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ABSTRACT
Predicting query execution time is a fundamental issue underly-
ing many database management tasks. Existing predictors rely on
information such as cardinality estimates and system performance
constants that are difficult to know exactly. As a result, accurate
prediction still remains elusive for many queries. However, exist-
ing predictors provide a single, point estimate of the true execution
time, but fail to characterize the uncertainty in the prediction. In
this paper, we take a first step towards providing uncertainty infor-
mation along with query execution time predictions. We use the
query optimizer’s cost model to represent the query execution time
as a function of the selectivities of operators in the query plan as
well as the constants that describe the cost of CPU and I/O opera-
tions in the system. By treating these quantities as random variables
rather than constants, we show that with low overhead we can infer
the distribution of likely prediction errors. We further show that the
estimated prediction errors by our proposed techniques are strongly
correlated with the actual prediction errors.

1. INTRODUCTION
The problem of predicting query execution time has received a

great deal of recent research attention (e.g., [6, 7, 19, 20, 47, 48]).
Knowledge about query execution time is essential to many im-
portant database management issues, including query optimization,
admission control [43, 49], query scheduling [14], and system siz-
ing [45]. Existing predictors rely on information such as cardinal-
ity estimates and system performance constants that are difficult to
know exactly. As a result, accurate prediction remains elusive for
many queries. However, existing predictors provide a single, point
estimate of the true execution time, but fail to characterize the un-
certainty in the prediction.

It is a general principle that if there is uncertainty in the estimate
of a quantity, systems or individuals using the estimate can benefit
from information about this uncertainty. (As a simple but ubiqui-
tous example, opinion polls cannot be reliably interpreted without
considering the uncertainty bounds on their results.) In view of this,
it is somewhat surprising that something as foundational as query

running time estimation typically does not provide any information
about the uncertainty embedded in the estimates.

There is already some early work indicating that providing this
uncertainty information could be useful. For example, in approxi-
mate query answering [27, 30], approximate query results are ac-
companied by error bars to indicate the confidence in the estimates.
It stands to reason that other user-facing running time estimation
tasks, for example, query progress indicators [13, 35], could also
benefit from similar mechanisms regarding uncertainty. Other ex-
amples include robust query processing and optimization techniques
(e.g., [9, 15, 21, 22, 37, 44]) and distribution-based query sched-
ulers [14]. We suspect that if uncertainty information were widely
available many more applications would emerge.

In this paper, we take a first step towards providing uncertainty
information along with query execution time predictions. In par-
ticular, rather than just reporting a point estimate, we provide a
distribution of likely running times. There is a subtlety in seman-
tics involved here — the issue is not “if we run this query 100 times
what do we think the distribution of running times will be?” Rather,
we are reporting “what are the likelihoods that the actual running
time of this query would fall into certain confidence intervals?” As
a concrete example, the distribution conveys information such as “I
believe, with probability 70%, the running time of this query should
be between 10s and 20s.”

Building on top of our previous work [48], we use query optimiz-
ers’ cost models to represent the query execution time as a function
of selectivities of operators in the query plan as well as basic sys-
tem performance parameters such as the unit cost of a single CPU
or I/O operation. However, our approach here is different from that
in [48] — we treat these quantities as random variables rather than
fixed constants. We then use sampling based approaches to esti-
mate the distributions of these random variables. Based on that,
we further develop analytic techniques to infer the distribution of
likely running times.

In more detail, for specificity consider the cost model used by
the query optimizer of PostgreSQL:

EXAMPLE 1 (POSTGRESQL’S COST MODEL). PostgreSQL
estimates the execution runtime overhead tO of an operatorO (e.g.,
scan, sort, join, etc.) as follows:

tO = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (1)

Here the c’s are cost units described in Table 1. Accordingly, the
n’s are then the number of pages sequentially scanned, the number
of pages randomly accessed, and so on, during the execution of O.
The total estimated overhead tq of a query q is simply the sum of
the costs of the individual operators in its query plan. Moreover, as
illustrated in [48], the n’s are actually functions of the input/output
cardinalities (or equivalently, selectivities) of the operators. As a
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c Description
cs The I/O cost to sequentially access a page
cr The I/O cost to randomly access a page
ct The CPU cost to process a tuple
ci The CPU cost to process a tuple via index access
co The CPU cost to perform an operation (e.g., hash)

Table 1: Cost units in PostgreSQL’s cost model

result, we can further represent tq as a function of the cost units c
and the selectivities X, namely,

tq =
∑

O∈Plan(q)

tO = g(c,X). (2)

Perfect predictions therefore rely on three assumptions: (i) the
c’s are accurate; (ii) the X’s are accurate; and (iii) g is itself accu-
rate. Unfortunately, none of these holds in practice. First, the c’s
are inherently random. For example, the value of cr may vary for
different disk pages accessed by a query, depending on where the
pages are located on disk. Second, accurate selectivity estimation
is often challenging, though significant progress has been made.
Third, the equations and functions modeling query execution make
approximations and simplifications so they could make errors. For
instance, Equation (1) does not consider the possible interleaving
of CPU and I/O operations during runtime.

To quantify the uncertainty in the prediction, we therefore need
to consider potential errors in all three parts of the running time
estimation formula. It turns out that the errors in the c’s, the X’s,
and g are inherently different. The errors in the c’s result from
fluctuations in the system state and/or variances in the way the sys-
tem performs for different parts of different queries. (That is, for
example, the cost of a random I/O may differ substantially from op-
erator to operator and from query to query.) We therefore model the
c’s as random variables and extend our previous calibration frame-
work [48] to obtain their distributions. The errors in the X’s arise
from selectivity estimation errors. We therefore also model these as
random variables and consider sampling-based approaches to esti-
mate their variance. The errors in g, however, result from simplifi-
cations or errors made by the designer of the cost model and are out
of the scope of this work. We show in our experiments that even im-
perfect cost model functions are useful for estimating uncertainty
in predictions.

Based on the idea of treating the c’s and the X’s as random vari-
ables rather than constants, the predicted execution time tq is then
also a random variable so that we can estimate its distribution. A
couple of challenges arise immediately. First, unlike the case of
providing a point estimate of tq , knowing that tq is “some” func-
tion of the c’s and the X’s is insufficient if we want to infer the
distribution of tq — we need to know the explicit form of g. By
Equation (2), g relies on cost functions that map the X’s to the n’s.
As a result, for concreteness we have to choose some specific cost
model. Here, for simplicity and generality, we leverage the notion
of logical cost functions [18] rather than the cost functions of any
specific optimizer. The observation is that the costs of an operator
can be specified according to its logical execution. For instance, the
number of CPU operations of the in-memory sort operator could
be specified as no = aN logN , where N is the input cardinality.
Second, while we can show that the distribution of tq is asymp-
totically normal based on our current ways of modeling the c’s and
theX’s, determining the parameters of the normal distribution (i.e.,
the mean and variance) is difficult for non-trivial queries with deep
query trees. The challenge arises from correlations between se-
lectivity estimates derived by using shared samples. We present a

detailed analysis of the correlations and develop techniques to ei-
ther directly compute or provide upper bounds for the covariances
with respect to the presence of correlations. Finally, providing esti-
mates to distributions of likely running times is desirable only if it
can be achieved with low overhead. We show that it is the case for
our proposed techniques — the overhead is almost the same as that
of the predictor in [48] which only provides point estimates.

Since our approach makes a number of approximations when
computing the distribution of running time estimates, an important
question is how accurate the estimated distribution is. An intu-
itively appealing experiment is the following: run the query mul-
tiple times, measure the distribution of its running times, and see
if this matches the estimated distribution. But this is not a rea-
sonable approach due to the subtlety we mentioned earlier. The
estimated distribution we calculate is not the expected distribution
of the actual query running time, it is the distribution of running
times our estimator expects due to uncertainties in its estimation
process. To see this another way, note that cardinality estimation
error is a major source of running time estimation error. But when
the query is actually run, it does not appear at all — the query exe-
cution of course observes the true cardinalities, which are identical
every time it is run.

Speaking informally, what our predicted running time distribu-
tion captures is the “self-awareness” of our estimator. Suppose that
embedded in the estimate is a dependence on what our estimator
knows is a very inaccurate estimate. Then the estimator knows that
while it gives a specific point estimate for the running time (the
mean of a distribution), it is likely that the true running time will
be far away from the estimate, and it captures this by indicating a
distribution with a large variance.

So our task in evaluating our approach is to answer the following
question: how closely does the variance of our estimated distribu-
tion of running times correspond to the observed errors in our es-
timates (when compared with true running times)? To answer this
question, we estimate the running times for and run a large number
of different queries and test the agreement between the observed er-
rors and the predicted distribution of running times, where “agree-
ment” means that larger variations correspond to more inaccurate
estimates.

In more detail, we report two metrics over a large number of
queries: (M1) the correlation between the standard deviations of the
estimated distributions and the actual prediction errors; and (M2)
the proximity between the inferred and observed distributions of
prediction errors. We show that (R1) the correlation is strong; and
(R2) the two distributions are close. Intuitively, (R1) is qualita-
tive; it suggests that one can judge if the prediction errors will be
small or large based on the standard deviations of the estimated
distributions. (R2) is more quantitative; it further suggests that the
likelihoods of prediction errors are specified by the distributions as
well. We therefore conclude that the estimated distributions do a
reasonable job as indicators of prediction errors.

We start by presenting terminology and notation used through-
out the paper in Section 2. We then present the details of how to
estimate the distributions of the c’s and the X’s (Section 3), the ex-
plicit form of g (Section 4), and the distribution of tq (Section 5).
We further present experimental evaluation results in Section 6, dis-
cuss related work in Section 7, and conclude the paper in Section 8.

2. PRELIMINARIES
In most current DBMS implementations, the operators are ei-

ther unary or binary. Therefore, we can model a query plan with a
rooted binary tree. Consider an operator O in the query plan. We
use Ol and Or to represent its left and right child operator, and use
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Figure 1: Example query plan

Notation Description
O An operator in the query plan
Ol (Or) The left (right) child operator of O
Nl (Nr) The left (right) input cardinality of O
M The output cardinality of O
R The leaf tables of O
X The selectivity of O
T The subtree rooted at O
Desc(O) The descendant operators of O in T

Table 2: Terminology and notation

Nl and Nr to denote its left and right input cardinality. If O is
unary, then Or does not exist and thus Nr = 0. We further use M
to denote O’s output cardinality.

Let T be the subtree rooted at the operator O, and let R be the
(multi)set of relations accessed by the leaf nodes of T . Note that
the leaf nodes in a query plan must be scan operators that access
the underlying tables.1 We call R the leaf tables of O. Let |R| =∏
R∈R |R|. We define the selectivity X of O to be:

X =
M

|R| =
M∏

R∈R |R|
. (3)

EXAMPLE 2 (SELECTIVITY). Consider the query plan in Fig-
ure 1. O1, O2, and O3 are scan operators that access three under-
lying tables R1, R2, and R3, and O4 and O5 are join operators.
The selectivity of O1, for instance, is X1 = M1

|R1|
, whereas the se-

lectivity of O4 is X4 = M4
|R1|·|R2|

.

We summarize the above notation in Table 2 for convenience
of reference. Since the n’s in Equation (1) are functions of in-
put/output cardinalities of the operators (we discuss different types
of cost functions in Section 4.1), it is clear that the n’s are also
functions of the selectivities (i.e., the X’s) defined here. Based on
Equation (2), tq is therefore a function of the c’s and the X’s. We
next discuss how to measure the uncertainties in these parameters.

3. INPUT DISTRIBUTIONS
To learn the distribution of tq , we first need to know the distribu-

tions of the c’s and theX’s. We do this by extending the framework
in our previous work [48].

1We use “relation” and “table” interchangeably in this paper since
our discussion does not depend on the set/bag semantics.

3.1 Distributions of the c’s
In [48], we designed dedicated calibration queries for each c.

Consider the following example:

EXAMPLE 3 (CALIBRATION QUERY). Suppose that we want
to know the value of ct, namely, the CPU cost of processing one tu-
ple. We can use the calibration query SELECT * FROM R, where
R is some table whose size is known and is loaded into memory.
Since this query only involves ct, its execution time τ can be ex-
pressed as τ = |R| · ct. We can then run the query, record τ , and
compute ct from this equation.

Note that we can use different R’s here, and different R’s may
give us different ct’s. We can think of these observed values as
i.i.d. samples from the distribution of ct, and in [48] we used the
sample mean as our estimate of ct. To quantify the uncertainty in
ct, it would make more sense to treat ct as a random variable rather
than a constant. We assume that the distribution of ct is normal
(i.e., Gaussian), for intuitively the CPU speed is likely to be stable
and centered around its mean value. Now let ct ∼ N (µt, σ

2
t ).

It is then a common practice to use the mean and variance of the
observed ct’s as estimates for µt and σ2

t .
In general, we can apply similar arguments to all the five cost

units. Due to space limitations, readers are referred to [48] for
more details on the calibration procedure. In [48] we only calcu-
lated the mean, not the variance, but the extension to the variance
is straightforward.

3.2 Distributions of the X’s
The uncertainties in the X’s are quite different from those in the

c’s. The uncertainties in the c’s are due to unavoidable fluctuations
in hardware execution speeds. In other words, the c’s are inherently
random. However, the X’s are actually fixed numbers — if we run
the query we should always obtain the same ground truths for the
X’s. The uncertainties in the X’s really come from the fact that so
far we do not have a perfect selectivity estimator. How to quantify
the uncertainties in the X’s therefore depends on the nature of the
selectivity estimator used. Here we extend the sampling-based ap-
proach used in [48], which was first proposed by Haas et al. [25].
It provides a mathematically rigorous way to quantify potential er-
rors in selectivity estimates. It remains interesting future work to
investigate the possibility of extending other alternative estimators
such as those based on histograms.

3.2.1 A Sampling-Based Selectivity Estimator
Suppose that we have a database consisting of K relations R1,

..., RK , where Rk is partitioned into mk blocks each with size
Nk, namely, |Rk| = mkNk. Without loss of generality, let q be a
selection-join query over R1, ..., RK , and let B(k, j) be the j-th
block of relation k (1 ≤ j ≤ mk, and 1 ≤ k ≤ K). Define

B(L1,i1 , ..., LK,iK ) = B(1, L1,i1)× · · · ×B(K,LK,iK ),

whereB(k, Lk,ik ) is the block (with indexLk,ik ) randomly picked
from the relation Rk in the ik-th sampling step. After n steps,
we can obtain nK such samples (notice that these samples are not
independent), and the estimator is defined as

ρn =
1

nK

n∑
i1=1

· · ·
n∑

iK=1

ρB(L1,i1
,··· ,LK,iK

). (4)

Here ρn is the estimated selectivity of q (after n sampling steps),
and ρB is the observed selectivity of q over the sample B. This
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estimator is shown to be both unbiased and strongly consistent for
the actual selectivity ρ of q [25, 48].2

By applying the Central Limit Theorem, we can show that

√
n

σ

(
ρn − ρ

) d−→N(0, 1).

That is, the distribution of ρn is approximately normal after a large
number of sampling steps [25]: ρn ∼ N (ρ, σ2

n), where σ2
n =

σ2/n and σ2 = limn→∞ nVar[ρn]. We present a more detailed
study of Var[ρn] in Appendix A.1.

However, here σ2
n is unknown since σ2 is unknown. In [25], the

authors further proposed the following estimator for σ2:

S2
n =

K∑
k=1

(
1

n− 1

n∑
j=1

(Qk,j,n/n
K−1 − ρn)2

)
, (5)

for n ≥ 2 (we set S2
1 = 0). Here

Qk,j,n =
∑

(i1,...,iK)∈Ω
(n)
k

(j)

ρB(L1,i1
,...,LK,iK

), (6)

where Ω
(n)
k (j) = {(i1, ..., iK) ∈ {1, ..., n}K : ik = j}. It can be

shown that limn→∞ S
2
n = σ2 a.s. As a result, it is reasonable to

approximate σ2 with S2
n when n is large. So σ2

n ≈ S2
n/n.

3.2.2 Efficient Computation of S2
n

Efficiency is crucial for a predictor to be practically useful. We
have discussed efficient implementation of ρn in [48]. Taking sam-
ples at runtime might not be acceptable since it will result in too
many random disk I/O’s. Therefore, we instead take samples off-
line and store them as materialized views (i.e., sample tables). In
the following presentation, we use Rs to denote the sample table
of a relation R. In [48], we further showed that, given a selection-
join query, we can estimate the selectivities of all the selections
and joins by running the original query plan over the sample tables
once. The trick is that, since the block size is not specified when
partitioning the relations, it could be arbitrary. We can then let a
block be a single tuple so that the cross-product of sample blocks
is reduced to the cross-product of sample tuples.

EXAMPLE 4 (IMPLEMENTATION OF ρn). Let us consider the
query plan in Figure 1 again. Based on the tuple-level partitioning
scheme, by Equation (4) we can simply estimate X4 and X5 as

X̂4 =
|Rs1 ./ Rs2|
|Rs1| · |Rs2|

and X̂5 =
|Rs1 ./ Rs2 ./ Rs3|
|Rs1| · |Rs2| · |Rs3|

.

Also note that we can compute the two numerators by running the
query plan over the sample relations Rs1, Rs2, and Rs3 once. That
is, to compute Rs1 ./ Rs2 ./ Rs3, we reuse the join results from
Rs1 ./ R

s
2 that has been computed when estimating X4.

We now extend the above framework to further compute S2
n. For

this sake we need to know how to compute the Qk,j,n’s in Equa-
tion (5). Let us consider the cases when an operator represents a
selection (i.e., a scan), a two-way join, or a multi-way join query.

2Strong consistency is also called almost sure convergence in prob-
ability theory (denoted as “a.s.”). It means that the more samples
we take, the closer ρn is to ρ.

Selection. In this case, K = 1 and by Equation (6) Qk,j,n is
reduced to Q1,j,n = ρB(L1,j). Therefore, S2

n can be simplified as

S2
n =

1

n− 1

n∑
j=1

(ρB(L1,j)− ρn)2.

Since a block here is just a tuple, ρB(L1,j) = 0 or ρB(L1,j) = 1.
We thus have

S2
n =

1

n− 1

( ∑
ρB(L1,j)=0

ρ2
n +

∑
ρB(L1,j)=1

(1− ρn)2)
=

1

n− 1

(
(n−M)ρ2

n +M(1− ρn)2),
where M is the number of output tuples from the selection. When
n is large, n ≈ n− 1, so we have

S2
n ≈ (1− M

n
)ρ2
n +

M

n
(1− ρn)2 = ρn(1− ρn),

by noticing that ρn = M
n

. Hence S2
n is directly computable for a

scan operator once we know its estimated selectivity ρn.

Two-way Join. Consider a join R1 ./ R2. In this case, Qk,j,n
(k = 1, 2) can be reduced to

Q1,j,n =

n∑
i2=1

ρB(L1,j , L2,i2) and Q2,j,n =

n∑
i1=1

ρB(L1,i1 , L2,j).

Again, since a block here is just a tuple, ρB is either 0 or 1. It is
then equivalent to computing the following two quantities:

• Q1,j,n = |{t1j} ./ Rs2|, where t1j is the jth tuple of Rs1;

• Q2,j,n = |Rs1 ./ {t2j}|, where t2j is the jth tuple of Rs2.

That is, to compute Qk,j,n (k = 1, 2), conceptually we need to
join each sample tuple of one relation with all the sample tuples
of the other relation. However, directly performing this is quite
expensive, for we need to do 2n joins here.

We seek a more efficient solution. Recall that we need to joinRs1
andRs2 to compute ρn. LetRs = Rs1 ./ R

s
2. Consider any t ∈ Rs.

t must satisfy t = t1i ./ t2j , where t1i ∈ Rs1 and t2j ∈ Rs2.
Then t contributes 1 to Q1,i,n and 1 to Q2,j,n. On the other hand,
any t in Rs1 × Rs2 but not in Rs will contribute nothing to the Q’s.
Based on this observation, we only need to scan the tuples in Rs

and increment the corresponding Q’s. The remaining problem is
how to know the indexes i and j as in t = t1i ./ t2j . For this
purpose, we assign an identifier to each tuple in the sample tables
when taking the samples. This is akin to the idea in data provenance
research where tuples are annotated to help tracking the lineages of
the query results [23].

Multi-way Joins. The approach of processing two-way joins
can be easily generalized to handle multi-way joins. Now we have

Qk,j,n = |Rs1 ./ · · · ./ {tkj} ./ · · · ./ RsK |.

As a result, if we let Rs = Rs1 ./ · · · ./ RsK , then any t ∈ Rs

satisfies t = t1i1 ./ · · · ./ tKiK . t ∈ Rs1 × · · · × RsK will
contribute 1 to each Qk,ik,n (1 ≤ k ≤ K) if and only if t ∈ Rs.
Therefore, as before, we can just simply scanRs and increment the
corresponding Q’s when processing each tuple.
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Putting It Together. Algorithm 1 summarizes the procedure of
computing ρn and S2

n for a single operator O. It is straightforward
to incorporate it into the previous framework where the selectivities
of the operators are refined in a bottom-up fashion (Appendix B).
We discuss some implementation details in the following.

Algorithm 1: Computation of ρn and S2
n

Input: O, an operator;Rs = {Rs1, ..., RsK}, the sample
tables; Agg, if some O′ ∈ Desc(O) is an aggregate

Output: ρn, estimated selectivity of O; S2
n, sample variance

1 Rs ← RunOperator(O,Rs);
2 if Agg then
3 M ← CardinalityByOptimizer(O);
4 ρn ← M∏K

k=1
|Rk|

;

5 S2
n ← 0;

6 else if O is a scan then
7 ρn ← |Rs|

|Rs
1|

;

8 S2
n ← ρn(1− ρn);

9 else if O is a join then
10 ρn ← |Rs|∏K

k=1
|Rs

k
| ;

11 foreach t = t1i1 ./ · · · ./ tKiK ∈ R
s do

12 Qk,ik,n ← Qk,ik,n + 1, for 1 ≤ k ≤ K;
13 end

14 S2
n ←

∑K
k=1

(
1

n−1

∑n
j=1(Qk,j,n/n

K−1 − ρn)2

)
;

15 else
16 ρn ← µ̂l, S2

n ← σ̂2
l ; // Let Xl ∼ N (µ̂l, σ̂

2
l ).

17 end
18 return ρn and S2

n;

First, the selectivity estimator cannot work for operators such as
aggregates. Our current strategy is to use the original cardinality
estimates from the optimizer to compute ρn, and we simply set S2

n

to be 0 for these operators (lines 3 to 5). This may cause inaccuracy
in the prediction as well as our estimate of its uncertainty, if the op-
timizer does a poor job in estimating the cardinalities. However, we
find that it works reasonably well in our experiments. Nonetheless,
we are working to incorporate sampling-based estimators for ag-
gregates (e.g., the GEE estimator [11]) into our current framework.

Second, to compute the Qk,ik,n’s, we maintain a hash map Hk
for each k with ik’s the keys and Qk,ik,n’s the values. The size of
Hk is upper bounded by |Rsk| and usually is much smaller.

Third, for simplicity of exposition, in Algorithm 1 we first com-
pute the whole Rs and then scan it. In practice we actually do not
need to do this. Typical join operators, such as merge join, hash
join, and nested-loop join, usually compute join results on the fly.
Once a join tuple is computed, we can immediately postprocess
it by increasing the corresponding Qk,ik,n’s. Therefore, we can
avoid the additional memory overhead of caching intermediate join
results, which might be large even if the sample tables are small.

4. COST FUNCTIONS
By Equation (2), to infer the distribution of tq for a query q,

we also need to know the explicit form of g. According to Equa-
tion (1), g relies on the cost functions of operators that map the
selectivities to the n’s. As mentioned in the introduction, we use
logical cost functions in our work. While different DBMS may dif-
fer in their implementations of a particular operator, e.g., nested-
loop join, they follow the same execution logic and therefore have

the same logical cost function. In the following, we first present a
detailed study of representative cost functions. We then formulate
the computation of cost functions as an optimization problem that
seeks the best fit for the unknown coefficients, and we use standard
quadratic programming techniques to solve this problem.

4.1 Types of Functions
We consider the following types of cost functions in this paper:

(C1) f = a0: The cost function is a constant. For instance, since
a sequential scan has no random disk reads, nr = 0.

(C2) f = a0M+a1: The cost function is linear with respect to the
output cardinality. For example, the number of random reads
of an index-based table scan falls into this category, which is
proportional to the number of qualified tuples that pass the
selection predicate.

(C3) f = a0Nl + a1: The cost function is linear with respect to
the input cardinality. This happens for unary operators that
process each input tuple once. For example, materialization
is such an operator that creates a buffer to cache the interme-
diate results.

(C4) f = a0N
2
l + a1Nl + a2: The cost function is nonlinear with

respect to the input cardinality. For instance, the number of
CPU operations (i.e., co) performed by a sort operator is pro-
portional to Nl logNl. While different nonlinear unary oper-
ators may have specific cost functions, we choose to only use
quadratic polynomials based on the following observations:

• It is quite general to approximate the nonlinear cost func-
tions used by current relational operators. First, as long
as a function is smooth (i.e., it has continuous deriva-
tives up to some desired order), it can be approximated
by using the well-known Taylor series, which is basi-
cally a polynomial of the input variable. Second, for
efficiency reasons, the overhead of an operator usually
does not go beyond quadratic of its input cardinality —
we are not aware of any operator implementation whose
time complexity is ω(N2). Similar observations have
been made in [16].

• Compared with functions such as logarithmic ones, poly-
nomials are mathematically much easier to manipulate.
Since we need to further infer the distribution of the pre-
dicted query execution time based on the cost functions,
this greatly simplifies the derivations.

(C5) f = a0Nl + a1Nr + a2: This cost function is linear with
respect to the input cardinalities when the operator is binary.
An interesting observation here is that the cost functions in
the case of binary operators are not necessarily nonlinear. For
example, the number of I/O’s involved in a hash join is only
proportional to the number of input tuples.

(C6) f = a0NlNr + a1Nl + a2Nr + a3: The cost function here
also involves the product of the left and right input cardinali-
ties of a binary operator. This happens typically in a nested-
loop join, which iterates over the inner (i.e., the right) input
table multiple times with respect to the number of rows in the
outer (i.e., the left) input table.

It is straightforward to translate these cost functions in terms of
selectivities. Specifically, we have Nl = |Rl|Xl, Nr = |Rr|Xr ,
and M = |R|X . The above six cost functions can be rewritten as
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(C1’) f = b0, where b0 = a0.

(C2’) f = b0X + b1, where b0 = a0|R| and b1 = a1.

(C3’) f = b0Xl + b1, where b0 = a0|Rl| and b1 = a1.

(C4’) f = b0X
2
l + b1Xl + b2, where b0 = a0|Rl|2, b1 = a1|Rl|,

and b2 = a2.

(C5’) f = b0Xl + b1Xr + b2, where b0 = a0|Rl|, b1 = a1|Rr|,
and b2 = a2.

(C6’) f = b0XlXr+b1Xl+b2Xr+b3, where b0 = a0|Rl|·|Rr|,
b1 = a1|Rl|, b2 = a2|Rr|, and b3 = a3.

4.2 Computation of Cost Functions
To compute the cost functions, we use an approach that is similar

to the one proposed in [16]. Regarding the types of cost functions
we considered, the only unknowns given the selectivity estimates
are the coefficients in the functions (i.e., the b’s). Moreover, notice
that f is a linear function of the b’s once the selectivities are given.
We can then collect a number of f values by feeding in the cost
model with different X’s and find the best fit for the b’s.

As an example, consider (C4’). Suppose that we invoke the cost
model m times and obtain m points:

{(Xl1, f1), ..., (Xlm, fm)}.

Let y = (f1, ..., fm), b = (b0, b1, b2), and

A =

 X2
l1 Xl1 1
...

...
...

X2
lm Xlm 1

 .

The optimization problem we are concerned with is:

minimize
b

‖Ab− y‖

subject to bi ≥ 0, i = 0, 1.

Note that we require b0 and b1 be nonnegative since they have the
natural semantics in the cost functions as the amount of work with
respect to the corresponding terms. For example, b1Xl = a1Nl is
the amount of work that is proportional to the input cardinality. To
solve this quadratic programming problem, we use the qpsolve
function of Scilab [42]. Other equivalent solvers could also be used.

The remaining problem is how to pick these (X, f)’s. In theory,
one could arbitrarily pick the X’s from [0, 1] to obtain the corre-
sponding f ’s as long as we have more points than unknowns. Al-
though more points usually mean we can have better fittings, in
practice we cannot afford too many points due to the efficiency re-
quirements when making the prediction. On the other hand, given
that the X’s here follow normal distributions and the variances are
usually small when the sample size is large, the likely selectivity
estimates are usually concentrated in a much shorter interval than
[0, 1]. Intuitively, we should take more points within this interval,
for we can then have a more accurate view of the shape of the cost
function restricted to this interval. Therefore, in our current imple-
mentation, we adopt the following strategy.

Let X ∼ N (µ, σ2). Consider the interval I = [µ − 3σ, µ +
3σ]. It is well known that Pr(X ∈ I) ≈ 0.997, which means the
probability thatX falls out of I is less than 0.3%. We then proceed
by partitioning I into W subintervals of equal width, and pick the
W + 1 boundary X’s to invoke the cost model. Generalizing this
idea to binary cost functions is straightforward. Suppose Xl ∼
N (µl, σ

2
l ) and Xr ∼ N (µr, σ

2
r). Let Il = [µl − 3σl, µl + 3σl]

and Ir = [µr − 3σr, µr + 3σr]. We then partition Il × Ir into a
W ×W grid and obtain (W + 1) × (W + 1) points (Xl, Xr) to
invoke the cost model.

5. DISTRIBUTION OF RUNNING TIMES
We have discussed how to estimate the distributions of input pa-

rameters (i.e., the c’s and the X’s) and how to estimate the cost
functions of each operator. In this section, we discuss how to com-
bine these two to further infer the distribution of tq for a query q.

Since tq = g(c,X), the distribution of tq relies on the joint dis-
tribution of (c,X).3 We therefore first present a detailed analysis
of the correlations between the c’s and the X’s. Based on that, we
then show that the distribution of tq is asymptotically normal and
thus reduce the problem to estimating the two parameters of normal
distributions, i.e., the mean and variance of tq . We further address
the nontrivial problem of computing Var[tq] due to correlations be-
tween selectivity estimates.

5.1 Correlations of Input Variables
In our current setting, it is reasonable to assume that the c’s and

the X’s are independent. In the following, we analyze the correla-
tions within the c’s and the X’s.

5.1.1 Correlations Between Cost Units
Since the randomness within the c’s comes from the variations

in hardware execution speeds, by using our current framework we
have no way to observe the true values of the c’s and thus it is im-
possible to obtain the exact joint distribution of the c’s. Nonethe-
less, it might be reasonable to assume the independence of the c’s.
First, since the CPU and I/O cost units measure the speeds of dif-
ferent hardware devices, their values do not depend on each other.
Second, within each group (i.e., CPU or I/O cost units), we used
independent calibration queries for each individual cost unit.

ASSUMPTION 1. The c’s are independent of each other.

We further note here that the independence of the c’s depends
on the cost model as well as the hardware configurations. For in-
stance, if certain devices are connected via the same infrastructure
(e.g., a bus), then they might influence each other’s communication
patterns. Our current framework for calibrating the c’s cannot cap-
ture the correlations of the c’s. However, perhaps low-level tools
for monitoring hardware execution status could be used for this
purpose. We leave it as interesting future work to investigate such
possibilities and study the effectiveness of incorporating correlation
information of the c’s into our current framework.

5.1.2 Correlations Between Selectivity Estimates
The X’s are clearly not independent, because the same samples

are used to estimate the selectivities of different operators. We next
study the correlations between the X’s in detail.

Let O and O′ be two operators, and R and R′ be the corre-
sponding leaf tables. Consider the two corresponding selectivity
estimates ρn and ρ′n as defined by Equation (4). Since the samples
from each table are drawn independently, we first have:

LEMMA 1. IfR∩R′ = ∅, then ρn⊥ρ′n.4

For binary operators, it follows from Lemma 1 immediately that:

LEMMA 2. Let O be binary. IfRl ∩Rr = ∅, then Xl⊥Xr .
3Note that the distributions of the c’s and X’s that we obtained in
Section 3 are marginal rather than joint.
4We use Y⊥Z to denote that Y and Z are independent.
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That is,Xl andXr will only be correlated ifRl andRr share com-
mon relations. However, in practice, we can maintain more than
one sample table for each relation. When the database is large, this
is affordable since the number of samples is very small compared
to the database size [48]. Since the samples from each relation are
drawn independently, Xl and Xr are still independent if we use a
different sample table for each appearance of a shared relation. We
thus assume Xl⊥Xr in the rest of the paper.

More generally, X and X ′ are independent as long as neither
O ∈ Desc(O′) nor O′ ∈ Desc(O). However, the above discus-
sion cannot be applied if O ∈ Desc(O′) (or vice versa). This is
because we pass the join results from downstream joins to upstream
joins when estimating the selectivities (recall Example 4). So R
and R′ are naturally not disjoint. In fact, R ⊆ R′. To make ρn
and ρ′n independent, we need to replace each of the sample tables
used in computing ρ′n with another sample table from the same re-
lation, which basically is the same as run the query plan again on a
different set of sample tables. The number of runs is then in propor-
tion to the number of selective operators (i.e., selections and joins)
in the query plan, and the runtime overhead might be prohibitive in
practice. We summarize this observation as follows:

LEMMA 3. Given that multiple sample tables of the same re-
lation can be used, ρn and ρ′n are correlated if and only if either
O ∈ Desc(O′) or vice versa.

5.2 Asymptotic Distributions
Now for specificity suppose that the query plan of q contains m

operators O1, ..., Om. Since tq is the sum of the predicted exe-
cution time spent on each operator, it can be expressed as tq =∑m
k=1 tk, where tk is the predicted execution time of Ok and is

itself a random variable.
We next show that tk is asymptotically normal, and then by us-

ing very similar arguments, we can show that tq is asymptotically
normal as well. Since tk can be further expressed in terms of Equa-
tion (1), to learn its distribution we need to know the distributions
of cost functions that map the selectivities to the n’s. We therefore
start by discussing the distributions of the typical cost functions as
presented in Section 4.1.

5.2.1 Asymptotic Distributions of Cost Functions
In the following discussion, we assume that X ∼ N (µ, σ2),

Xl ∼ N (µl, σ
2
l ), and Xr ∼ N (µr, σ

2
r). The distributions of the

six types of cost functions previously discussed are as follows:

(C1’) f = b0: f ∼ N (b0, 0).

(C2’) f = b0X + b1: f ∼ N (b0µ+ b1, b
2
0σ

2).

(C3’) f = b0Xl + b1: f ∼ N (b0µl + b1, b
2
0σ

2
l ).

(C4’) f = b0X
2
l + b1Xl + b2: In this case Pr(f) is not normal.

Although it is possible to derive the exact distribution of f
based on the distribution ofXl, the derivation would be very
messy. Instead, we consider fN ∼ N (E[f ],Var[f ]) and
use this to approximate Pr(f). We present the formula of
Var[f ] in Lemma 4 (proof in Appendix A.2). Obviously, fN

and f have the same expected value and variance. Moreover,
we can actually show that fN and f (and therefore their cor-
responding distributions) are very close to each other when
the number of samples is large (see Theorem 1 below; the
proof is in Appendix A.3).

(C5’) f = b0Xl + b1Xr + b2: Since Xl⊥Xr by Lemma 2, f ∼
N (b0µl + b1µr + b2, b

2
0σ

2
l + b21σ

2
r).

(C6’) f = b0XlXr + b1Xl + b2Xr + b3: Again, Pr(f) is not
normal. Since Xl⊥Xr , XlXr follows the so called normal
product distribution [8], whose exact form is again compli-
cated. We thus use the same strategy as in (C4’) (see Ap-
pendix A.4).

LEMMA 4. If Xl ∼ N (µl, σ
2
l ) and f = b0X

2
l + b1Xl + b2,

then

Var[f ] = σ2
l [(b1 + 2b0µl)

2 + 2b20σ
2
l ].

THEOREM 1. Suppose that Xl ∼ N (µl, σ
2
l ) and f = b0X

2
l +

b1Xl + b2. Let fN ∼ N (E[f ],Var[f ]), where Var[f ] is shown in
Lemma 4. Then fN

p−→ f .5

5.2.2 Asymptotic Distribution of tk
Based on the previous analysis, the cost functions (or equiva-

lently, the n’s in Equation (1)) are asymptotically normal. Since
the c’s are normal and independent of theX’s (and hence the n’s as
well), by Equation (1) again tk is asymptotically the sum of prod-
ucts of two independent normal random variables. Specifically, let
C = {cs, cr, ct, ci, co}, and for c ∈ C, let fkc be the cost function
indexed by c. Defining tkc = fNkcc, we have

tk ≈
∑
c∈C

tkc =
∑
c∈C

fNkcc,

Again, each tkc is not normal. But we can apply techniques sim-
ilar to that in Theorem 1 here by using the normal random variable

tNkc ∼ N (E[fNkcc],Var[fNkcc]) = N (E[fkcc],Var[fkcc])

as an approximation of tkc. Defining Z = E[fkc]c, we have

THEOREM 2. tkc
d−→Z, and tNkc

d−→Z.

Theorem 2 (proof in Appendix A.5) implies that tkc and tNkc tend
to follow the same distribution as the sample size grows. Since c
is normal, Z is normal as well. Furthermore, the independence of
the c’s also implies the independence of the Z’s. So tk is approx-
imately the sum of the independent normal random variables tNkc.
Hence tk is itself approximately normal with large sample size.

5.2.3 Asymptotic Distribution of tq
Finally, let us consider the distribution of tq . Since tq is merely

the sum of the tk’s, we have exactly the same situation as when we
analyze each tk. Specifically, we can express tq as

tq =

m∑
k=1

tk ≈
∑
c∈C

gcc,

where gc =
∑m
k=1 f

N
kc is the sum of the cost functions of the op-

erators with respect to the particular c. However, since the fNkc ’s
are not independent, gc is not normal. We can again use the normal
random variable

gNc ∼ N (E[gc],Var[gc])

as an approximation of gc. We show gNc
p−→ gc in Appendix A.6.

With exactly the same argument used in Section 5.2.2 we can then
see that tq is approximately normal when the sample size is large.

5fN
p−→ f means fN converges in probability to f .
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5.2.4 Discussion
The analysis that tq is asymptotically normal relies on three facts:

(1) the selectivity estimates are unbiased and strongly consistent;
(2) the cost model is additive; and (3) the cost units are indepen-
dently normally distributed. While the first fact is a property of the
sampling-based selectivity estimator and thus always holds, the lat-
ter two are specific merits of the cost model of PostgreSQL, though
we believe that cost models of other database systems share more
or less similar features. (As far as we know, MySQL [50], IBM
DB2 [1], Oracle [2], and Microsoft SQL Server [3] use similar cost
models.) Therefore, we need new techniques when either (2) or
(3) does not hold. For instance, if the cost model is still additive
and the c’s are independent but cannot be modeled as normal vari-
ables, then by the analysis in Section 5.2.3 we can still see that tq
is asymptotically a linear combination of the c’s and thus the dis-
tribution of tq can be expressed in terms of the convolution of the
distributions of the c’s. We may then find this distribution by using
generating functions or characteristic functions [41]. We leave the
investigation of other types of cost models as future work.

5.3 Computing Distribution Parameters
As discussed, we can approximate the distribution of tq with a

normal distribution N (E[tq],Var[tq]). We are then left with the
problem of estimating the two parameters E[tq] and Var[tq]. While
E[tq] is trivial to compute — it is merely the original prediction
from our predictor, estimating Var[tq] is a challenging problem due
to the correlations presented in selectivity estimates.

In more detail, so far we have observed the additive nature of tq ,
that is, tq =

∑m
k=1 tk and tk =

∑
c∈C tkc (Section 5.2.2). Recall

the fact that for sum of random variables Y =
∑

1≤i≤m Yi,

Var[Y ] =
∑

1≤i,j≤m
Cov(Yi, Yj).

Applying this to tq , our task is then to compute each Cov(ti, tj).
Note that Cov(ti, ti) = Var[ti] which is easy to compute, so it is
left to compute Cov(ti, tj) for i 6= j. By linearity of covariance,

Cov(ti, tj) = Cov
(∑
c∈C

tic,
∑
c∈C

tjc
)

=
∑
c,c′∈C

Cov(tic, tjc′).

In the following, we first specify the cases where direct computa-
tion of Cov(tic, tjc′) can be done. We then develop upper bounds
for those covariances that cannot be directly computed.

5.3.1 Direct Computation of Covariances
Any Cov(tic, tjc′) can fall into the following two cases:

• i = j, then it is the covariance between different cost func-
tions from the same operator.

• i 6= j, then it is the covariance between cost functions from
different operators.

Consider the case i = j first. If the operator is unary, regarding
the cost functions we are concerned with, we only need to con-
sider Cov(X,X), Cov(X,X2), and Cov(X2, X2), where X ∼
N (µ, σ2). Since X is normal, the non-central moments of X can
be expressed in terms of µ and σ2. Hence it is straightforward
to compute these covariances [46]. If the operator is binary, then
we need to consider Cov(Xl, Xl), Cov(Xr, Xr), Cov(Xl, Xr),
Cov(XlXr, Xl), Cov(XlXr, Xr), and Cov(XlXr, XlXr). By
Lemma 2, Xl⊥Xr . So we are able to directly compute these co-
variances as well.

When i 6= j, while the types of covariances that we need to
consider are similar as before, it is more complicated since the se-
lectivities are no longer independent. Without loss of generality,

we consider two operators O and O′ such that O ∈ Desc(O′).
By Lemma 3, this is the only case where the covariances might
not be zero. Based on the cost functions considered in this pa-
per, we need to consider the covariances Cov(Z,Z′), where Z ∈
{Xl, X2

l , Xr, XlXr} and Z′ ∈ {X ′l , (X ′l)2, X ′r, X
′
lX
′
r}. Some

of them can be directly computed by applying Lemma 3, while the
others can only be bounded as discussed in the next section.

EXAMPLE 5 (COVARIANCES BETWEEN SELECTIVITIES). To
illustrate, consider the two join operators O4 and O5 in Figure 1.
Assume that the cost functions of O4 and O5 are all linear, i.e.,
they are of type (C5’). Based on Lemma 2, Cov(X1, X2) = 0 and
Cov(X4, X3) = 0. Also, based on Lemma 3, Cov(X1, X3) =
0 and Cov(X2, X3) = 0. However, we are not able to com-
pute Cov(X1, X4) and Cov(X2, X4). Instead, we provide upper
bounds for them.

5.3.2 Upper Bounds of Covariances
Based on the fact that the covariance between two random vari-

ables is bounded by the geometric mean of their variances [41], we
can establish an upper bound for Z and Z′ in the previous section:

|Cov(Z,Z′)| ≤
√

Var[Z] Var[Z′].

Note that the variances are directly computable based on the inde-
pendence assumptions (Lemma 2 and 3).

By analyzing the correlation of the samples used in selectivity es-
timation, we can develop tighter bounds (details in Appendix A.7).
The key observation here is that the correlations are caused by the
samples from the shared relations. Consider two operators O and
O′ such thatO ∈ Desc(O′). Suppose that |R∩R′| = m (m ≥ 1),
namely, O and O′ share m common leaf tables. Let the estimators
forO andO′ be ρn and ρ′n, where n is the number of sample steps.
We define S2

ρ(m,n) to be the variance of samples restricted to the
m common relations. This is actually a generalization of Var[ρn].
To see this, letR′ = R. Then ρn = ρ′n and hence

Var[ρn] = Cov(ρn, ρn) = Cov(ρn, ρ
′
n) = S2

ρ(K,n),

where K = |R|. We can show that S2
ρ(m,n) is a monotoni-

cally increasing function of m (see Appendix A.7). As a result,
S2
ρ(m,n) ≤ Var[ρn] given that m ≤ K. Hence, we have the

following refined upper bound for Cov(ρn, ρ
′
n):

|Cov(ρn, ρ
′
n)| ≤

√
S2
ρ(m,n)S2

ρ′(m,n) ≤
√

Var[ρn] Var[ρ′n].

To compute S2
ρ(m,n), we use an estimator akin to the estimator

σ2
n = S2

n/n that we used to estimate Var[ρn]. Specifically, define

S2
n,m =

m∑
r=1

(
1

n− 1

n∑
j=1

(Qr,j,n/n
m−1 − ρn)2

)
,

for n ≥ 2 (we set S2
1,m = 0). Very similarly, we can show that

limn→∞ S
2
n,m = nS2

ρ(m,n). As a result, it is reasonable to ap-
proximate S2

ρ(m,n) with S2
ρ(m,n) ≈ S2

n,m/n. Moreover, by
comparing the expressions of S2

n,m and S2
n (ref. Equation (5)), we

can see that S2
n = S2

n,K . Therefore it is straightforward to adapt
the implementation framework in Section 3.2.2 to compute S2

n,m.
More discussions on bounding covariances are in Appendix A.8.

6. EXPERIMENTAL EVALUATION
We present experimental evaluation results in this section. There

are two key respects that could impact the utility of a predictor:
its prediction accuracy and runtime overhead. However, for the
particular purpose of this paper, we do not care much about the
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absolute accuracy of the prediction. Rather, we care if the distri-
bution of likely running times reflects the uncertainty in the predic-
tion. Specifically, we measure if the estimated prediction errors are
correlated with the actual errors. To measure the accuracy of the
predicted distribution, we also compare the estimated likelihoods
that the actual running times will fall into certain confidence inter-
vals with the actual likelihoods. On the other hand, we measure
the runtime overhead of the sampling-based approach in terms of
its relative overhead with respect to the original query running time
without sampling. We start by presenting the experimental settings
and the benchmark queries we used.

6.1 Experimental Settings
We implemented our proposed framework in PostgreSQL 9.0.4.

We ran PostgreSQL under Linux 3.2.0-26, and we evaluated our
approaches with both the TPC-H 1GB and 10 GB databases. Since
the original TPC-H database generator uses uniform distributions,
to test the effectiveness of the approach under different data distri-
butions, we used a skewed TPC-H database generator [4]. It pro-
duces TPC-H databases with a Zipf distribution and uses a param-
eter z to control the degree of skewness. z = 0 generates a uniform
distribution, and the data becomes more skewed as z increases. We
created skewed databases using z = 1. All experiments were con-
ducted on two machines with the following configurations:

• PC1: Dual Intel 1.86 GHz CPU and 4GB of memory;

• PC2: 8-core 2.40GHz Intel CPU and 16GB of memory.

6.2 Benchmark Queries
We created three benchmarks MICRO, SELJOIN, and TPCH:

• MICRO consists of pure selection queries (i.e., scans) and
two-way join queries. It is a micro-benchmark with the pur-
pose of exploring the strength and weakness of our proposed
approach at different points in the selectivity space. We gen-
erated the queries with the similar ideas used in the Picasso
database query optimizer visualizer [40]. Since the queries
have either one (for scans) or two predicates (for joins), the
selectivity space is either one or two dimensional. We gen-
erated SQL queries that were evenly across the selectivity
space, by using the statistics information (e.g., histograms)
stored in the database catalogs to compute the selectivities.

• SELJOIN consists of selection-join queries with multi-way
joins. We generated the queries in the following way. We an-
alyzed each TPC-H query template, and identified the “max-
imal” sub-query without aggregates. We then randomly gen-
erated instance queries from these reduced templates. The
purpose is to test the particular type of queries to which our
proposed approach is tailored — the selection-join queries.

• TPCH consists of instance queries from the TPC-H tem-
plates. These queries also contain aggregates, and our current
strategy is simply ignoring the uncertainty there (recall Sec-
tion 3.2.2). The purpose of this benchmark is to see how this
simple work-around works in practice. We used 14 TPC-H
templates: 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, and 19. We
did not use the other templates since their query plans contain
structures that cannot be handled by our current framework
(e.g., sub-query plans or views).

We ran each query 5 times and took the average as the actual
running time of a query. We cleared both the filesystem cache and
the database buffer pool between each run of each query.

6.3 Usefulness of Predicted Distributions
Since our goal is to quantify the uncertainty in the prediction

and our output is a distribution of likely running times, the ques-
tion is then how we can know that we have something useful. A
reasonable metric here could be the correlation between the stan-
dard deviation of the predicted (normal) distribution and the actual
prediction error. Intuitively, the standard deviation indicates the
confidence of the prediction. A larger standard deviation indicates
lower confidence and hence larger potential prediction error. With
this in mind, if our approach is effective, we would expect to see
positive correlations between the standard deviations and the real
prediction errors when a large number of queries are tested.

A common metric used to measure the correlation between two
random variables is the Pearson correlation coefficient rp. Suppose
that we have n queries q1, ..., qn. Let σi be the standard deviation of
the distribution predicted for qi, µi and ti be the predicted (mean)
and actual running time of qi, and ei = |µi − ti| be the prediction
error. rp is then defined as

rp =

∑n
i=1(σi − σ̄)(ei − ē)√∑n

i=1(σi − σ̄)2
√∑n

i=1(ei − ē)2
, (7)

where σ̄ = 1
n

∑n
i=1 σi and ē = 1

n

∑n
i=1 ei.

Basically, rp measures the linear correlation between the σ’s and
the e’s. The closer rp is to 1, the better the correlation is. How-
ever, there are two issues here. First, even if the σ’s and the e’s
are positively correlated, the correlation may not be linear. Sec-
ond, rp is not robust and its value can be misleading if outliers are
present [17]. Therefore, we also measure the correlations by using
another well known metric called the Spearman’s rank correlation
coefficient rs [38]. The formula of rs is the same as Equation (7)
except for that the σ’s and e’s are replaced with their ranks in the
ascending order of the values. For instance, given three σ’s σ1 = 4,
σ2 = 7, and σ3 = 5, their ranks are 1, 3, and 2 respectively. In-
tuitively, rs indicates the linear correlation between the ranks of
the values, which is more robust than rp since the mapping from
the values to their ranks can be thought of as some normalization
procedure that reduces the impact of outliers. In fact, rs assesses
how well the correlation can be characterized by using a monotonic
function and rs = 1 means the correlation is perfect.

In Figure 2, we report the rs’s (and the corresponding rp’s) for
the benchmark queries over different hardware and database set-
tings (see Table 4 of Appendix C.1 for the complete results). Here,
sampling ratio (SR) stands for the fraction of the sample size with
respect to the database size. For instance, SR = 0.01 means that 1%
of the data is taken as samples. We have several observations.

First, for most of the cases we tested, both rs and rp are above
0.7 (in fact above 0.9), which implies strong positive (linear) cor-
relation between the standard deviations of the predicted distribu-
tions and the actual prediction errors.6 Second, in [48] we showed
that as expected, prediction errors can be reduced by using larger
number of samples. Interestingly, it is not necessarily the case that
more samples improves the correlation between the predicted and
actual errors. This is because taking more samples simultaneously
reduces the errors in selectivity estimates and the uncertainty in the
predicted running times. So it might improve the estimate but not
the correlation with the true errors. Third, reporting both rs and
rp is necessary since they sometimes disagree with each other. For
instance, consider the following two cases in Figure 2(a) and 2(b):

(1) On PC2, the MICRO queries over the uniform TPC-H 1GB
database give rs = 0.9400 but rp = 0.5691 when SR = 0.01;

6It is generally believed that two variables are strongly correlated
if their correlation coefficient is above 0.7.
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(a) MICRO, Uniform 1GB, PC2
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(b) SELJOIN, Uniform 1GB, PC1
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(c) TPCH, Skewed 10GB, PC1

Figure 2: rs and rp of the benchmark queries over different hardware and database settings
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(b) Case (1) after one outlier is removed
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Figure 3: Robustness of rs and rp with respect to outliers

(2) On PC1, the SELJOIN queries over the uniform TPC-H 1GB
database give rs = 0.6958 but rp = 0.8414 when SR = 0.05.

In Figure 3(a) and 3(c), we present the scatter plots of these two
cases. Figure 3(b) further shows the scatter plot after the rightmost
point is removed from Figure 3(a). We find that now rs = 0.9386
but rp = 0.8868. So rp is much more sensitive to outliers in
the population. Since in our context there is no good criterion to
remove outliers, rs is thus more trustworthy. On the other hand,
although the rp of (2) is better than that of (1), by comparing Fig-
ure 3(b) with Figure 3(c) we would instead conclude that the corre-
lation of (2) seems to be worse. This is again implied by the worse
rs of (2). More results and analysis can be found in Appendix C.5.

Nonetheless, the strong positive correlations between the esti-
mated standard deviations and the actual prediction errors may not
be sufficient to conclude that the distributions of likely running
times are useful. For our purpose of informing the consumer of the
running time estimates of the potential prediction errors, it might
be worth to further consider what information regarding the errors
the predicted distributions really carry. Formally, consider the n
queries q1, ..., qn as before. Since the estimated distributions are
normal, with the previous notation the distribution for the likely
running times Ti of qi is Ti ∼ N (µi, σ

2
i ). As a result, assuming

α > 0, without loss of generality the estimated prediction error
Ei = |Ti − µi| follows the distribution

Pr(Ei ≤ ασi) = Pr(−α ≤ Ti − µi
σi

≤ α) = 2Φ(α)− 1,

where Φ is the cumulative distribution function of the standard
normal distribution N (0, 1). Therefore, if we define the statistic
E′i = Ei

σi
= |Ti−µi

σi
|, then Pr(E′i ≤ α) = Pr(Ei ≤ ασi). Note

that Pr(E′i ≤ α) is determined by α but not i. We thus simply use
Pr(α) to denote Pr(E′i ≤ α). On the other hand, we can estimate

the actual likelihood of E′i ≤ α by using

Prn(α) =
1

n

n∑
i=1

I(e′i ≤ α), where e′i =
ei
σi

= | ti − µi
σi

|.

Here I is the indicator function. To measure the proximity of
Prn(α) and Pr(α), we define

Dn(α) = |Prn(α)− Pr(α)|.

Clearly, a smaller Dn(α) means Pr(α) is closer to Prn(α), which
implies better quality of the distributions. We further generated
α’s from the interval (0, 6) which is sufficiently wide for normal
distributions and computed the average of theDn(α)’s (denoted as
Dn). Figure 4 reports the results for the benchmark queries over
uniform TPC-H 10GB databases (see Table 5 of Appendix C.2 for
the complete results).

We observe that in most cases the Dn’s are below 0.3 with the
majority below 0.2, which suggests that the estimated Pr(α)’s are
reasonably close to the observed Prn(α)’s. To shed some light on
what is going on here, in Figure 5 we further plot the Pr(α) and
Prn(α) for the (1) MICRO, (2) SELJOIN, and (3) TPCH queries
over the uniform TPC-H 10GB database on PC2 when SR = 0.05,
which give Dn = 0.2532, 0.1098, and 0.0535 respectively. We can
see that we overestimated the Pr(α)’s for smallα’s. In other words,
we underestimated the prediction errors by presenting smaller than
actual variances in the distributions. Moreover, we find that over-
estimate is more significant for the MICRO queries (Figure 5(a)).
One possible reason is that since these queries are really simple the
predictor tends to be over-confident by underestimating the vari-
ances even more. When handling SELJOIN and TPCH queries,
the confidence of the predictor drops and underestimate tends to be
alleviated (Figure 5(b) and 5(c)).

6.3.1 More Discussion on Correlation
While using ordinal ranks instead of values can help in smooth-

ing the data reducing the impact of outliers, it is still imperfect. The
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(b) SELJOIN
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Figure 4: Dn of the benchmark queries over uniform TPC-H 10GB databases
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(a) Case (1), Dn = 0.2532
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(b) Case (2), Dn = 0.1098
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(c) Case (3), Dn = 0.0535

Figure 5: The proximity of Prn(α) and Pr(α) with respect to different Dn’s

best way of presenting correlations between two quantities might
be a scatter plot (as shown in Figure 3). There are four possible
cases: (1) rs is better than rp; (2) rp is better than rs; (3) rp and
rs are both good; and (4) rp and rs are both not so good. We have
presented scatter plots for (1) and (2) in Figure 3(a) and 3(c), re-
spectively. To gain more insight, in Figure 6(a) and 6(b) we present
two typical scatter plots for (3) and (4):

(3) On PC1, the TPCH queries over the skewed TPC-H 10GB
database give rs = 0.9439 and rp = 0.9887 when SR = 0.05;

(4) On PC1, the TPCH queries over the uniform TPC-H 1GB
database give rs = 0.7209 and rp = 0.7571 when SR = 0.01.

As we can see, when both rs and rp are good, the correlation is
close to positive linear. On the other hand, the correlation is not so
good when both rs and rp are not so good.

6.3.2 A Note on a Baseline Experiment
Shrewd readers might have wondered a different, intuitively sim-

pler experiment: fix one query, generate many different samples,
and make a prediction based on each sample; then test if and how
well the distribution of the predicted estimates matches the distri-
bution computed by using our proposed framework.

The question raised here is if the distribution of running times
predicted by using different samples would match the one com-
puted by our model. But note that “the distribution in the model”
actually depends on samples, that is, the model will output a differ-
ent distribution if it uses a different sample.

To put things in context, let us consider a query q where we used
two samples S1 and S2 to make predictions for its running time.
Suppose that the two point estimates by using S1 and S2 are µ1

and µ2, respectively. We would then expect to see a picture as
shown in Figure 7(a), where the likelihoods of µ1 and µ2 match
“the” distribution D computed by our model. However, our model
would actually compute a distributionD1 describing its uncertainty
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Figure 6: More case studies on correlations

about µ1, and compute a different distribution D2 describing its
uncertainty about µ2. We illustrate this in Figure 7(b). Therefore,
the expected D is not unique. Rather, using different samples will
result in different D’s.

Why should we derive different distributions if different samples
are used? This is somehow not surprising. Different samples de-
rived from the base tables may vary tremendously. As a result, the
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Figure 7: Example point estimates and distributions

uncertainties in the selectivity estimates based on different samples
may differ and hence the uncertainties in the running time estimates
may differ as well.

6.3.3 Comparison with Simplified Versions
Another interesting question is if we can simplify some steps in

our framework. In the following we consider four alternatives (the
complete version as well as three simplified versions):

(V1) All: the complete version of our proposed framework;

(V2) No Var[c]: ignore the uncertainties in the cost units by setting
Var[c] = 0 for each c;

(V3) No Var[X]: ignore the uncertainties in the selectivity esti-
mates by setting Var[X] = 0 for each X;

(V4) No Cov: ignore the covariances in the selectivity estimates.

We compared these four alternatives for the TPCH queries. Fig-
ure 8 presents typical results on uniformed databases in terms of
the correlation coefficient rs (see Appendix C.3 for more results
on skewed databases). We have several observations. First, ignor-
ing uncertainties in the c’s is not a good idea. For all the cases
we tested, this would lead to a drop of at least 0.25 (typically 0.4
to 0.5) in correlation. Second, the impact of ignoring uncertain-
ties in the X’s depends on the sample size. Intuitively, as we in-
crease the sample size, the uncertainties in the X’s diminish due to
the strong consistency of the estimator. When the uncertainties are
small enough, ignoring them is safe. As shown in Appendix C.5, a
sampling ratio of 1% is already sufficient for accurate selectivity es-
timates for most of the queries we tested. To observe the impact of
ignoring the uncertainties in the X’s, we therefore used even lower
sampling ratios. As we can observe from Figure 8, typically the
correlation can drop by 0.2 to 0.3 when the sampling ratios are be-
low 1%, while it remains almost unaffected when 1% samples are
taken.7 Third, while the impact of covariances in the X’s is often
insignificant, sometimes ignoring the covariances causes problems.
For instance, as shown in Figure 8(b), the correlations drop by 0.35
and 0.17 when the sampling ratios are 0.05% and 0.1%. Although
we cannot directly compute the covariances, our theoretic study
7Note that the absolute sample size is still not small when the sam-
pling ratio is 1%. Even for the 1GB TPC-H database, the largest
lineitem table contains 6,000,000 tuples and hence 60,000 sample
tuples, which might be sufficient for most cases we tested.

in Appendix A suggests that the upper bounds for the covariances
become smaller as we increase the sample size. Nevertheless, in
general we have no idea how large the sample size needs to be so
that we can safely ignore the uncertainties in the selectivity esti-
mates and their covariances. It depends on several factors such as
the skewness of the data and the complexity of the queries in the
workload. Finally, the complete version is the most robust and ef-
fective one among the four alternatives: rs is consistently above
0.7 (most of the time above 0.8) for all the cases we tested.
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Figure 8: Comparison of four alternatives in terms of rs

6.4 Runtime Overhead of Sampling
We also measured the relative overhead of running the queries

over the sample tables compared with that of running them over the
original tables. Figure 9 presents the results of the TPCH queries
on PC1. Since the other results are very similar, the readers are
referred to Appendix C.4 for the complete details. We observe that
the relative overhead is comparable to that reported in [48]. For
instance, for the TPC-H 10GB database, the relative overhead is
around 0.04 to 0.06 when the sampling ratio is 0.05. Note that,
here we computed the estimated selectivities as well as their vari-
ances by only increasing the relative overhead a little. Also note
that, here we measured the relative overhead based on disk-resident
samples. The relative overhead can be dramatically reduced by us-
ing the common practice of caching the samples in memory [39].

On the other hand, though the Central Limit Theorem guaran-
tees that the selectivity estimates are Gaussian-distributed for suffi-
ciently large samples, it does not say anything about how large the
samples should be. In fact, there is no exact answer to this ques-
tion. As a rule of thumb, statisticians have agreed that the sample
size should be larger than or equal to 30 in general, and the larger
the better [10].
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Figure 9: Relative overhead of TPCH queries on PC1

6.5 Applications
We discuss some potential applications that could take advantage

of the distributional information of query running times. The list
of applications here is by no means exhaustive, and it is our hope
that our study in this paper could stimulate further research in this
direction and more applications could emerge in the future.

6.5.1 Query Optimization
Although significant progress has been made in the past several

decades, query optimization remains challenging for many queries
due to the difficulty in accurately estimating query running times.
Rather than betting on the optimality of the plan generated based
on (perhaps erroneous) point estimates for parameters such as se-
lectivities and cost units, it makes sense to also consider the uncer-
tainties of these parameters. In fact, there has been some theoretical
work investigating optimization based on least expected cost (LEC)
based upon distributions of the parameters of the cost model [15].
However, that work did not address the problem of how to obtain
the distributions. It would be interesting to see the effectiveness of
LEC plans by incorporating our techniques into query optimizers.

6.5.2 Query Progress Monitoring
State-of-the-art query progress indicators [13, 31, 33, 35] pro-

vide estimates of the percentage of the work that has been com-
pleted by a query at regular intervals during the query’s execution.
However, it has been shown that in the worst case no progress indic-
tor can outperform a naive indicator simply saying the progress is
between 0% and 100% [12]. Hence, information about uncertainty
in the estimate of progress is desirable. Our work provides a natural
building block that could be used to develop an uncertainty-aware
query progress indicator: the progress indicator could call our pre-
dictor to make a prediction for the remaining query running time as
well as its uncertainty.

6.5.3 Database as a Service
The problem of predicting query running time is revitalized by

the recent move towards providing database as a service (DaaS).
Many important decision-making procedures, including admission
control [43, 49], query scheduling [14], and system sizing [45], rely
on estimation of query running time. Distributional information
enables more robust decision procedures in contrast to point esti-
mates. Recent work [14] has shown the benefits in query schedul-
ing by leveraging distributional information. Similar ideas have
also been raised in [49] for admission control. Again, these work
did not address the fundamental issue of obtaining the distributions
without running the queries. It would be interesting to see the ef-
fectiveness of our proposed techniques in these DaaS applications.

7. RELATED WORK
The problem of predicting query execution time has been exten-

sively studied quite recently [6, 7, 19, 20, 32, 47, 48]. Ganapathi
et al. [20] first raised the question of predicting the actual running
time of a query rather than a rough estimate of runtime overhead
that is usually provided by most, if not all, query optimizers. They
further proposed a predictive approach based on Kernel Canoni-
cal Correlation Analysis (KCCA). Follow-up approaches improved
the prediction accuracy by using different machine learning models
such as Support Vector Machines (SVM) [7] or Multiple Additive
Regression-Trees (MART) [32]. Unlike these data-driven machine
learning approaches that treated the underlying database system as
a black box, we proposed a predictor based on calibrating the query
optimizer’s cost models and showed that it could often outperform
the machine learning based approaches in terms of prediction ac-
curacy [48]. While most of this line of work focused on the single-
query prediction problem, some of them have considered the more
general prediction problem when multiple queries are concurrently
running. Ahmad et al. addressed the problem by using Gaussian
processes [6], while Duggan et al. adopted similar ideas but instead
used multivariate linear regression [19]. Both of them, however, as-
sumed static database workloads, in the sense that all queries run-
ning in the system should be known beforehand. To overcome this
limitation, we proposed a conceptually different approach by ex-
tending our single-query predictor [47]. We first used query opti-
mizer’s cost models to estimate the CPU and I/O requirements for
each query, and then used a combination queueing model and buffer
pool model to merge these quantities from concurrent queries to
predict running times. Nonetheless, none of these work ever con-
sidered the problem of measuring the degree of uncertainty in the
prediction. We have reused some techniques developed in [48] for
computing the means of selectivities and cost units when viewed
as random variables. Nonetheless, [48] focused on point estimates
rather than distributional information, and hence these techniques
were insufficient. We have substantially extended [48] by develop-
ing new techniques for computing variances (and hence distribu-
tions) of selectivity and cost-unit estimates (Section 3), cost func-
tions (Section 4), and, based on that, distributions of likely running
times (Section 5).

The idea of using samples to estimate selectivity goes back more
than two decades ago (e.g., [9, 11, 24, 25, 26, 28, 29, 34]). While
we focused on estimators for selection and join queries [25], some
estimators that estimate the number of distinct values might be fur-
ther used to refine selectivity estimates of aggregate queries [11,
24]. However, not only do we need an estimate of selectivity, we
need an estimated distribution as well. So far, we are not aware
of any previous study towards this direction for aggregate queries.
Regarding the problem of estimating selectivity distributions for
selection and join queries, there are options other than the one used
in this paper. For example, Babcock and Chaudhuri [9] proposed
a framework to learn the posterior distributions of the selectivities
based on join synopses [5]. Unfortunately, this solution is restricted
to SPJ expressions with foreign-key joins, due to the overhead of
computing and maintaining join synopses over a large database.

The framework proposed in this paper also relies on accurate
approximation of the cost models used by the optimizer. Du et
al. [18] first proposed the idea of using logical cost functions in
the context of heterogenous database systems. Similar ideas were
later on used in developing generic cost models for main memory
based database systems [36] and identifying robust plans in the plan
diagram generated by the optimizer [16]. Our idea of further using
optimization techniques to find the best coefficients in the logical
cost functions is motivated by the approach used in [16].
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8. CONCLUSION
In this paper, we take a first step towards the problem of mea-

suring the uncertainty within query execution time prediction. We
quantify prediction uncertainty using the distribution of likely run-
ning times. Our experimental results show that the standard devia-
tions of the distributions estimated by our proposed approaches are
strongly correlated with the actual prediction errors.

The idea of leveraging cost models to quantify prediction un-
certainty need not be restricted to single standalone queries. As
shown in [47], Equation (2) can also be used to provide point esti-
mates for multiple concurrently-running queries. The key observa-
tion is that the selectivities of the operators in a query are indepen-
dent of whether or not it is running with other queries. Hence it is
promising to consider applying the techniques proposed in this pa-
per to multi-query workloads by viewing the interference between
queries as changing the distribution of the c’s. We regard this as a
compelling area for future work.
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APPENDIX
A. THEORETIC RESULTS

This section presents the proofs of the lemmas and theorems as
well as other related results mentioned in the paper.

A.1 Variance of The Estimator ρn

The variance of the selectivity estimator ρn, unfortunately, is
nontrivial when writing it mathematically:

THEOREM 3. The variance of ρn is [25]:

Var[ρn] =

K∑
r=1

(n− 1)K−r

nK
(8)

×
∑
S∈Sr

(
1

|Λ(S)|
∑

l∈Λ(S)

(ρS(l)− ρ)2

)
.

Here S = {k1, ..., kr} ⊆ {1, 2, ...,K} such that k1 < k2 < · · · <
kr , Sr is the collection of all subsets of {1, 2, ...,K} with size r
(for 1 ≤ r ≤ K), and Λ(S) is defined to be

Λ(S) = {1, 2, ...,mk1} × · · · × {1, 2, ...,mkr}.

Furthermore, for l = (l1, ..., lr) ∈ Λ(S), ρS(l) is the average
selectivity over B(L1, ..., LK) such that Lkj = lj (1 ≤ j ≤ r).
For example, if K = 4, S = {2, 3} and l = (8, 9), then

ρS(l) = (m1m4)−1
m1∑
L1=1

m4∑
L4=1

ρB(L1,8,9,L4).

We next prove Theorem 3. Roughly speaking, the idea of the
proof is to first partition the samples into groups based on how
many blocks they share, then compute the variance of each group,
and finally sum them up. We start with the following standard result
from probability theory:

LEMMA 5. Let X1, ..., Xn be n random variables, then

Var[

n∑
i=1

Xi] =

n∑
i=1

n∑
j=1

Cov(Xi, Xj),

where Cov(Xi, Xj) is the covariance of Xi and Xj:

Cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj ])].

Now define X to be the set of all sample blocks, namely,

X = {ρB(L1,i1
,··· ,LK,iK

)|1 ≤ ik ≤ n, 1 ≤ k ≤ K}.

Based on Lemma 5 and Equation (4), we have

Var[ρn] =
1

(nK)2

∑
X∈X

∑
X′∈X

Cov(X,X ′). (9)

Consider any X = ρB(j1,...,jK) and X ′ = ρB(j′1,...,j
′
K

) in the
summands of Equation (9). If jk 6= j′k for 1 ≤ k ≤ K, then X
and X ′ are independent and Cov(X,X ′) = 0. Hence, only X
and X ′ that share at least one common coordinate will contribute a
non-zero summand to Equation (9). We thereby partition the pairs
(X,X ′) according to the number of coordinates they share. Specif-
ically, for S = {k1, ..., kr} ⊆ {1, 2, ...,K}, we denote X ∼S X ′
if jkm = j′km for 1 ≤ m ≤ r. This gives us the following equiva-
lent expression for Var[ρn]:

Var[ρn] =
1

(nK)2

K∑
r=1

∑
S∈Sr

∑
X∼SX

′

Cov(X,X ′). (10)

LEMMA 6. For a fixed S ∈ Sr , the number of pairs (X,X ′)
such that X ∼S X ′ is (n − 1)K−rnK . As a result, Var[ρn] can
be further expressed as:

Var[ρn] =

K∑
r=1

(n− 1)K−r

nK
×
∑
S∈Sr

Cov(X,X ′). (11)

Our next goal is to give an expression for Cov(X,X ′) when
X ∼S X ′, as shown in Lemma 7. Equation (8) in Theorem 3 then
follows by combining Lemma 6 and 7.

LEMMA 7. If X ∼S X ′, then

Cov(X,X ′) =
1

|Λ(S)|
∑

l∈Λ(S)

(ρS(l)− ρ)2.

PROOF. We have

Cov(X,X ′) = EX∼SX
′ [(X − E[X])(X ′ − E[X ′])].

Since E[X] = E[X ′] = ρ, it follows that

Cov(X,X ′) = EX∼SX
′ [(X − ρ)(X ′ − ρ)].

We further denote X ∼S(l) X
′ for l = (l1, ..., lr), if X ∼S X ′

and jkm = lm for 1 ≤ m ≤ r. We then have

Cov(X,X ′) =
1

|Λ(S)|
∑

l∈Λ(S)

EX∼S(l)X
′ [(X − ρ)(X ′ − ρ)].

Now consider EX∼S(l)X
′ [(X − ρ)(X ′ − ρ)]. By definition, it is

the average of the following quantities

γ = (ρB(j1,...,jK) − ρ)(ρB(j′1,...,j
′
K

) − ρ)

by setting jkm = j′km = lm for 1 ≤ m ≤ r. Let Sc =
{1, ...,K} − S be the complement of S. We then have

E = EX∼S(l)X
′ [(X − ρ)(X ′ − ρ)] =

( 1

|Λ(Sc)|
)2 ∑

Λ(Sc)

∑
Λ(Sc)

γ.

After some rearrangement of the summands, we can have

E =
( 1

|Λ(Sc)|
)2( ∑

Λ(Sc)

(ρB(j1,...,jK) − ρ)
)2

=
( 1

|Λ(Sc)|
∑

Λ(Sc)

(ρB(j1,...,jK) − ρ)
)2

=
(
(

1

|Λ(Sc)|
∑

Λ(Sc)

ρB(j1,...,jK))− ρ
)2

= (ρS(l)− ρ)2.

This completes the proof of the lemma.

A.2 Proof of Lemma 4
PROOF. Table 3 presents the non-central moments of a normal

variable X ∼ N (µ, σ2). By Table 3, Var[X2
l ] = 2σ2

l (2µ2
l + σ2

l ),
and Cov(X2

l , Xl) = 2µlσ
2
l . Thus

Var[f ] = b20 Var[X4
l ] + b21 Var[Xl] + 2b0b1 Cov(X2

l , Xl)

= σ2
l [(b1 + 2b0µl)

2 + 2b20σ
2
l ].

This completes the proof of the lemma.
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k Non-central moment E(Xk)
1 µ
2 µ2 + σ2

3 µ3 + 3µσ2

4 µ4 + 6µ2σ2 + 3σ4

Table 3: Non-central moments of X ∼ N(µ, σ2)

A.3 Proof of Theorem 1
To prove the theorem, we need the following result:

THEOREM 4. Var[ρn] in Equation (8) can be bounded as:

Var[ρn] ≤
(
1− (1− 1

n
)K
)
ρ(1− ρ).

PROOF. The proof is straightforward since this is a special case
of Theorem 8 (see Appendix A.8). Specifically, we have Var[ρn] =
Cov(ρn, ρn). By letting m = K in Theorem 8, we obtain

Var[ρn] ≤ f(n,K)g(ρ)2,

where f(n,K) = 1 − (1 − 1
n

)K and g(ρ) =
√
ρ(1− ρ). This

completes the proof.

According to Theorem 4, Var[ρn]→ 0 as n→∞. We are now
ready to prove Theorem 1:

PROOF. (of Theorem 1) Let µl = ρn, and E[ρn] = ρ. De-
fine g(X) = b0X

2 + b1X + b2. Since ρn is strongly consis-
tent, ρn

as−→ ρ. Moreover, since g is continuous, we have f =
g(ρn)

as−→ g(ρ) by the continuous mapping theorem. Note that
g(ρ) is a constant. On the other hand, by Lemma 4 and Theorem 4,
Var[f ]→ 0 as n→∞. As a result,

fN
d−→ E[f ] = g(ρ).

Since f as−→ g(ρ) implies f
p−→ g(ρ),

fN − f d−→ g(ρ)− g(ρ) = 0

by Slutsky’s theorem. Since 0 is a constant, fN −f p−→ 0 as well.
As a result, we have fN

p−→ f .

A.4 Similar Results for (C6’)

LEMMA 8. If Xl ∼ N (µl, σ
2
l ), Xr ∼ N (µr, σ

2
r), and f =

b0XlXr + b1Xl + b2Xr + b3, then

Var[f ] = σ2
l

(
b0µr + b1

)2
+ σ2

r

(
b0µl + b2

)2
+ b20σ

2
l σ

2
r .

PROOF. Since Xl⊥Xr , Cov(Xl, Xr) = 0. So

Var[f ] = b20 ·Var[XlXr] + b21σ
2
l + b22σ

2
r

+ 2b0b1 · Cov(XlXr, Xl)

+ 2b0b2 · Cov(XlXr, Xr).

Since Var[XlXr] = µ2
l σ

2
r + µ2

rσ
2
l + σ2

l σ
2
r , Cov(XlXr, Xl) =

µrσ
2
l , and similarly Cov(XlXr, Xr) = µlσ

2
r , we can have the

desired expression for Var[f ] by substituting these quantities.

THEOREM 5. Suppose thatXl ∼ N (µl, σ
2
l ),Xr ∼ N (µr, σ

2
r),

and f = b0XlXr+b1Xl+b2Xr+b3. Let fN ∼ N (E[f ],Var[f ]),
where Var[f ] is shown in Lemma 8. Then fN

p−→ f .

PROOF. Let µl = ρn and µr = ρ′n. Suppose that E[ρn] = ρ
and E[ρ′n] = ρ′. Define

g(X,Y ) = b0XY + b1X + b2Y + b3.

Since µl and µr are both strongly consistent, ρn
as−→ ρ and ρ′n

as−→ ρ′.
Moreover, since g is continuous, by the continuous mapping theo-
rem we have

f = g(ρn, ρ
′
n)

as−→ g(ρ, ρ′).

Note that g(ρ, ρ′) is a constant. On the other hand, by Lemma 8 and
Theorem 4, Var[f ]→ 0 as n→∞. As a result, since Xl⊥Xr by
Lemma 2, it follows that

fN
d−→ E[f ] = g(ρ, ρ′)

Since f as−→ g(ρ, ρ′) implies f
p−→ g(ρ, ρ′),

fN − f d−→ g(ρ, ρ′)− g(ρ, ρ′) = 0

by Slutsky’s theorem. Since 0 is a constant, fN −f p−→ 0 as well.
As a result, we have fN

p−→ f .

A.5 Proof of Theorem 2

PROOF. Since fkc and c are independent, we have

E[tkc] = E[fNkcc] = E[fkc] E[c]

and

Var[tkc] = E2[fkc] Var[c] + E2[c] Var[fkc] + Var[c] Var[fkc].

Since Var[fkc]→ 0 as n→∞,

Pr(tNkc)→ N (E[fkc] E[c], E2[fkc] Var[c]).

In other words, tNkc
d−→ E[fkc]c.

On the other hand, fNkc
p−→ E[fkc] and c

p−→ c. As a result,
we have (fNkc , c)

p−→ (E[fkc], c). By the continuous mapping the-
orem, fNkcc

p−→ E[fkc]c. That is, tkc
p−→ E[fkc]c, which implies

tkc
d−→ E[fkc]c. This completes the proof of the theorem.

A.6 Convergence of gNc

THEOREM 6. Let gc =
∑m
k=1 f

N
kc and

gNc ∼ N (E[gc],Var[gc]).

Then gNc
p−→ gc.

PROOF. Since by definition fNkc ∼ N (E[fkc],Var[fkc]) and

Var[fkc] → 0, fNkc
d−→ E[fkc]. Since E[fkc] is a constant, it im-

plies that fNkc
p−→ E[fkc]. By the continuous mapping theorem,

gc
p−→
∑m
k=1 E[fkc]. On the other hand, since Var[gc] → 0,

gNc
d−→ E[gc]. Since E[gc] is again a constant, it follows that

gNc
p−→ E[gc] =

m∑
k=1

E[fkc].

As a result, by applying the continuous mapping theorem again, we
have gNc − gc

p−→ 0 and hence gNc
p−→ gc.
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A.7 A Tighter Upper Bound for Covariance
Consider two operators O and O′ where O ∈ Desc(O′). Sup-

pose that |R| = K, |R′| = K′, and |R ∩ R′| = m (m ≥ 1). Let
the estimators for O and O′ be ρn and ρ′n where n is the number
of sample steps, and define ρ = E[ρn] and ρ′ = E[ρ′n].

THEOREM 7. Let Sr , Λ(S), and ρS(l) be the same as that de-
fined in Theorem 3. Define

σ2
S =

1

|Λ(S)|
∑

l∈Λ(S)

(ρS(l)− ρ)2,

and

S2
ρ(m,n) =

m∑
r=1

(
1− 1

n

)m−r( 1

n

)r ∑
S∈Sr

σ2
S .

We then have

|Cov(ρn, ρ
′
n)| ≤

√
S2
ρ(m,n)S2

ρ′(m,n) ≤
√

Var[ρn] Var[ρ′n].

We next prove Theorem 7. To establish the first inequality in the
theorem, namely,

|Cov(ρn, ρ
′
n)| ≤

√
S2
ρ(m,n)S2

ρ′(m,n),

we need two lemmas. The first one gives an explicit expression of
the covariance Cov(ρn, ρ

′
n), which is quite similar to the expres-

sion of Var[ρn] shown in Theorem 3.

LEMMA 9. Let Sr be the collection of all subsets ofR with size
r (for 1 ≤ r ≤ m). Define

CovS(ρ, ρ′) =
1

|Λ(S)|
∑

l∈Λ(S)

(ρS(l)− ρ)(ρ′S(l)− ρ′).

Then

Cov(ρn, ρ
′
n) =

m∑
r=1

(n− 1)m−r

nm

∑
S∈Sr

CovS(ρ, ρ′).

Here ρS(l) and ρ′S(l) are the same as that in Theorem 3, defined
overR andR′ respectively.

PROOF. The idea is similar to our proof of Theorem 3. LetK =
|R| and K′ = |R′|. We have

ρn =
1

nK

n∑
i1=1

· · ·
n∑

iK=1

ρB(L1,i1
,··· ,LK,iK

),

and

ρ′n =
1

nK′

n∑
i1=1

· · ·
n∑

iK′=1

ρ′B(L1,i1
,··· ,LK,i

K′
).

Therefore,

E[ρnρ
′
n] =

1

nK+K′

nK∑
k=1

nK′∑
k′=1

E[ρBρ
′
B],

and

E[ρn] E[ρ′n] =
1

nK+K′

nK∑
k=1

nK′∑
k′=1

E[ρB] E[ρ′B].

Hence, by letting dn = Cov(ρn, ρ
′
n) = E[ρnρ

′
n]− E[ρn] E[ρ′n],

dn =
1

nK+K′

nK∑
k=1

nK′∑
k′=1

(
E[ρBρ

′
B]− E[ρB] E[ρ′B]

)

=
1

nK+K′

nK∑
k=1

nK′∑
k′=1

Cov(ρB, ρ
′
B).

If B and B′ share no blocks, then ρB and ρ′B are independent and
thus Cov(ρB, ρ

′
B) = 0. Thus we only need to consider the case

that B and B′ share at least one block. Similarly as before, we
partition the pairs (ρB, ρ

′
B) based on the number of blocks B and

B′ share. According to Lemma 6, for a fixed S ∈ Sr , the number
of pairs (ρB, ρ

′
B) such that ρB ∼S ρ′B is

nK(n− 1)m−rnK
′−m = nK+K′−m(n− 1)m−r.

We hence have

Cov(ρn, ρ
′
n) =

m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

Cov(ρB, ρ
′
B).

Similarly as in Lemma 7, we have

Cov(ρB, ρ
′
B) = EρB∼Sρ

′
B

[(ρB − ρ)(ρ′B − ρ′)],

and hence

Cov(ρB, ρ
′
B) =

1

|Λ(S)|
∑

l∈Λ(S)

EρB∼S(l)ρ
′
B

[(ρB − ρ)(ρ′B − ρ′)].

Now let K and K′ be the indexes of the relations in R and R′
respectively. Denote ScK = K − S and ScK′ = K′ − S. Let

E = EρB∼S(l)ρ
′
B

[(ρB − ρ)(ρ′B − ρ′)].

We have

E =
1

|Λ(ScK)| · |Λ(ScK′)|
∑

Λ(Sc
K

)

∑
Λ(Sc

K′ )

(
(ρB − ρ)(ρ′B − ρ′)

)
=

( 1

|Λ(ScK)|
∑

Λ(Sc
K

)

(ρB − ρ)
)( 1

|Λ(ScK′)|
∑

Λ(Sc
K′ )

(ρ′B − ρ′)
)

=
(
(

1

|Λ(ScK)|
∑

Λ(Sc
K

)

ρB)− ρ
)(

(
1

|Λ(ScK′)|
∑

Λ(Sc
K′ )

ρ′B)− ρ′
)

= (ρS(l)− ρ)(ρ′S(l)− ρ′).

This completes the proof of the lemma.

Our second lemma further provides an upper bound for CovS(ρ, ρ′):

LEMMA 10. Let S ∈ Sr . Then we have

|CovS(ρ, ρ′)| ≤
√
σ2
S · (σ′S)2.

PROOF. Let dS = CovS(ρ, ρ′) and d2
ρ = (ρS(l)− ρ)2. By the

Cauchy-Schwarz inequality, we have

d2
S =

1

|Λ(S)|2
( ∑
l∈Λ(S)

(ρS(l)− ρ)(ρ′S(l)− ρ′)
)2

≤ 1

|Λ(S)|2
( ∑
l∈Λ(S)

d2
ρ

)( ∑
l∈Λ(S)

d2
ρ′
)

=
( 1

|Λ(S)|
∑

l∈Λ(S)

d2
ρ

)( 1

|Λ(S)|
∑

l∈Λ(S)

d2
ρ′
)

= σ2
S · (σ′S)2,

The lemma then follows immediately.
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We can now prove the first inequality in Theorem 7:

PROOF. Let dn = Cov(ρn, ρ
′
n). By Lemma 9 and 10 we have

|dn| = |
m∑
r=1

(
1− 1

n

)m−r( 1

n

)r ∑
S∈Sr

CovS(ρ, ρ′)|

≤
m∑
r=1

(
1− 1

n

)m−r( 1

n

)r ∑
S∈Sr

√
σ2
S(σ′S)2.

By the Cauchy-Schwarz inequality, we have

∑
S∈Sr

√
σ2
S(σ′S)2 ≤

√∑
S∈Sr

σ2
S

∑
S∈Sr

(σ′S)2.

Combining these two inequalities, we obtain

|dn| ≤
m∑
r=1

(
1− 1

n

)m−r( 1

n

)r√∑
S∈Sr

σ2
S

∑
S∈Sr

(σ′S)2.

Now define

Ar =

√(
1− 1

n

)m−r( 1

n

)r ∑
S∈Sr

σ2
S .

Then |dn| ≤
∑m
r=1 ArA

′
r . Applying the Cauchy-Schwarz in-

equality again,

|dn| ≤

√√√√( m∑
r=1

A2
r

)( m∑
r=1

(A′)2
r

)
=
√
S2
ρ(m,n)S2

ρ′(m,n),

which completes the proof of the inequality.

To establish the second inequality in the theorem, namely,√
S2
ρ(m,n)S2

ρ′(m,n) ≤
√

Var[ρn] Var[ρ′n],

we need two more lemmas. The first one states that the σ2
S has

some nice monotonicity property:

LEMMA 11. Let S ∈ Sr and S′ ∈ Sr+1 such that S ⊂ S′, for
1 ≤ r ≤ K − 1. Then σ2

S ≤ σ2
S′ .

PROOF. Without loss of generality, let S = {1, ..., r} and S′ =
{1, ..., r + 1}. For a given l = (j1, ..., jr) ∈ Λ(S), let l′j =
(j1, ..., jr, j), for 1 ≤ j ≤ mr+1. Since Λ(S′) = Λ(S) ×
{1, ...,mr+1}, we have Λ(Sc) = Λ((S′)c) × {1, ...,mr+1} and
thus |Λ(Sc)| = mr+1|Λ((S′)c)|. Therefore, by letting d2

ρ =
(ρS(l)− ρ)2, it follows that

d2
ρ =

(
(

1

|Λ(Sc)|
∑

Λ(Sc)

ρB)− ρ
)2

=
( 1

|Λ(Sc)|
∑

Λ(Sc)

(ρB − ρ)
)2

=
( 1

mr+1|Λ((S′)c)|

mr+1∑
j=1

∑
Λ((S′)c)

(ρB − ρ)
)2

=
1

m2
r+1

(mr+1∑
j=1

1

|Λ((S′)c)|
∑

Λ((S′)c)

(ρB − ρ)
)2
.

By the Cauchy-Schwarz inequality, we have

d2
ρ =

1

mr+1

mr+1∑
j=1

( 1

|Λ((S′)c)|
∑

Λ((S′)c)

(ρB − ρ)
)2

=
1

mr+1

mr+1∑
j=1

(
(

1

|Λ((S′)c)|
∑

Λ((S′)c)

ρB)− ρ
)2

=
1

mr+1

mr+1∑
j=1

(ρS′(l
′
j)− ρ)2.

Therefore,

σ2
S =

1

|Λ(S)|
∑
Λ(S)

(ρS(l)− ρ)2

≤ 1

|Λ(S)|mr+1

∑
Λ(S)

mr+1∑
j=1

(ρS′(l
′
j)− ρ)2

=
1

|Λ(S′)|
∑

Λ(S′)

(ρS′(l
′)− ρ)2

= σ2
S′ .

This completes the proof of the lemma.

Our next lemma further shows that the S2
ρ(m,n) also has some

similar monotonicity property:

LEMMA 12. For m ≥ 1, we have

S2
ρ(m,n) ≤ S2

ρ(m+ 1, n).

PROOF. We should be careful now since Sr is actually related
to m. Specifically, Sr is all the r-subsets of {1, ...,m}.8 To make
this more explicit, we further use S(m)

r to indicate this relationship.
Moreover, to simplify notation, we define

A(m)
r =

∑
S∈S(m)

r

σ2
S .

Furthermore, if r = m, then S(m)
m contains only one single element

{1, ...,m}. We thus simply use σ2
m to represent A(m)

m , i.e.,

σ2
m =

∑
S∈S(m)

m

σ2
S .

Now consider Sm+1 = S2
ρ(m+ 1, n). We have

Sm+1 =

m+1∑
r=1

(
1− 1

n

)m+1−r( 1

n

)r
A(m+1)
r

=

m∑
r=1

(
1− 1

n

)m+1−r( 1

n

)r
A(m+1)
r +

( 1

n

)m+1
σ2
m+1.

Define ∆
(m+1)
r =

∑
S∈S(m+1)

r \S(m)
r

σ2
S . Then

∆(m+1)
r = A(m+1)

r −A(m)
r .

We therefore have Sm+1 =
(
1− 1

n

)
Sm +Bm, where

Bm =

m∑
r=1

(
1− 1

n

)m+1−r( 1

n

)r
∆(m+1)
r +

( 1

n

)m+1
σ2
m+1.

8More generally, the indexes could be represented as Jm =
{j1, ..., jm} and Jm+1 = {j1, ..., jm, jm+1} such that Jm ⊂
Jm+1. We used Jm = {1, ...,m} and Jm+1 = {1, ...,m,m+1}
in our proof without loss of generality.
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Let us further define S(m)
r = ∅ if r > m. Then ∆

(m+1)
m+1 = σ2

m+1,
and therefore

Bm =

m+1∑
r=1

(
1− 1

n

)m+1−r( 1

n

)r
∆(m+1)
r .

Next, consider some S ∈ S(m+1)
r \S(m)

r where r ≥ 2. Note that
S must contain m + 1 since otherwise S ∈ S(m)

r . What’s more,
if we remove m + 1 from S, then S must be now in S(m)

r−1, that is,
S\{m+1} ∈ S(m)

r−1. On the other hand, for any S′ ∈ S(m)
r−1, we can

obtain an element in S(m+1)
r \ S(m)

r by simply adding m+ 1, that
is, S′ ∪{m+ 1} ∈ S(m+1)

r \ S(m)
r . We therefore have established

a 1-1 mapping ϕ between S(m+1)
r \ S(m)

r and S(m)
r−1.

Furthermore, note that for any S ∈ S(m+1)
r \ S(m)

r , we have
ϕ(S) ⊂ S. Hence by Lemma 11, σ2

ϕ(S) ≤ σ2
S . Therefore, we have

∆(m+1)
r =

∑
S∈S(m+1)

r \S(m)
r

σ2
S ≥

∑
ϕ(S)∈S(m)

r−1

σ2
ϕ(S) = A

(m)
r−1.

As a result, we have

Bm ≥ Cm +

m+1∑
r=2

(
1− 1

n

)m+1−r( 1

n

)r
A

(m)
r−1

= Cm +

m∑
r′=1

(
1− 1

n

)m+1−(r′+1)( 1

n

)r′+1
A

(m)

r′

= Cm +
1

n

m∑
r′=1

(
1− 1

n

)m−r′( 1

n

)r′
A

(m)

r′

= Cm +
1

n
Sm,

where

Cm =
(
1− 1

n

)m 1

n
∆

(m+1)
1 =

1

n

(
1− 1

n

)m
σ2
{m+1} ≥ 0.

Hence, Bm ≥ 1
n
Sm. Since Sm+1 =

(
1− 1

n

)
Sm + Bm, we con-

clude that Sm+1 ≥ Sm. This completes the proof of the lemma.

It is now easy to prove the second inequality in Theorem 7:

PROOF. Based on Lemma 12, by induction, we can easily prove
that S2

ρ(m,n) ≤ Var[ρn] and S2
ρ′(m,n) ≤ Var[ρ′n], since m ≤

min{K,K′}. The inequality then follows.

For our special case in this paper where Cov(ρn, ρ
′
n) 6= 0, we

will always have m = min{K,K′}. Without loss of generality,
let m = K. Then S2

ρ(m,n) = Var[ρn], and we only need to
approximate S2

ρ′(m,n) with S2
ρ′(K,n), which by Lemma 12 is

guaranteed to be superior to Var[ρ′n]. Intuitively, the biggerK′−K
is, the bigger the gap is between S2

ρ′(K,n) and Var[ρ′n]. In fact,
in the proof of Lemma 12, we have actually showed that Sm+1 ≥
Sm + Cm. So we can roughly estimate that

Var[ρ′n]− S2
ρ′(K,n) ≥ 1

n

(
1− 1

n

)K K′∑
r=K+1

σ2
{r}.

A.8 More Bounds for Covariances
We can actually have another upper bound for Cov(ρn, ρ

′
n):

THEOREM 8. We have

|Cov(ρn, ρ
′
n)| ≤ f(n,m)g(ρ)g(ρ′),

where f(n,m) = 1− (1− 1
n

)m and g(ρ) =
√
ρ(1− ρ).

PROOF. As in the proof of Lemma 9, letK andK′ be the indexes
of the relations in R and R′ respectively. By Lemma 11, we have
σ2
S ≤ σ2

K and (σ′S)2 ≤ σ2
K′ . Moreover, consider

σ2
K =

1

|Λ(K)|
∑

l∈Λ(K)

(ρK(l)− ρ)2.

Since we use the tuple-level partition scheme, we have ρK(l) = 1
or ρK(l) = 0. Therefore,

σ2
K = (1− ρ)2 · 1

|Λ(K)|
∑

l∈Λ(K)

I(ρK(l) = 1)

+ρ2 · 1

|Λ(K)|
∑

l∈Λ(K)

I(ρK(l) = 0)

= (1− ρ)2 · ρ+ ρ2 · (1− ρ)

= ρ(1− ρ).

Similarly, we have σ2
K′ = ρ′(1− ρ′). Hence,

CovS(ρ, ρ′) ≤
√
σ2
S(σ′S)2 ≤

√
ρ(1− ρ) · ρ′(1− ρ′),

and therefore, by letting g(ρ) =
√
ρ(1− ρ),

|dn| = |
m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

CovS(ρ, ρ′)|

≤
m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

g(ρ)g(ρ′)

= g(ρ)g(ρ′)

m∑
r=1

(
m

r

)( 1

n

)r(
1− 1

n

)m−r
= g(ρ)g(ρ′)[1− (1− 1

n
)m].

This completes the proof of the theorem.

When n is large, (1 − 1
n

)m ≈ 1 − m
n

. As a result, 1 − (1 −
1
n

)m ≈ m
n

. Therefore, when n → ∞, Cov(ρn, ρ
′
n) → 0. This is

intuitively true considering the strong consistency of ρn. If we keep
taking samples, finally the estimated selectivity should converge to
the actual selectivity (a constant). On the other hand, a larger m
implies a larger bound since the computations of ρn and ρ′n share
more samples. Another interesting observation is that the bound
also depends on the actual selectivities ρ and ρ′. Note that g(ρ) is
minimized at ρ = 0 or ρ = 1 (with gmin = 0), and is maximized at
ρ = 1

2
(with gmax = 1

2
). To shed some light on this, observe that

whenever ρ or ρ′ is 0 or 1, ρn or ρ′n is always 0 or 1 regardless of
the number of samples. Hence Cov(ρn, ρ

′
n) = 0 in such cases.

An natural question is how good this bound is compared with the
two bounds in Section 5.3.2. Let us name these three bounds as
(B1)

√
S2
ρ(m,n)S2

ρ′(m,n), the first bound in Theorem 7;

(B2)
√

Var[ρn] Var[ρ′n], the second bound in Theorem 7;
(B3) f(n,m)g(ρ)g(ρ′), the bound in Theorem 8.
By Theorem 7, we already know that B1 ≤ B2. Next, according
to the proof of Theorem 8, σ2

S ≤ ρ(1−ρ) and (σ′)2
S ≤ ρ′(1−ρ′).

We then immediately have√
S2
ρ(m,n)S2

ρ′(m,n) ≤ f(n,m)g(ρ)g(ρ′),

by the definition of S2
ρ(m,n). That is, B1 ≤ B3. Moreover, by

Theorem 4, we have

|Cov(ρn, ρ
′
n)| ≤

√
Var[ρn] Var[ρ′n] ≤ f(n)g(ρ)g(ρ′),
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where

f(n) =

√(
1− (1− 1

n
)K
)(

1− (1− 1

n
)K′
)
.

When n is large, 1− (1− 1
n

)K ≈ K
n

, and 1− (1− 1
n

)K
′
≈ K′

n
.

Therefore, the right hand is close to
√
KK′
n

g(ρ)g(ρ′). Since m ≤
min{K,K′} <

√
KK′, we know that B3 is better than the upper

bound of B2. However, in general B2 and B3 are incomparable.
One more issue of B3 is that it includes the true selectivities ρ

and ρ′ that are not known without running the query. As a result,
B3 is not directly computable. Nonetheless, when n is large, we
can simply use the observed ρn and ρ′n as approximations due to
the strong consistency of ρn.

Finally, the techniques we used in the proof of Theorem 8 can
be further generalized to establish similar bounds for other covari-
ances such as Cov(ρ2

n, (ρ
′)2
n) and Cov(ρ2

n, ρ
′
n).

THEOREM 9.

|Cov(ρ2
n, (ρ

′)2
n)| ≤ f(n,m)h(ρ)h(ρ′),

where

f(n,m) = [1− (1− 1

n
)K+K′−m(1− 2

n
)m(1− 3

n
)m]

·
√

1− (1− 1

n
)K

√
1− (1− 1

n
)K′ ,

and

h(ρ) =
√
ρ(1− ρ)(ρ− ρ2 + 1).

When n is large, we can approximate f(n,m) as:

f(n,m) ≈
(
1− (1− K +K′ −m

n
)(1− 2m

n
)(1− 3m

n
)
)

·
(
1− (1− K

n
)
) 1

2
(
1− (1− K′

n
)
) 1

2

≈
(
1− (1− K +K′ −m

n
− 2m

n
− 3m

n
)
)√KK′

n

=
(K +K′ + 4m)

√
KK′

n2
.

PROOF. For notational convenience, defineEρρ′ = E[ρ2
n(ρ′n)2],

and EρEρ′ = E[ρ2
n] E[(ρ′n)2]. We have

Eρρ′ = E[
( 1

nK

nK∑
k=1

ρB
)2( 1

nK′

nK′∑
k′=1

ρ′B
)2

]

=
1

n2(K+K′)

nK∑
k1,k2=1

nK′∑
k′1,k

′
2=1

E[ρB1ρB2ρ
′
B1
ρ′B2

],

and

EρEρ′ = E[
( 1

nK

nK∑
k=1

ρB
)2

] E[
( 1

nK′

nK′∑
k′=1

ρ′B
)2

]

=
1

n2(K+K′)

nK∑
k1,k2=1

nK′∑
k′1,k

′
2=1

E[ρB1ρB2 ] E[ρ′B1
ρ′B2

].

Therefore, by letting d2
n = Cov(ρ2

n, (ρ
′)2
n), we have

d2
n = E[ρ2

n(ρ′n)2]− E[ρ2
n] E[(ρ′n)2]

=
1

n2(K+K′)

nK∑
k1,k2=1

nK′∑
k′1,k

′
2=1

Cov(ρB1ρB2 , ρ
′
B1
ρ′B2

).

Note that, among the n2(K+K′) summands in d2
n, nK(n−1)K(n−

2)mnK
′−m(n − 3)m(n − 1)K

′−m = [n(n − 1)]K+K′−m[(n −
2)(n− 3)]m of them involve samples that do not share any blocks
and are therefore independent. As a result, for these terms,

Cov(ρB1ρB2 , ρ
′
B1
ρ′B2

) = 0.

Since

Cov2(ρB1ρB2 , ρ
′
B1
ρ′B2

) ≤ Var[ρB1ρB2 ] Var[ρ′B1
ρ′B2

],

we have

|d2
n| ≤

(
1− [n(n− 1)]K+K′−m[(n− 2)(n− 3)]m

n2(K+K′)

)
Var[ρB1ρB2 ]

1
2 Var[ρ′B1

ρ′B2
]
1
2

=
(
1− (1− 1

n
)K+K′−m(1− 2

n
)m(1− 3

n
)m
)

Var[ρB1ρB2 ]
1
2 Var[ρ′B1

ρ′B2
]
1
2 .

Next, let us consider

V = Var[ρB1ρB2 ] = E[(ρB1ρB2 − E[ρB1ρB2 ])2].

As before, we partition the pairs (B1,B2) based on the blocks they
share, which gives us

V =

K∑
r=1

(n− 1)K−r

nK
×
∑
S∈Sr

( 1

|Λ(S)|
∑

l∈Λ(S)

ES(l)(B1,B2)
)
,

where

ES(l)(B1,B2) = EρB1
∼S(l)ρB2

[(ρB1ρB2 − E[ρB1ρB2 ])2].

Now define

σ2
S =

1

|Λ(S)|
∑

l∈Λ(S)

ES(l)(B1,B2).

Similarly as before, we are able to show that, if S ∈ Sr , S′ ∈
Sr+1, and S ⊂ S′, then σ2

S ≤ σ2
S′ . To see this, without loss

of generality, let S = {1, ..., r} and S′ = {1, ..., r + 1}. For a
given l = (j1, ..., jr) ∈ Λ(S), let l′j = (j1, ..., jr, j), for 1 ≤
j ≤ mr+1. Since Λ(S′) = Λ(S) × {1, ...,mr+1}, Λ(Sc) =
Λ((S′)c)× {1, ...,mr+1} and thus |Λ(Sc)| = mr+1|Λ((S′)c)|.

We have

E =
1

|Λ(Sc)|2
∑

Λ(Sc)

∑
Λ(Sc)

(ρB1ρB2 − E[ρB1ρB2 ])2.

Let E[ρB1ρB2 ] = A. We then have

E =
1

|Λ(Sc)|2
∑

Λ(Sc)

∑
Λ(Sc)

(ρ2
B1
ρ2
B2
− 2AρB1ρB2 +A2).

Consider the terms ρ2
B1
ρ2
B2

and ρB1ρB2 . We have

E1 =
1

|Λ(Sc)|2
∑

Λ(Sc)

∑
Λ(Sc)

ρ2
B1
ρ2
B2

=
( 1

|Λ(Sc)|
∑

Λ(Sc)

ρ2
B1

)
·
( 1

|Λ(Sc)|
∑

Λ(Sc)

ρ2
B2

)
=

( 1

|Λ(Sc)|
∑

Λ(Sc)

ρ2
B

)2
=

( 1

|Λ((S′)c)|mr+1

∑
Λ((S′)c)

mr+1∑
j=1

ρ2
B

)2
,
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and

E2 =
1

|Λ(Sc)|2
∑

Λ(Sc)

∑
Λ(Sc)

ρB1ρB2

=
( 1

|Λ(Sc)|
∑

Λ(Sc)

ρB1

)
·
( 1

|Λ(Sc)|
∑

Λ(Sc)

ρB2

)
=

( 1

|Λ(Sc)|
∑

Λ(Sc)

ρB
)2

=
( 1

|Λ((S′)c)|mr+1

∑
Λ((S′)c)

mr+1∑
j=1

ρB
)2
.

Since ρB = 0 or ρB = 1, we have ρ2
B = ρB and thus E1 = E2.

Therefore,

E = (1− 2A)E2 +A2.

Furthermore, define

ρS′ =
1

|Λ((S′)c)|
∑

Λ((S′)c)

ρB, ρ2
S′ =

1

|Λ((S′)c)|
∑

Λ((S′)c)

ρ2
B,

ρ1ρ2S′ =
1

|Λ((S′)c)|2
∑

Λ((S′)c)

∑
Λ((S′)c)

ρB1ρB2 ,

ρ2
1ρ

2
2S′ =

1

|Λ((S′)c)|2
∑

Λ((S′)c)

∑
Λ((S′)c)

ρ2
B1
ρ2
B2
,

(ρ1ρ2 −A)2
S′ =

1

|Λ((S′)c)|2
∑

Λ((S′)c)

∑
Λ((S′)c)

(
ρB1ρB2 −A

)2
.

By the Cauchy-Schwarz inequality, we have

E2 =
1

m2
r+1

(mr+1∑
j=1

ρS′
)2 ≤ 1

mr+1

mr+1∑
j=1

ρ2
S′ .

Hence,

E ≤ (1− 2A)
1

mr+1

mr+1∑
j=1

ρ2
S′ +A2

=
1

mr+1

mr+1∑
j=1

(
(1− 2A)ρ2

S′ +A2)
=

1

mr+1

mr+1∑
j=1

[ρ2
S′ − 2Aρ2

S′ +A2]

=
1

mr+1

mr+1∑
j=1

[(ρ2
S′)

2 − 2Aρ2
S′ +A2]

=
1

mr+1

mr+1∑
j=1

[ρ2
1ρ

2
2S′ − 2Aρ1ρ2S′ +A2]

=
1

mr+1

mr+1∑
j=1

(ρ1ρ2 −A)2
S′ .

Therefore,

σ2
S =

1

|Λ(S)|
∑

l∈Λ(S)

ES(l)(B1,B2)

≤ 1

|Λ(S)|
∑

l∈Λ(S)

1

mr+1

mr+1∑
j=1

(ρ1ρ2 −A)2
S′

=
1

|Λ(S)|mr+1

∑
l∈Λ(S)

mr+1∑
j=1

(ρ1ρ2 −A)2
S′

=
1

|Λ(S′)|
∑

l′∈Λ(S′)

(ρ1ρ2 −A)2
S′

= σ2
S′ .

As a result, we have σ2
S ≤ σ2

K. Since

σ2
K =

1

|Λ(K)|
∑

l∈Λ(K)

EK(l)(B1,B2)

=
1

|Λ(K)|
∑

l∈Λ(K)

(ρB1ρB2 −A)2

=
1

|Λ(K)|
∑

l∈Λ(K)

(ρ2
B −A)2

=
1

|Λ(K)|
∑

l∈Λ(K)

(ρB −A)2

= (1−A)2 · 1

|Λ(K)|
∑

l∈Λ(K)

I(ρB = 1)

+A2 · 1

|Λ(K)|
∑

l∈Λ(K)

I(ρB = 0)

= (1−A)2 · ρ+A2 · (1− ρ)

= A2 − 2Aρ+ ρ

= (A− ρ)2 + (ρ− ρ2).

Now consider A = E[ρB1ρB2 ]. We have

A = Pr(ρB1 = 1, ρB2 = 1)

≥ Pr(ρB1 = 1, ρB2 = 1, ρB1 ∼∅ ρB2)

= Pr(ρB1 = 1) · Pr(ρB2 = 1)

= ρ2.

On the other hand,

A = Pr(ρB1 = 1, ρB2 = 1) ≤ Pr(ρB1 = 1) ≤ ρ.

Thus, ρ2 ≤ A ≤ ρ. So we have

ρ− ρ2 ≤ σ2
K ≤ (ρ2 − ρ)2 + (ρ− ρ2).

Therefore,

V = Var[ρB1ρB2 ]

=
K∑
r=1

(n− 1)K−r

nK
×
∑
S∈Sr

σ2
S

≤
K∑
r=1

(n− 1)K−r

nK
×
∑
S∈Sr

σ2
K

≤ [(ρ2 − ρ)2 + (ρ− ρ2)] ·
(
1− (1− 1

n
)K
)
.
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Similarly, we have

V ′ = Var[ρ′B1
ρ′B2

]

≤ [((ρ′)2 − ρ′)2 + (ρ′ − (ρ′)2)] ·
(
1− (1− 1

n
)K
′)
.

As a result, since

|d2
n| ≤

(
1− (1− 1

n
)K+K′−m(1− 2

n
)m(1− 3

n
)m
)

·Var[ρB1ρB2 ]
1
2 Var[ρ′B1

ρ′B2
]
1
2 ,

we have

|Cov(ρ2
n, (ρ

′)2
n)| = |d2

n| ≤ f(n,m)h(ρ)h(ρ′),

where

f(n,m) =
(
1− (1− 1

n
)K+K′−m(1− 2

n
)m(1− 3

n
)m
)

·
(
1− (1− 1

n
)K
) 1

2
(
1− (1− 1

n
)K
′) 1

2 ,

and h(ρ) =
√
ρ(1− ρ)(ρ− ρ2 + 1). This completes the proof of

the theorem.

With very similar arguments, we are able to show that

THEOREM 10.

|Cov(ρ2
n, ρ
′
n)| ≤ f(n,m)h(ρ)g(ρ′),

where

f(n,m) = [1− (1− 1

n
)K(1− 2

n
)m]

·
√

1− (1− 1

n
)K

√
1− (1− 1

n
)K′ ,

g(ρ) =
√
ρ(1− ρ), and h(ρ) =

√
ρ(1− ρ)(ρ− ρ2 + 1).

The approximate version is:

f(n,m) ≈ [1− (1− K

n
)(1− 2m

n
)]

√
KK′

n

≈ (K + 2m)
√
KK′

n2
.

B. THE COMPLETE FRAMEWORK
We present the complete framework of estimating the distribu-

tion of tq in Algorithm 2. Note that, the framework is a two-stage
one: we first obtain the marginal distributions of the selectivities
via sampling, and then obtain the distribution of tq .

It is worth to point out that a more straightforward, one-stage al-
ternative can also solve the problem: we keep running the query
plan over different sample tables and observe the joint distribu-
tion of the selectivities. It will then directly give the distribution
of the estimated running times: we simply plug in each observed
selectivity vector X to the cost formulas and compute the running
times. However, the overhead of this approach might be prohibitive
in practice: we need the same number of sample runs as the obser-
vations we need to build the histogram of the running times.

Nonetheless, this conceptually simpler framework is of some
theoretic interest. Note that in our current framework, we view
the execution time as a function of the selectivities over all opera-
tors. Can we instead view the time as a function of the selectivities
over just the leaf operators? The answer is no, because the selec-
tivities of the internal operators cannot be simply determined by
the selectivities of the leaf nodes. However, we can indeed view

the time as a function of the leaf tables. That is, as long as we
fix the input table of each leaf (i.e., scan) operator, the selectivity
of each internal operator is also fixed and hence the running time
can be determined. Since different leaf tables may lead to the same
selectivity on a leaf operator, this explains why simply fixing the
selectivities of the leaf operators may not be sufficient for charac-
terizing the running time of the query plan. However, a function of
tables is not feasible for mathematical analysis. The only way is to
leave it as a black box and repeatedly feed it with different sample
tables, which is costly and infeasible for our purpose of query exe-
cution time prediction. By instead representing the running time as
a function of selectivities over all operators, we obtain something
mathematically manipulatable and practically efficient, though we
now need to address the new challenge of estimating the covari-
ances between the selectivities.

Algorithm 2: Estimation of the distribution of tq
Input: q, the input query; C, cost units calibrated offline
Output: tNq ∼ N (E[tq],Var[tq])

1 Agg ← false;
2
3 EstSelDistr(O):
4 if O has left child Ol then
5 EstSelDistr(Ol);
6 end
7 if O has right child Or then
8 EstSelDistr(Or);
9 end

10 if O is aggregate then
11 Agg ← true;
12 end
13 Compute ρn and S2

n for O using Algorithm 1;
14
15 GetCostFunc(Pq):
16 foreach O ∈ Pq do
17 foreach f ∈ CostFunctions(O) do
18 if O is unary then
19 Collect (Xl, f)’s in Il;
20 else
21 Collect (Xl, Xr, f)’s in Il × Ir;
22 end
23 Compute f by solving the optimization problem;
24 end
25 end
26
27 Main:
28 Pq ← GetQueryP lan(q);
29 Run Pq over the sample tables;
30 Oroot ← GetRootOperator(Pq);
31 EstSelDistr(Oroot);
32 GetCostFunc(Pq);
33 Estimate tNq ∼ N (E[tq],Var[tq]) using Algorithm 3;

We further summarize the procedure of computing Var[tq] in
Algorithm 3. We first compute the variances for the tk’s, since we
have shown that they are directly computable. We then collect all
the paths from the leaf operators to the root and compute or bound
the covariances between the operators along each path. Based on
Lemma 3, these are all the pairs of operators that we need to check
the covariances. Based on if Cov(Z,Z′) is computable, we directly
compute or provide some upper bound for it.
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Algorithm 3: Estimation of the variance of tq
Input: Pq , the query plan of q
Output: Var[tq], the estimated variance of tq

1 V arOps← 0, CovOpsUb← 0;
2 foreach Ok ∈ Pq do
3 V arOps← V arOps+ Var[tk];
4 end
5 L ← GetLeafOps(Pq);
6 foreach L ∈ L do
7 P ← GetPath(L);
8 foreach O,O′ ∈ P s.t. O 6= O′ do
9 foreach Cov(Z,Z′) do

10 if Cov(Z,Z′) is computable then
11 V arOps←

V arOps+ ComputeCov(O,O′, Z, Z′);
12 else
13 CovOpsUb← CovOpsUb+

UpperBoundCov(O,O′, Z, Z′);
14 end
15 end
16 end
17 end
18 Var[tq]← V arOps+ CovOpsUb;
19 return Var[tq];

C. MORE EXPERIMENTAL RESULTS
In this section we present additional experimental results.

C.1 Correlations
Table 4 reports the rs’s (and the corresponding rp’s) for the

benchmark queries over different hardware and database settings.
Here, SR stands for the sampling ratio (see Section 6.3). Values
below 0.7 are highlighted. As we mentioned, these are cases where
the correlations are not strong.

C.2 Distributional Distances
Table 5 reports the complete results of distributional distances

for the benchmark queries (see Section 6.3). Values above 0.3 are
highlighted. The closer a value is to 0, the better the proximity of
two distributions is.

C.3 Comparison with Simplified Versions
Figure 10 presents more results on comparison of the four al-

ternatives discussed in Section 6.3 over skewed databases for the
TPCH queries. The observations are similar to that over uniform
databases as presented in Section 6.3.

C.4 Sampling Overhead
Figure 11 reports the complete experimental results for the rela-

tive overhead of running the queries over the sample tables, which
were omitted in Section 6.4.

C.5 Selectivity Estimates
Given a query q, the quality of the estimated distribution of tq

depends on a number of factors such as the accuracy of the dis-
tributions of the c’s and the X’s, the quality of the approximated
cost functions, and the closeness of the upper bounds of the covari-
ances to the actual values. Note that how well we could estimate
the potential errors in selectivity estimates plays a crucial role here,
for it directly impacts the accuracy of the estimated distributions of
the X’s, which further impacts the accuracy of the approximated
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Figure 10: Comparison of four alternatives in terms of rs

cost functions as well as the estimated covariances. Therefore, we
further studied the correlations between the estimated and actual
errors in selectivity estimates. Since the selectivities are modeled
as Gaussian variables, we again focus on measuring the correla-
tions between the standard deviations of the Gaussian distributions
and the actual errors in the selectivity estimates, as what we did in
Section 6.3 for the distributions of the tq’s. For this sake, we exam-
ined the correlations for the selective operators (i.e., selections and
joins) of each query in the benchmarks under different hardware
and database settings. Table 6 presents the results.

We observe that the correlations are not as good as that of the tq’s
in Table 4. In particular, there seems to be no linear correlations for
the SELJOIN and TPCH queries by examining the corresponding
rp’s. One possible reason for this phenomenon is that the actual er-
rors are usually too small. To verify this, in Table 7 we present the
correlations between the estimated and the actual selectivities, and
in Table 8 we compute the mean relative errors in the selectivity
estimates, where the relative error of an estimated selectivity ρn is
defined as |ρn−ρ|

ρ
. We find that the rp’s between the estimated and

actual selectivities are almost 1 for almost all the cases we tested,
which suggests a very strong linear dependency. As a case study,
in Figure 12 we show the scatter plots of the MICRO, SELJOIN,
and TPCH queries over skewed 1GB database on PC1 with SR =
0.05. We can see that the estimated selectivities are almost the same
as the ground truths. On the other hand, the average relative errors
are usually below 20% according to Table 8. Note that our sam-
pling based method cannot be very effective when the errors are
too small unless we can have very large number of samples. This is
because we estimate the variances of the distributions based on the
observed variances in the samples. Since the samples are taken ran-
domly, different batches of samples may present different sample
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MICRO SELJOIN TPCH
SR PC1 PC2 PC1 PC2 PC1 PC2

Uniform TPC-H 1GB Database
0.01 0.9321 (0.9830) 0.9400 (0.5691) 0.7554 (0.8989) 0.8551 (0.9724) 0.7209 (0.7571) 0.9457 (0.9688)
0.05 0.9381 (0.9875) 0.9813 (0.7904) 0.6958 (0.8414) 0.9170 (0.9865) 0.7171 (0.7738) 0.9583 (0.9768)

0.1 0.9415 (0.9862) 0.9740 (0.8252) 0.7160 (0.8204) 0.9265 (0.9883) 0.7498 (0.7700) 0.9607 (0.9778)
Skewed TPC-H 1GB Database

0.01 0.9418 (0.9753) 0.9827 (0.9236) 0.8545 (0.5575) 0.9495 (0.8656) 0.7829 (0.8768) 0.9614 (0.9189)
0.05 0.9435 (0.9762) 0.9838 (0.9130) 0.8374 (0.6502) 0.9621 (0.9543) 0.9248 (0.9266) 0.9729 (0.9897)

0.1 0.9431 (0.9765) 0.9840 (0.9168) 0.8546 (0.6644) 0.9622 (0.9574) 0.9248 (0.9285) 0.9639 (0.9901)
Uniform TPC-H 10GB Database

0.01 0.9397 (0.9518) 0.9853 (0.9549) 0.9660 (0.8263) 0.9054 (0.9288) 0.8265 (0.9344) 0.7926 (0.9614)
0.05 0.9379 (0.9675) 0.9855 (0.9536) 0.9774 (0.8786) 0.9094 (0.9617) 0.8749 (0.9592) 0.8504 (0.9699)

0.1 0.9383 (0.9760) 0.9853 (0.9539) 0.9708 (0.8574) 0.9095 (0.9649) 0.8026 (0.9498) 0.8559 (0.9706)
Skewed TPC-H 10GB Database

0.01 0.9674 (0.9665) 0.9819 (0.9830) 0.9636 (0.8986) 0.9728 (0.9532) 0.9480 (0.9696) 0.8894 (0.9884)
0.05 0.9669 (0.9812) 0.9841 (0.9831) 0.9650 (0.9519) 0.9784 (0.9761) 0.9439 (0.9887) 0.9127 (0.9936)

0.1 0.9675 (0.9905) 0.9840 (0.9830) 0.9663 (0.9580) 0.9781 (0.9781) 0.9354 (0.9910) 0.9198 (0.9944)

Table 4: rs (rp) of the benchmark queries over different hardware and database settings (values below 0.7 are highlighted)
MICRO SELJOIN TPCH MICRO SELJOIN TPCH

SR PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
Uniform TPC-H 1GB Database Skewed TPC-H 1GB Database

0.01 0.5573 0.6235 0.2228 0.2833 0.1175 0.0872 0.2276 0.3150 0.1882 0.1395 0.1717 0.0850
0.05 0.2728 0.3885 0.1563 0.1787 0.0610 0.0570 0.2286 0.3180 0.1686 0.1334 0.1691 0.1068

0.1 0.2312 0.3236 0.1170 0.1441 0.0520 0.0664 0.2286 0.3183 0.1695 0.1341 0.1691 0.1068
Uniform TPC-H 10GB Database Skewed TPC-H 10GB Database

0.01 0.1663 0.2532 0.0766 0.1097 0.0579 0.0502 0.1170 0.2512 0.1052 0.1316 0.1388 0.0713
0.05 0.1657 0.2532 0.0765 0.1098 0.0595 0.0535 0.1158 0.2524 0.1022 0.1275 0.1296 0.0769

0.1 0.1622 0.2532 0.0722 0.1091 0.0591 0.0558 0.1136 0.2518 0.1040 0.1282 0.1296 0.0814

Table 5: Dn of the benchmark queries over different hardware and database settings (values above 0.3 are highlighted)
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Figure 11: Relative overhead of benchmark queries

variances although the variation should be small due to the strong
consistency property. However, if the errors in selectivity estimates
are already very small, then the small variation in sample variances
now cannot be negligible. The impact on the correlations due to
this variation is unpredictable since this variation is totally random.
But the correlations here seem to be not very important, since based

on the small variances we can still infer that the errors are small al-
though we have no idea of the correlations. In Table 9 we further
present the correlations when the relative errors are above 0.2. We
find that now the correlations are much better. This implies that
the estimated errors are strongly correlated with the actual errors in
selectivity estimates when the errors are relatively large.
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MICRO SELJOIN TPCH
SR PC1 PC2 PC1 PC2 PC1 PC2

Uniform TPC-H 1GB Database
0.01 0.8127 (0.8730) 0.9245 (0.9621) 0.7731 (0.2294) 0.7465 (-0.0015) 0.7168 (0.0016) 0.7612 (0.2239)
0.05 0.8670 (0.7109) 0.8497 (0.8542) 0.7818 (0.0470) 0.7731 (0.0247) 0.7356 (-0.0322) 0.7807 (0.0676)

0.1 0.8116 (0.7556) 0.8246 (0.8216) 0.7907 (0.0276) 0.7770 (0.0172) 0.7304 (-0.0339) 0.7739 (0.0199)
0.2 0.8102 (0.6451) 0.8897 (0.6541) 0.8065 (-0.0034) 0.7942 (-0.0044) 0.7506 (-0.0606) 0.7676 (-0.0145)
0.3 0.9107 (0.5566) 0.9274 (0.7311) 0.7940 (-0.0056) 0.7944 (-0.0213) 0.7396 (-0.0341) 0.7930 (-0.0346)
0.4 0.8654 (0.4994) 0.8988 (0.7034) 0.7923 (-0.0314) 0.7902 (-0.0239) 0.7534 (-0.0442) 0.7898 (-0.0166)

Skewed TPC-H 1GB Database
0.01 0.8736 (0.7780) 0.8938 (0.8807) 0.6172 (-0.0178) 0.6259 (-0.0175) 0.5949 (0.0145) 0.6556 (0.1528)
0.05 0.9007 (0.7815) 0.9066 (0.8129) 0.6274 (0.0265) 0.6293 (0.0182) 0.5772 (-0.0310) 0.6485 (0.0269)

0.1 0.7748 (0.2938) 0.9320 (0.8578) 0.6347 (-0.0306) 0.6286 (0.0176) 0.5952 (-0.0525) 0.6324 (0.0176)
0.2 0.7566 (0.5545) 0.8772 (0.6146) 0.6360 (-0.0202) 0.6211 (-0.0174) 0.5970 (-0.0352) 0.6071 (-0.0127)
0.3 0.7880 (0.4806) 0.9137 (0.5158) 0.6505 (-0.0218) 0.7093 (-0.0180) 0.5631 (-0.0472) 0.6921 (-0.0377)
0.4 0.8063 (0.1580) 0.8722 (0.6483) 0.6808 (-0.0520) 0.6180 (-0.0198) 0.6553 (-0.0601) 0.6161 (-0.0175)

Uniform TPC-H 10GB Database
0.01 0.8407 (0.6932) 0.9311 (0.7887) 0.6594 (0.0283) 0.6481 (0.0050) 0.7395 (0.0347) 0.8199 (0.0048)
0.02 0.9080 (0.6594) 0.8781 (0.7153) 0.6524 (0.0069) 0.6425 (-0.0068) 0.7362 (-0.0122) 0.8062 (0.0363)
0.05 0.9004 (0.2230) 0.9208 (0.6030) 0.6366 (-0.0132) 0.7474 (-0.0143) 0.7240 (-0.0177) 0.8313 (0.0105)

0.1 0.8733 (0.2993) 0.7862 (0.3673) 0.6696 (-0.0470) 0.6579 (-0.0359) 0.7461 (-0.0514) 0.8240 (-0.0262)
Skewed TPC-H 10GB Database

0.01 0.9365 (0.6938) 0.8742 (0.8389) 0.6187 (0.0487) 0.6020 (-0.0088) 0.6988 (-0.0232) 0.7820 (-0.0170)
0.02 0.8273 (0.5548) 0.8929 (0.7476) 0.5771 (0.0424) 0.6017 (0.0029) 0.6812 (-0.0291) 0.7787 (0.0815)
0.05 0.8008 (0.4130) 0.8855 (0.4758) 0.5537 (-0.0133) 0.7081 (0.0165) 0.6441 (-0.0602) 0.7274 (0.0339)

0.1 0.7808 (0.3152) 0.8712 (0.4872) 0.5978 (-0.0585) 0.6855 (-0.0254) 0.6548 (-0.0417) 0.7366 (0.0086)

Table 6: rs (rp) between the estimated and actual errors in selectivity estimates (values below 0.7 are highlighted)

MICRO SELJOIN TPCH
SR PC1 PC2 PC1 PC2 PC1 PC2

Uniform TPC-H 1GB Database
0.01 0.9808 (0.9977) 0.9826 (0.9916) 0.9934 (1.0000) 0.9907 (0.9939) 0.9962 (1.0000) 0.9967 (1.0000)
0.05 0.9829 (0.9992) 0.9923 (0.9970) 0.9930 (1.0000) 0.9956 (1.0000) 0.9973 (1.0000) 0.9971 (1.0000)

0.1 0.9920 (0.9993) 0.9910 (0.9998) 0.9971 (1.0000) 0.9986 (1.0000) 0.9973 (1.0000) 0.9978 (1.0000)
0.2 0.9873 (0.9997) 0.9925 (0.9999) 0.9997 (1.0000) 0.9997 (1.0000) 0.9982 (1.0000) 0.9972 (1.0000)
0.3 0.9878 (0.9996) 0.9961 (0.9998) 0.9982 (1.0000) 0.9982 (1.0000) 0.9986 (1.0000) 0.9985 (1.0000)
0.4 0.9958 (0.9996) 0.9949 (0.9997) 0.9984 (1.0000) 0.9973 (1.0000) 0.9993 (1.0000) 0.9992 (1.0000)

Skewed TPC-H 1GB Database
0.01 0.9896 (0.9986) 0.9964 (0.9973) 0.9741 (0.9904) 0.9850 (0.9826) 0.9942 (1.0000) 0.9957 (1.0000)
0.05 0.9994 (0.9997) 0.9983 (0.9996) 0.9934 (1.0000) 0.9930 (1.0000) 0.9938 (1.0000) 0.9962 (1.0000)

0.1 0.9987 (0.9999) 0.9985 (0.9998) 0.9947 (1.0000) 0.9955 (1.0000) 0.9947 (1.0000) 0.9955 (1.0000)
0.2 0.9994 (0.9998) 0.9997 (1.0000) 0.9968 (1.0000) 0.9964 (1.0000) 0.9965 (1.0000) 0.9952 (1.0000)
0.3 0.9993 (0.9999) 0.9999 (1.0000) 0.9977 (1.0000) 0.9996 (1.0000) 0.9970 (1.0000) 0.9980 (1.0000)
0.4 0.9997 (1.0000) 0.9994 (0.9998) 0.9988 (1.0000) 0.9967 (1.0000) 0.9992 (1.0000) 0.9962 (1.0000)

Uniform TPC-H 10GB Database
0.01 0.9964 (0.9996) 0.9979 (0.9995) 0.9885 (1.0000) 0.9883 (1.0000) 0.9823 (1.0000) 0.9932 (1.0000)
0.02 0.9866 (0.9997) 0.9921 (0.9998) 0.9896 (1.0000) 0.9890 (1.0000) 0.9827 (1.0000) 0.9940 (1.0000)
0.05 0.9959 (1.0000) 0.9938 (1.0000) 0.9945 (1.0000) 0.9938 (1.0000) 0.9894 (1.0000) 0.9957 (1.0000)

0.1 0.9964 (1.0000) 0.9968 (1.0000) 0.9974 (1.0000) 0.9969 (1.0000) 0.9977 (1.0000) 0.9990 (1.0000)
Skewed TPC-H 10GB Database

0.01 0.9986 (0.9994) 0.9957 (0.9994) 0.9881 (0.9868) 0.9904 (0.9942) 0.9925 (1.0000) 0.9884 (0.9838)
0.02 0.9992 (0.9998) 0.9999 (1.0000) 0.9934 (0.9996) 0.9900 (0.9936) 0.9925 (1.0000) 0.9946 (1.0000)
0.05 0.9992 (0.9999) 0.9993 (0.9999) 0.9893 (1.0000) 0.9966 (0.9997) 0.9912 (1.0000) 0.9935 (1.0000)

0.1 0.9999 (1.0000) 0.9997 (1.0000) 0.9963 (1.0000) 0.9978 (1.0000) 0.9939 (1.0000) 0.9944 (1.0000)

Table 7: rs (rp) between the estimated and actual selectivities (values below 0.7 are highlighted)
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MICRO SELJOIN TPCH MICRO SELJOIN TPCH
SR PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Uniform TPC-H 1GB Database Skewed TPC-H 1GB Database
0.01 0.1328 0.2299 0.4678 0.4216 0.5349 0.4738 0.1454 0.1134 0.6256 0.4279 0.6689 0.5745
0.05 0.0340 0.0551 0.1824 0.2946 0.3121 0.2212 0.0508 0.0445 0.3765 0.2505 0.7402 0.2580

0.1 0.0306 0.0318 0.1586 0.1484 0.1988 0.1967 0.0393 0.0255 0.1593 0.1567 0.1815 0.1847
0.2 0.0197 0.0122 0.1134 0.0836 0.1017 0.1590 0.0210 0.0250 0.1397 0.1117 0.1127 0.1294
0.3 0.0144 0.0132 0.0577 0.0422 0.0583 0.0734 0.0197 0.0161 0.0910 0.0858 0.0890 0.1121
0.4 0.0146 0.0200 0.0389 0.0371 0.0585 0.0534 0.0115 0.0203 0.0770 0.0581 0.0878 0.0651

Uniform TPC-H 10GB Database Skewed TPC-H 10GB Database
0.01 0.0381 0.0492 0.3162 0.3396 0.4475 0.5894 0.0591 0.0542 0.3433 0.3478 0.4723 0.5955
0.02 0.0342 0.0241 0.2419 0.2344 0.3439 0.3533 0.0514 0.0336 0.3471 0.2671 0.3819 0.4354
0.05 0.0147 0.0101 0.1491 0.1713 0.2018 0.2130 0.0254 0.0203 0.1809 0.1914 0.2046 0.2732

0.1 0.0068 0.0096 0.1047 0.0800 0.1291 0.1499 0.0116 0.0127 0.1280 0.1389 0.1313 0.1754

Table 8: Relative errors in the selectivity estimates of the benchmark queries (values above 0.2 are highlighted)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
ct

ua
l S

el
ec

tiv
ity

Estimated Selectivity

Data
Best-Fit

(a) MICRO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
ct

ua
l S

el
ec

tiv
ity

Estimated Selectivity

Data
Best-Fit

(b) SELJOIN

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
ct

ua
l S

el
ec

tiv
ity

Estimated Selectivity

Data
Best-Fit

(c) TPCH

Figure 12: A case study of the correlations between the estimated and actual selectivities

MICRO SELJOIN TPCH
SR PC1 PC2 PC1 PC2 PC1 PC2

Uniform TPC-H 1GB Database
0.01 0.6980 (1.0000) 0.8223 (0.9952) 0.9101 (0.8918) 0.9038 (0.0480) 0.9355 (0.9994) 0.9293 (0.9689)
0.05 0.9920 (1.0000) 0.9983 (1.0000) 0.8423 (0.9536) 0.8320 (0.9989) 0.8732 (0.9987) 0.8768 (1.0000)

0.1 1.0000 (0.9998) 1.0000 (0.9942) 0.8696 (0.9995) 0.9133 (0.9999) 0.8917 (0.9999) 0.8784 (0.9999)
0.2 1.0000 (1.0000) N/A (N/A) 0.9747 (0.9706) 0.9688 (1.0000) 0.9795 (0.9999) 0.9684 (0.9999)
0.3 N/A (N/A) N/A (N/A) 0.9850 (0.9751) 0.9884 (0.9754) 0.9696 (1.0000) 0.9841 (1.0000)
0.4 N/A (N/A) 0.9000 (0.9994) 0.9693 (0.9847) 0.9688 (1.0000) 0.9708 (1.0000) 0.9852 (1.0000)

Skewed TPC-H 1GB Database
0.01 0.7253 (0.9090) 0.9067 (1.0000) 0.7964 (0.0291) 0.8693 (0.0381) 0.9163 (0.9970) 0.9478 (0.9554)
0.05 0.9903 (1.0000) 0.9728 (0.9984) 0.8863 (1.0000) 0.8872 (0.9944) 0.9104 (0.9998) 0.9434 (0.9999)

0.1 0.9905 (1.0000) 1.0000 (0.9981) 0.9081 (0.9541) 0.9413 (0.9751) 0.9532 (0.9931) 0.9602 (0.9999)
0.2 1.0000 (0.9847) 1.0000 (0.9803) 0.9966 (1.0000) 0.9621 (0.9736) 0.9326 (0.9679) 0.9316 (0.9703)
0.3 1.0000 (0.9624) 1.0000 (0.9999) 0.9937 (1.0000) 0.9951 (0.9000) 0.9898 (0.9798) 0.9933 (0.9976)
0.4 1.0000 (1.0000) 1.0000 (0.9966) 0.9954 (1.0000) 0.9959 (0.9995) 0.9637 (0.9721) 0.9924 (0.9641)

Uniform TPC-H 10GB Database
0.01 0.9441 (0.9929) 0.9950 (1.0000) 0.7533 (0.9824) 0.7147 (0.9697) 0.6966 (0.0532) 0.8128 (0.0964)
0.02 0.9818 (0.9637) 1.0000 (1.0000) 0.7937 (0.9996) 0.7226 (0.9982) 0.6818 (0.0452) 0.8085 (0.9947)
0.05 1.0000 (1.0000) N/A (N/A) 0.8029 (0.8149) 0.7450 (0.7202) 0.8093 (0.7995) 0.8918 (0.9989)

0.1 N/A (N/A) N/A (N/A) 0.9839 (0.9831) 0.9913 (0.9994) 0.9729 (0.9832) 0.9818 (0.9996)
Skewed TPC-H 10GB Database

0.01 0.9805 (1.0000) 0.8878 (0.9984) 0.8917 (0.7953) 0.8718 (0.0572) 0.8814 (0.9996) 0.9065 (0.0617)
0.02 0.9759 (0.9280) 0.9647 (0.9237) 0.9617 (0.9994) 0.8844 (0.7031) 0.9236 (0.9999) 0.9415 (0.9998)
0.05 0.8810 (0.9741) 1.0000 (0.9991) 0.7759 (0.9970) 0.8701 (1.0000) 0.8846 (0.9988) 0.9834 (0.9999)

0.1 1.0000 (1.0000) 1.0000 (1.0000) 0.9873 (0.9999) 0.9485 (1.0000) 0.9919 (0.9999) 0.9786 (0.9999)

Table 9: rs (rp) of selectivity estimates with relative errors above 0.2 (values below 0.7 are highlighted)
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