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ABSTRACT
The increasing scale and complexity of workloads in
modern cloud services highlight a crucial challenge in
automated index tuning: recommending high-quality in-
dexes while ensuring scalability. This is further com-
plicated by the need for these automated solutions to
minimize query performance regressions in production
deployments. This paper directs attention to some of
these challenges in automated index tuning and explores
ways in which machine learning (ML) techniques pro-
vide new opportunities in their mitigation. In particu-
lar, we reflect on our recent efforts in developing ML
techniques for workload selection, candidate index fil-
tering, speeding up index configuration search, reduc-
ing the amount of query optimizer calls, and lowering
the chances of performance regressions. We highlight
the key takeaways from these efforts and underline the
gaps that need to be closed for their effective function-
ing within the traditional index tuning framework. Ad-
ditionally, we present a preliminary cross-platform de-
sign aimed at democratizing index tuning across mul-
tiple SQL-like systems—an imperative in today’s con-
tinuously expanding data system landscape. We believe
our findings will help provide context and impetus to
the research and development efforts in automated in-
dex tuning.

1. INTRODUCTION
Automated index tuning improves the performance

of databases by recommending indexes that accelerate
query execution. There has been extensive research over
the past decades [23,30], and index tuners have been de-
veloped for both commercial and open-source database
systems [14, 15, 29, 65].

Figure 1 presents the typical architecture of such an
index tuner [14, 15, 65]. It contains three major com-
ponents: (1) workload parsing/analysis, where an in-
put workload (of SQL queries) is parsed and analyzed;
(2) candidate index generation, which identifies a set of
candidate indexes for each query in the workload; and
(3) configuration enumeration, which searches for an in-
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Figure 1: The architecture of an index tuner, where W is
the input workload and qi ∈ W is a single SQL query, Γ
is a set of tuning constraints, {Ij} is the set of candidate
indexes generated for W , and C ⊆ {Ij} represents an
index configuration during enumeration.

dex configuration from the candidate indexes that meets
the user-specified tuning constraints (e.g., the maximum
number of indexes allowed or the total amount of stor-
age taken by the indexes) while minimizing the total cost
of the workload.1 For a configuration C considered dur-
ing enumeration, the index tuner leverages the what-if
API, an extended functionality of the query optimizer,
to estimate the cost of each query on top of C with-
out actually building the indexes contained by C [16].
We refer to such query optimizer calls as “what-if (op-
timizer) calls” in this paper. A what-if call can be time-
consuming since it needs to invoke the query optimizer,
especially for complex queries.

Despite this success, the recent advances in data man-
agement have highlighted the existing challenges and
posed new ones. We discuss three key problems.

Problem #1: The growing scale and complexity of
database SQL query workloads in modern cloud envi-
ronments affect the quality of recommended indexes and
contribute to increased time, cost, and resource over-
heads for index tuning.

Cloud database services, such as Microsoft’s Azure
SQL Database [1], host millions of databases with large
and complex query workloads. Automatically and ef-
1A configuration is defined as a set of indexes.
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Figure 2: The growth in tuning time and configuration
exploration on increasing workload size.

ficiently tuning indexes at that scale and complexity is
a formidable task. In particular, the scalability of index
tuning depends on (1) the number of queries in the work-
load, (2) the number of candidate indexes and resulting
configurations that are enumerated, and (3) the number
of optimizer invocations or what-if calls. As depicted in
Figure 2, we see that the tuning time for a state-of-the-
art index advisor [14] grows significantly as we increase
the size of the workload. This is primarily because the
space of configurations to explore increases (Figure 2b),
resulting in a large number of expensive what-if calls
(consuming 70% to 80% of the overall tuning time).

Problem #2: Minimal DBA monitoring and the po-
tential impact on larger workloads in the cloud envi-
ronments underscores the imperative to mitigate per-
formance regressions stemming due to recommended in-
dexes by index tuners.

A major impediment to the goal of full automation
and scalability is the requirement that index implemen-
tations should not cause significant query performance
regressions [18]. One important reason for query perfor-
mance regression (QPR) is that index tuners use query
optimizer’s cost model (via what-if calls) to measure
the improvement in query performance (e.g., execution
time) due to recommended indexes [15, 16, 65]. While
cost models are much more efficient than directly exe-
cuting queries, they may not accurately capture the run-
time behavior of queries, resulting in a mismatch be-
tween the actual and estimated query performance. The
issue is further aggravated due to the scale, variety, and
complexity of workloads, which make it hard to collect
sufficient statistics or incorporate mechanisms for auto-
matically identifying and fixing QPR [18].

Problem #3: The current approach of building system-
specific and tightly-coupled index tuners is less tenable
in today’s fast-expanding landscape of rapidly growing
number and variety of data systems.

Modern enterprises manage several data systems, each
optimized for different use-cases, and frequently add
new ones. Data could reside in a variety of locations,
e.g., operational stores, data warehouses, or data lakes [3,

46,47]. Interestingly, only a limited number of database
systems, such as Oracle, Microsoft SQL Server, IBM
DB2, and PostgreSQL, support index tuning [14,15,29,
65]. This is surprising given that the process of index
tuning is largely system-independent, with core compo-
nents such as candidate index generation and configu-
ration search algorithms reusable across systems with
minimal changes. Yet, index tuners today are tightly
coupled with specific database systems, and developing
an index tuner for a new or evolving database system
requires massive engineering efforts.

1.1 Paper Overview
In this paper, we reflect on the recent efforts towards

addressing the above challenges. While improving the
scalability of index tuning and addressing query perfor-
mance regressions are not new problems, the recent fo-
cus has largely been towards leveraging ML-powered
techniques that can efficiently identify useful configu-
rations without sacrificing the quality of recommenda-
tions. Another notable difference compared to prior work
is that ML techniques require minimal changes to the
underlying query optimizer or to the database system,
and can potentially be integrated as “bolt-on” compo-
nent(s) within existing time-tested and commercially de-
ployed index tuning architectures [14].

Opportunity: ML-powered techniques have the po-
tential to interoperate with core index tuning compo-
nents to improve the scalability and reduce query per-
formance regressions, without significant changes to the
index tuning architecture, the query optimizer, or the
database system.

Figure 3 outlines an enhanced version of the index
tuning architecture depicted in Figure 1 after incorpo-
rating ML-based data-driven techniques. It introduces
novel software components and functionalities that im-
prove the performance of the end-to-end index tuning
workflow: (1) workload selection that aims to reduce
the size, complexity, and relevance of the input work-
load; (2) learned index filter that aims to prune spuri-
ous candidate indexes with little impact on query per-
formance; (3) MCTS-based enumerator that aims to im-
prove the effectiveness of index configuration enumer-
ation; (4) learned cost models that aim to reduce the
number of what-if calls; and (5) ML-based performance
regression predictor that aims to reduce the chance of
query performance regression. We provide an overview
of these new functionalities below, and the rest of this
paper covers more details of each functionality as well
as discussions on the opportunities and open challenges
based on lessons learnt from our own experiences.

Workload Selection. We focus on two complementary
sub-problems of workload compression and workload
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Figure 3: ML-powered techniques (shaded) for improving index tuning.

forecasting. Workload compression selects a small sub-
set of queries from a large input workload, tuning which
has the potential to result in as high-quality recommen-
dations as tuning the entire workload. Workload fore-
casting, on the other hand, predicts arrival rate of queries
for just-in-time recommendation of indexes, reducing
the size of workload that needs to be tuned at given point
as well as improving the relevance of recommended in-
dexes for queries in the near future (Section 2).

Learned Index Filter. After selecting SQL queries for
tuning, the index tuner parses and analyzes the queries
to generate synthetically relevant indexes based on in-
dexable columns [15] (e.g., columns that appear in fil-
ter and join predicates appearing in the where clause, as
well as columns that appear in the group-by and order-
by clauses). It then tries to identify candidate indexes
from the syntactically relevant indexes. Many of such
candidate indexes are turned out to be spurious, mean-
ing that they have little impact on query performance
and can be safely pruned. A learned index filter is de-
veloped based on this observation (Section 3.1).

MCTS-based Enumerator. As mentioned, configura-
tion enumeration aims to find the best configuration from
the candidate indexes provided. A classic approach to
configuration enumeration is greedy search [15], which
suffers from scalability problems when facing a large
search space with many candidate indexes and queries.
The MCTS-based enumerator aims to improve the ef-
fectiveness of configuration enumeration in large search
space by identifying configurations that show promise
and potential early on. It leverages reinforcement learn-
ing (RL) techniques internally (Section 3.2).

Learned Cost Models. The what-if calls used by in-
dex tuner can be expensive, especially when facing large
and complex workloads. One important observation we
made is that many queries and configurations explored
during configuration enumeration are similar. This opens
up the door of leveraging ML techniques to learn in-situ

lightweight cost models for clusters of similar queries
and configurations during configuration enumeration, de-
spite the fact that learning a generic cost model is ex-
tremely challenging. We can significantly reduce the
number of what-if calls by delegating many of them to
the cost models learned (Section 3.3).

ML-based Performance Regression Predictor. The
what-if calls used by the index tuner rely on the query
optimizer’s estimated costs, which can be off from the
actual query execution time and result in QPR. An ML-
based QPR predictor trained on top of query execution
data can forecast and therefore avoid QPR firsthand. We
highlight the challenges of addressing QPR for produc-
tion systems, giving an overview of recent efforts and
the unsolved challenges that remain open (Section 4).

Cross-platform Index Tuner. Finally, to democratize
the ML-powered index tuning techniques over multiple
systems, we discuss the problems with the current ap-
proach of developing system-specific index tuners in to-
day’s expanding data system landscape. Towards ad-
dressing this, we propose an architecture for a cross-
platform index tuner, along with abstractions that will
allow (the same) index tuning technologies to simulta-
neously benefit many data systems (Section 5).

1.2 Scope and Limitations
Our primary focus in this paper is on improving the

classical offline index tuning process as used in com-
mercial tools (e.g., [9, 14, 15, 19, 29, 50, 65, 69]), and
the adapted versions of them have also been deployed in
modern cloud database services [18]. Notably, there has
been significant research efforts on online index tuning
techniques [6,10,11,41,43,44,48,49,52,53,54], where
the index tuner can create/drop indexes on the fly to han-
dle workload and data drifts. However, perhaps due to
the inherent complexity and variety that comes with dy-
namic, ad-hoc, and non-stationary workloads, a consen-
sus has not yet been reached on critical open questions
of online index tuning such as the architecture, the op-



timization problem formulation, the optimality guaran-
tee of the recommended indexes, and the performance
evaluation criteria. Consequently, to the best of our un-
derstanding, such techniques have yet to find substantial
adoption in commercial systems.

Meanwhile, there is a line of recent efforts on using
ML for holistic database (knob) tuning (e.g., [5, 34, 63,
66, 68, 76, 77, 80]) that goes beyond the scope of in-
dex tuning and therefore this paper. There is also lots
of related work on using ML for improving other spe-
cific aspects or components of database systems, such
as physical data layout (e.g., [26, 74]), buffer pool size
(e.g., [62]), and query optimizer (e.g., [38, 39, 64, 75,
78]), which we omit in this paper as well.

Moreover, there are common challenges faced by ap-
plying ML techniques to solving data management prob-
lems that are not restricted to index tuning per se. There
has been recent work on addressing such general chal-
lenges, such as reducing the overhead of generating train-
ing data [67] and dealing with data updates/drifts [32].
An in-depth discussion on these issues is worthwhile but
beyond the scope of this paper.

2. WORKLOAD SELECTION
The focus of workload selection has been in two di-

rections: 1) selecting queries to tune, referred to as work-
load compression, and 2) knowing when a query will
arrive, referred to as workload forecasting. We discuss
representative research efforts in each direction.

2.1 Workload Compression
A key factor affecting the scalability of index tuning

is the number of SQL queries in the workload. In a typi-
cal cloud database service, a workload can contain hun-
dreds or even thousands of queries. Tuning such a large
workload in a reasonable amount of time is challenging.
It is therefore natural to ask whether index tuning can
be sped up significantly by finding a substitute workload
of smaller size while qualitatively not degrading the re-
sult of the application. It is crucial that this compressed
workload can be found efficiently; otherwise, the very
purpose of compression is negated.

Prior workload compression techniques based on sam-
pling and clustering [13,20] often fail to effectively cap-
ture the similarity between queries and miss out less
frequent queries that may lead to substantial improve-
ment in performance due to indexes. Furthermore, real
workloads have typically more variety in query struc-
tures, which makes identifying relevant queries more
challenging. To address these issues, we have developed
ISUM, an indexing-aware and efficient workload sum-
marization technology [58]. ISUM employs two main
techniques to identify relevant queries.

Measuring Potential Improvement: We develop a new

technique to efficiently estimate the potential in perfor-
mance improvement of a query due to indexes without
requiring optimizer calls, which are key scalability bot-
tlenecks. Our idea is to leverage statistics such as table
size, selectivity, and costs of queries while eschewing
parts of query optimization unrelated to indexing, to es-
timate improvement so that it is highly correlated with
the optimizer estimated improvements.

Capturing Indexing-aware Similarity: On selecting a
query, it is also important to quantify the improvement
in performance on unselected queries in the workload
due to indexes from the selected query. We represent
each query as a set of features (derived from indexable
columns [15]) such that two queries with similar fea-
tures will likely result in similar sets of indexes. We
weigh the features using statistics to capture their rele-
vance to indexes. For instance, features on larger tables
are more important, and similarly, the importance of in-
dexable columns can vary depending on whether they
occur as part of the filter or join predicates. We can fur-
ther leverage ML techniques to automatically derive the
weights of the features based on table size, selectivity,
and position of the columns. Our feature representation
also allows us to quantify the similarity between queries
with different structures.

Combining both techniques, we measure the improve-
ment due to each query over the entire workload, and
develop a linear-time algorithm that selects queries in
decreasing order of their estimated improvement.

Takeaway #1: A workload compression technique for
scalable index tuning requires efficient estimation of (1)
potential performance improvement due to indexes, and
(2) indexing-aware similarity between queries, both us-
ing minimal optimizer calls (a key scalability bottleneck).

Figure 4 presents an example of running ISUM on the
TPC-DS benchmark workload. Overall, we observe that
ISUM can lead to a median of 1.4× and a maximum of
2× performance improvements compared to prior tech-
niques for the same compressed workload sizes. Fur-
thermore, given an input workload consisting of queries
along with their costs, the time to select the compressed
workload is small (<1%) compared to the tuning time of
the compressed workload [58].

Open Challenge #1: The benefits of shortened tun-
ing time gained from compression is often offset by the
overhead involved in parsing queries, gathering statis-
tics, and assessing the improvements brought by recom-
mended indexes across the entire input workload.

Workload compression techniques, including ISUM,
require that statistics such as selectivity, optimizer esti-
mated cost of each query, and other physical plan char-
acteristics are provided as input. We observe that most
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Figure 4: Workload compression on TPC-DS.

database systems expose functionality to collect such in-
formation. For database systems where such informa-
tion is not available, we need to make an optimizer call
for each query in the workload, which is expensive for
large input workloads.

Open Challenge #2: Existing workload compression
methods focus on specific optimization goals, but there
is a need for a more adaptable workload characteri-
zation approach that allows for ad-hoc constraints and
user-directed query selection.

Workload compression techniques use pre-defined cri-
teria for selecting queries. However, in practice, one
may also want to obtain a representative subset with
varying constraints, e.g., 100 most expensive queries
while ensuring that every table in the database occurs in
at least 5 queries, consuming at least a certain fraction
of resources such as CPU and I/O. Thus, the specifica-
tion for picking a representative subset of a workload
depends on the task at hand and requires varying crite-
ria and optimization goals. Additionally, it is crucial to
characterize compressed workloads for interpretability.
One direction to explore is to report the estimated im-
provement and drill-downs on how each query in the
compressed workload represents queries in the work-
load that were not tuned. Altogether, tighter integra-
tion of workload characterization mechanisms into a tra-
ditional index tuning engine and their evaluation for a
broader set of tasks is an interesting area for future work.

2.2 Workload Forecasting
Workload forecasting allows index tuners to make just-

in-time recommendations for the workload expected to
arrive in near future. Furthermore, workload forecasting
can reduce the number of queries that index tuners need
to analyze in each cycle.

As one of the representative works, Ma et al. [37]
develop a workload forecasting technique and leverage
it to improve index tuning. It uses a two-phase frame-
work. In the first phase, raw queries are pre-processed
and clustered based on query templates (i.e., query in-
stances without parameter binding). Clustering is nec-
essary, as it is computationally infeasible to build mod-
els to capture and predict the arrival patterns for each

template. In the next phase, an ML-based forecasting
model is trained for each cluster that predicts how many
queries the application will execute in the future (e.g.,
one hour from now, one day from now, etc.).

Takeaway #2: Predicting arrival rates of queries in
near-future can help reuse traditional offline index tuners
for scalable and just-in-time index selection.

Workload forecasting partially mitigates the inabil-
ity of offline index tuning in handling dynamic work-
loads (a core focus of online index tuning [11]) while
reusing the offline index tuners. The empirical findings
show that when using forecasting, the throughput and
latency of MySQL executing real workloads improve
by 5× and 78% over the 16-hour period when the in-
dexes are added or removed after every hour. Similarly,
over PostgreSQL, the technique achieves 180× better
throughput and 99% better latency [37].

Open Challenge #3: A more holistic forecasting of
future workloads, combining both arrival times as well
as query instances (e.g., predicate values), is desired to
enhance the quality of index recommendations.

Prior work on index tuning as well as workload fore-
casting assumes that the query expressions remain un-
changed over time. However, the recommended indexes
may be sub-optimal when the expressions themselves
evolve over time, e.g., a recurring analytical query that
looks at last two days of sales data, or a query template
that changes bindings based on the day the query runs
or the same query template used by different teams with
different parameter bindings. Our analysis of enterprise
workloads shows that while literal values may change
over time, there are high-level patterns that can be learnt
to predict the potential bindings in advance. Thus, an
interesting direction for future work is to predict entire
query instances in addition to the arrival times. There
has also been recent work along the line of robust in-
dex selection [51], with the idea of selecting indexes that
are optimal considering the dynamic nature of the work-
load, which can be combined with workload forecasting
to yield even better indexes.

3. SPEEDING UP INDEX TUNING
Searching for the best configuration in a large space

with many candidate indexes is inherently challenging.
In fact, even a restricted version of the index selection
problem is NP-hard [17] and/or even hard to approxi-
mate [12]. State-of-the-art index search algorithms, such
as the greedy algorithm [14, 15, 30], therefore rely on
heuristics to reduce the search space. However, scal-
ability and efficiency remain challenging even in such
reduced search spaces. We discuss how we can take a
data-driven perspective by leveraging ML techniques to
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speed up different components of index tuning.

3.1 Filtering Spurious Indexes
Index tuners perform syntactic analysis (e.g., using a

set of rules) to select an initial set of indexes for each
query, called syntactically-relevant indexes, for evalua-
tion [15]. However, as showcased in Figure 5, we ob-
serve that 60% to 70% of such indexes are spurious—
they actually do not result in significant improvement in
query performance [59]. Thus, these spurious indexes
can be filtered out and the optimizer calls made on these
indexes can be avoided.

To prune such indexes early in the search process, we
learn a workload-agnostic model that uses structure and
statistics information in the input (query, index) pair to
identify when the index may not lead to a significant
improvement in cost [59]. We then use this model to
remove a large number of spurious indexes. Our key in-
sight is that we can probe the original physical plan of
the query (i.e., the plan generated with existing indexes)
to estimate the potential for improvement in the cost of
the query due to a given index. For instance, if a join
or sort operation is already efficient due to extensive fil-
tering from earlier operations, adding an index that op-
timizes this operation is less beneficial. Similarly, if a
filter column is not selective, we can easily prune an in-
dex that uses it as the leading key column. Furthermore,
in many cases, we can compare the ordering of physical
operators in the original plan with the structure of the
index to identify spurious indexes. Altogether, we cap-
ture many such signals and train a regression model to
automatically learn rules to predict spurious indexes.

Takeaway #3: Many syntactically-relevant indexes do
not lead to improvement in performance. ML models
trained on top of domain-specific signals can filter such
spurious indexes in orders of magnitude less time com-
pared to making what-if (optimizer) calls.

As shown in Figure 6, we find that index filtering
models can be accurately learnt using (query, index) pairs
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Figure 6: Learned Index Filter.

generated from 3 to 4 databases and workloads and can
remove more than 70% spurious indexes with a low rate
(typically less than 10%) of false negatives [59].

3.2 Search by Reinforcement Learning
Given the large number of possible index configura-

tions during configuration enumeration for cloud-scale
workloads, it is practically impossible to have one what-
if optimizer call for every configuration and every query
enumerated. This raises a trade-off between exploration
(of new configurations) and exploitation (of promising
configurations that are already known) when determin-
ing which configurations are worth what-if calls. We
develop a new index search framework based on Monte
Carlo tree search (MCTS) [72], a classic reinforcement
learning (RL) technology [8, 61], to make better deci-
sions on this exploration/exploitation trade-off. In par-
ticular, we adapt the classic greedy search algorithm,
typically used during configuration search [14], to han-
dle the trade-off in a data-driven manner as follows:
• Exploitation: We can expand configurations that show

promise, e.g., ones that contain the best configuration
found by the greedy algorithm so far as a subset;

• Exploration: We can consider configurations that have
been overlooked but may have potential for improve-
ment, e.g., ones that are not the winner configuration
found by the greedy algorithm, but have similar costs
and can be utilized by more queries.
From this viewpoint, the existing greedy search ap-

proach can be viewed as one extreme—it relies on full
exploitation of what has been found with no exploration.
Our RL-based approach, on the other hand, encourages
more exploration, offering a principled way of tackling
the above exploitation/exploration trade-off.

Takeaway #4: RL-based techniques help navigate ex-
ploration and exploitation trade-offs more effectively on
deciding which (query, configuration) to evaluate next.

Figure 7 presents evaluation results on the TPC-DS
benchmark and a customer workload (Real-M) with the
maximum desired configuration size K set to 20. We
compare the MCTS-based approach with both the vanilla
greedy search algorithm and its variants (shown as two-
phase greedy and AutoAdmin greedy in Figure 7) pro-
posed in [15] and used in the Database Tuning Advisor
(DTA) developed for Microsoft SQL Server [14], which
represents the current state of the art [30]. As depicted
in the figure, MCTS outperforms the greedy search algo-



rithms consistently on both workloads w.r.t. the varying
number of what-if calls.

Open Challenge #4: Integrating MCTS-based search
into commercial index tuning tools such as DTA remains
an open problem, considering additional requirements
such as anytime tuning, incremental handling of input
workloads, and supporting reproducibility (difficult due
to randomness inherent to MCTS).

When the input workload is large and/or complex,
we may want to run index tuning with a specific time-
bound [14], or we may want to stop the tuning after
some time without specifying a budget initially. There-
fore, the search algorithm is desired to have the anytime
property, i.e., it should progressively find better config-
urations over time. This also requires incremental han-
dling of more queries as input to the search algorithm
and maintaining and reasoning about the intermediate
state to minimize redundant work. Furthermore, the fi-
nal recommended indexes can vary due to randomness
in MCTS/RL, which affects reproducibility. Handling
these challenges in a commercial tuning tool like DTA
requires non-trivial adaptations to the MCTS algorithm.

We note that there has been other recent work on ML-
based configuration search [31, 33, 44, 45, 55], primar-
ily targeting an online index tuning scenario. This line
of work may be adaptable to offline index tuning but it
shares the same challenges, as highlighted above, when
it comes to integration with existing index tuners. No-
tably, the recent work by Kossmann et al. [31] proposed
training an RL agent that can be used for offline index
tuning, where test workloads are presumably similar to
training workloads observed by the RL agent. Whether
this approach can be further extended to tune completely
unseen workload remains an open question.

3.3 Reducing What-If Optimizer Calls
To achieve the best possible improvement in perfor-

mance, the number of optimizer calls made during in-
dex configuration search can remain considerable de-
spite pruning of spurious indexes and judicious enumer-
ation of configurations. To further improve the efficiency,
we find that a significant number of optimizer calls for
costing (query, configuration) pairs can potentially be
replaced by more efficient data-driven cost models.

Developing a general cost model that is independent
of databases and workloads is hard due to the large va-
rieties in the schema, query structures, and data distri-
butions, despite the intensive efforts in the past decade
(e.g., [4,24,35,40,42,57,60,70,71,73,79]). Our key ob-
servation to developing a lightweight cost model in the
specific context of index tuning is that many queries in
large workloads are self-similar, e.g., multiple instances
of the same stored procedure or query template param-
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Figure 7: Evaluation of MCTS configuration search.

eterized differently. Many indexes explored during tun-
ing can also be similar (e.g., sharing the same prefix of
key columns, or influencing the same set of operators
in the plan), which leads to similar configurations and
results in similar cost reductions. As a result, the num-
ber of unique cost values is often much smaller than the
number of index configurations explored during tuning
(e.g., on average only 6 unique costs over 81 configura-
tions explored per query for the TPC-H workload).

To leverage these characteristics, we group similar
queries with the same query template and then learn a
cost model for each group [59]. For efficient in-situ
learning during index configuration enumeration, we de-
velop an iterative training procedure (with optimality
guarantees) and select diverse training instances (e.g.,
queries with different selectivities, indexes affecting dif-
ferent operators in the query, etc.) that minimize the
number of optimizer calls for training each cost model
(e.g., less than 50 optimizer calls per model on average
across workloads). We show that it is possible to use
low-overhead ML models that are significantly more ef-
ficient than making what-if optimizer calls. A key char-
acteristic of these models is that they are agnostic of the
search algorithm (thus can be used by any algorithm),
and do not require changes to the query optimizer.

Takeaway #5: ML-based cost models can be used as
a generalized cache for similar (query, configuration)
pairs, thereby avoiding many “similar” what-if calls.

Figure 8 depicts the effectiveness of different ML al-
gorithms when used to train per-template cost models,
with tree-based models achieving Q-error as low as 1.2.
Furthermore, we find that combing ML-based cost mod-
els with filtering models for pruning spurious indexes
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Figure 8: Learned Index Cost Model.

(see Section 3.1) helps scale index tuning to large work-
loads without sacrificing the quality of the recommended
indexes. For instance, for a TPC-DS workload with over
900 queries, combining index filtering and costing mod-
els can give index recommendations with similar quality
as DTA but in 3× less time.

Open Challenge #5: Creating ML-based cost mod-
els across queries with different templates and across
workloads can further improve the scalability by reduc-
ing training overhead (i.e., optimizer calls).

The per-template cost models are less effective for
workloads with many templates. There is a significant
potential for reducing the number of optimizer calls as
well as the number of models if we can generalize cost
models across templates. There has been recent work on
zero-shot cost models [25]; however, such techniques
require a physical query plan (and thus an optimizer
call) for featurization. Furthermore, in our current ap-
proach, we re-train during every tuning session from
scratch due to limited mechanisms for meta-learning or
fine-tuning learned models to capture workload and data
drifts. This is another area where there are some inter-
sections with online index tuning work [6, 44, 48].

4. PERFORMANCE REGRESSION
An important requirement of automated index tuning

for production systems is creating or dropping indexes
should not cause significant query performance regres-
sions (QPR), where a query’s execution cost increases
dramatically after changing the indexes [21]. Such re-
gressions are a major impediment for fully-automated
and scalable index tuning [18]. When an index tuner
searches for optimal configurations, it compares esti-
mated improvements of query performance based on the
optimizer’s estimated costs. Due to well-known limita-
tions in the optimizer’s estimates, such as errors in car-
dinality estimation [27] or cost modeling [71], using the
optimizer’s estimates can result in significant cost esti-
mation errors. The following trade-off is at the heart of
why it is hard to achieve scalability and low rate of QPR
in index tuning simultaneously:

Efficiency vs. Accuracy Trade-off: Optimizer’s es-
timated costs are much faster to compute, but they can
be erroneous and result in low-quality recommendations

and query performance regressions. On the other hand,
actual query execution time is much more accurate but it
can only be obtained with significantly higher overhead,
affecting the scalability of index tuning.

One idea to reduce query performance regression is to
selectively use execution time during index tuning along
with optimizer’s estimated cost. Towards this end, Ding
et al. [21] proposed a suite of ML techniques that learn
over query execution telemetry collected from tens of
databases to predict whether or not a new plan due to a
selected index configuration has regressed with respect
to another plan. Active learning techniques have been
used to selectively collect query execution data for ML
model training by deploying the same target database on
non-production servers [36]. Furthermore, techniques
for fixing QPR have also been proposed [21, 22].

Takeaway #6: Leveraging optimizer’s estimated costs
for index tuning, while verifying selected configurations
at each step of configuration enumeration through ma-
chine learning models trained on query execution statis-
tics, can reduce query performance regressions.

Unfortunately, from the scalability perspective, the
inference process in [21] is expensive since it requires
query optimizer calls to obtain the physical plans of the
queries. Indeed, the focus of [21] was not scalability,
targeting a closed-loop continuous tuning scenario where
index tuning time is perhaps trivial considering the work-
load execution time, especially if there are query perfor-
mance regressions.

Open Challenge #6: Detecting configurations that
cause query performance regressions with both efficiency
and wide coverage, while preserving the scalability of
index tuning, remains a significant challenge for large-
scale workloads.

A promising direction, intersecting with challenges
discussed in Section 3.3, is to learn pre-trained cost mod-
els that bridge the gap between optimizer cost models
and the execution behaviour of queries. A challenge
that needs to be addressed is that such pre-trained mod-
els may not be accurate without requiring plan-level de-
tails that need what-if optimizer calls. Toward this end,
we can explore techniques similar to the ones used for
filtering spurious indexes (Section 3.1) where the origi-
nal physical plan is probed with properties provided by
an index to reason about potential improvement in the
cost, as showcased by the very recent work [56]. While
learning a generalized model that can work across work-
loads is challenging (as discussed earlier), we can nar-
row down the problem by focusing only on indexing-
specific improvements. If we can accurately learn such
models, it opens up opportunities to eschew both op-
timizer calls as well as query executions during index



tuning, thereby significantly improving the scalability.

5. CROSS-PLATFORM TUNING
The current database management landscape involves

many SQL-like systems, with only a few supporting in-
dex tuning. While the systems differ in SQL dialects
and functionalities (e.g., what-if API), the core ideas for
index tuning can often be reused. This is more true for
data-driven techniques discussed in this paper, where the
ML models have limited dependency on the dialects or
unique features of a particular system.

Open Challenge #7: There are many database sys-
tems (where indexes help improve performance) that ei-
ther have no or low-quality automated index tuning ca-
pabilities, forcing users to manually select indexes for
their workloads. Adding an index tuner to a new or
evolving database system requires substantial engineer-
ing overhead, despite that many core ideas in index tun-
ing are cross-platform reusable.

We hereby call for research efforts on developing a
cross-platform index tuner that can work across multiple
SQL-like systems, reusing core index tuning techniques
(e.g., data-driven ML models as well as the search al-
gorithms currently used in state-of-the-art index tuners).
Similar efforts have been made in other areas such as
query optimization [7,28]. A cross-platform index tuner
needs to adapt to the heterogeneity of features varying
across database engines, while reusing the common steps
as much as possible. We abstract such a system in Fig-
ure 9 with the following main components:
• Common Data Representation (IR) consisting of a ba-

sic set of elements that need to be captured across
systems, e.g., database, tables, columns, logical op-
erators, physical operators, and sub-plans. A cross-
language specification such as Subtrait [2] can poten-
tially be leveraged for IR.

• Common System Interaction APIs consisting of a com-
mon set of APIs that can be used to interact with the
database during index tuning. Examples of such APIs
include ones for query optimization in the presence
of one or more indexes, query execution, creation of
hypothetical indexes similar to the what-if API, and
building of statistics.

• Adapters providing the system-specific implementa-
tion of the common system interaction APIs that vary
across systems.

• Index Tuning Planner enabling cross-platform tuning
functionality. It considers system-specific features and
user requirements, and outputs an index tuning plan
(analogous to query execution plan in database sys-
tems). The index tuning task can be represented with
a small set of operators (e.g., enumerate, combine,
evaluate) that can be composed together and config-
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Figure 9: A Cross-Platform Design for Index Tuning.

ured to perform index tuning. The index tuning plan
can be an acyclic graph of these operators that is dy-
namically constructed and optimized by the planner
based on system features and user requirements.
Overall, a cross-platform index tuner consisting of the

components as envisioned above has the potential to de-
mocratize index tuning to many more systems than those
that are currently supported. In addition, such an in-
dex tuner will allow (a) borrowing of the best concepts
(implemented as operators) from different index-tuning
algorithms, (b) independent improvement and mainte-
nance of the functionality of operators, and (c) extensi-
bility by incorporating new techniques (implemented as
new operators) in the future without rewriting the algo-
rithms or changing unrelated operations.

6. CONCLUSION
In this paper, we have highlighted the challenges in-

herent to automated index tuning, which are further ex-
acerbated within modern cloud environments, and we
have discussed recent efforts and opportunities in lever-
aging ML-powered techniques to address them. We pre-
sented an end-to-end analysis of the index tuning work-
flow, with a focus on the core components such as work-
load selection and configuration search. We described
the issue of query performance regression (QPR) and
discussed ML techniques for addressing QPR without
affecting index tuning scalability. We also sketched the
design of a cross-platform index tuner that extends the
current index-tuning software stack to support multiple
SQL-like systems. We believe this paper will help create
awareness of recent progress and highlight open chal-
lenges for future research in index tuning.
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