mitigating Loss of Join Keys
In some cases, the elimination of expressions may lead to unwanted losses of join keys, preventing

the advisor from considering them for candidate indexes. Suppose, for instance, that the original

query has a join predicate C1 = C2, and we want to eliminate C1. We then have to eliminate the whole

predicate to maintain valid SQL syntax. This elimination forces C2 to also disappear, preventing

indexes for it to be recommended by the advisor—since C2 was selected to stay, eliminating it may
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Algorithm 5 GreedyMaxRemoval

Input: Join graph 𝐺 = (𝑉 , 𝐸), target set of removal nodes 𝑁𝐾 ⊆ 𝑉
Output: Sub-graph 𝐺 ′ = (𝑉 ′, 𝐸′) of 𝐺 s.t. 𝑉 ′ ⊇ 𝑉 \ 𝑁𝐾 , 𝜈 (𝐺 ′) ≤ 𝜈 (𝐺)
1: 𝐺 ′ ← 𝐺 ; 𝑁 ′ ← 𝑁𝐾
2: repeat
3: 𝑆 ← {𝑛 ∈ 𝑁 ′ | 𝑒 (𝑛) < 2} ⊲ Removal nodes with less than 2 edges
4: 𝐺 ′ ← RemoveNodes(𝐺 ′, 𝑆) ⊲ Remove all nodes in 𝑆
5: 𝑁 ′ ← 𝑁 ′ \ 𝑆
6: until 𝑆 = ∅
7: Invariant: all remaining removal nodes have 2 or more edges in 𝐺 ′ ⊳

8: repeat
9: 𝑆∗ ← Sorted(𝑁 ′, 𝑒 (·)) ⊲ Sort removal nodes by incr. num. of edges
10: 𝑛 ← Deqe(𝑆∗) ⊲ Removal node with fewest edges
11: 𝐺 ′ ← RemoveNodes(𝐺 ′, {𝑛})
12: if 𝜈 (𝐺 ′) ≤ 𝜈 (𝐺) then ⊲ Accept removal iff constraint is satisfied
13: 𝐺 ′ ← 𝐺 ′; 𝑁 ′ ← 𝑁 ′ \ {𝑛}
14: else break ⊲ Greedily stop when first removal node is rejected
15: until 𝑆∗ = ∅
16: return 𝐺 ′

cause a significant quality loss. We apply our understanding of index tuning to develop a technique

that reduces the impact of losing join keys.

Our algorithm proceeds as follows. During the creation of the new AST 𝑇 ′, we collect every join

key that gets eliminated. After RewriteQuery, we add these dangling join keys back to the query,

in places where the advisor may consider them as candidates for indexes—note that we are not

interested in the semantics of the new queries, but only in using the new queries for index tuning.

We experimented with variants of this idea (e.g., adding the keys to the order-by or select clauses),

and found that adding these columns to the group-by clause offers the best results. This simple

heuristic works because advisors consider group-by columns for potential candidate indexes, even

if these columns do not appear in a selection or join predicate, and our experiments show that, in

many cases, if an index can improve the cost of a group-by, it can also improve the cost of a join on

the same column.

We could potentially add each dangling join key to the group-by independently (i.e., separated

by commas). However, this approach may excessively increase the cardinality of the query result,

thereby excessively increasing the cost of the query. As we mentioned, skewing the costs too much

may degrade the advisor’s performance. Instead, we add a CASE clause that combines all dangling

join keys in a single expression. For example, for three numeric dangling join keys C1, C2, and

C3, we write: GROUP BY CASE WHEN C1 ≤ C2 THEN C3. The advisor will still consider each column

appearing in the CASE clause for candidate indexes, and the estimated cardinality of the result will

not grow excessively. If the query already has a group-by clause, the new expression is simply

appended at the end; otherwise, a group-by clause is added to the query. We discuss additional

improvements in the extended version [3], which we tested in our preliminary experiments. These

additions do not have a significant impact in our experiments.

5 PARAMETER-FREE REDUCTION
So far, we have assumed that the number of columns in the reduced workload is given. However,

setting this number is itself a challenge in practice. To address this, we introduce an automatic

technique for setting the amount of reduction, based on the correlation between our indexable data

estimate (developed in Definition 2) and the improvement given by reduced workloads.
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Fig. 8. Indexable data loss (left) used to estimate improvement loss (right) in TPC-DS.

The left-hand side of Figure 8 shows the indexable data loss curve, computed on our experimental

benchmark TPC-DS. It is efficiently computed, without constructing any reduced workload, as

follows: let 𝑇 be the number of tables referenced in𝑊 ; let 𝑇D B [𝑡1, . . . , 𝑡𝑇 ] be a ranking of the 𝑇

tables, based onD, where the score of table 𝑡 isD(𝑡) B ∑
𝑐∈𝑡 D(𝑐), and 𝑐 ∈ 𝑡 means that 𝑐 belongs

to 𝑡 ; for each 𝑥 = 0, . . . ,𝑇 on the 𝑥-axis:

D Loss(𝑥) B ∑
𝑡 ∈𝑇D [:𝑥 ]D(𝑡)/

∑
𝑡 ∈𝑇DD(𝑡) ∗ 100%, (1)

where 𝑇D [: 𝑥] are the top-𝑥 tables in 𝑇D . The curve is obtained with all the 24 TPC-DS tables.

In the right-hand side of the figure, we plot the improvement loss curve. This curve is very

expensive to compute. For each point on the 𝑥-axis: we reduce the workload, setting 𝑙 to the number

of columns in the kept tables; we tune the reduced workload; we compute the improvement I(𝑥)
on the original workload; we compute the improvement loss as I(0) − I(𝑥). Despite its cost, this
curve contains all the information necessary to make an informed decision, as we observe that

reducing at the knee of the curve (dashed line) provides enough reduction without incurring in

an excessively high loss. Our goal is to estimate the knee of the improvement loss curve, without
computing the curve.

Thanks to the high correlation between indexable data and improvement (Section 3.1), we

observe that the knee of the indexable data loss curve is a good approximation for the knee of the

improvement loss curve. We exploit this observation by using the knee of the easily computable

indexable data loss curve at runtime as an estimate. We compute the knee using off-the-shelf

knee-point detection algorithms [33], excluding the point with 100% indexable data loss as it

is too aggressive for reduction. The algorithm identifies the data point that has the maximum

perpendicular distance to a straight line drawn from the first to the last point of the normalized data.

If the curve does not have a knee or the detection algorithm fails, we revert to no reduction (in our

experiments, we always find a knee). In Figure 8, the knee is at 𝑥 = 19 (dashed line), corresponding

to 19 tables (and their corresponding columns) to remove from the workload. In our experiments,

this results in 3× speedup for TPC-DS with a 4.3% improvement loss, which is also the best speedup

obtainable by reduction where loss is within 5%. In Section 6, we compare this method with using

a fixed threshold for indexable data loss (e.g., 5%), instead of computing the knee, and show that

using the knee is never worse and often better than the fixed threshold approach.

6 EXPERIMENTAL EVALUATION
In this section, we present our comprehensive evaluation of workload reduction with both synthetic

benchmarks and real-world customer workloads.

Workloads. We run our experiments on two standard benchmarks, TPC-H [37] and TPC-DS [36], a

benchmark constructed from real-world data, STATS [18], and two real-world customer workloads

REAL-L and REAL-M. For TPC-H, we have two variants: single-instance and multi-instance, where

the latter, called TPC-H×100, includes 100 instances per template. We also generate a smaller version

of REAL-M, called REAL-SM, with 1/10th of the queries randomly chosen. Our AST implementation

covers all queries in all workloads, except on TPC-DS, where we excluded 19 out of 99 queries that

our parser cannot currently handle. Table 1 summarizes the workloads we use in our experiments.
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Workload Queries Unique Tables Unique Columns

TPC-H 22 8 55

REAL-SM 31 61 206

REAL-L 32 19 101

TPC-DS 80 24 237

STATS 146 8 37

REAL-M 316 126 485

TPC-H×100 2,200 8 55

Table 1. The seven workloads used in our evaluation.

Index advisors. We use Microsoft SQL Server DTA for the majority of the experiments, and

PostgreSQL Dexter [20, 22] on certain experiments to showcase the applicability of Wred to other

systems and advisors.

Methods. We evaluate the following methods: (𝑖) Orig takes as input the original workload and

directly tunes it using the index advisor; (𝑖𝑖) Isum [34], a state-of-the-art workload compression

technique, first compresses the original workload selecting 𝑘 queries, and then tunes the compressed

workload; (𝑖𝑖𝑖) Wred-auto applies Wred using our auto auto-tuning method from Section 5 to

set 𝑙 , then tunes the reduced workload; (𝑖𝑣)Wred-fixed tunes a reduced workload obtained by

Wred using a fixed setting for 𝑙 (i.e., 5% indexable data loss); (𝑣) Wred-opt simulates an optimal

setting for 𝑙 under a quality constraint: we first run all settings of 𝑙 , and then pick the one with the

highest speedup such that the loss in improvement is not greater than 5%.

Quality metrics. We evaluate the quality of these methods using the following metrics. (𝑖)

Absolute Percentage Improvement measures the percentage decrease in the total cost of the

original workload, as estimated by the optimizer, given by the configuration returned by the index

advisor. State-of-the-art index advisors use the same metric to measure the quality of recommended

indexes [26]. (𝑖𝑖) Percentage Improvement Loss measures the decrease in Absolute Percentage

Improvement of a method wrt. Orig (e.g., if Orig gives 80% improvement and a method gives 75%,

loss is 5%). A negative loss means that the method provides a better configuration than Orig, which
happens because advisors use complex heuristics. In our experiments, we see better configurations

only on our real customer workloads REAL-SM and REAL-M. For brevity, we will refer to these

metrics as (𝑖) absolute improvement and (𝑖𝑖) improvement loss.

Efficiency metrics. We measure time efficiency using the following metrics. (𝑖) Compression
time measures the time to compress a workload. Notice that Isum uses the costs of the original

queries in its computation; we assume that they are given as input (e.g., available from historical

workload information [34]), and we do not include the time to compute the costs of the queries. (𝑖𝑖)

Reduction time measures the time to reduce a workload. (𝑖𝑖𝑖) Tuning time measures the time

taken by the advisor to tune a workload. (𝑖𝑣) Speedup is the tuning time of Orig divided by the

sum of compression (reduction, resp.) and tuning time of a compressed (reduced, resp.) workload

(e.g., a speedup of 2x means that a method tunes the workload twice as fast as Orig).

6.1 End-to-end Workload Reduction
In the first experiment, we runWred end-to-end, using the three variationsWred-fixed,Wred-
auto, andWred-opt. We report speedup and improvement loss for each workload. Notice that

the speedup depends on the complexity and scale of the workload as well as potential for applying

indexes; hence it can vary across workloads, as observed in prior work as well [34].

Our results are presented in Table 2. Overall, we observe that Wred can provide significant

speedup over Orig, with only a small loss in quality. In particular, even the simplest approach,
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Fig. 9. Effect of degree of reduction, obtained by removing increasingly more tables from𝑊 . With more

reduction, tuning time decreases but improvement loss increases. The knee (dashed vertical line) of the

indexable data loss curve (top row) is always a good speedup/loss trade-off.

Wred-fixed Wred-auto Wred-opt
Workload Speedup I Loss Speedup I Loss Speedup I Loss

TPC-H 4.6x 4.8% 4.6x 4.8% 4.6x 4.8%

REAL-SM 1.6x -11.6% 1.6x -11.6% 2.8x -7.9%

REAL-L 1.9x 2.4% 2.4x 3.7% 5.6x 3.9%

TPC-DS 3x 4.3% 3x 4.3% 3x 4.3%

STATS 1x 2.5% 4.4x 2.8% 24.7x 1.8%

REAL-M 0.6x -16.3% 0.6x -18.8% 0.8x -12.4%

TPC-H×100 11.4x 5.8% 11.4x 5.8% 2.7x 2.8%

Table 2. End-to-end results of Wred variations: Wred-fixed sets the indexable data threshold to 95%;

Wred-auto uses our auto-tuning setting;Wred-opt runs all settings and picks the one with highest speedup

such that loss is at most 5%.

Wred-fixed, which uses a simple default parameter setting for 𝑙 , performs well in all workloads,

except on STATS and REAL-M where no speedup is obtained. The median speedup across all

workloads is 1.9x, with a median improvement loss of only 2.5%. On REAL-M, while there is no

speedup, as the advisor always reaches the 8-hour time limit, the configuration is even better than

Orig, with a gain of 16.3% in improvement, showing that Wred is able to make the advisor more

effective at finding better configurations in the same amount of time. On TPC-H×100, while the
speedup is high (11.4x), the loss is slightly higher (5.8%), above a more desirable 5%. This shows that

while Wred can substantially speedup a workload made from parameterized queries, the speedup

comes at a slightly higher cost. In Section 6.5, we show that the best results for TPC-H×100 are
obtained when Wred is combined with Isum [34].

Wred-auto is never worse than Wred-fixed, and it improves the speedup on REAL-L

and STATS, with similar losses. The median speedup and loss of Wred-auto are 3x and 3.7%,

respectively. In TPC-H, TPC-DS, and REAL-M, the performance of Wred-auto is comparable

to Wred-opt, showing that our auto-tuning can pick a near-optimal parameter. For STATS,

Wred-opt can achieve a significantly higher speedup of almost 25x within 1.8% loss from Orig.
This shows the existence of a much better reduced workload than what Wred-auto can find,

highlighting the power of workload reduction as a tool for enhancing the performance of an
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Fig. 10. Effect of increasing the maximum configuration size (number of indexes) onWred-auto. The method

scales well with more indexes, maintaining good speedups and low improvement losses, with REAL-L being

the hardest case for Wred-auto at larger configuration sizes.

index advisor with minimal losses, while suggesting that there is potential to improve our auto-

tuning methodWred-auto (Section 5). We will explore these improvements in future work. For

TPC-H×100,Wred-auto obtains a 2.7x speedup at a 2.8% loss.

6.2 Effects of Degree of Reduction
We study the effects on quality and efficiency of increasing the amount of reduction in Wred. We

increase reduction by removing increasingly more tables (and, subsequently, more columns) from

the original workload𝑊 . Figure 9 shows our results.

In the top row of the figure, we show the indexable data loss curve, computed using Equation (1)

(Section 5), which Wred-auto uses to set the reduction degree automatically. We show the value

picked byWred-auto, i.e., the knee of the curve, as a dashed vertical line. We then run the advisor

on each removal level, fixing the number of tables to remove, and plot: the reduction time incurred

by Wred, the tuning time for running the advisor on the reduced workload, and the speedup and

improvement loss compared to Orig (i.e., no reduction).

Reduction time is in the order of seconds, which is negligible compared to the tuning time.

This is becauseWred only parses queries syntactically, requires no optimizer calls, and quickly

manipulates queries at the AST level. The plot also shows that more aggressive reduction also

requires less time, as the produced queries have fewer expressions.

As one would expect, the tuning time decreases with more reduction, and so the speedup

increases, while the loss becomes worse. At the knee point of the indexable data loss curve (dashed

line), speedup and loss are at a good trade-off in all workloads. Furthermore, the indexable data loss

curve and the improvement loss curve have similar trends, as we discussed in Section 5. REAL-SM

and REAL-M both have negative loss, i.e., an absolute improvement higher than Orig. REAL-M
always reaches the 8-hour time limit we set for tuning. For this workload,Wred offers no speedup,

but a better absolute improvement (indicated by a negative loss).

6.3 Effects of Maximum Configuration Size
In this experiment, we study how the maximum configuration size affects the runtime and quality

of Wred-auto compared to Orig. We show the results in Figure 10. Increasing the maximum

configuration size affects both the tuning time and the absolute improvement obtained by Orig:
larger configurations generally result in higher improvements as they include more indexes. For

this reason, we also include in our plots the absolute improvement, in addition to the improvement

loss, to better show this trend. The only case whenOrig does not provide monotonically increasing
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Fig. 12. Comparison and combination with state-of-the-art compression Isum [34]. While Wred and Isum
in isolation have comparable results, combining the two in sequence, with Isum→Wred, always gives the
best results, especially at higher speedups.

improvement is REAL-M because, on this workload, the advisor always reached the 8-hour time

limit.Wred-auto scales well with increasing configuration sizes, maintaining good speedups.

The loss either stays the same with more indexes, or increases, due to the fact that index tuning

with more indexes has more candidate solutions and it becomes a harder problem. REAL-L with 20

indexes was a particularly hard case for Wred-auto, with speedup going from above 5× down to

below 2×. The results on REAL-M show that the configuration size 20 was a particularly hard case

for Orig, explaining why we observed better improvements when using Wred instead. Using

different configuration sizes lead to small positive losses, in line with the results obtained on the

other workloads.

6.4 Effects of Storage Bounds
In this experiment, we vary the storage bound constraint for the indexes in the recommended

configuration, from 2 up to 4 times the raw data size (DTA’s default is 3×). The results, in Figure 11,

show a similar trend to varying the configuration size (Section 6.3).

6.5 Combination with Compression
While reduction is great at reducing the tuning time by speeding up optimizer calls, workload

compression can speed it up by eliminating redundant queries. This can be effective for workloads

constructed from parameterized queries, such as TPC-H×100. Existing workload compression

techniques (e.g., Isum [34], 𝑘-medoids [7], and GSUM [12]) are able to efficiently find a small set of

queries for tuning. We use the current state of the art Isum [34].

We can obtain the benefits of both compression and reduction by chaining the two in sequence.

With Isum→Wred, we first compress the workload with Isum and then reduce it withWred,
which is possible given that Isum uses the costs of the original queries. Although it is also possible
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Fig. 13. Effect of our join key loss mitigation strategy. Adding the dangling join keys to the group-by clause

never worsens the results and can lead to significant improvements in some workloads.

to first reduce the original workload and then compress it, existing compression approaches, such

as Isum, prevent the swapping due to practical issues. In fact, Isum assumes that the costs of all

input queries are provided for free from the logs and can be used to get their benefits. Therefore, if

we used Isum afterWred, we would also need to compute the costs of all reduced queries, which is

prohibitively expensive as it requires one optimizer call per reduced query. Thus, we only consider

Isum→Wred as a viable combination option. Isum requires an input parameter for the target

compression size (number of queries in compressed workload), but it does not offer an auto-tuning

method for picking the best parameter. Thus, we sweep the compression size parameter of Isum to

identify the best results, and then we show how much Wred can improve over Isum.
In the first row of Figure 12, we report the maximum absolute improvement (𝑦-axis) that each

method obtains given a constraint on the minimum speedup required (𝑥-axis). As expected, as the

minimum required speedup increases, from left to right, all methods (except Orig) gradually lose

improvement. ComparingWredwith Isum, Isum is generally better thanWred at lower speedups,

and the outcome changes in some workloads (TPC-H, REAL-L, STATS) when the required speedup

gets higher, showing the ability of reduction to increase the speedup higher than compression.

For REAL-SM and REAL-M, Wred alone cannot produce high speedups. On TPC-H×100, Wred
is always worse than Isum, as compression eliminates many redundant instances, whileWred
maintains all instances. In general, except for REAL-L, whereWred is consistently better than

Isum at speedups higher than 2,Wred and Isum in isolation have comparable results.

The results change dramatically for Isum→Wred: combining reduction and compression

generally gives the best results, especially at higher speedups. On REAL-SM, Isum→Wred is

able to produce results with higher improvement than Orig itself, with a 24x speedup, and 10x

speedup on REAL-M. On TPC-H×100, Isum→Wred can reach a 20x speedup with a minimal drop

in improvement. The only case where Wred is better than Isum→Wred is for REAL-L, because

Isum loses a lot of improvement quickly and combining with Isum is detrimental.

In the second row of Figure 12, we look at the results from a different angle: we report the

maximum speedup (𝑦-axis) that each method obtains subject to a constraint on the maximum

allowed improvement loss (𝑥-axis). With higher allowed losses, from left to right, each method

(except Orig) is able to provide higher speedups. Again, while comparing Isum and Wred in

isolation does not yield a clear winner across workloads, combining the two is generally better. In

particular, for REAL-SM and REAL-M, Isum→Wred is always better across the spectrum. Across

all workloads, Isum→Wred obtains a 10.5× median speedup with a 5% median improvement loss.

6.6 Effects of Reduction Improvements
Cross-product prevention (Section 4.1) is of paramount importance. Without it, some reduced

queries in TPC-DS have an explosion in cost by several orders of magnitude, making them, by far,

the most costly queries in the workload. The advisor wastes all its time tuning these queries, for

which no index can help because of the cross-products, resulting in 0% improvement.

The technique presented in Section 4.2 helps mitigate the effects of losing join keys due to the

elimination of expressions from a query. In Figure 13, we show the improvements obtained by
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Fig. 14. Scalability of Wred-auto with increasing workload size (% of original workload). Our method scales

well with more queries.

Wred-auto with and without mitigation. In all workloads, the mitigation strategy never worsens

the results, and in some cases (e.g., REAL-SM, TPC-DS) it improves the results substantially.

6.7 Scalability with Workload Size
In this experiment, we test the ability of workload compression to scale with the number of queries

in the workload.We construct workloads of increasing sizes by randomly sub-sampling queries from

original workloads, and we run Orig and Wred-auto. Figure 14 shows that Wred-auto scales

well with workload size, with better tuning time than Orig while maintaining high improvement.

6.8 Applicability to a Different Advisor
To showcase the applicability of workload reduction to a different system and advisor, we run

Wred-auto on PostgreSQL Dexter [20, 22], with default settings, on the TPC-H, TPC-H×100,
and TPC-DS workloads. On TPC-H,Wred obtains a 1.5x speedup with a 4% improvement loss.

The loss is still within an acceptable range, but the speedup is less than that on Microsoft SQL

Server. However, the configuration produced by Dexter only gives 17% improvement when tested

on Microsoft SQL Server, whereas DTA yields 81%—to make it a fair comparison, we created the

indexes recommended by Dexter as hypothetical indexes inside Microsoft SQL Server; we then

made what-if calls to the Microsoft SQL Server query optimizer to obtain estimated costs of the

queries under the hypothetical configuration given by Dexter. On TPC-H×100, Wred obtains

a 2.2x speedup with a higher 8% loss, indicating a greater struggle of Wred on Dexter to tune

an instance-heavy workload. Finally, on TPC-DS, we observe a 3.4x speedup with a 3% loss in

improvement, also in line with DTA.

6.9 Improvements inQuery Execution Time
We conclude our experiments by analyzing the ability of Orig and Wred to improve actual

execution time of the queries, rather than their estimated costs. Notice, however, that neither Orig
norWred aims at ensuring that the execution-based and the cost-based improvements are the

same. A discrepancy between the two is likely, due to well-known challenges in accurate cost

modeling (e.g., cardinality estimation errors) [29, 32, 41, 42]—fixing this discrepancy is beyond the

scope of this work. The purpose of this experiment is to show that Wred does not drastically

diverge from Orig in terms of improvement over query execution time.

In Figure 15, we measure the absolute improvement per query (see I(𝑄𝑖 ,𝐶) from Section 2.1),

in seconds, using query execution CPU time instead of optimizer estimated cost. We sort queries

by the absolute difference between the Orig and Wred execution times, where queries with the

most similar times are on the left of the figure. For larger workloads such as STATS (which includes

146 queries), we only plot queries for which the absolute difference in execution time is above the

5-th percentile of all the execution times. For example, for STATS, we omit queries where Orig
andWred differ by less than 62 ms. We present results for five of our workloads. The results show
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Fig. 15. Query execution absolute improvement (in seconds) of Orig and Wred. A negative value indicates

regression. Queries are sorted by the absolute difference between Orig’s and Wred’s execution times (most

similar on the left).

that Wred provides similar improvements as Orig for most queries, in line with the results using

estimated cost. The median improvement loss across all workloads is 3%, in line with the loss in

terms of estimated cost. When regressions occur (seen as negative improvements), Wred and

Orig have generally similar regressions; there are cases where Wred has less regression than

Orig, or vice versa; there are also a few queries whereOrig regresses andWred improves, or vice

versa. These cases are mostly fortuitous, since neither Orig norWred implements techniques

that mitigate regressions [14].

7 RELATEDWORK
There has been substantial prior work on workload compression, both general and indexing-specific.

Among general techniques for SQL workloads, GSUM [13] uses an efficient greedy algorithm

that maximizes feature coverage while maintaining a similar distribution to the entire workload.

However, GSUM is not effective for index tuning since it ignores the features more relevant to

index tuning and potential performance improvement of queries. Jain et al. proposed a machine

learning approach [19] for workload compression by training a model specifically for SQL queries.

However, this technique requires expensive preprocessing to train the models.

Among indexing-specific, prior work has proposed clustering-based approaches [1, 8, 27] that

group similar queries and samples from each cluster. However, these approaches do not scale to large

workloads and the distance measures used for comparing queries are less effective in characterizing
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similarity between queries with varying templates. To address these issues, Isum [34] uses an

efficient technique that greedily selects queries using indexing-specific featurization and comparison

mechanisms. We use Isum as a baseline for our work in this paper. As discussed earlier, Isum does

not rewrite the selected queries, and therefore their what-if call times can still be high. Wred,
instead, speeds up each and every what-if call by simplifying the queries. As we show in our

experiments, combining Isum andWred offers the best results.

There have been other mechanisms to improve the scalability of index advisors, which are

orthogonal to our line of work. [17, 30] reduce optimizer calls by caching and reusing costs of

sub-expressions across queries. [4, 5] compute the bounds on costs of queries based on query

optimization of past configurations, which can be used for pruning optimizer calls. There have

been recent machine learning techniques that prune candidate configurations and estimate costs

based on what-if calls over similar query-configuration pairs [35] as well as ones that use machine

learning techniques to improve the search [43]. In this work, we focus on a complementary solution

that can be used as a pre-processing step before index tuning.

Query synthesis is a well-studied problem: the goal ofNLP-to-SQL [25, 44] is to create queries from
natural language; workload synthesis attempts to create queries that are similar to other queries in

the workload benchmarking [39]; in query by example [15, 28, 40], the goal is to create queries from
input-output examples; query rewriting [6, 31, 45] creates queries with identical semantics. While

the objectives are different than ours and these techniques typically have extra constraints such as

maintaining the query semantics, the challenges related to adding, removing, and transforming

sub-expressions in complex SQL queries are shared. There is also work on simplifying the SQL

syntax to help natural-language-to-SQL translation models [16]; these methods do not simplify the

queries by removing expressions and aim at maintaining query semantics.

8 DISCUSSION AND LIMITATIONS
In this section, we discuss possible future improvements of Wred to use column statistics generated

internally by some index advisors, to recommend materialized views in addition to indexes, and

to seamlessly generalize workload compression by simultaneously performing both workload

reduction and workload compression, rather than in sequence.

Dependency on the index advisor internals. The internals of the index advisor play an

important role in the success of workload reduction. In particular, workload reduction relies on the

fact that the advisor employs query optimizer estimated costs to determine good candidate indexes

and guide the search for the best index configuration. This is not a stringent requirement, as most

of the modern index tuners follow this paradigm [1, 22, 26].

Moreover, most modern advisors use a notion of indexable columns to guide candidate index

selection, where only columns that are likely to benefit from indexes are included [1, 26]. Workload

reduction is well-suited to help these advisors as it uses a similar notion in its column selection step

(Section 3.1). Some advisors, such as DTA, further use column statistics information to distinguish

the importance of indexable columns when generating candidate indexes. Such information is

currently not used by Wred, which may be useful for further pruning the columns selected. This

may lead to more reduction of the queries, e.g., by omitting columns that are not crucial based on

the statistics information. We leave this investigation of improvingWred by incorporating deeper

knowledge of index advisor internals as interesting future work.

Extension to materialized views. There is a potential to expand the scope of workload reduction
in conjunction with other physical design optimizations, such as the selection of materialized views.

For example, DTA, which supports recommending both indexes and materialized views, relies

on a similar cost-based approach to find candidate sub-expressions (i.e., views) in a query and
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across queries in the workload for materialization [1, 2]. Instead of keeping important indexable

tables/columns (asWred currently does), the focus needs to be shifted to identifying important

subsets of tables/columns at workload-level where view materialization on top of these subsets can

significantly reduce cost of query processing. Moreover, to ensure that the materialized views can

be used by the original queries (not only the reduced queries), one needs to preserve more query

semantics when reducing from the original queries. These new challenges require making tangible

changes to the query rewriting algorithms presented in Section 3.2. Therefore, we leave such an

extension of Wred for future work.

Generalization of workload reduction. We sketch a more general formulation of workload

reduction that can subsume workload compression in the extended version [3]. Additionally, we

study the complexity and optimality compared to the formulation presented in this paper, and pave

the way for potential opportunities for algorithms that simultaneously perform both workload

compression and reduction.

9 CONCLUSION
In this paper, we introduced workload reduction to rewrite complex queries into simpler ones that

speed up index tuning by decreasing individual what-if call times. Our workload reduction method,

Wred, efficiently reduces a workload by keeping the expressions that most need indexing. Our

experiments on a variety of benchmarks and real-world customer workloads using state-of-the-art

index tuners show that Wred is able to significantly speed up the index tuning process with

minor losses in index quality, and that combining it with workload compression offers even higher

speedups with comparable losses.
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