
SAMPLING-BASED QUERY EXECUTION TIME PREDICTION AND QUERY
RE-OPTIMIZATION

by

Wentao Wu

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 05/13/15

The dissertation is approved by the following members of the Final Oral Committee:
Jeffrey F. Naughton, Professor, Computer Sciences
David J. DeWitt, Emeritus Professor, Computer Sciences
AnHai Doan, Professor, Computer Sciences
Jignesh M. Patel, Professor, Computer Sciences
C. David Page Jr., Professor, Biostatistics and Medical Informatics

© Copyright by Wentao Wu 2015
All Rights Reserved

i

To my parents, Huixian Cheng and Chun Wu.

ii

Acknowledgments

I am forever indebted to my advisor, Prof. Jeffrey Naughton, for his kindness, pa-
tience, and endless help, not only in my research, but also in my life and career. The
fundamental idea of this dissertation originated from a 30-minute discussion with
Jeff in a snowing, winter morning in 2011, after I had tried some other frustrating
approaches for several months. At that time, I was excited by the idea but I was re-
ally not sure how far I could go from there. It is Jeff’s guidance, encouragement, and
support that help me eventually arrive at the end of this long journey. I will never
forget the extremely insightful, detailed comments from Jeff regarding everything
including ideas, methods, paper writing, and talk presentation. The inspiration I
gain during this training and the skills I learnt from him is invaluable to my future
career. I owe my deepest gratitude to him.

I am fortunate to have Prof. David DeWitt, Prof. AnHai Doan, and Prof. Jignesh
Patel from the Database Group on my committee. I happened to meet David
relatively late in my Ph.D study, but I had been inspired by his work and passion
in database system research along the way. I am grateful to him for his time and
feedback on this dissertation. AnHai and Jignesh raised lots of tough but really
insightful questions on the work presented here, which deepened my understanding
on both the problems and the solutions. They also offered numerous valuable
comments and suggestions that help improve this dissertation. I am thankful to
them for all their contributions. I am also thankful to Prof. Christopher Ré for his
early input on this work when he was at the University of Wisconsin-Madison.

I thank Prof. David Page for teaching me machine learning and generously
agreeing to serve on my committee. I thank Prof. Remzi Arpaci-Dusseau, Prof. Eric

iii

Bach, Prof. Shan Lu, Prof. Mary Vernon, Prof. Tonghai Yang, and Prof. Chunming
Zhang. This dissertation benefits from what I learnt from their classes. I also want
to thank Prof. Jin-Yi Cai for helpful discussions. Special thanks to Angela Thorp
for helping me through various administration stuff.

Over the years, I took several internships at industry companies. I spent two
fruitful summers at NEC Labs. This dissertation indeed started from my intern
project there. I thank all my mentors: Yun Chi, Hakan Hacıgümüş, Junichi Tatemura,
and Shenghuo Zhu, for their great help and guidance during my internships. I
also spent one wonderful summer at Google, working with the F1 team on query
optimization. Special thanks go to my mentors: John Cieslewicz, Stephan Ellner,
Felix Weigel, and Chad Whipkey. The experience I gained from building real large
systems is precious to my future career.

I want to thank all past and current students in the Database Group. It was great
honor for me to be admitted into this great group, with so many smart, friendly,
and hard-working fellow students. Throughout the years, I made a lot of friends
and learnt lots of things from them. In some sense, I could not have finished this
dissertation without their help. Thanks also go to many friends in the Computer
Sciences Department outside the Database Group, and go to other friends in this
great university and this great city. I apologize that I could not make a complete
list here that would otherwise make this paragraph ridiculously long.

Finally, I would like to thank my parents for their endless love and support in
my life. My mother started teaching me the importance of being a knowledgeable
and well-educated person when I was still a kid. It was her hope that I could pursue
a Ph.D degree. I wish she could still see this dissertation, and I believe she would
be very happy. My father always gives me the freedom to choose whatever I want
to do. The only decision he made for me during my life, as far as I can remember,
was to ask me to give up the offer from the Chemistry Engineering Department of
a top Chinese university and pursue a computer science degree, although he knew
little about computer science at that time. Without this crucial decision, I would
not have the chance to work in the exciting area of database systems and write this
dissertation. I therefore dedicate this dissertation to them.

iv

Contents

Contents iv

List of Tables vii

List of Figures viii

Abstract xi

1 Introduction 1
1.1 Prediction For Single-Query Workloads 2
1.2 Prediction For Multi-Query Workloads 3
1.3 Measuring Uncertainty 4
1.4 Improving Query Plans by Re-Optimization 4

2 Query Execution Time Prediction for Single-Query Workloads 6
2.1 Introduction 7
2.2 The Framework 9
2.3 Calibrating Cost Units 11
2.4 Refining Cardinality Estimation 16
2.5 Experimental Evaluation 25
2.6 Related Work 38
2.7 Summary 39

3 Query Execution Time Prediction for Multi-Query Workloads 40

v

3.1 Introduction 41
3.2 The Framework 44
3.3 Predictive Models 51
3.4 Experimental Evaluation 61
3.5 Related Work 74
3.6 Summary 75

4 Uncertainty-Aware Query Execution Time Prediction 76
4.1 Introduction 77
4.2 Preliminaries 81
4.3 Input Distributions 83
4.4 Cost Functions 89
4.5 Distribution of Running Times 93
4.6 Experimental Evaluation 106
4.7 Related Work 117
4.8 Summary 118

5 Sampling-Based Query Re-Optimization 119
5.1 Introduction 120
5.2 The Re-Optimization Algorithm 123
5.3 Theoretical Analysis 126
5.4 Optimizer “Torture Test” 135
5.5 Experimental Evaluation 144
5.6 Related Work 157
5.7 Summary 159

6 Conclusion 161

A Theoretic Results 164
A.1 Proof of Lemma 2.8 164
A.2 Variance of The Selectivity Estimator 167
A.3 A Tighter Upper Bound for Covariance 170

vi

A.4 More Discussions on Covariances 179
A.5 Proof of Lemma 5.8 181
A.6 Proof of Theorem 5.9 183
A.7 Additional Analysis of Re-Optimization 186

References 189

vii

List of Tables

2.1 Actual values of PostgreSQL optimizer parameters on PC1. 27
2.2 Actual values of PostgreSQL optimizer parameters on PC2. 27

3.1 Notation used in the queueing model. 56
3.2 Notation used in the buffer pool model. 58
3.3 Actual values of PostgreSQL optimizer parameters. 64
3.4 Features of si. 65
3.5 Values of buffer pool model parameters. 66

4.1 Terminology and notation. 82
4.2 Non-central moments of X ∼ N(µ,σ2). 97

viii

List of Figures

2.1 The architecture of our framework. 10
2.2 Uniform TPC-H 1GB database. 29
2.3 Queries projected on the 3 dominating principal components. 31
2.4 Skewed TPC-H 1GB database. 33
2.5 Uniform TPC-H 10GB database. 34
2.6 Skewed TPC-H 10GB database. 35
2.7 Additional overhead of sampling on TPC-H 1GB database. 36
2.8 Additional overhead of sampling on TPC-H 10GB database. 37

3.1 Interactions between queries. 42
3.2 The prediction problem for multiple concurrently-running queries. . . 44
3.3 Example query and its execution plan. 46
3.4 Progressive predictor. 47
3.5 A queueing network. 55
3.6 Variance in query execution times. 63
3.7 Prediction error on TPC-H1 for different approaches. 68
3.8 Prediction error on TPC-H2 for different approaches. 68
3.9 Prediction error on MB1 for different approaches. 69
3.10 Prediction error on MB2 for different approaches. 70
3.11 Prediction error on MB3 for different approaches. 70
3.12 Sensitivity of prediction accuracy on TPC-H1. 71
3.13 Runtime overhead in evaluating analytic models. 72

ix

4.1 Example query plan. 82
4.2 rs and rp of the benchmark queries over different experimental settings. 109
4.3 Robustness of rs and rp with respect to outliers. 110
4.4 Dn of the benchmark queries over uniform TPC-H 10GB databases. . . 113
4.5 The proximity of Prn(α) and Pr(α) with respect to different Dn’s. . . . 114
4.6 Relative overhead of TPCH queries on PC1. 116

5.1 Join trees and their local transformations. 126
5.2 Characterization of the re-optimization procedure (g and l stand for

global and local transformations, respectively). For ease of illustration,
Pi is only noted as a global transformation of Pi−1, but we should keep
in mind that Pi is also a global transformation of all the Pj’s with j < i. 130

5.3 SN with respect to the growth of N. 131
5.4 Query running time over uniform 10GB TPC-H database (z = 0). . . . 147
5.5 The number of plans generated during re-optimization over uniform

10GB TPC-H database (z = 0). 148
5.6 Query running time excluding/including re-optimization time over

uniform 10GB TPC-H database (z = 0). 149
5.7 Query running time over skewed 10GB TPC-H database (z = 1). 150
5.8 The number of plans generated during re-optimization over skewed

10GB TPC-H database (z = 1). 151
5.9 Query running time excluding/including re-optimization time over

skewed 10GB TPC-H database (z = 1). 152
5.10 Query running times of 4-join queries. 153
5.11 Query running times of 5-join queries. 154
5.12 Query running times of the OTT queries on the system A. 155
5.13 Query running times of the OTT queries on the system B. 156

6.1 Use sampling as a post-processing, validation step. 161

x

A.1 Comparison of the space of candidate optimal plans when local estima-
tion errors are overestimation-only or underestimation-only. Candidate
optimal plans are shaded. 188

xi

Abstract

The problem of query execution time prediction and query optimization is funda-
mental in database systems. Although decades of research has been devoted to this
area and significant progress has been made, it remains a challenging problem for
many queries in real-world database workloads.

In this dissertation, we study a simple idea based on calibration of existing cost
models used by current query optimizers. The calibration procedure mainly relies
on refining cardinality estimates via sampling. We show how sampling can be
effectively employed to provide better query execution time predictions for both
single-query and multi-query workloads. Although our approaches outperform
the state of the art, they are still not perfect. We therefore turn to the complementary
problem of quantifying uncertainty in query execution time prediction. Uncertainty
information could be useful in many applications such as query optimization, query
scheduling, and query progress monitoring. Specifically, we develop a predictor
that can provide distribution rather than point estimates for query execution times.
Again, sampling plays an important role in the development of this predictor. We
show that the variances of the estimated distributions are strongly correlated with
the actual prediction errors. While this line of work improves query execution time
estimates, it cannot make a query run faster. Given that the quality of cardinality
estimates is crucial to cost-based query optimization, it is natural to ask if the refined
cardinality estimates via sampling could also be useful to query optimizers. We
further study this problem and propose an iterative sampling-based compile-time
query re-optimization procedure. We show the efficiency and effectiveness of this
approach both theoretically and experimentally.

1

Chapter 1

Introduction

Cloud computing and big-data analytics are two hot spots intriguing to the database
research community today. Providing cloud-based database services, known as
“database as a service” (DaaS), has been a focus of many big-data companies such
as Amazon, Google, and Microsoft. DaaS providers, however, face challenges that
are both familiar and unfamiliar to traditional database researchers. On one hand,
classic database management issues remain. For example, query optimization
becomes even more difficult as data volume and query complexity keep growing in
big-data applications. On the other hand, new database management issues arise.
For instance, admission control, query scheduling, and resource planning, which
were previously duties of database administrators, now become critical issues in
the context of DaaS.

In this dissertation, we start by studying a fundamental problem underlying
these database management challenges in DaaS: predict the execution time of a
query. A DaaS provider has to manage infrastructure costs as well as honor service
level agreements (SLAs), and many system management decisions can benefit from
prediction of query execution time, including:

• Admission Control: Knowing the execution time of an incoming query can
enable cost-based decisions on admission control [88, 96].

2

• Query Scheduling: Knowing query execution time is crucial in deadline and
latency aware scheduling [27, 42].

• Progress Monitoring: Knowing the execution time of an incoming query can
help avoid “rogue queries” that are submitted in error and take an unreason-
ably long time to execute [67].

• System Sizing: Knowing query execution time as a function of hardware
resources can help in system sizing [91].

In a sense, this is a very old problem that has perplexed database practitioners
for decades: query optimizers rely on reasonable cost models for query execution
time estimates. However, existing cost models are insufficient for emerging DaaS
applications. They are designed for query optimization purpose, which is somehow
robust to even significant errors presented in cost estimates. In previous work, it
has been shown that just relying on existing cost models can lead to orders-of-
magnitude errors in query execution time estimates [11, 36]. Researchers then
turned to machine-learning based approaches, and there has been an intensive line
of recent work in this direction (e.g., [11, 33, 36]). In this dissertation, we study
this problem from a different perspective: we can obtain better predictions via
a systematic yet lightweight calibration procedure of existing cost models. This
approach shows competitive and often much better execution time estimates com-
pared with previous approaches. We then extend this approach to predict query
execution times for multiple, concurrently-running queries. We further study two
applications of this framework: (1) quantifying uncertainty in query execution time
estimation and (2) improving query plans returned by the query optimizer.

1.1 Prediction For Single-Query Workloads

Accurate query execution time estimation is not a trivial problem. While the details
of the cost models used by current query optimizers differ, they almost follow
the same implementation logic: estimate (1) the amount of “work” that a query

3

needs to accomplish (e.g., the number of CPU instructions executed, the number
of disk pages accessed, etc.) and (2) the time spent per unit work (referred to as
“cost unit” in the following). Multiplying these two quantities gives the estimated
execution time. The challenge here is to get accurate values for both quantities.
Unfortunately, neither of them is easy to estimate: the former requires accurate
selectivity/cardinality estimation, a well-known difficult problem in the literature
of database and statistics research; the latter requires accurate knowledge about
system execution status, such as CPU or I/O speeds at a given instant, which
appears to fluctuate due to concurrent workloads. In practice, optimizers therefore
have to adopt (often invalid) assumptions and heuristics to estimate these quantities.

Our approach to this problem is a systematic calibration procedure of the cost
model [94]. We calibrate the cost units by using a set of primitive queries (basically
sequential scans and index-based scans), and we calibrate (or refine) the selectivity
estimates by using a sampling-based approach. While the idea of sampling-based
selectivity estimation goes back two decades [50, 62], it is not used in current query
optimizers mainly due to efficiency reasons, because sampling has to be used for
all (perhaps hundreds or even thousands of) plans explored by the optimizer. Our
key observation here is that, for the purpose of execution time prediction, we only
need to use sampling once (for the final optimal plan chosen by the optimizer). We
demonstrate that this idea can lead to better predictions than those reported in
previous work. We present the details of this work in Chapter 2.

1.2 Prediction For Multi-Query Workloads

In practice, it is rarely the case that there is only one single query running in a
dedicated database system. Rather, in a typical DaaS scenario, multiple queries
are usually concurrently running, and workloads are subject to change from time
to time. There is only a fraction of previous work aimed at query execution time
prediction for multi-query workloads [10, 33]. However, this work assumes that
the workloads are static, namely, all possible queries in the workloads are known
beforehand. They then develop prediction techniques based on machine learning.

4

We go one step further by developing a prediction framework that is not re-
stricted to static workloads [93]. Specifically, we extend our framework of predicting
query execution time for single-query workloads to multi-query workloads, based
on the following observation. Note that, in this scenario, the amount of work a
query needs to accomplish is the same as that if the query were running without
interactions from other queries. The existence of other queries, however, does affect
the values of the cost units. For example, two concurrently-running I/O-intensive
queries might slow down each other. Built on top of this observation, we develop a
combination queueing model and buffer pool model to estimate cost units under
concurrent database workloads. We present the details of this work in Chapter 3.

1.3 Measuring Uncertainty

Although we have made progress in predicting execution times for both standalone
and concurrently-running queries, we find that sometimes significant prediction
errors could still occur. While continuing improving the prediction accuracy is still
a promising way to go, we turn to another orthogonal but complementary problem
of quantifying the uncertainty in the prediction [95]. It is a general principle that
predictions are more convincing and useful if they are accompanied by confidence
intervals. Uncertainty information is also useful in a couple of database applications
including query optimization, query scheduling, and query progress monitoring.

Our basic idea is to view the two aforementioned quantities (i.e., amount of work
and cost units) as random variables rather than fixed constants. We then again use
sampling-based methods to estimate a distribution of likely query running times.
Recent work has shown the effectiveness of leveraging distribution information in
query scheduling [26]. We present the details of this work in Chapter 4.

1.4 Improving Query Plans by Re-Optimization

So far, we have systematically studied the problem of estimating query execution
time and its uncertainty. In a nutshell, our idea is based on the fact that sampling can

5

provide us with better selectivity estimates than histogram-based approaches used
by current optimizers, especially on correlated data. However, sampling incurs
additional overhead so it should be used conservatively. Recall that, in our previous
work, we used sampling as a “postprocessing” step once per query to “validate”
selectivity estimates, or in other words, detect potential errors in optimizer’s cost
estimates, for the final plan returned by the optimizer. But, if there were really
significant errors, the optimality of this final plan would itself be questionable. A
natural question is then if sampling could be further used to improve query plans.

We explore this question in Chapter 5. Our basic idea is simple: if significant
cardinality estimation errors are detected, we go one step further to let the opti-
mizer re-optimize the query by also feeding it the cardinality estimates refined via
sampling. This gives the optimizer second chance to generate a different, perhaps
better, plan. Note that we can again apply the sampling-based validation step to
this new plan returned by the optimizer. It therefore leads to an iterative procedure
based on feedback from sampling: we can repeat this optimization-then-validation
loop until the plan chosen by the optimizer does not change.

We further study this re-optimization procedure in detail, both theoretically
and experimentally. Our theoretical analysis suggests that the efficiency of this
procedure and the quality of the final plan returned can be guaranteed under
certain assumptions, and our experimental evaluation on the TPC-H benchmark
database [6] as well as our own database with highly correlated data demonstrates
the effectiveness of this approach.

6

Chapter 2

Query Execution Time Prediction for
Single-Query Workloads

Predicting query execution time is useful in many database management issues
including admission control, query scheduling, progress monitoring, and system
sizing. Recently the research community has been exploring the use of statistical
machine learning approaches to build predictive models for this task. An implicit
assumption behind this work is that the cost models used by query optimizers are
insufficient for query execution time prediction.

In this chapter we challenge this assumption and show while the simple ap-
proach of scaling the optimizer’s estimated cost indeed fails, a properly calibrated
optimizer cost model is surprisingly effective. However, even a well-tuned optimizer
cost model will fail in the presence of errors in cardinality estimates. Accordingly
we investigate the novel idea of spending extra resources to refine estimates for
the query plan after it has been chosen by the optimizer but before execution. In
our experiments we find that a well calibrated query optimizer model along with
cardinality estimation refinement provides a low overhead way to provide estimates
that are always competitive and often much better than the best reported numbers
from the machine learning approaches.

7

2.1 Introduction

Predicting query execution time has always been desirable if somewhat elusive
capability for database management systems. This capability has received a flurry
of attention recently, perhaps because it has become increasingly important in the
context of offering databases as a service (DaaS).

Recent work on predicting query execution time [11, 36, 88, 96] has focused on
various machine learning techniques, which treat the database system as a black box
and try to learn a query running time prediction model. This move toward black
box machine learning techniques is implicitly and sometimes explicitly motivated
by a belief that query optimizers’ cost estimations are not good enough for running
time prediction. For example, in [36], the authors found that using linear regression
to map the cost from Neoview’s commercial query optimizer to the actual running
time was not effective (see Figure 17 of [36]). In [11], the same approach was used to
map PostgreSQL’s estimate to the actual execution time, and similar disappointing
results were obtained (see Figure 5 of [11]).

It is clear from this previous work that post-processing the optimizer cost esti-
mate is not effective. However, we argue in this chapter that this does not imply
that optimizer estimates are not useful — to the contrary, our experiments show
that if the optimizer’s internal cost model is tuned before making the estimate, the
optimizer’s estimates are competitive with and often superior to those obtained by
more complex approaches. In more detail, for specificity consider the cost model
used by the PostgreSQL query optimizer:

Example 2.1 (PostgreSQL’s Cost Model). PostgreSQL’s optimizer uses five parameters
(referred to as cost units) in its cost model: c = (cs, cr, ct, ci, co)ᵀ, defined as follows:

1) cs: seq_page_cost, the I/O cost to sequentially access a page.

2) cr: random_page_cost, the I/O cost to randomly access a page.

3) ct: cpu_tuple_cost, the CPU cost to process a tuple.

4) ci: cpu_index_tuple_cost, the CPU cost to process a tuple via index access.

8

5) co: cpu_operator_cost, the CPU cost to perform an operation such as hash.

The cost CO of an operator O in a query plan is then computed by a linear combination of
cs, cr, ct, ci, and co:

CO = nᵀc = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (2.1)

The values n = (ns,nr,nt,ni,no)ᵀ here represent the number of pages sequentially
scanned, the number of pages randomly accessed, and so forth, during the execution
of the operator O. The total estimated cost of a query plan is then simply the sum of the
costs of the individual operators in the query plan.

The accuracy of CO hence depends on both the accuracy of the c’s and the n’s.
In PostgreSQL, by default, cs = 1.0, cr = 4.0, ct = 0.01, ci = 0.005, and co = 0.0025.
The cost CO in Equation (2.1) is thus reported in units of sequential page I/O cost
(since cs = 1.0). Note that these cost units were somewhat arbitrarily set by the
optimizer designers with no knowledge of the system on which the query is actually
being run. Using linear regression to map an estimate so obtained will only work if
the ratios among these units are correct, and not surprisingly, these default ratios
were far from correct on our systems.

Of course, the accuracy of CO also depends on the quantities ns, nr, nt, ni, and
no. Determining accurate values for these n’s is not a matter of calibration — rather,
it is a matter of good cardinality estimation in the optimizer. Hence one could
say that we have reduced the problem of query time prediction to the previously
unsolved problem of cardinality estimation. In a sense this is true, but further
reflection reveals that we are solving a subtly but significantly different problem.

In their traditional role, cardinality estimates are required for every cardinality
encountered as the optimizer searches thousands or tens of thousands of alternative
plans. This of course means that the estimation process itself must be extremely
efficient, or long optimization times will result. But our problem is different: we
must determine cardinalities for the single plan that the optimizer has already
chosen. The fact that we are working on a single plan means we can afford to spend

9

some extra time to improve the original optimizer estimates. Specifically, in this
chapter we consider using sampling-based approaches to refine these estimates. We
believe that although sampling-based approaches may be too expensive to be used
while searching for good query plans, they can be practically used for correcting the
erroneous cardinality estimates in a ready-to-be-executed query plan.

Our experiments show that if we correctly calibrate the constants in the opti-
mizer’s cost model, it yields good query execution time estimates when the cardi-
nality estimates are good (as is the case in, for example, the uniformly distributed
data set variants of the TPC-H benchmark). Furthermore, “expensive” techniques
such as sampling can be effectively used to improve the cardinality estimates for
the chosen plan. Putting the two together yields cost estimates that are as good or
better than those obtained by previously studied machine learning approaches.

The rest of this chapter is organized as follows. We first give an overview of our
cost-model based approach in Section 2.2. We then discuss the two error-correction
steps, i.e., calibrating cost units and refining cardinality estimates, in Sections 2.3
and 2.4, respectively. We further conduct extensive experimental evaluations and
present our results in Section 2.5. We discuss related work in Section 2.6 and
summarize this chapter in Section 2.7.

2.2 The Framework

Example 2.1 demonstrates that errors in c and n might prevent us from leveraging
CO = nᵀc to predict query execution time. Our basic idea is simply to correct these
errors in a principled fashion.

As illustrated in Figure 2.1, our framework consists of two error-correction
stages, namely, an offline profiling stage to calibrate the c, and an online sampling
stage to refine the n:

• Offline profiling to calibrate c:

The errors in c reflect an inaccurate view of the underlying hardware and
database system. To correct this, instead of using the default values assigned

10

DB Server

calibration

queries

calibrated

cost units

final query

plan

offline

profiling

online

sampling

refined

cardinality

estimates

optimizer’s

cost model
prediction

Figure 2.1: The architecture of our framework.

by the query optimizer, we calibrate them by running a family of profiling
queries on the system on which the queries will be run. Note that this profiling
stage is offline. Moreover, it only needs to be run once as long as the underlying
hardware and software configuration does not change.

We describe the details of the profiling stage in Section 2.3.

• Online sampling to refine n:

The errors in n reflect errors in cardinality estimation. Once the query plan has
been chosen by the query optimizer, we re-estimate cardinalities, if necessary,
using a sampling-based approach. Although using sampling for cardinality
estimation is well-known, current DBMS optimizers exclude sampling from
their implementations, perhaps due to the additional overhead sampling
incurs. However, since we only have to estimate cardinalities for one plan, the
overhead of sampling is affordable in practice. We describe the details of the
sampling stage in Section 2.4. We note that the important idea is that there
is an opportunity to spend extra time refining cardinality estimates once a

11

query plan has been chosen; sampling is one example of how that could be
done, and finding other techniques is an interesting area for future work.

The advantages of our framework for predicting query execution time include:

• Lightweight: The profiling step is fast and so can be conducted in a new hard-
ware environment quickly. The sampling step, as will be shown, introduces
small (usually < 10%) and tunable overhead.

• No training data needed: Unlike machine-learning based approaches, which
rely on training data representative of the actual workload, our framework
does not rely on such a training data set and so can handle ad hoc queries well.

• White-box approach: Instead of sophisticated statistical models (e.g., SVM and
KCCA), which are often difficult to understand for non-experts, our framework
adopts an intuitive white-box approach that fits naturally into the existing
paradigm of query optimization and evaluation in relational database systems.

2.3 Calibrating Cost Units

In this section we consider the task of calibrating the cost units in the optimizer
cost model to match the true performance of the hardware and software on which
the query will be run. It turns out that closely related problems have been studied
in the context of heterogeneous DBMS [32], DB resource virtualization [84], and
storage type selection [98]. Previous work, however, has focused either on cost
models for particular operators (e.g., selections and 2-way joins in [32]), or on a
subset of cost units dedicated to a particular subsystem of the DBMS (e.g., CPU
in [84] and I/O in [98]). We build on this previous work following their technique
of using a set of calibration queries. The basic idea is that for each cost unit to be
calibrated, one designs some particular query that isolates this parameter from the
others. In practice, this is not completely straightforward in that not every cost unit
can be isolated in a single query.

12

2.3.1 Guiding Principles

Ideally, we wish to have one calibration query for each parameter. However, this
is not always possible. For instance, there is no SQL query which involves the
cpu_operator_cost but not the cpu_tuple_cost. A natural generalization is then to
use k calibration queries for k parameters, as was done in [84]. The following
example illustrates this idea.

Example 2.2 (Calibration Query). Suppose R is some relation that is buffer pool resident.
We can use the following two calibration queries to obtain the parameters cpu_tuple_cost
and cpu_operator_cost:

• q1: SELECT * FROM R

• q2: SELECT COUNT(*) FROM R

Since R is memory resident, there is no I/O cost for q1 or q2. q1 only involves the pa-
rameter cpu_tuple_cost, while q2 involves both cpu_tuple_cost and cpu_operator_cost
(due to the COUNT aggregation). Suppose the execution time of q1 and q2 are t1 and t2,
respectively. Since the overhead due to cpu_tuple_cost for q1 and q2 are the same, we can
then infer cpu_operator_cost with respect to the execution time t2 − t1.

Specifically, let the number of tuples processed bent, and the number of CPU operations
be no, as in Equation (2.1). In PostgreSQL’s cost model, a CPU operation means things
like adding two integers, hashing an attribute, and so on. no is thus the number of such
operations performed. On the other hand, nt is the number of input tuples (sometimes the
output tuples or the sum of both, depending on the specific operator). Here, for q1, the cost
model will only charge one ct per tuple, since the CPU merely reads in the tuple without
any further processing. For q2, in addition to charging one ct per tuple for reading it, the
cost model will also charge one co per tuple for doing the aggregation (i.e., COUNT), and
hence the total CPU cost is estimated to be ntct+noco. Note that for this particular query
q2, we coincidentally have nt = no = |R|. In general, nt and no could be different. For
example, for the sort operator, nt is the number of input tuples, and no is the number of
comparisons made. In this case, no = nt lognt.

13

Now suppose that Tt is the time for the CPU to process one tuple, and To is the time for
one CPU operation. We then have

t1 = Tt · nt,

t2 = Tt · nt + To · no.

Solving these two equations gives us the values of Tt and To, in turn determines ct and
co in Equation (2.1).

In general, with a set of calibration queries Q, we first estimate ni for each
qi ∈ Q and then measure its execution time ti. With N = (n1, · · · , nk)ᵀ and
t = (t1, · · · , tk)ᵀ, we can solve the following equation for c:

Nc = t,

which is just a system of k equations.
The next question is then, given a set of optimizer cost units c, how to design a

set of calibration queriesQ. Our goal is to design a set with the following properties:

• Completeness: Each cost unit in c should be covered by at least one calibration
query q ∈ Q.

• Conciseness: Each queryq ∈ Q should be necessary to guarantee completeness.
In other words, any subset Q ′ ⊂ Q is not complete.

• Simplicity: Each query q ∈ Q should be as simple as possible when Q is both
complete and concise.

Clearly “completeness” is mandatory, while the others are just “desirable.” Since
the possible number of SQL queries on a given database is infinite, we restrict our
attention to concise complete subsets. However, there is still infinite number of sets
Q that are both complete and concise. Simpler queries are preferred over more
complex ones, because it is easier to obtain correct values for cardinalities required

14

by computing quantities such as nt and no in Example 2.2 (getting exact values for
such cardinalities may be difficult for operators embedded in deep query trees).

2.3.2 Implementation

We designed the 5 calibration queries for the PostgreSQL optimizer as follows. We
chose queries qi for Q by introducing individual cost units one by one:

• cpu_tuple_cost: We use query q1:

SELECT * FROM R

as the calibration query. The relation R is first paged into the buffer pool, and
hence there is no I/O cost involved: n1 = (0, 0,nt1, 0, 0)ᵀ.

• cpu_operator_cost: We use query q2:

SELECT COUNT(*) FROM R

as another calibration query. We then use the method illustrated in Exam-
ple 2.2. Again, R is memory resident: n2 = (0, 0,nt2, 0,no2)

ᵀ and nt2 = nt1.

• cpu_index_tuple_cost: We use query q3:

SELECT * FROM R WHERE R.A < a

where R.A has a clustered index and we pick a so that the optimizer will choose
an index scan. This query involves cpu_tuple_cost, cpu_index_tuple_cost, and
cpu_operator_cost. Once again, R is memory resident: n3 = (0, 0,nt3,ni3,no3)

ᵀ.

• seq_page_cost: We use query q4:

SELECT * FROM R

as the calibration query. This query will be executed in a sequential scan,
and the cost model only involves overhead in terms of seq_page_cost and
cpu_tuple_cost: n4 = (ns4, 0,nt4, 0, 0)ᵀ.

• random_page_cost: We use query q5:

15

SELECT * FROM R where R.B < b

as the calibration query. Here R.B is some attribute of the relation R on which
an unclustered index is built. The values of B are uniformly generated, and
we pick b so that the optimizer chooses an index scan. Ideally, we would
like that the qualified tuples were completely randomly distributed so that
we could isolate the parameter random_page_cost. However, in practice, pure
random access is difficult to achieve, since the execution subsystem can first
determine the pages that need to be accessed based on the qualified tuples
before it actually accesses the pages. In this sense, local sequential accesses
are unavoidable, and the query plan involves more or less overhead in terms
of seq_page_cost. In fact, a typical query plan of this query will contain all the
five parameters: n5 = (ns5,nr5,nt5,ni5,no5)

ᵀ.

Notice that ni can be estimated relatively accurately due to simplicity of qi. Further-
more, the 5 equations generated by the 5 queries are independent, which guarantees
the existence of a unique solution for c. This can be easily seen by observing the
matrix N = (n1, · · · , n5)

ᵀ, namely,

N =

0 0 nt1 0 0
0 0 nt2 0 no2

0 0 nt3 ni3 no3

ns4 0 nt4 0 0
ns5 nr5 nt5 ni5 no5

 .

Note that the determinant |N| satisfies |N| 6= 0, since by rearranging the columns of
N, we can make it a triangular matrix.

To make this approach more robust, our implementation uses multiple queries
for each qi and finds the best-fitting of c. This is done by picking different relations
R and different values for the a in the predicates of the form R.A < a.

16

2.4 Refining Cardinality Estimation

We discuss how to refine n in this section. To make this chapter self-contained, we
first discuss how the optimizer obtains n for a given query plan. We then propose
a sampling-based method of refining the cardinality estimates (and hence the n)
of the final plan chosen by the optimizer. We describe the details of the algorithm
and our current implementation.

2.4.1 Optimizer’s Estimation of n

The optimizer estimates query execution cost by aggregating the cost estimates of
the operators in the query plan. To distinguish blocking and non-blocking operators,
this cost model comprises of the start_cost and total_cost of each operator:

• start_cost (sc) is the cost before the operator can produce its first output tuple;

• total_cost (tc) is the cost after the operator generates all of its output tuples.

Note that the cost of an operator includes the cost of its child operators.
As an example, we show how n is derived for the in-memory sort and nested-loop

join operators in PostgreSQL. These operators are representative of blocking and
non-blocking operators, respectively. In the following illustration, run_cost (rc for
short) is defined as rc = tc− sc, and Nt is the (estimated) number of input tuples
for the operator. Observe that the costs are given as linear combinations of c.

Example 2.3 (In-Memory Sort). Quick sort is used for tables that optimizer estimates
can be completely held in memory. The values sc and rc are estimated as follows:

sc = 2 · co ·Nt · logNt + tc of child,

rc = ct ·Nt.

17

Example 2.4 (Nested-Loop Join). The nested-loop join operator joins two input rela-
tions. The sc and rc are estimated as follows:

sc = sc of outer child + sc of inner child,

rc = ct ·Not ·Nit +Not · rc of inner child.

Not and Nit are the number of input tuples from the outer and inner child operator.

Notice that the main uncertainty in n comes from the estimated input cardinality
Nt in both of these examples. In general, the logic flow in the cost models of
PostgreSQL optimizer can be summarized with five steps:

1) estimate the input/output cardinality;

2) compute the CPU cost based on cardinality estimates;

3) estimate the number of accessed pages according to the cardinality estimates;

4) compute the I/O cost based on estimates of accessed pages;

5) compute the total cost as the sum of CPU and I/O cost.

Hence, our main task in refining n is to refine the input/output cardinalities for
each physical operator in a given query plan.

2.4.2 Cardinality Refinement

As mentioned in the introduction, traditionally cardinality estimation has had to
satisfy strict performance constraints because it is done for every plan considered
by the optimizer. This has led to compromises that may produce inaccuracies in
estimates that are too large for execution time estimation.

Our goal is to refine the cardinality estimates for the plan chosen by the optimizer.
Clearly, this will increase the overhead of the optimization phase. However, the key
insight here is that because the refinement procedure only needs to be performed
once per query, rather than once per plan, we can afford to spend more time than is
possible for traditional cardinality estimation.

18

2.4.3 A Sampling-Based Approach

In principle, any approach that can improve cardinality estimation can be applied.
We use a generalized version of the sequential-sampling estimator proposed in [44]
for the following two reasons:

• It incorporates a tunable trade-off between efficiency (i.e., the number of
samples taken) and effectiveness (i.e., the precision of the estimates);

• It can simultaneously estimate cardinalities for multiple operators in the plan.

In this chapter, we extend the framework in [44] in the following two aspects:

• The estimator described in [44] is for join queries. We generalize the frame-
work to queries with arbitrary number of selections and joins. We prove that
this extension preserves the two key properties, namely, unbiasedness and
strong consistency, of the original estimator.

• The framework described in [44] uses random disk accesses to take samples.
In comparison, we propose to take samples offline, store them as materialized
views, and directly use them at runtime. This greatly reduces the runtime
overhead and requires very minimal changes to the database engine (e.g., a
few hundred lines of C code in the case of PostgreSQL). We further show that
this offline sampling preserves the semantics of the original online sampling.

We next first describe the estimator in its generalized form, and then describe our
cardinality refinement algorithm and its implementation details.

2.4.4 The Estimator

LetD be a database consisting ofK relationsR1, ..., RK. Suppose thatRk is partitioned
into mk blocks each with size Nk, namely, |Rk| = mkNk. Consider the two basic
relational operators: selection σF (F is a boolean formula representing the selection
condition), and cross-product ×. For σF, we define the output of an input block B to
be σF(B). For ×, we define the output of the two input blocks B and B ′ to be B×B ′.

19

Instead of estimating the cardinality of the output relation directly, the estimator
will estimate the selectivity of the operator, which is defined as the output cardinality
divided by the input cardinality. Specifically, the selectivity of the selection operator
σF is ρR = |σF(R)|/|R| where R is the input relation. Moreover, the selectivity of σF
on a particular block B of R is ρB = |σF(B)|/|B|. On the other hand, the selectivity
of the cross-product operator × is always 1. It is then straightforward to obtain the
output cardinality once we know the selectivity of the operator.1

In the following, without loss of generality, we will assume that the query
considered is over relations R1, ..., RK, and we use the notation R = R1 × · · · × RK.
Let B(k, j) be the j-th block of relation k (1 6 j 6 mk, and 1 6 k 6 K). We use
B(L1,i1 , ...,LK,iK) to represent B(1,L1,i1) × · · · × B(K,LK,iK), where B(k,Lk,ik) is the
block (with index Lk,ik) randomly picked from the relation Rk in the ik-th sampling
step. Moreover, we use the notation Bi if i1 = i2 = · · · = iK = i.

We first have the following observation:

Lemma 2.5. Consider σF(R). Let B1, ..., Bn be a sequence of n random samples (with
replacement) from R. Define ρBi = |σF(Bi)|/|Bi| (1 6 i 6 n). Then E

[
ρBi
]
= ρR.

Proof. We have

ρR =
|σF(R)|

|R|
=

K∑
k=1

mk∑
j=1

|σF(B(k, j))|∏K
k=1mkNk

.

Since

E
[∣∣σF(Bi)∣∣] =

K∑
k=1

mk∑
j=1

|σF(B(k, j))|∏K
k=1mk

,

1Note that the input cardinality is already known before the estimation procedure runs. It is
simply the product of the cardinalities of the underlying relations that are inputs to the operator,
which can be directly obtained from the statistics stored in system catalogs.

20

it then follows that

E
[
ρBi
]
=
E
[∣∣σF(Bi)∣∣]∏K
k=1Nk

=

K∑
k=1

mk∑
j=1

|σF(B(k, j))|∏K
k=1mkNk

= ρR.

This completes the proof of the lemma.

Define

ρ̃R =
1
n

n∑
i=1

ρBi .

Then it is easy to see from Lemma 2.5 that E
[
ρ̃R
]
= ρR. Moreover, since the random

variables ρBj are i.i.d., by the strong law of large numbers, we have Pr
[

lim
n→∞ ρ̃R =

ρR
]
= 1. We summarize this result in the following lemma:

Lemma 2.6. E
[
ρ̃R
]
= ρR, and Pr

[
lim
n→∞ ρ̃R = ρR

]
= 1.

Lemma 2.6 can be further generalized to queries that contain an arbitrary number
of selections and joins:

Theorem 2.7. Let q be any query involving only selections and joins over R, and let ρq
be the selectivity of q. Then E

[
ρ̃q
]
= ρq, and Pr

[
lim
n→∞ ρ̃q = ρq

]
= 1.

Proof. The proof is easy by noticing that q can be written as its normal form [7]:
σF(R). We then apply Lemma 2.5 to complete the proof.

In statistical terminology, the estimator ρ̃q is unbiased, and strongly consistent for
ρq: the more samples we take, the closer ρ̃q is to ρq. This gives us a way to control
the trade-off between the estimation accuracy and the number of samples we take.

The estimator we just described takes samples from each relation uniformly and
independently (called independent sampling [44]). Therefore, after n steps, we have
n observations in total. In [44], the authors further discussed another alternative
called cross-product sampling. The idea is that, at the i-th step, assuming the K
blocks taken from the K relations are B(1,L1,i), ..., B(K,LK,i), we can actually join
each B(k,Lk,i) with each B(k ′,Lk ′,i ′) such that 1 6 i ′ 6 i and k ′ 6= k (note that in

21

the case of independent sampling, we only join among the blocks with i ′ = i). In
this way, we can obtain nK observations after n steps.

Define

ρ̃cpR =
1
nK

n∑
i1=1

· · ·
n∑
iK=1

ρB(L1,i1 ,··· ,LK,iK)
. (2.2)

From Lemma 2.5, it is clear that ρ̃cpR is still unbiased, i.e., E
[
ρ̃cpR
]
= ρR. However,

since now the ρB(L1,i1 ,··· ,LK,iK)
’s are no longer independent, we cannot directly apply

the strong law of large numbers to show the strong consistency of ρ̃cpR , although it
still holds here (see Appendix A.1 for the proof):

Lemma 2.8. E
[
ρ̃cpR
]
= ρR, and Pr

[
lim
n→∞ ρ̃cpR = ρR

]
= 1.

Therefore, Theorem 2.7 still holds in the case of cross-product sampling. It is
also shown that cross-product sampling is always superior to independent sam-
pling because of its lower sample variance (see Theorem 2 of [44]). Therefore, our
cardinality refinement algorithm discussed next is based on cross-product sampling
instead of independent sampling.

2.4.5 The Cardinality Refinement Algorithm

There are several considerations when designing our refinement algorithm based
on the sampling-based estimator.

First, the estimator needs to access disk to take samples. However, since samples
should be randomly taken, this means significant random reads may be required
during the sampling phase, which may be too costly in practice. To overcome
this issue, as has been suggested in previous applications of sampling in DBMS
(e.g., [75]), we take samples offline and store them as materialized views in the
database. We found in our experiments that the number of samples required is
quite small and therefore can be cached in memory during runtime.

Second, the estimator we discussed so far focuses on estimating the selectivity
(or equivalently, cardinality) for a single operator. However, in practice, a query
plan may contain more than one operator, and for our purpose of refining the

22

cost estimates of this plan, we need to estimate the cardinality for each operator.
Another good property of the estimator is that, for a query plan with a fixed join
order, which is always the case when refinement is performed, we can estimate all
selection and join operators in the plan simultaneously. Consider, for example, a
three-way join query q = R1 ./ R2 ./ R3. We need to estimate the cardinality for
both q ′ = R1 ./ R2 and q. However, after we are done with q ′, we can estimate for
q by directly evaluating q ′ ./ R3. This means, we can estimate the cardinality for
each operator by simply invoking the query plan q over the sample relations and
then apply the estimator to each operator (see Theorem 2.9 below).

Theorem 2.9. Let q = σF(R1 × · · · × RK) be an arbitrary query with only selections and
joins. For every subquery qi = σFi(R1 × · · · × Ri) (1 6 i 6 K, and Fi is the selection
condition only involving R1, ..., Ri), E

[
ρ̃qi
]
= ρqi and Pr

[
lim
n→∞ ρ̃qi = ρqi

]
= 1.

Proof. The proof is simply applying Theorem 2.7 to each qi.

Third, while the estimator discussed above is both unbiased and strongly con-
sistent, it only works for queries involving selections and joins. In practice, SQL
queries can contain additional operators. A particularly common class of such
operators we encountered in TPC-H queries is aggregates (i.e., group-bys), for which
we need to estimate the number of distinct values in the input relation. Aggregates
basically collapse the underlying data distribution, so the estimator cannot work for
queries containing aggregates. As a result, we can only apply the sampling-based
estimator to the part of the query plan that does not involve aggregates. For ag-
gregate operators, we simply rely on PostgreSQL’s models for estimating output
cardinalities. However, note that, since the refinement phase may change the input
estimates for the aggregate, the output estimates for the aggregate may change as
well. We observed in our experimental evaluation (see Section 2.5) that the current
approach already leads to promising prediction of execution time in practice. We
leave the problem of further integrating state-of-the-art estimators (e.g., the GEE
estimator in [19]) for estimating the number of distinct values as future work.

Our cardinality refinement algorithm is illustrated in Algorithm 1. For the input
query q, we first call the optimizer to obtain its query plan Pq (line 30). We then

23

Algorithm 1: Cardinality Refinement.
Input: q, a SQL query
Output: Pq, query plan of q with refined cardinalities

1 HasAgg← False;
2

3 EstimateCardinality(O):
4 PO ← GetSubPlan(O);
5 Ns ←

∏
Rs∈SampleRelations(PO) |R

s|;
6 Es ← CardinalityBySampling(O);
7 NO ←

∏
RO∈Relations(PO) |RO|;

8 EO ← NO · EsNs ;
9 Treat EO as the cardinality estimate for O;

10

11 RecomputeCardinality(O):
12 if O has left child Olc then
13 EstimateCardinality(Olc);
14 end
15 if O has right child Orc then
16 EstimateCardinality(Orc);
17 end
18 if HasAgg then
19 Use optimizer’s model to estimate for O;
20 else
21 if O is aggregate then
22 Use optimizer’s model to estimate for O;
23 HasAgg← True;
24 else
25 EstimateCardinality(O);
26 end
27 end
28

29 Main:
30 Pq ← GetPlanFromOptimizer(q);
31 foreach R ∈ Relations(Pq) do
32 Replace Rwith its sample relation Rs;
33 end
34 Run the plan Pq over the sample relations;
35 O← GetRootOperator(Pq);
36 RecomputeCardinality(O);
37 return Pq;

24

modify Pq by replacing the relations it touches with the corresponding sample
relations (i.e., materialized views), and run Pq over the sample relations (line 31
to 34). After that, we call the procedure RecomputeCardinality to refine the
cardinality estimation for each operator in Pq (line 36).

The procedure RecomputeCardinality (line 11 to 27) works as follows. It first
invokesEstimateCardinality on the child operators (if any) of the current operator
O (line 12 to 17). It then checks the flag HasAgg, which indicates whetherO has any
descendant operator that is an aggregate. If the flag is set, then it simply calls the
optimizer’s own model to do cardinality estimation for O (line 18 to 19), since our
estimator refinement cannot be applied in this case, as discussed above. If, on the
other hand, the flag is not set, then it further checks whetherO is itself an aggregate.
If so, it again calls the optimizer’s cardinality estimation model for O, and sets the
flag HasAgg (line 21 to 23). If not, it invokes EstimateCardinality to estimate the
cardinality of O (line 25). Note that due to the order that EstimateCardinality
is invoked, the estimator is applied to each operator in a bottom-up manner. This
guarantees that the input cardinality of any operator will be estimated after its
child operators (if any). While this is not necessary if we only need to refine
the cardinalities, it is necessary since we need to further estimate based on the
cardinality (for example, the number of pages accessed), which enforces the same
bottom-up ordering here since the cost of an operator covers the cost of its child
operators as well (recall Example 2.3 and 2.4).

The procedure EstimateCardinality (line 3 to 9) implements the estimator.
GetSubPlan returns the subtree PO of the query plan with the current operator O
as the root. Ns is the product of the cardinalities of the sample relations involved
in PO, and Es is the exact output cardinality of O when the plan is evaluated
over sample relations. Therefore, the estimated selectivity is Es

Ns
, and the output

cardinality ofO over the original relations is thenNO · EsNs , whereNO is the product
of the cardinalities of the original input relations. In Theorem 2.10, we further
show that EstimateCardinality is a particular implementation of the estimator
conforming to the semantics of cross-product sampling, with a special tuple-level
partitioning scheme, where each block contains only a single tuple of the relation.

25

Theorem 2.10. The procedure EstimateCardinality estimates the cardinality of the
operator O according to the semantics of cross-product sampling.

Proof. Suppose the query q = σF(R1 × · · · × RK). Consider the following tuple-level
partitioning scheme: for each relation Rk (1 6 k 6 K), treat each tuple of Rk as a
single partition. In this case,mk = |Rk| and Nk = 1. Since

Es = |σF(R
s
1 × · · · × RsK)|

=

|Rs1 |∑
i1=1

· · ·
|RsK|∑
iK=1

|σF({t1,i1}× · · · × {tK,iK})|,

where tk,ik is the tuple (i.e., block) from Rk taken in the ik-th sampling step, and
Ns =

∏K
k=1 |R

s
k|, we estimate

ρ̃q =
Es

Ns
=

∑|Rs1 |
i1=1 · · ·

∑|RsK|

iK=1 |σF({t1,i1}× · · · × {tK,iK})|∏K
k=1 |R

s
k|

.

This has the same semantics as the cross-product estimator defined in Equation (2.2),
except that here the |Rsk| may be different for different Rk. It is straightforward to
extend Equation (2.2) to the case where different relations have different sampling
steps (i.e., different n’s), and Lemma 2.8 (and hence Theorem 2.7) still holds.

2.5 Experimental Evaluation

In this section, we describe our experimental settings and report our results.

2.5.1 Experimental Settings

We implemented Algorithm 1 inside PostgreSQL 9.0.4 by modifying the query
optimizer. In addition, we added instrumentation code to the optimizer to collect
the input cardinalities for each operator. Our software setup was PostgreSQL on
Linux Kernel 2.6.18, and we used both TPC-H 1GB and 10GB databases.

26

Our experiments were conducted on two different hardware configurations:

• PC1: configured with a 1-core 2.27GHz Intel CPU and 2GB memory;

• PC2: configured with an 8-core 2.40GHz Intel CPU and 16GB memory.

We randomly drew 10 queries from each of the 21 query templates, and we ran
each query 5 times.2 Our error metric is computed based on the mean execution
time of the queries. We cleared both the filesystem and DB buffers between each
run of each query.

Since the original TPC-H database generator uses uniform distributions, to
test the robustness of different approaches on different data distributions, we also
used a skewed TPC-H database generator [5]. This database generator populates a
TPC-H database using a Zipf distribution. This distribution has a parameter z that
controls the degree of skewness. z = 0 generates a uniform distribution, and as z
increases, the data becomes more and more skewed. We created skewed databases
generated using z = 1.

2.5.2 Calibrating Cost Units

We use the approach described in Section 2.3 to generate calibration queries. The
calibrated values for the 5 PostgreSQL optimizer parameters on PC1 and PC2 are
shown in Table 2.1 and 2.2, respectively. Except for random_page_cost, the cost units
show very small variance when profiled under different relations.

Calibrating the random_page_cost is more difficult. As discussed in Section 2.3.2,
achieving purely random reads in a query appears difficult in practice. In addi-
tion, the number of random pages accessed as estimated by optimizer is based on
statistics about correlations between the order of keys stored in the unclustered
index and their actual order in the corresponding data file. Therefore, there is some
inherent uncertainty in this estimation. It is interesting future work to see whether

2We excluded the template Q15 because it creates a view before the query runs, which is not
supported by our current implementation of Algorithm 1.

27

the random_page_cost could be calibrated more accurately with different methods
than the one described in this chapter.

Optimizer Parameter Calibrated µ± σ (ms) Default
seq_page_cost 5.53e-2 ± 3.09e-3 1.0
random_page_cost 6.50e-2 ± 2.32e-2 4.0
cpu_tuple_cost 1.67e-4 ± 5.83e-6 0.01
cpu_index_tuple_cost 3.41e-5 ± 2.30e-5 0.005
cpu_operator_cost 1.12e-4 ± 1.30e-6 0.0025

Table 2.1: Actual values of PostgreSQL optimizer parameters on PC1.

Optimizer Parameter Calibrated µ± σ (ms) Default
seq_page_cost 5.03e-2 ± 3.82e-3 1.0
random_page_cost 4.89e-1 ± 7.44e-2 4.0
cpu_tuple_cost 1.41e-4 ± 1.35e-5 0.01
cpu_index_tuple_cost 3.34e-5 ± 3.85e-5 0.005
cpu_operator_cost 7.10e-5 ± 1.52e-5 0.0025

Table 2.2: Actual values of PostgreSQL optimizer parameters on PC2.

Note that the default settings of the parameters fail to accurately reflect the actual
relative magnitudes. For example, on PC1, the ratio of calibrated cpu_tuple_cost to
seq_page_cost is about 0.003 instead of 0.01.

Clearly, the overhead of this profiling stage depends on how many calibration
queries we use. In our experiments on the TPC-H database, we used the 5 largest
relations as the R in SELECT * FROM R and SELECT COUNT(*) FROM R, respectively.
For SELECT * FROM R WHERE R.A < a, we used the largest relation (lineitem), and
generated 10 queries where the predicate R.A < a had different selectivities in
each. Under this setting, the profiling stage usually finishes in less than an hour,
which is substantially less than the long training stage of machine-learning based
approaches reported in previous work.

Moreover, our profiling stage was conducted on top of the uniform TPC-H
database. Note that we do not need to run it again for the skewed TPC-H database.
This is because the values of the cost units only depend on the specific hardware

28

configuration. After the cost units are calibrated, they can be used as long as the
hardware configuration does not change. On the other hand, machine-learning
based approaches usually need to collect new training data and rebuild the predic-
tive model if the underlying data distribution significantly changes.

2.5.3 Prediction Results

We evaluated the accuracy of prediction in terms of the mean relative error (MRE), a
metric used in [11]. MRE is defined as

1
M

M∑
i=1

|Tpredi − Tacti |

Tacti

,

where M is the number of testing queries, Tpredi and Tacti are the predicted and
actual execution time of the testing query i, respectively.

We compare the prediction accuracy of our approach with several state-of-
the-art machine-learning based solutions: plan-level modeling with SVM [11], plan-
level modeling with REP trees [96], and operator-level modeling with Multivariate Linear
Regression (MLR) [11]. We use the same set of features as described in [11]. We
focus on the settings of the so-called dynamic workload in [11]. The idea of plan-level
modeling was also tried in [36], and the authors chose to use Kernel Canonical
Correlation Analysis (KCCA) [15] instead of SVM as the machine-learning approach.
We do not compare our techniques with theirs, for it has been shown in [11] that
both the plan-level and operator-level modeling approach of [11] are superior to
the KCCA-based approach for dynamic workloads.

To generate a dynamic workload, we conducted the next “leave-one-template-
out” experiment as in [11]. Among the N TPC-H query templates, we chose one
template to generate the queries whose execution time is to be predicted, and
the otherN− 1 templates were used to generate the training queries used by the
machine learning methods to train their predictive models.

Figure 2.2 shows the results on the uniform (i.e., z = 0) 1GB TPC-H database. As
presented in [11], operator-level modeling requires that the testing queries do not

29

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.1 Es

0.3 ESVM EREP Eo
LR

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(a) Without EOper, 21 templates

 0

 0.5

 1

 1.5

 2

 2.5

 3

Et Eo Es
0.1 Es

0.3 ESVM EREP EOper

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(b) With EOper, 11 templates

Figure 2.2: Uniform TPC-H 1GB database.

contain operators not used by the training queries. Since some TPC-H templates
include specific operators not found in the other templates (e.g., hash-semi-join),
we excluded these templates from our experiments. The same argument applies
to TPC-H templates containing PostgreSQL-specific structures (i.e., INITPLAN and
SUBQUERY). The authors of [11] also excluded these queries for the same reason.
However, we note here that this is a problem due to the particular choice of the
workload and database system, not due to the operator-level modeling itself. If TPC-
H were a more varied workload, we would not have this restriction. For example,
if it had multiple queries that used the hash-semi-join operator, we could have

30

incorporated queries with that operator in our experiments. This leaves 11 TPC-H
templates participating in the dynamic workload experiment when operator-level
modeling is leveraged (see Figure 2.2(b)).

In Figure 2.2, the x-axis represents the approaches we tested in the experiments,
and the y-axis shows the average error and the standard deviation (shown with
the error bars) over the TPC-H templates. Here, Et is the prediction error of our
approach when the true cardinalities are used (the true cardinalities are measured
in an artificial “pre-running” of the query — we present this number to provide
insight into what could be achievable if we were able to get perfect cost estimates).
Eo is the prediction error of our approach when the cardinalities from the optimizer
are used without refinement. Efs is the prediction error of our approach when the
cardinalities are estimated via sampling, where f is the sampling ratio (e.g., f = 0.1
means we take a 10% sample from each underlying table). In our experiments,
we tested sampling ratios f = 0.05, 0.1, 0.2, 0.3, 0.4. Due to space limitations in
the plots, we only present the results of f = 0.1 and f = 0.3. ESVM, EREP, and
EOper are the prediction errors of the three machine-learning based approaches,
i.e., plan-level modeling with SVM, plan-level modeling with REP, and operator-
level modeling, respectively. Finally, as a baseline, ELRo is the prediction error of
mapping the original cost estimates from the optimizer to the execution time via
linear regression, as was done in previous work.

We have several observations. First, in the case of uniform data, the cost mod-
els with properly tuned c’s already work well (the Eo in Figure 2.2 is close to Et).
Sampling does not help much in improving the prediction accuracy. This is reason-
able, because the assumptions like uniformity and independence leveraged by the
optimizer for cardinality estimation usually hold in this case.

Second, the performance of machine-learning based approaches is not consistent.
For some queries, their predictions are good. However, for the other queries, their
predictions are far away from the true values. This can be observed by noticing
the big error bars in the figures. As an example, the ESVM in Figure 2.2(a) varies
between 0.03 for Q7 and 12.16 for Q17. One possible reason for this is: most machine
learning methods assume that the testing queries should be similar to the queries

31

−6 −4 −2 0 2

x 10
8−2

0

2

x 10
7

−4

−2

0

2

4

x 10
6

Figure 2.3: Queries projected on the 3 dominating principal components.

used in training the model. More specifically, the feature vectors of the testing
queries should be close to those feature vectors of the training queries, in terms of
the distance in the feature space. Unfortunately, this assumption is not valid for
dynamic workloads.

To see this, we further apply Principal Component Analysis (PCA) [47] on
the query features (47 features in total) and project the queries onto the subspace
spanned by the three most dominating principal components. It is well known
that these dominating components reveal the major directions in the feature space.
While it is true that more principal components are better, we restrict ourselves to
3-dimensional space for the purpose of visualization.

Figure 2.3 shows the queries in the projected space, where each combination of
color and shape represents one query template. From the figure we can see that
the templates can be grouped into several clusters. About half of the templates fall
into the rightmost cluster, and each of the remaining templates usually forms a
singleton cluster. The distances between clusters are quite big. Note that PCA will
not increase the distances between feature vectors after the projection, which means
the distances between feature vectors in the original 47-dimensional space can only
be the same or even bigger. This suggests that there is little similarity among the

32

TPC-H templates within different clusters. Therefore, if we test the queries from
a template within a singleton cluster, by using the model trained with the other
templates, then there is little hope for us to observe good predictions.

Third, machine-learning approaches are sensitive to the set of queries used
in training. The prediction errors for some queries fluctuate dramatically when
different sets of training queries are used3. For instance, EREP for Q8 is 0.44 when 20
templates are used in training (as in Figure 2.2(a)), but it increases to 2.87 when only
10 templates are used (as in Figure 2.2(b)). Picking a set of proper training queries
hence is critical in practice when using machine-learning approaches. However, it
seems difficult in the environment when workload is not known in advance.

Figure 2.4 further presents the results on the skewed TPC-H 1GB database. As
expected, when data becomes skewed, the cardinality estimates from the optimizer
become inaccurate, and hence the predictive power is weakened. However, by
leveraging the sampling-based cardinality correction, the prediction accuracy is
improved. Moreover, more samples usually mean better prediction accuracy, as
long as the overhead on sampling is acceptable (see Section 2.5.4). We note that the
sampling overhead can be up to 20% on this data set. As we will see, this can be
viewed as a problem that arises on small data sets, as the overhead due to sampling
for the 10GB data set is much lower. On the other hand, the performance of machine-
learning based approaches becomes even worse. This is perhaps partially due to
the worse distortion of the assumption of similar training and testing queries.

Similar results on the TPC-H 10GB database are observed in our experiments,
as shown in Figure 2.5 and Figure 2.6. Here, to make the overall experiment time
controllable, as done in [11], we kill the query if it runs longer than an hour. This
leaves us with 18 templates participating in the evaluation. We tested sampling
ratios f = 0.01, 0.02, 0.05, 0.1, and present the results of f = 0.02 and f = 0.05,
for space constraints. Note that, while the database size scales up by a factor of
10, the required absolute number of samples to achieve predictions close to the
ideal case (compare E0.05

s and Et in the figures) remains almost the same. We need
3Recall that, to be fair, we only use 10 templates in training when comparing with operator-level

modeling (as in Figure 2.2(b)).

33

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.1 Es

0.3 ESVM EREP Eo
LR

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(a) Without EOper, 21 templates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.1 Es

0.3 ESVM EREP EOper

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(b) With EOper, 11 templates

Figure 2.4: Skewed TPC-H 1GB database.

0.05× 10GB = 0.5GB samples here, while we need 0.3× 1GB = 0.3GB samples in
the case of 1GB database. Therefore, the additional overhead of taking samples
becomes ignorable when the database is larger (see Section 2.5.4).

2.5.4 Overhead of Sampling

Figure 2.7 shows the additional runtime overhead due to sampling for the 1GB
TPC-H database. Here rfs is defined as rfs = Ts/T , where Ts and T are the time to
run the queries over the sample tables and original tables, respectively, and f is the

34

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.02 Es

0.05 ESVM EREP Eo
LR

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(a) Without EOper, 21 templates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.02 Es

0.05 ESVM EREP EOper

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(b) With EOper, 11 templates

Figure 2.5: Uniform TPC-H 10GB database.

sampling ratio as before. For each sampling ratio, we report the average rfs as well
as the standard deviation (shown with the error bars) over the TPC-H templates.

We can see that for the sampling ratio f = 0.3, which allows us to achieve
close prediction accuracy to what if the true cardinalities were used on both the
uniform and skewed data, the average additional runtime overhead is around 20%
of the actual execution time of the query. Note that for query optimization, 20%
is prohibitively high. For example, it means that we can only consider 1/20% = 5
plans during optimization before the estimation cost dominates the query execution
time, since sampling should be invoked for every query plan considered. But for

35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.02 Es

0.05 ESVM EREP Eo
LR

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(a) Without EOper, 21 templates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Et Eo Es
0.02 Es

0.05 ESVM EREP EOper

R
el

at
iv

e
E

rr
or

Approach

PC1
PC2

(b) With EOper, 11 templates

Figure 2.6: Skewed TPC-H 10GB database.

our purposes, where we are trying to estimate the running time of a single query
plan, this amount of overhead may be acceptable. Perhaps more importantly, this
overhead drops dramatically when we move to the 10GB data set.

Figure 2.8 further presents the results over 10GB TPC-H database. It confirms
that the additional overhead introduced by sampling is even smaller, compared with
the overhead of running the original query. For the case where good prediction can
be achieved (i.e., f = 0.05, see Figure 2.5 and Figure 2.6), the additional overhead is
below 4% on average. This demonstrates the practicality of incorporating sampling
for the purpose of query time prediction.

36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.05 0.1 0.2 0.3 0.4

A
dd

iti
on

al
 O

ve
rh

ea
d

r s
f

Sampling Ratio f

PC1
PC2

(a) On uniform data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.05 0.1 0.2 0.3 0.4

A
dd

iti
on

al
 O

ve
rh

ea
d

r s
f

Sampling Ratio f

PC1
PC2

(b) On skewed data

Figure 2.7: Additional overhead of sampling on TPC-H 1GB database.

2.5.5 Discussion

The cost model used by PostgreSQL’s optimizer exhibits a nice linearity property,
which eases the selection of calibration queries. It remains interesting to study
cost models of other database systems and calibration approaches when linearity
does not hold. On the other hand, PostgreSQL’s cost model is by no means perfect.
For example, it does not consider the differences between the CPU overheads of
processing different attributes in a tuple, which might be significantly different. We
expect that a better cost model can further improve prediction accuracy but it is
beyond the scope of this chapter.

37

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0.01 0.02 0.05 0.1

A
dd

iti
on

al
 O

ve
rh

ea
d

r s
f

Sampling Ratio f

PC1
PC2

(a) On uniform data

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

0.01 0.02 0.05 0.1

A
dd

iti
on

al
 O

ve
rh

ea
d

r s
f

Sampling Ratio f

PC1
PC2

(b) On skewed data

Figure 2.8: Additional overhead of sampling on TPC-H 10GB database.

As another remark, the amount of samples required to achieve certain degree of
estimation accuracy depends on the magnitude of the selectivity estimate as well
as its variance [44]: in general, smaller selectivity and larger variance require larger
sample size. Note that the sample size here is absolute rather than relative, and it
does not depend on the database size. Therefore, a larger database does not mean
more samples are necessary, as we have seen in the case of TPC-H. Nonetheless, it
is a challenging problem to determine a good sample size for a given database and
workload a priori, and we leave it as one direction for future exploration.

38

2.6 Related Work

Query optimizers have built-in cost models that provide cardinality/cost estimates
for a given query. There is a lot of previous work on this topic, including methods
based on sampling (e.g., [49, 62]), methods based on histograms (e.g., [53]), methods
based on machine learning (e.g., [37, 89]), and methods based on using execution
feedback (e.g., [24, 85]). However, the purpose of these estimates is to help the
optimizer pick a relatively good plan, not to predict the actual execution time of
the query. Therefore, these estimates need not to be very accurate as long as the
optimizer can leverage them to distinguish good plans from bad ones. As shown
in [11, 36], without proper calibration, directly leveraging these cost estimates
cannot provide good predictions of execution time. Nonetheless, it is interesting
future work to see the effectiveness by incorporating some methods other than
sampling into our current framework for refining cardinality estimates. For example,
recent work [89] presented an efficient approach based on graphical models, which
was reported to have an order of magnitude better selectivity estimates.

Another related research direction is query progress indicators [23, 57, 61, 64]. The
task of a progress indicator is to dynamically monitor the percentage of work that
has been done so far for the query. The key difference from query execution time
prediction is that progress indicators usually rely on runtime statistics obtained
during the actual execution of the query, which are not available if the prediction
is restricted to be made before query execution. A query running time predictor
could be useful in providing the very first estimate for a progress indicator (one
used before the query starts executing).

Quite surprisingly, the problem of predicting actual execution time of a query
has been specifically addressed only recently [36]. Existing work [9, 11, 33, 36,
88] usually employs predictive frameworks based on statistical machine learning
techniques. The focus of [9, 33, 88] is query execution time prediction for multi-
query workloads, and we will discuss our work on this problem in the next chapter.

In [36], each query is represented as a set of features containing an instance
count and cardinality sum for each possible operator. Kernel Canonical Correlation

39

Analysis (KCCA) [15] modeling techniques are then used to map the queries from
their feature space onto their performance space. One main limitation of this
approach is that its prediction is based on taking the average of the k (usually 3)
nearest neighbors in the training set, which means that the prediction can never
exceed the longest execution time observed during training stage. Hence, when the
query to be predicted takes significantly longer time than all the training queries
observed, the model is incapable of giving reasonable predictions.

In [11], a similar idea of using features extracted from the entire plan to repre-
sent a query is leveraged, and the authors propose to use SVM instead of KCCA.
However, the SVM approach still suffers from the same generalization problem. To
alleviate this, the authors further apply this idea at the operator-level. But from
the reported experimental results, it seems that operator-level modeling is still
quite vulnerable to workload changes. Our approach in this chapter avoids this
generalization problem, for it does not rely on any particular training queries.

2.7 Summary

In this chapter, we studied the problem of leveraging optimizer’s cost models to
predict query execution time. We show that, after proper calibration, the current
cost models used by query optimizers can be more effective for predicting query
execution time than reported by previous work.

Of course, it is possible that a new machine learning technique, perhaps with
improved feature selection, will outperform the techniques presented here. On the
other hand, further improvements are also possible in optimizer-based running time
prediction. Perhaps the most interesting aspect of this work is the basic question it
raises: should query running time prediction treat the DBMS as a black box (the
machine learning approach), or should we exploit the fact that we actually know
exactly what is going on inside the box (the optimizer based approach)? We regard
this chapter as an argument that the latter approach shows promise, and expect
that exploring the capabilities of the two very different approaches will be fertile
ground for future research.

40

Chapter 3

Query Execution Time Prediction for
Multi-Query Workloads

Predicting execution time for concurrent queries is arguably more important than
prediction for standalone queries, because database systems usually allow multiple
queries to execute concurrently. The existing work on concurrent query predic-
tion [10, 33], however, assumes that the workload is static, namely, the queries
participating in the workload are known beforehand. While some workloads cer-
tainly conform to this assumption (e.g., the report-generation workloads described
in [9]), others do not. Real-world database workloads can be dynamic, in that the
set of queries that will be submitted to the system cannot be known a priori.

In this chapter, we consider the more general problem of dynamic concurrent
workloads. Unlike most previous work on query execution time prediction, our
proposed framework is based on analytic modeling rather than machine learning.
Extending our idea in the previous chapter, we first use the optimizer’s cost model to
estimate the I/O and CPU requirements for each pipeline of each query in isolation,
and then use a combination queueing model and buffer pool model that merges
the I/O and CPU requests from concurrent queries to predict running times. We
compare the proposed approach with a machine-learning based approach that is a
variant of previous work. Our experiments show that our analytic-model based

41

approach can lead to competitive and often better prediction accuracy than its
machine-learning based counterpart.

3.1 Introduction

Recall the cost model used by PostgreSQL’s query optimizer as presented in Exam-
ple 2.1 of Chapter 2. For multiple concurrently-running queries, one could try to
build a generalization of the optimizer’s cost model that explicitly takes into account
the execution of other queries. For example, it could make guesses as to what might
be in the buffer pool; or what fraction of the CPU this query will get at each point
in execution; or which sequential I/O’s will be converted to random I/O’s due to
interference, and so forth. But this seems very difficult if not impossible. First, the
equations capturing such a complex system will be messy. Second, it requires very
detailed knowledge about the exact mix of queries that will be run and how the
queries will overlap (in particular, which parts of each query execution will overlap
with which parts of other query’s execution). This detailed knowledge is not even
available in a dynamic system.

Therefore, instead of building sophisticated extensions to the optimizer’s cost
model, we retain the single query optimizer estimate, but stop at the point where it
estimates the counts of the operations required (rather than going all the way to
time). We then use a combination queueing model/buffer pool model to estimate
how long each concurrently running query will take.

More specifically, we model the underlying database system with a queueing
network, which treats hardware components such as disks and CPU cores as service
centers, and views the queries as customers that visit these service centers. The n’s
of a query are then the numbers of visits it pays to the service centers, and the c’s
are the times spent on serving one single visit. In queueing theory terminology, the
c’s are the residence times per visit of a customer, and can be computed with the well-
known mean value analysis technique [78, 86]. However, the queueing network
cannot account for the cache effect of the buffer pool, which might be important

42

Scan A Scan B

Scan B

Time
t1

q2

q1

t2 t3 t4 t5

Figure 3.1: Interactions between queries.

for concurrent queries. Therefore, we further incorporate a model to predict buffer
pool hit rate [70], based on the “clock” algorithm used by PostgreSQL.

However, queries are not uniform throughout, they change behavior as they go
through different phases of their execution. Consider a query q that is concurrently
running with other queries. For different operators of q, the cost units (i.e., the c’s)
might have different values, depending on the particular operators running inside
q’s neighbors. Consider the following example:

Example 3.1 (Query Interactions). Figure 3.1 shows two queries q1 and q2 that are
concurrently running. q1 starts at time t1 and has 2 scan operators, with the first one
scanning the table A and the second one scanning the table B. q2 starts at time t2 and has
only 1 scan operator that scans the tableB. The I/O cost units (i.e., cs and cr) of q1 between
t2 and t3 are expected to be greater than that between t1 and t2, due to the contention with
q2 on disk service after q2 joins. At time t3, the first scan of q1 finishes, and the second one
starts. The I/O cost units of q1 (and q2) are then expected to decrease, since the contention
on disk would be less intensive for two scans over the same table B than when one is over
A while the other is over B, due to potential buffer pool sharing. At time t4, q1 finishes and
q2 becomes the only query running in the system. The I/O cost units of q2 are thus again
expected to decrease.

Therefore, to the queuing/buffer model, a query looks like a series of phases,
each with different CPU and I/O demands. Hence, rather than applying the models
at the query level, we choose to apply them to each execution phase. The remaining
issue is then how to define the “phase” here. One natural choice could be to define
a phase to be an individual operator. However, a number of practical difficulties

43

arise. A serious problem is that database queries are often implemented using an
iterator model [38]. When evaluating a query, the operators are usually grouped
into pipelines, and the execution of operators inside a pipeline are interleaved rather
than sequential. For this reason, we instead define a phase to be a pipeline. This
fixes the issue of “interleaved phases” if a phase were defined as an operator. By
doing this, however, we implicitly assumed the requests of a query are relatively
constant during a pipeline and may only change at pipeline boundaries. In other
words, we use the same c’s for different operators of a pipeline. Of course, this
sacrifices some accuracy compared with modeling at the operator level, and hence
is a tradeoff between complexity and accuracy. Nonetheless, modeling interactions
at the pipeline level is still a good compromise between doing it at the operator
level and doing it at the query level.

Nonetheless, this still leaves the problem of predicting the future. Throughout
the above discussion, we have implicitly assumed that no knowledge is available
about queries that will arrive in the future, and our task is to estimate the running
times of all concurrently running queries at any point in time. If a new query
arrives, the estimates for all other running queries will change to accommodate
that query. Of course, if information about future workloads were available we
could use that, but this is out of the scope of this chapter.

We have compared our analytic-model based approach with a machine-learning
based approach that is a variant of the approach used in [9, 10]. Our experimen-
tal evaluation over the TPC-H benchmark shows that, the analytic-model based
approach can lead to comparable and often better prediction accuracy than the
machine-learning based approach.

The rest of this chapter is organized as follows. We first present our predic-
tive framework and give some analysis in Section 3.2. We then describe the two
approaches that combine cost estimates for concurrently-running pipelines in Sec-
tion 3.3, where Section 3.3.1 describes the machine-learning based approach, and
Section 3.3.2 describes the analytic-model based approach, respectively. We present
experimental results in Section 3.4, discuss related work in Section 3.5, and summa-
rize this chapter in Section 3.6.

44

q2

q3

Time
t1 t2 t3 t4 t5

q1

t6

(a) Execution of 3 queries

Time
t1

q1

(b) At time t1

q2

Time
t2

q1

t1

(c) At time t2

q2

q3

Time
t1 t2 t3

q1

(d) At time t3

Figure 3.2: The prediction problem for multiple concurrently-running queries.

3.2 The Framework

We present the details of our predictive framework in this section. We first formally
define the prediction problem we are concerned with in this chapter, then describe
our solution and provide some analysis.

3.2.1 Problem Definition

We use an example to illustrate the prediction problem. As shown in Figure 3.2(a),
suppose that we have three queries q1, q2, and q3 that are concurrently running,
which arrive at time t1, t2, and t3, respectively. Accordingly, we have three prediction
problems in total. At t1, we need to predict the execution time for q1 (Figure 3.2(b)).
Perfect prediction here would require the information of the upcoming q2 and q3,
which is unfortunately not available at t1. So the best prediction for q1 at t1 has to
be based on assuming that there will be no query coming before q1 finishes. At t2,
q2 joins and we need to make a prediction for both q1 and q2 (Figure 3.2(c)). For q1,
we actually predict its remaining execution time, since it has been running for some

45

time (the gray part). Perfect predictions would again require the knowledge that q3

will arrive, which is unavailable at t2. As a result, the best prediction at t2 needs
the assumption that no query will come before q1 and q2 end. The same argument
can be further applied to the prediction for q1, q2, and q3 at t3 (Figure 3.2(d)). We
therefore define our prediction problem as:

Definition 3.2 (Problem Definition). Let Q be a mix of n queries Q = {q1, ...,qn} that
are concurrently running, and assume that no new query will come before Q finishes. Let
s0 be the start time of these n queries, and let fi be the finish time for the query qi. Define
Ti = fi − s0 to be the execution time of qi. The problem we are concerned with in this
chapter is to build a predictive model M for {Ti}ni=1.

For instance, the prediction problem in Figure 3.2(d) is generated by setting
Q = {q1,q2,q3} and s0 = t3 in the above definition.

3.2.2 Query Decomposition

To execute a given SQL query, the query optimizer will choose an execution plan
for it. A plan is a tree such that each node of the tree is a physical operator, such
as sequential scan, sort, or hash join. Figure 3.3 presents an example query and the
execution plan returned by the PostgreSQL query optimizer.

As we have mentioned in Chapter 2, a physical operator can be either blocking or
nonblocking. An operator is blocking if it cannot produce any output tuple without
reading all of its input. For instance, the operator sort is a blocking operator. In
Figure 3.3, blocking operators are highlighted.

Based on the notion of blocking/nonblocking operators, the execution of the
query can then be divided into multiple pipelines. As in previous work [23, 64], we
define pipelines inductively, starting from the leaf operators of the plan. Whenever
we encounter a blocking operator, the current pipeline ends, and a new pipeline
starts if any operators are remaining after we remove the current pipeline from
the plan. Therefore, a pipeline always ends with a blocking operator (or the root
operator). Figure 3.3 also shows the 5 pipelines P1 to P5 of the example plan.

46

Tables:

Students (sid, sname)

Enroll (sid, cid)

Courses (cid, cname)

SELECT S.sid, S.sname

FROM Students S, Enroll E, Courses C

WHERE S.sid = E.sid AND E.cid = C.cid

AND S.sid > 1 AND S.sid < 10

AND C.cid < 5 AND S.sname <> ‘Mike’

(a) Database and query

Hash_Join

Merge_Join

Hash

Sort Sort

Seq_Scan Index_Scan

Seq_Scan

Courses Enroll

Students

Hash

P1 P2

P3 P4

P5

(b) Execution plan

Figure 3.3: Example query and its execution plan.

By organizing concurrently running operators into pipelines, the original plan
can also be viewed as a tree of pipelines, as illustrated in Figure 3.3. We assume
that at any time, only one pipeline of the plan is running in the database system,
which is a common way in current database implementations. The execution plan
thus defines a partial order over the pipelines. For instance, in the example plan,
the execution of P1 and P2 must precede P3, while the order between P1 and P2 is
arbitrary. Similarly, the execution of P3 and P4 must precede P5. The execution order
of the pipelines can usually be obtained by analyzing the information contained
in the plan. For example, in our implementation with PostgreSQL, we order the
pipelines based on estimating their start times by using the optimizer’s running
time estimates. We then decompose the plan into a sequence of pipelines, with

47

P11 P12 P13

P21 P22 P23

P31 P32

Time
s0 f21 f11 f22 f12 f31 f23 f32 f13

q1

q2

q3

Figure 3.4: Progressive predictor.

respect to their execution order. For the example plan, suppose that the optimizer
specifies that P1 precedes P2 and P3 precedes P4. Then the plan can be decomposed
into the sequence of pipelines: P1P2P3P4P5.

3.2.3 Progressive Predictor

For the given mix of queries q1, ..., qn, after decomposing their execution plans
into sequences of pipelines, the mix of queries can be viewed as multiple stages of
mixes of pipelines. We illustrate this with the following example:

Example 3.3 (Mix of pipelines). As presented in Figure 3.4, suppose that we have a
mix of 3 queries q1, q2, and q3. After decomposition of their plans, q1 is represented as a
sequence of 3 pipelines P11P12P13, q2 is represented as a sequence of 3 pipelines P21P22P23,
and q3 is represented as a sequence of 2 pipelines P31P32. We use Pij to denote the jth
pipeline of the ith query, and use fij to denote the time when Pij finishes. It is easy to see
that whenever a pipeline finishes, we will have a new mix of pipelines. For the example
query mix in Figure 3.4, we will thus have 8 mixes of pipelines in total, delimited by the
red dash lines that indicate the finish timestamps for the pipelines.

If we could know the fij’s, then it would be straightforward to compute the
execution time of the Pij’s and hence the qi. Suppose that we have some model
Mppl to predict the execution time of a pipeline by assuming that its neighbor
pipelines do not change. We can then progressively determine the next finishing
pipeline and therefore its finish time. For example, in Figure 3.4, we first call Mppl

for the mix of pipelines {P11,P21,P31}. Based on the prediction from Mppl, we can
learn that P21 is the next finishing pipeline and we have a new mix of pipelines

48

{P11,P22,P31} at time f21. We then call Mppl for this new mix again. Note that here
we also need to adjust the prediction for P11 and P31, since they have been running
for some time. We then learn that P11 is the next finishing pipeline for this mix and
it finishes at time f11. We proceed in this way until all the pipelines finish. The
details of this idea are presented in Algorithm 2.

Each pipeline Pij is associated with two timestamps: sij, the (predicted) start
timestamp of Pij; and fij, the (predicted) finish timestamp of Pij. The (predicted)
execution time of Pij is thus Tij = fij − sij. We also maintain the remaining ratio ρrij
for Pij, which is the percentage of Pij that has not been executed yet. Algorithm 2
works as follows. For each query qi, we first call the query optimizer to generate
its execution plan Plani, and then decompose Plani into a sequence of pipelines
Pi, as illustrated in Section 3.2.2 (lines 1 to 3). The first pipeline Pi1 in each Pi is
added into the current mix CurrentMix. Its start timestamp si1 is set to be 0, and
its remaining ratio ρri1 is set to be 1.0 (lines 5 to 8).

Algorithm 2 then proceeds stage by stage. It makes a prediction of the initial
mix of pipelines by calling the given model Mppl (line 11). As long as the current
mix is not empty, it will determine the pipeline Pij with the shortest (predicted)
execution time tmin. The current (virtual) timestamp CurrentTS is forwarded by
adding tmin. The finish time fij of Pij is then set accordingly, and Pij is removed
from the current mix (lines 13 to 16). For each remaining pipeline Pik in the current
mix, we update its remaining ratio ρrik by multiplying it by trik

tik
, where tik is the

predicted time of Pik (at the beginning time of the current mix of pipelines), and trik
is the remaining (predicted) time of Pik when Pij finishes and exits the current mix.
trik = tik− tmin by definition (lines 17 to 20). Intuitively, t

r
ik

tik
is the relative remaining

ratio of Pik at the end of the current mix. If Pi contains more pipelines after Pij
finishes, we add the next one Pi(j+1) into the current mix, set si(j+1) to be the current
timestamp, and set ρri(j+1) to be 1.0 since the pipeline is just about to start (lines 21
to 23). Note that now the current mix changes, due to removing Pij and perhaps
adding in Pi(j+1). We thus call Mppl again for this new mix (line 24). However,
we need to adjust the prediction tik for each pipeline, by multiplying it with its

49

Algorithm 2: Progressive Predictor.
Input: Q = {q1, ...,qn}, a mix of n SQL queries; Mppl: a model to predict the

execution times for a mix of pipelines
Output: {Ti}ni=1, where Ti is the predicted execution time of the query qi

1 for 1 6 i 6 n do
2 Plani ← GetPlan(qi); Pi ← DecomposePlan(Plani);
3 end
4

5 CurrentMix← ∅;
6 for 1 6 i 6 n do
7 Add Pi1 ∈ Pi into CurrentMix; si1 ← 0; ρri1 ← 1.0;
8 end
9

10 CurrentTS← 0;
11 MakePrediction(CurrentMix,Mppl);
12 while CurrentMix 6= ∅ do
13 tmin ←MinPredictedTime(CurrentMix);
14 CurrentTS← CurrentTS+ tmin;
15 Pij ← ShortestPipeline(CurrentMix); fij ← CurrentTS; Tij ← fij − sij;
16 Remove Pij from CurrentMix;
17 foreach Pik ∈ CurrentMix do
18 trik ← tik − tmin; // tik is Mppl’s prediction for Pik
19 ρrik ← ρrik ·

trik
tik

;
20 end
21 if HasMorePipelines(Pi) then
22 Add Pi(j+1) into CurrentMix; si(j+1) ← CurrentTS; ρri(j+1) ← 1.0;
23 end
24 MakePrediction(CurrentMix,Mppl);
25 foreach Pik ∈ CurrentMix do
26 tik ← ρrik · tik;
27 end
28 end
29

30 for 1 6 i 6 n do
31 Ti ← 0;
32 foreach pipeline Pij in qi do
33 Ti ← Ti + Tij;
34 end
35 end
36 return {Ti}

n
i=1;

50

remaining ratio ρrik (lines 25 to 27). The iteration then repeats by determining the
next finishing pipeline.

We call this procedure the progressive predictor. The remaining problem is to de-
velop the predictive model Mppl for a mix of pipelines. We discuss our approaches
in Section 3.3.

3.2.4 Analysis

We give some analysis to Algorithm 2, in terms of its efficiency and prediction
errors as the number of mixes increases.

3.2.4.1 Efficiency

Whenever Mppl is called, we must have one pipeline in the current mix that finishes
and exits the mix. So the number of times that Mppl is called cannot exceed the
total number of pipelines in the given query mix. Thus we have

Lemma 3.4. Mppl is called at most
∑n
i=1 |Pi| times, where Pi is the set of pipelines con-

tained in the query qi.

It is possible that several pipelines may finish at the same (predicted) time.
In this case, we remove all of them from the current mix, and add each of their
successors (if any) into the current mix. We omit this detail in Algorithm 2 for
simplicity of exposition. Note that if this happens, the number of times calling
Mppl is fewer than

∑n
i=1 |Pi|.

3.2.4.2 Prediction Errors

Let the mixes of pipelines in the query mix be M1, ..., Mn. For the mix Mi, let Ti
and T ′i be the actual and predicted time forMi. The prediction errorDi is defined as
Di =

T ′i−Ti
Ti

. So T ′i = Ti(1 +Di). If Di > 0, then T ′i > Ti and it is an overestimation,
while if Di < 0, then T ′i < Ti and it is an underestimation. We can view D1, ...,
Dn as i.i.d. random variables with mean µ and variance σ2. Let D be the overall

51

prediction error. We have

D =
T ′ − T

T
=

∑n
i=1(T

′
i − Ti)

T
=

∑n
i=1 TiDi

T
,

where T =
∑n
i=1 Ti and T ′ =

∑n
i=1 T

′
i , and thus:

Lemma 3.5. E[D] = µ, and Var[D] =
∑n
i=1 T

2
i(∑n

i=1 Ti

)2σ
2.

Since
(∑n

i=1 Ti
)2

=
∑n
i=1 T

2
i + 2

∑
16i<j6n TiTj, we have

(∑n
i=1 Ti

)2
>
∑n
i=1 T

2
i

and hence Var[D] 6 σ2, according to Lemma 3.5. This means that the expected
overall accuracy is no worse than the expected accuracy of Mppl over a single mix of
pipelines. Intuitively, it is because Mppl may both overestimate and underestimate
some mixes of pipelines, the errors of which are canceled with each other when
the overall prediction is computed by summing up the predictions over individual
pipeline mixes. So the key to improving the accuracy of the progressive predictor
is to improve the accuracy of Mppl.

3.3 Predictive Models

In this section, we present the predictive model Mppl for a mix of pipelines. Mppl

is based on the cost models used by query optimizers, which basically applies
Equation (2.1) to each pipeline. As discussed in Section 3.1, the key challenge is
to compute the c’s in Equation (2.1) when the pipelines are concurrently running.
In the following, we present two alternative approaches. One is a new approach
based on previously proposed machine-learning techniques, and the other is a new
approach based on analytic models reminiscent of those used by query optimizers.
As in previous work [10, 33], we target analytic workloads and assume that queries
are primarily I/O-bound.

52

3.3.1 A Machine-Learning Based Approach

The c’s are related to the CPU and I/O interactions between pipelines. These two
kinds of interactions are different. CPU interactions are usually negative, namely,
the pipelines are competing with each other to share CPU cycles. On the other
hand, I/O interactions can be either positive or negative [9] (see Example 3.1 as well).
Therefore, we propose separating the modeling of CPU and I/O interactions.

For CPU interactions, we derive a simple model for the CPU-related cost units
ct, ci, and co. For I/O interactions, we extend the idea from [9], using machine-
learning techniques to build regression models for the I/O-related cost units cs
and cr. In the following, we focus on illustrating the basic ideas.

3.3.1.1 Modeling CPU Interactions

We use ccpu to represent ct, ci, or co. Suppose that we havemCPUs andn pipelines.
Let the time to process one CPU request be τ for a standalone pipeline. Ifm > n,
then each pipeline can have its own dedicated CPU, so the CPU time per request
for each pipeline is still τ, namely, ccpu = τ. Ifm < n, then we have more pipelines
than CPUs. In this case, we assume that the CPU sharing among pipelines is fair,
and the CPU time per request for each pipeline is therefore ccpu = n

m
τ.

3.3.1.2 Modeling I/O Interactions

Previous work [9] proposed an experiment-driven approach based on machine
learning. The idea in that work is the following. Assuming that we know all possible
queries (or query types/templates whose instances have very similar execution
times) beforehand, we can then run a number of sample mixes of these queries,
record their execution time as ground truth, and train a regression model with the
data collected. This idea cannot be directly applied to the dynamic workloads we
consider here, since it requires prior knowledge of all query templates to be run.

Accordingly, we extend this idea to apply to mixes of pipelines rather than mixes
of queries. As a first approximation, we assume the only I/O’s performed by a
query are due to scans. Later, we relax this assumption. We have the observation:

53

Observation 1. For a specific database system implementation, the number of possible
scan operators is fixed.

For instance, PostgreSQL implements three scan operators: sequential scan (SS),
index scan (IS), and bitmap index scan (BIS).

We define a scan type to be a specific scan operator over a specific table. It is
then not difficult to see that:

Observation 2. For a specific database system implementation and a specific database
schema, the number of possible scan types is fixed.

For example, since the TPC-H benchmark database contains 8 tables, and Post-
greSQL has 3 scan operators (i.e, SS, IS, and BIS), the total number of possible scan
types in this case is then 24.

Using these observations, we can apply the previous machine-learning based
approach for scan types instead of query templates. Specifically, in the training
stage, we collect sample mixes of scans and build regression models. For each mix
of pipelines, we first identify the scans within each pipeline, and then reduce the
problem to mixes of scans so that the regression models can be leveraged.

Discussion We assumed for simplicity that the I/O’s of a query were only from
scans. We now return to this issue. In practice, the I/O’s from certain operators
(e.g., hash join) due to spilling intermediate results to disk are often not negligible.
We have observed in our experiments that completely eliminating these additional
I/O’s from the model can harm the prediction accuracy by 10% to 30%. Therefore,
we choose to incorporate these I/O’s into the current model as much as possible.
Specifically, we treat the additional I/O’s as if they were scans over the underlying
tables. For example, PostgreSQL uses the hybrid hash join algorithm. If the parti-
tions produced in the building phase cannot fit in memory, they will be written
to disk and read back in the probing phase. This causes additional I/O’s. Now
suppose that R ./ S is a hash join between the table R and S. We model these
additional I/O’s as additional sequential scans over R and S, respectively.

54

3.3.2 An Analytic-Model Based Approach

The machine-learning based approach suffers the problem of infinite number of
unknown queries. Specifically, the sample space of training data now moves from
mixes of queries to mixes of (instance) scans. Note that, although the number of scan
types is finite, each scan type can have infinitely many instances. So the number of
mixes of instance scans is still infinite. It could be imagined (and also verified in
our experimental evaluation) that if the queries contain scans not observed during
training, then the prediction is unlikely to be good.

In this section, we present a different approach based on analytic models. Specif-
ically, we model the underlying database system with a queueing network. The c’s
in Equation (2.1) are equivalent to the resident times per visit of the pipelines within
the network, and can be computed with standard queueing-network evaluation
techniques. Since the queueing network is incapable of characterizing the cache
effect of the buffer pool, we further incorporate an analytic model to predict the
buffer pool hit rate.

3.3.2.1 The Queueing Network

As shown in Figure 3.5, the queueing network consists of two service centers, one
for the disks, and the other for the CPU cores. This is a closed model with a batch
workload (i.e., a terminal workload with a think time of zero) [59]. The customers of
this queueing system are the pipelines in the mix. In queueing theory terminology,
the execution time of a pipeline is its residence time in the queueing network.

If both service centers only contain a single server, then it is straightforward to
apply the standard mean value analysis (MVA) technique [78] to solve the model.
In practice, we usually use the approximate version of MVA for computational
efficiency. The results obtained via exact and approximate MVA are close to each
other [59]. However, if some service center has multiple servers, the standard
technique cannot be directly used, and we instead use the extended approach
presented in [86].

55

.

.

.

Disk CPU

.

.

.

Figure 3.5: A queueing network.

The queueing system shown in Figure 3.5 can be described by the following set
of (nonlinear) equations:

Rk,m = τk + Ykτk
∑
j6=m

Qk,j, (3.1)

Qk,j =
Vk,jRk,j∑K
i=1 Vi,jRi,j

, (3.2)

Yk =
1
Ck
ρ4.464(C0.676

k −1), (3.3)

ρk =
τk

Ck

M∑
j=1

Vk,j∑K
i=1 Vi,jRi,j

, (3.4)

where k ∈ {cpu,disk}, and 1 6 m 6M (M is the number of customers). Table 3.1
illustrates the notation used in the above equations. Our goal is to compute the
residence time Rk,m per visit for each customerm at each service center k.

The input parameters of the equations are the τk’s and Vk,m’s. τk is the mean
service time per visit to the service center k. For example, τdisk is the average
time for the disk to perform an I/O operation. The τk’s should be the same as the
cost units used for estimating the execution time of a single standalone query. For
PostgreSQL, however, we have 5 cost units but we only need 2 τk’s. We address this
issue by picking a base cost unit and transform all the other cost units into equivalent
amounts of base cost units, with respect to their relative ratios. For example, for the
specific machine used in our experiments (see Table 3.3 in Section 3.4), we know that

56

Notation Description
Ck # of servers in (service) center k
τk Mean service time per visit to center k
Yk Correction factor of center k
ρk Utility of center k
Vk,m Mean # of visits by customerm to center k
Qk,m Mean queue length by customerm at center k
Rk,m Mean residence time per visit by customerm to center k

Table 3.1: Notation used in the queueing model.

cr = 11.3cs, which means the time of 1 random I/O is equivalent to 11.3 sequential
I/O’s. In our experiments, we pick τdisk = cr and τcpu = ct as the base I/O and
CPU cost unit (the other choices are also OK). Then the number of I/O and CPU
visits Vk,m of a pipeline are (nr + ns · cscr) and (nt + ni · cict + no ·

co
ct
). The n’s of a

pipeline are computed based on the n’s of each operator in the pipeline. Specifically,
suppose that a pipeline contains l operators O1, ..., Ol. Let nj (nj can be any of
the ns, nr, etc) be the optimizer’s estimate for the operator Oj. The corresponding
quantity for the pipeline is then

∑l
j=1 nj.

If there is only one server in the service center k (i.e., Ck = 1), then Yk = 1 by
Equation (3.3). Equation (3.1) is then reduced to the case of standard MVA, which
basically says that the residence time Rk,m is sum of the service time τk and the
queueing time τk

∑
j6=mQk,j. The expression of the queueing time is intuitively

the sum of the queueing time of the customers other than the customerm, each of
which in turn is the product of the queue length for each class (i.e., Qk,j) and their
service time (i.e., τk).

When there are multiple servers in the service center, intuitively the queueing
time would be less than if there were only one server. The correction factor Yk is
introduced for this purpose. The formula of Yk in Equation (3.3) was derived in [86],
and was shown to be good in their simulation results.

By substituting Equation (3.2) to (3.4) into Equation (3.1), we can obtain a system
of nonlinear equations where the only unknowns are the Rk,m’s. We use the fsolve
function of Scilab [81] to solve this system. Any other equivalent solver can be used
for this purpose as well.

57

3.3.2.2 The Buffer Pool Model

The weakness of the queueing network introduced above is that it does not con-
sider the effect of the buffer pool. Actually, since the buffer pool plays the role of
eliminating I/O’s, it cannot be viewed as a service center and therefore cannot be
modeled within the queueing network. We hence need a special-purpose model
here to predict the buffer pool hit rate. Of course, different buffer pool replacement
policies need different models. We adapt the analytic model introduced in [70]
for the “clock” algorithm that is used in PostgreSQL. If a system uses a different
algorithm (e.g., LRU, LRU-k, etc), a different model should be used.

The clock algorithm works as follows. The pages in the buffer pool are organized
in a circular queue. Each buffer page has a counter that is set to its maximum value
when the page is brought into the buffer pool. On a buffer miss, if the requested
page is not in the buffer pool and there is no free page in the buffer, a current buffer
page must be selected for replacement. The clock pointer scans the pages to look
for a victim. If a page has count 0, then this page is chosen for replacement. If a
page has a count larger than 0, then the count is decreased by 1 and the search
proceeds. On a buffer hit, the counter of the page is reset to its maximum value.

The analytic approach in [70] models this procedure by using a Markov chain.
Suppose that we have P partitions in the system (we will discuss the notion of
partition later). Lethp be the buffer pool hit rate for the partition p, where 1 6 p 6 P.
hp can be obtained by solving the following system of equations:

P∑
p=1

Sp
(
1 −

1
(1 + n0

m

rp
Sp
)Ip+1

)
− B = 0, (3.5)

Np = Sp
(
1 −

1
(1 + n0

m

rp
Sp
)Ip+1

)
, (3.6)

hp =
Np

Sp
. (3.7)

The notation used in the above equations is illustrated in Table 3.2.

58

Notation Description
n0 Mean # of buffer pages with count 0
m Overall buffer pool miss rate
Sp # of pages in partition p
rp Probability of accessing partition p
Ip Maximum value of the counter of partition p
Np Mean # of buffer pool pages from partition p
hp Buffer pool hit rate of partition p

Table 3.2: Notation used in the buffer pool model.

By Equation (3.6) and (3.7),

mp = 1 − hp = [(1 +
n0

m

rp

Sp
)Ip+1]−1

represents the buffer miss rate of the partition p. Note that n0 can be thought of as
the number of buffer misses that can be handled in one clock cycle. As a result, n0

m

is the number of buffer accesses (including both buffer hits and misses) in one clock
cycle. Hence n0

m

rp
Sp

is the expected number of accesses to a page in the partition p.
Intuitively, the higher this number is, the more likely the page is in the buffer pool
and hence the smallermp is. The expression ofmp captures this intuition.

It is easy to see that we can determine the quantity n0
m

from Equation (3.5), since
it is the only unknown there. We can then figure outNp and hence hp by examining
Equation (3.6) and Equation (3.7). To solve n0

m
from Equation (3.5), define

F(t) =

P∑
p=1

Sp
(
1 −

1
(1 + t · rp

Sp
)Ip+1

)
− B.

We have F(0) = −B < 0, and F(+∞) = limt→+∞ F(t) = (∑P
p=1 Sp

)
− B > 0, since

we except the size of the database
∑P
p=1 Sp is bigger than the size of the buffer pool

B (in pages). Since F(t) is strictly increasing as t increases, we know that there is
some t0 ∈ [0,+∞) such that F(t0) = 0. We can then use a simple but very efficient
bisection method to find t0 [70]. Here, B, {Sp}Pp=1, and {Ip}

P
p=1 are measurable system

59

parameters. {rp}Pp=1 can be computed based on {Sp}
P
p=1 and the number of I/Os to

each partition, which can be obtained from the query plans.
The remaining issue is how to partition the database. The partitioning should

not be arbitrary because the analytic model is derived under the assumption that
the access to database pages within a partition is uniform. An accurate partitioning
thus requires information about access frequency of each page in the database,
which depends on the particular workload to the system. For the TPC-H workload
we used in our experiments, since the query templates are designed in some way
that a randomly generated query instance is equally likely to touch each page,1 we
simplified the partitioning procedure by treating each TPC-H table as a partition.
In a real deployed system, we can further refine the partitioning by monitoring the
access patterns of the workload [70].

3.3.2.3 Putting It Together

The complete predictive approach based on the analytic models is summarized in
Algorithm 3. We first call the analytic model Mbuf to make a prediction for the
buffer pool hit rate hp of each partition p (line 1). Since only buffer pool misses
will cause actual disk I/O’s, we discount the disk visits Vdisk,i,p of each partition p
accessed by the pipeline iwith the buffer pool miss rate (1 − hp). The disk visits
Vdisk,i of the pipeline i is the sum of its visits to each partition (lines 2 to 7). We
then call the queueing model Mqueue to make a prediction for the residence time
per visit of the pipeline i in the service center k, where k ∈ {cpu,disk} (line 8). The
predicted execution time Ti for the pipeline i is simply (line 10):

Ti = Vcpu,iRcpu,i + Vdisk,iRdisk,i.

It might be worth noting that, the queueing model here is equivalent to the
optimizer’s cost model when there is only one single pipeline. To see this, notice

1Specifically, the TPC-H benchmark database is uniformly generated. The TPC-H queries usually
use pure sequential scans or index scans with range predicates to access the tables. If it is a sequential
scan, then clearly the access to the table pages is uniform. If it is an index scan, the range predicate
is uniformly generated so that each page in the table is equally likely to be touched.

60

Algorithm 3: Mppl based on analytic models.
Input: {P1, ...,Pn}, a mix of n pipelines; Mqueue: the queueing model; Mbuf:

the buffer pool model
Output: {Ti}ni=1, where Ti is the predicted execution time of the pipeline Pi

1 {hp}
P
p=1 ← PredictHitRate(Mbuf);

2 for 1 6 i 6 n do
3 Vdisk,i ← 0;
4 foreach partition p accessed by Pi do
5 Vdisk,i ← Vdisk,i + Vdisk,i,p(1 − hp);
6 end
7 end
8 {Rk,i}

n
i=1 ← PredictResTime(Mqueue, {Vk,i}

n
i=1);

9 for 1 6 i 6 n do
10 Ti ← Vcpu,iRcpu,i + Vdisk,iRdisk,i;
11 end
12 return {Ti}

n
i=1;

that the
∑
j6=mQk,j in the second summand of Equation (3.1) vanishes if there is

only one customer. Therefore, we simply have Rk,m = τk in this case. Due to the use
of base cost units, no information is lost when multiplying Vk,m by τk. Specifically,
for example, suppose that k = disk. We have

Vdisk,m · τdisk = (nr + ns ·
cs

cr
) · cr = nr · cr + ns · cs,

which is the same as the optimizer’s estimate. Since the progressive predictor
degenerates to summing up the predicted time of each individual pipeline if there
is only one query, the predicted execution time of the query is therefore the same as
what if the optimizer’s cost model is used. In this regard, for single-query execution
time prediction, the analytic-model based approach here can also be viewed as a
new predictor based on the optimizer’s cost model, with the addition of the buffer
pool model that further predicts buffer pool hitting rate.

61

3.4 Experimental Evaluation

In this section, we present our experimental evaluation of the proposed approaches.
We measure the prediction accuracy in terms of mean relative error (MRE), a metric
used in [10, 33]. MRE is defined as

1
N

N∑
i=1

|Tpredi − Tacti |

Tacti

.

Here N is the number of testing queries, Tpredi and Tacti are the predicted and
actual execution times for query i. We measured the overhead of the prediction
approaches as well.

3.4.1 Experimental Setup

We evaluated our approaches with the TPC-H 10GB benchmark database. In our
experiments, we varied the multiprogramming level (MPL), i.e., the number of
queries that were concurrently running, from 2 to 5. All the experiments were
conducted on a machine with dual Intel 1.86 GHz CPU and 4GB of memory. We
ran PostgreSQL 9.0.4 under Linux 3.2.0-26.

3.4.1.1 Workloads

We used the following two TPC-H-based workloads and three micro-benchmarking
workloads in our experiments:

I. TPC-H workloads

• TPC-H1: This is a workload created with 9 TPC-H query templates that are of
light to moderate weight queries. Specifically, the templates we used are TPC-H
queries 1, 3, 5, 6, 10, 12, 13, 14, and 19. We choose light to moderate queries because
they allow us to explore higher MPL’s without overloading the system [33]. For each
MPL, we then generated mixes of TPC-H queries via Latin Hypercube Sampling

62

(LHS) [10, 33]. LHS creates a hypercube with the same dimensionality as the given
MPL. Each dimension is divided into T equally probable intervals marked with
1, 2, ..., T , where T is the number of templates. The interval i represents instances
of the template i. LHS then selects T sample mixes such that every value in every
dimension appears in exact one mix. Intuitively, LHS has better coverage of the
space of mixes than uniformly random sampling, given that the same number of
samples are selected. The purpose of TPC-H1 is to compare different approaches
over uniformly generated query mixes.

• TPC-H2: This workload is generated in the same way as TPC-H1. In addition
to the 9 templates in TPC-H1, we added 3 more expensive TPC-H templates 7, 8,
and 9. The purpose is to test the approaches under a more diverse workload, in
terms of the distribution of query execution times. Figure 3.6 compares the variance
in query execution times of TPC-H1 and TPC-H2, by presenting the mean and
standard deviation (shown as error bars) of the execution times of queries in each
TPC-H template. As we can see, the execution times of some queries (e.g., Q3 and
Q5) are much longer in TPC-H2 than in TPC-H1, perhaps due to the more severe
interactions with the three newly-added, long-running templates.

II. Micro-benchmarking workloads

•MB1: This is a workload with 36 mixes of queries, 9 for each MPL from 2 to 5. A
mix for MPLm containsm queries of the following form:

SELECT * FROM lineitem
WHERE l_partkey > a and l_partkey < b.

Here l_partkey is an attribute of the lineitem table with an unclustered index. The val-
ues of l_partkey is between 0 and 2,000,000. We vary a and b to produce index scans
with data sharing ratio 0, 0.1, ..., 0.8. For example, when MPL is 2, if the data sharing
ratio is 0, the first scan is generated with a = 0 and b = 1, 000, 000, and the second
scan is generated with a = 1, 000, 000 and b = 2, 000, 000; if the data sharing ratio is

63

 200

 300

 400

 500

 600

 700

 800

 900

1 3 5 6 10 12 13 14 19

E
xe

cu
tio

n
T

im
e

(s
)

TPC-H Template

(a) TPC-H1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 3 5 6 7 8 9 10 12 13 14 19

E
xe

cu
tio

n
T

im
e

(s
)

TPC-H Template

(b) TPC-H2

Figure 3.6: Variance in query execution times.

0.2, then the first scan is generated with a = 0 and b = 1, 111, 111, while the second
scan is generated with a = 888, 888 and b = 2, 000, 000. The purpose of MB1 is
to compare different approaches over query mixes with different data sharing ratios.

•MB2: This is a workload with mixes that mingle both sequential and index scans.
We focus on the two biggest tables lineitem and orders. For each table, we include 1
sequential scan and 5 index scans, and there is no data sharing between the index
scans. For each MPL from 2 to 5, we generate query mixes by enumerating all pos-

64

sible combinations of scans. For example, when MPL is 2, we can have 10 different
mixes, such as 2 sequential scans over lineitem, 1 sequential scan over lineitem and
1 sequential scan over orders, and so on. Whenever an index scan is required, we
randomly pick one from the five candidates. The purpose of MB2 is to compare
different approaches over query mixes with different proportion of sequential and
random accesses.

•MB3: This is a workload similar to MB2, for which we replace the scans in MB2
with TPC-H queries. We do this by classifying the TPC-H templates based on their
scans over the lineitem and orders table. For example, the TPC-H Q1 contains a
sequential scan over lineitem, andQ13 contains a sequential scan over orders. When
generating a query mix, we first randomly pick a TPC-H template containing the
required scan, and then randomly pick a TPC-H query instance from that template.
The purpose of MB3 is to repeat the experiments on MB2 with less artificial, more
realistic query mixes.

3.4.1.2 Calibrating PostgreSQL’s Cost Models

Optimizer Parameter Calibrated µ (ms) Default
seq_page_cost (cs) 8.52e-2 1.0
random_page_cost (cr) 9.61e-1 4.0
cpu_tuple_cost (ct) 2.04e-4 0.01
cpu_index_tuple_cost (ci) 1.07e-4 0.005
cpu_operator_cost (co) 1.41e-4 0.0025

Table 3.3: Actual values of PostgreSQL optimizer parameters.

Both the machine-learning and analytic-model based approaches need the c’s
and n’s from the query plan as input. However, as we have discussed in Chapter 2,
the crude values of these quantities might be incorrect and hence are not ready
for use. We therefore use the framework proposed in Chapter 2 to calibrate the
c’s and refine the n’s. Table 3.3 presents the calibrated values for the 5 cost units
on the machine used in our experiments. For the n’s, we use the aforementioned

65

sampling-based method by setting the sampling ratio to be 0.05 (i.e., the sample size
is 5% of the database size). The prediction accuracy of our proposed approaches
observed on the tested workloads using this sampling ratio is quite close to that
observed using the true cardinalities to compute the n’s.

3.4.1.3 Settings for Machine Learning

As mentioned before, the TPC-H benchmark database consists of 8 tables, 6 of
which have indexes. Also, there are 3 kinds of scan operators implemented by
PostgreSQL, namely, sequential scan (SS), index scan (IS), and bitmap index scan
(BIS). Therefore, we have 8 SS scan types, one for each table, and 6 IS scan types,
one for each table with some index. Since BIS’s are rare, we focus on the two biggest
tables lineitem and orders for which we observed the occurrences of BIS’s in the
query plans. By including these 2 BIS scan types, we have 16 scan types in total. We
then use Latin Hypercube Sampling (LHS) to generate sample mixes of scan types.
For a given sample mix, we further randomly generate an instance scan for each
scan type in the mix. Since we have 16 scan types, each run of LHS can generate 16
sample mixes. While we can run LHS many times, executing these mixes to collect
training data is costly. Hence, for each MPL, we run LHS 10 times.

ID Description
F1 # of sequential I/O’s of si
F2 # of random I/O’s of si
F3 # of scans in N(si) that are over tbli
F4 # of sequential I/O’s from scans in N(si) that are over tbli
F5 # of random I/O’s from scans in N(si) that are over tbli
F6 # of scans in N(si) that are not over tbli
F7 # of sequential I/O’s from scans in N(si) that are not over tbli
F8 # of random I/O’s from scans in N(si) that are not over tbli

Table 3.4: Features of si.

We used the features in Table 3.4 to represent an scan instance si in a mix
{s1, ..., sn}, where tbli is the table accessed by si, and N(si) is the set of neighbor
scans of si in the mix. We tested representatives of both linear models and nonlinear

66

models. For linear models, we used multivariate linear regression (MLR), and for
nonlinear models, we used REP regression trees (REP) [74]. We also tested the
well-known boosting technique that combines predictions from multiple models,
which is generally believed to be better than a single model. Specifically, we used
additive regression [35] here, with shallow REP trees as base learners. All of these
models can be obtained from the WEKA software package [46]. In our study, we
found that REP trees outperformed both linear regression and additive regression,
in terms of prediction accuracy. Therefore, in the following we only present the
results of the machine-learning based approach by using the REP trees.

3.4.1.4 Settings for Analytic Models

The queueing model needs the calibrated c’s (in Table 3.3) and n’s as input. In
addition, the buffer pool model also requires a dozen parameters. Table 3.5 lists
the values of these parameters for the system and database configurations used in
our experiments.

Parameter Description Value
B # of buffer pool pages 439,463
Ip Max counter value (for all p) 5
Slineitem # of pages in lineitem 1,065,410
Sorders # of pages in orders 253,278
Spartsupp # of pages in partsupp 170,916
Spart # of pages in part 40,627
Scustomer # of pages in customer 35,284
Ssupplier # of pages in supplier 2,180
Snation # of pages in nation 1
Sregion # of pages in region 1

Table 3.5: Values of buffer pool model parameters.

3.4.2 Prediction Accuracy

We evaluated the accuracy of our approaches with the five workloads described
in Section 3.4.1.1. To see the effectiveness of our approaches, in our evaluation we

67

also included a simple baseline approach:

Baseline: For each query in the mix, predict its execution time as if it were the
only query running in the database system, by using the method described in
Chapter 2. Then multiply it with the MPL (i.e., the number of queries in the
mix) as the prediction for the query. Intuitively, this approach ignores the impact
of interactions from different neighbors of the query. It will produce the same
prediction for the query as long as the MPL is not changed.

3.4.2.1 Results on TPC-H Workloads

Figure 3.7 and 3.8 present the prediction errors over the two TPC-H-based work-
loads TPC-H1 and TPC-H2. On TPC-H1, the accuracy of the analytic-model based
and the machine-learning based approach are close, both outperforming the base-
line approach by reducing the error by 15% to 30% (Figure 3.7). This performance
improvement may not be very impressive in view of the simplicity of the baseline
approach. However, we note here that this is because of the way the workload is
generated rather than a problem in our approaches. The workload TPC-H1 turns
out to be relatively easy to predict (the errors of all approaches are relatively small).
When we move to the more diverse workload TPC-H2, the prediction accuracy of
the baseline approach deteriorates dramatically (Figure 3.8), while its two competi-
tors retain prediction accuracy close to that observed on TPC-H1. Nonetheless, it
is important to include the baseline to show that sometimes it does surprisingly
well, and makes it challenging to improve substantially over that baseline. We also
observe that, on TPC-H2, the analytic-model based approach slightly outperforms
the machine-learning based approach, improving the accuracy by about 10%.

3.4.2.2 Results on Micro-Benchmarking Workloads

Since the TPC-H workloads were generated via LHS, they cover only a small frac-
tion of the space of possible query mixes. As a result, many particular kinds of
query interactions might not be captured. We therefore evaluated the proposed

68

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 3.7: Prediction error on TPC-H1 for different approaches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 3.8: Prediction error on TPC-H2 for different approaches.

approaches over the three micro-benchmarking workloads as well, which were
more diverse than the TPC-H workloads in terms of query interactions. Figure 3.9
to 3.11 present the results.

On MB1, the prediction errors of the machine-learning based and the baseline
approach are very large, while the errors of the analytic-model based approach
remain small (Figure 3.9). The baseline approach fails perhaps because it does not
take the data sharing between queries into consideration. We observed consistent
overestimation made by the baseline approach, while the analytic-model based
approach correctly detected the data sharing and hence leveraged it in buffer pool

69

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 3.9: Prediction error on MB1 for different approaches.

hit rate prediction. The machine-learning based approach is even worse than the
baseline approach. This is because we train the model with mixes of scans generated
via LHS, which are quite different from the mixes of scans in MB1. MB1 focuses on
heavy index scans over a particular table. In typical LHS runs, very few samples
can be obtained from such a specific region since the goal of LHS is to uniformly
cover the whole huge space of query mixes.

The prediction errors of the baseline approach remain large on the workloads
MB2 and MB3 (Figure 3.10 and 3.11). This is not surprising, since the query interac-
tions in MB2 and MB3 are expected to be much more diverse than they are in the
TPC-H workloads. It is hard to believe that a model ignoring all these interactions
can work for these workloads. Meanwhile, the analytic-model based approach is
still better than the machine-learning based approach on MB2, by reducing the
prediction errors by 20% to 25%, and they are comparable on MB3. One possible
reason for this improvement of the machine-learning based approach may be that
the interactions in MB2 and MB3 are closer to what it learnt during training. Re-
call that we intentionally enforce no data sharing among the index scans used to
generate MB2 and MB3, and hence the index scans are somewhat independent of
each other. This is similar to what LHS did in training, for which the scans in a mix
are independently generated. This is quite different for MB1, however, where the
queries are correlated due to data sharing.

70

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 3.10: Prediction error on MB2 for different approaches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5

R
el

at
iv

e
E

rr
or

Multiprogramming Level (MPL)

Analytic-Model
Machine-Learning(REP)
Baseline

Figure 3.11: Prediction error on MB3 for different approaches.

3.4.2.3 Sensitivity to Errors in Cardinality Estimates

Both the machine-learning based and the analytic-model based approach rely on
the n’s from the query plans. Since the accuracy of the n’s depends on the quality
of cardinality estimates, which are often erroneous in practice, a natural question is
how sensitive the proposed approaches are to errors in cardinality estimates.

We investigated this question for the analytic-model based approach, which, as
we have seen, outperformed its machine-learning counterpart on the workloads
we tested. We studied this by feeding the optimizer cardinalities generated by
perturbing the true cardinalities. Specifically, consider an operator O with true

71

input cardinality NO. Let r be the error rate. In our perturbation experiments,
instead of using NO, we used N ′O = NO(1 + r) to compute the n’s of O. We
considered both biased and unbiased errors. The errors are biased if we use the same
error rate r for all operators in the query plan, and the errors are unbiased if each
operator uniformly randomly draws r from some interval (−R,R).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

R
el

at
iv

e
E

rr
or

r

MPL = 2
MPL = 5

(a) Biased errors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e
E

rr
or

R

MPL = 2
MPL = 5

(b) Unbiased errors

Figure 3.12: Sensitivity of prediction accuracy on TPC-H1.

Figure 3.12 shows the results on the TPC-H1 workload. We observe that in
the presence of biased errors, the prediction errors increase in proportion to the
errors in cardinality estimates. However, the prediction errors often increase more

72

 0

 20

 40

 60

 80

 100

 120

2 3 4 5

T
im

e
O

ve
rh

ea
d

(m
s)

Multiprogramming Level (MPL)

TPC-H1
TPC-H2
MB1
MB2
MB3

Figure 3.13: Runtime overhead in evaluating analytic models.

slowly than the cardinality estimation errors. For example, in Figure 3.12(a), the
mean prediction error increases from 0.36 to 0.47 for MPL 5 when r increases from
0 to 0.6. On the other hand, the prediction accuracy is more stable in the presence
of unbiased errors. As shown in Figure 3.12(b), the prediction errors are almost
unchanged when R increases from 0 to 0.4. The intuition for this is that if the
errors are unbiased, then for each operator in the query plan, it is equally likely to
overestimate or underestimate its cardinalities. Therefore, the errors might cancel
each other when making prediction for the entire query.

3.4.3 Additional Overhead

Both the machine-learning based and the analytic-model based approach need to
calibrate the optimizer’s cost model. As discussed in Chapter 2, calibrating the c’s
is a one-time procedure and usually can be done within a couple of hours. The
overhead of calibrating the n’s via sampling depends on the sample size. For the
sampling ratio 0.05, it takes around 4% of the query execution time, when the
samples are disk-resident. This overhead could be substantially reduced using the
common techniques of keeping the samples in memory [75].

In addition to the overhead in calibrating the cost model, the machine-learning
based approach needs to collect the training data. Although the training is offline,

73

this overhead is not trivial. The time spent in the training stage depends on several
factors, such as the number of sample scan mixes and the overhead of each scan
instance. For the specific settings used in our experiments, the training stage usually
takes around 2 days.

On the other hand, the analytic-model based approach needs to evaluate the
analytic models when making the prediction. This includes the time of solving the
systems of nonlinear equations required by both the queueing model and the buffer
pool model. Figure 3.13 presents the average total time spent in the evaluation
as well as the standard deviation (as error bars). As expected, the time overhead
increases as the MPL grows, since the queueing model becomes more complicated.
However, the overall time overhead is ignorable (e.g., around 120 ms when MPL is
5), compared with the execution time of the queries (usually hundreds of seconds).

3.4.4 Discussion

The approaches proposed in this chapter relies on the optimizer’s cost model
to provide reasonable cost estimates. Although we have used the framework in
Chapter 2 to calibrate the cost model, it still contains some flaws. For example, in
the current implementation of PostgreSQL, the cost model does not consider the
heterogeneous resource usage at different stages of an operator. This may cause
some inaccuracy in the cost estimates. For instance, the I/O cost per page in the
building phase of hash-based joins might be longer than that predicted by the cost
model, due to potential read/write interleaves if spilling occurs. In this case, the
current approach might underestimate the execution time of a hash join operator.
One way to fix these issues is to improve the cost model.

For example, in [72], the authors proposed a more accurate analytic model for
the hybrid hash join algorithm, by further considering the read/write interleavings
in the building phase. A thorough revision to the PostgreSQL’s cost model, however,
might require considerable development efforts and is beyond the scope of this
chapter. Our goal here is just to see how effective the proposed approach is, based
on the currently-used imperfect cost models. We believe that an improved cost

74

model could further enhance our approach by delivering more accurate predictions,
and we leave the development of a better cost model as interesting future work.

3.5 Related Work

The problem of predicting concurrent query execution time was studied in [10]
and [33]. In [10], the authors proposed an experiment-driven approach by sampling
the space of possible query mixes and fitting statistical models to the observed
execution time of these samples. Specifically, they used Gaussian processes as the
particular statistical model. A similar idea was used in [33], where the authors
proposed predicting the buffer access latency (BAL) of a query, which is the average
delay between the time when an I/O request is issued and the time when the
requested block is returned. BAL was found to be highly correlated with the
query execution time, and they simply used linear regression mapping BAL to the
execution time. To predict BAL, the authors collected training data by measuring
the BALs under different query mixes and then built a predictive model based on
multivariate regression. The key limitation of both work is that they both assumed
static workloads, which is usually not the case in practice. To the best of our
knowledge, we are the first that addresses the concurrent query execution time
prediction problem under dynamic workloads.

Queueing networks have been extensively used in computer system modeling,
including database systems (e.g., [71, 83, 87]). However, the focus in this work
is quite different from ours. Previous work used queueing networks to predict
macro performance metrics such as the throughput and mean response time for
different workloads. Their goal, as pointed out by Sevcik [83], was “predicting
the direction and approximate magnitude of the change in performance caused by
a particular design modification.” As a result, the models were useful as long as
they could correctly predict the trend in system performance, although “significant
errors in absolute predictions of performance” were possible. In contrast, our
goal is to predict the exact execution time for each individual query. Due to this
discrepancy, we applied queueing networks in a quite different manner. Previous

75

work modeled the system as an open network (e.g., [71, 87]), the evaluation of
which heavily relies on assumptions about query arrival rates and service time
distributions (e.g., M/M/1 and M/G/1 queues). In contrast, we do not assume any
additional workload knowledge except for the current query mix to be predicted,
since we target dynamic workloads. Therefore, we modeled the system as a closed
network, and used the mean value analysis (MVA) technique to solve the model.
Moreover, we treated pipelines rather than the entire queries as customers of the
queueing network, motivated by the observation that query interactions happen at
the pipeline level rather than at the query level.

3.6 Summary

In this chapter, we studied the problem of predicting query execution time for
concurrent and dynamic database workloads. Our approach is based on analytic
models, for which we first use the optimizer’s cost model to estimate the I/O
and CPU operations for each individual query, and then use a queueing model to
combine these estimates for concurrent queries to predict their execution times. A
buffer pool model is also incorporated to account for the cache effect of the buffer
pool. We show that our approach is competitive to and often better than a variant
of previous machine-learning based approaches, in terms of prediction accuracy.

We regard this chapter as a first step towards this important but challenging
problem. To improve the prediction accuracy, one could either try new machine-
learning techniques or develop better analytic models. While previous work favored
the former option, the results shown in this chapter shed some light on the latter one.
Moreover, a hybrid approach combining the merits of both approaches is worth
consideration for practical concern, since most database workloads are neither
purely static nor purely dynamic. All these directions deserve future research effort.

76

Chapter 4

Uncertainty-Aware Query Execution
Time Prediction

In Chapter 2 and 3, we have discussed the problem of predicting query execution
time for both single-query and multi-query workloads, which is a fundamental
issue underlying many database management tasks. As we have seen, existing
predictors rely on information such as cardinality estimates and system performance
constants that are difficult to know exactly. As a result, accurate prediction still
remains elusive for many queries. However, existing predictors (including ours)
provide a single, point estimate of the true execution time, but fail to characterize
the uncertainty in the prediction.

In this chapter, we take a first step towards providing uncertainty information
along with query execution time predictions. As before, we use the query op-
timizer’s cost model to represent the query execution time as a function of the
selectivities of operators in the query plan as well as the constants that describe
the cost of CPU and I/O operations in the system. By treating these quantities as
random variables rather than constants, we show that with low overhead we can
infer the distribution of likely prediction errors. We further show that the estimated
prediction errors by our proposed techniques are strongly correlated with the actual
prediction errors.

77

4.1 Introduction

It is a general principle that if there is uncertainty in the estimate of a quantity,
systems or individuals using the estimate can benefit from information about this
uncertainty. (As a simple but ubiquitous example, opinion polls cannot be reliably
interpreted without considering the uncertainty bounds on their results.) In view
of this, it is somewhat surprising that something as foundational as query running
time estimation typically does not provide any information about the uncertainty
embedded in the estimates.

There is already some early work indicating that providing this uncertainty
information could be useful. For example, in approximate query answering [48, 55],
approximate query results are accompanied by error bars to indicate the confidence
in the estimates. It stands to reason that other user-facing running time estimation
tasks, for example, query progress indicators [23, 64], could also benefit from
similar mechanisms regarding uncertainty. Other examples include robust query
processing and optimization techniques (e.g., [14, 28, 39, 40, 66, 90]) and distribution-
based query schedulers [26]. We suspect that if uncertainty information were widely
available many more applications would emerge.

In this chapter, we study the problem of providing uncertainty information along
with query execution time predictions. In particular, rather than just reporting a
point estimate, we provide a distribution of likely running times. There is a subtlety
in semantics involved here — the issue is not “if we run this query 100 times what
do we think the distribution of running times will be?” Rather, we are reporting
“what are the likelihoods that the actual running time of this query would fall into
certain confidence intervals?” As a concrete example, the distribution conveys
information such as “I believe, with probability 70%, the running time of this query
should be between 10s and 20s.”

Following our discussion in Chapter 2, we use query optimizers’ cost models to
represent the query execution time as a function of selectivities of operators in the
query plan as well as basic system performance parameters such as the unit cost
of a single CPU or I/O operation (i.e., cost units). However, our approach here is

78

different from that in Chapter 2 — we treat these quantities as random variables
rather than fixed constants. We then use sampling based approaches to estimate the
distributions of these random variables. Based on that, we further develop analytic
techniques to infer the distribution of likely running times.

In more detail, for specificity consider again the cost model used by the query
optimizer of PostgreSQL as described in Example 2.1, where the execution runtime
overhead tO of an operator O (e.g., scan, sort, join, etc.) is estimated as:

tO = ns · cs + nr · cr + nt · ct + ni · ci + no · co. (4.1)

Here the c’s are cost units as described in Example 2.1. The total estimated overhead
tq of a query q is simply the sum of the costs of the individual operators in its query
plan. Moreover, as we discussed, the n’s are actually functions of the input/output
cardinalities (or equivalently, selectivities) of the operators. As a result, we can
further represent tq as a function of the cost units c and the selectivities X, namely,

tq =
∑

O∈Plan(q)

tO = g(c, X). (4.2)

Perfect predictions therefore rely on three assumptions: (i) the c’s are accurate;
(ii) the X’s are accurate; and (iii) g is itself accurate. Unfortunately, none of these
holds in practice. First, the c’s are inherently random. For example, the value of
cr may vary for different disk pages accessed by a query, depending on where
the pages are located on disk. Second, accurate selectivity estimation is often
challenging, though significant progress has been made. Third, the equations and
functions modeling query execution make approximations and simplifications so
they could make errors. For instance, Equation (4.1) does not consider the possible
interleaving of CPU and I/O operations during runtime.

To quantify the uncertainty in the prediction, we therefore need to consider
potential errors in all three parts of the running time estimation formula. It turns
out that the errors in the c’s, the X’s, and g are inherently different. The errors in
the c’s result from fluctuations in the system state and/or variances in the way

79

the system performs for different parts of different queries. (That is, for example,
the cost of a random I/O may differ substantially from operator to operator and
from query to query.) We therefore model the c’s as random variables and extend
our calibration framework in Chapter 2 to obtain their distributions. The errors
in the X’s arise from selectivity estimation errors. We therefore also model these
as random variables and consider sampling-based approaches to estimate their
variance. The errors in g, however, result from simplifications or errors made by
the designer of the cost model and are out of the scope of this chapter. We show in
our experiments that even imperfect cost model functions are useful for estimating
uncertainty in predictions.

Based on the idea of treating the c’s and the X’s as random variables rather than
constants, the predicted execution time tq is then also a random variable so that we
can estimate its distribution. A couple of challenges arise immediately. First, unlike
the case of providing a point estimate of tq, knowing that tq is “some” function
of the c’s and the X’s is insufficient if we want to infer the distribution of tq — we
need to know the explicit form of g. By Equation (4.2), g relies on cost functions that
map the X’s to the n’s. As a result, for concreteness we have to choose some specific
cost model. Here, for simplicity and generality, we leverage the notion of logical
cost functions [32] rather than the cost functions of any specific optimizer. The
observation is that the costs of an operator can be specified according to its logical
execution. For instance, the number of CPU operations of the in-memory sort oper-
ator could be specified as no = aN logN, where N is the input cardinality. Second,
while we can show that the distribution of tq is asymptotically normal based on our
current ways of modeling the c’s and the X’s, determining the parameters of the
normal distribution (i.e., the mean and variance) is difficult for non-trivial queries
with deep query trees. The challenge arises from correlations between selectivity
estimates derived by using shared samples. We present a detailed analysis of the
correlations and develop techniques to either directly compute or provide upper
bounds for the covariances with respect to the presence of correlations. Finally,
providing estimates to distributions of likely running times is desirable only if it
can be achieved with low overhead. We show that it is the case for our proposed

80

techniques — the overhead is almost the same as that of the predictor in Chapter 2
which only provides point estimates.

Since our approach makes a number of approximations when computing the
distribution of running time estimates, an important question is how accurate the
estimated distribution is. An intuitively appealing experiment is the following: run
the query multiple times, measure the distribution of its running times, and see if
this matches the estimated distribution. But this is not a reasonable approach due
to the subtlety we mentioned earlier. The estimated distribution we calculate is not
the expected distribution of the actual query running time, it is the distribution of
running times our estimator expects due to uncertainties in its estimation process.
To see this another way, note that cardinality estimation error is a major source
of running time estimation error. But when the query is actually run, it does not
appear at all — the query execution of course observes the true cardinalities, which
are identical every time it is run.

Speaking informally, what our predicted running time distribution captures is
the “self-awareness” of our estimator. Suppose that embedded in the estimate is
a dependence on what our estimator knows is a very inaccurate estimate. Then
the estimator knows that while it gives a specific point estimate for the running
time (the mean of a distribution), it is likely that the true running time will be far
away from the estimate, and it captures this by indicating a distribution with a
large variance.

So our task in evaluating our approach is to answer the following question: how
closely does the variance of our estimated distribution of running times correspond
to the observed errors in our estimates (when compared with true running times)?
To answer this question, we estimate the running times for and run a large number
of different queries and test the agreement between the observed errors and the
predicted distribution of running times, where “agreement” means that larger
variations correspond to more inaccurate estimates.

In more detail, we report two metrics over a large number of queries: (M1) the
correlation between the standard deviations of the estimated distributions and
the actual prediction errors; and (M2) the proximity between the inferred and

81

observed distributions of prediction errors. We show that (R1) the correlation is
strong; and (R2) the two distributions are close. Intuitively, (R1) is qualitative; it
suggests that one can judge if the prediction errors will be small or large based on
the standard deviations of the estimated distributions. (R2) is more quantitative;
it further suggests that the likelihoods of prediction errors are specified by the
distributions as well. We therefore conclude that the estimated distributions do a
reasonable job as indicators of prediction errors.

We start by presenting terminology and notation used throughout this chapter
in Section 4.2. We then present the details of how to estimate the distributions of the
c’s and the X’s (Section 4.3), the explicit form of g (Section 4.4), and the distribution
of tq (Section 4.5). We further present experimental evaluation results in Section 4.6,
discuss related work in Section 4.7, and summarize the chapter in Section 4.8.

4.2 Preliminaries

In most current DBMS implementations, the operators are either unary or binary.
Therefore, we can model a query plan with a rooted binary tree. Consider an operator
O in the plan. We use Ol and Or to represent its left and right child operator, and
use Nl and Nr to denote its left and right input cardinality. If O is unary, then Or
does not exist and thus Nr = 0. We useM to denote O’s output cardinality.

Let T be the subtree rooted at the operator O, and let R be the (multi)set of
relations accessed by the leaf nodes of T. Note that the leaf nodes in a query plan
must be scan operators that access the underlying tables.1 We call R the leaf tables
of O. Let |R| =

∏
R∈R |R|. We define the selectivity X of O to be:

X =
M

|R|
=

M∏
R∈R |R|

. (4.3)

Example 4.1 (Selectivity). Consider the query plan in Figure 4.1. O1, O2, and O3 are
scan operators that access three underlying tables R1, R2, and R3, and O4 and O5 are join

1We use “relation” and “table” interchangeably in this chapter since our discussion does not
depend on the set/bag semantics.

82

Join

Join

Scan Scan

Scan

R1 R2

R3

N1l (=|R1|) N2l (=|R2|)

N3l (=|R3|)N4r (=M2)

N5l (=M4) N5r (=M3)

N4l (=M1)

O1 O2

O4 O3

O5

M5

Figure 4.1: Example query plan.

Notation Description
O An operator in the query plan
Ol (Or) The left (right) child operator of O
Nl (Nr) The left (right) input cardinality of O
M The output cardinality of O
R The leaf tables of O
X The selectivity of O
T The subtree rooted at O
Desc(O) The descendant operators of O in T

Table 4.1: Terminology and notation.

operators. The selectivity of O1, for instance, is X1 = M1
|R1|

, whereas the selectivity of O4 is
X4 =

M4
|R1|·|R2|

.

We summarize the above notation in Table 4.1 for convenience of reference.
Since the n’s in Equation (4.1) are functions of input/output cardinalities of the
operators (we discuss different types of cost functions in Section 4.4.1), it is clear
that the n’s are also functions of the selectivities (i.e., the X’s) defined here. Based
on Equation (4.2), tq is therefore a function of the c’s and the X’s. We next discuss
how to measure the uncertainties in these parameters.

83

4.3 Input Distributions

To learn the distribution of tq, we first need to know the distributions of the c’s and
the X’s. We do this by extending the framework in Chapter 2.

4.3.1 Distributions of the c’s

In Section 2.3, we designed dedicated calibration queries for each c. As one more
example, consider the following:

Example 4.2 (Calibration Query). Suppose that we want to know the value of ct, namely,
the CPU cost of processing one tuple. We can use the calibration query SELECT * FROM R,
where R is some table whose size is known and is loaded into memory. Since this query only
involves ct, its execution time τ can be expressed as τ = |R| ·ct. We can then run the query,
record τ, and compute ct from this equation.

Note that we can use different R’s here, and different R’s may give us different
ct’s. We can think of these observed values as i.i.d. samples from the distribution of
ct, and in Chapter 2 we used the sample mean as our estimate of ct. To quantify the
uncertainty in ct, it would make more sense to treat ct as a random variable rather
than a constant. We assume that the distribution of ct is normal (i.e., Gaussian),
for intuitively the CPU speed is likely to be stable and centered around its mean
value. Now let ct ∼ N(µt,σ2

t). It is then a common practice to use the mean and
variance of the observed ct’s as estimates for µt and σ2

t. In general, we can apply
similar arguments to all the five cost units.

4.3.2 Distributions of the X’s

The uncertainties in the X’s are quite different from those in the c’s. The uncertain-
ties in the c’s are due to unavoidable fluctuations in hardware execution speeds.
In other words, the c’s are inherently random. However, the X’s are actually fixed
numbers — if we run the query we should always obtain the same ground truths
for the X’s. The uncertainties in the X’s really come from the fact that so far we do

84

not have a perfect selectivity estimator. How to quantify the uncertainties in the X’s
therefore depends on the nature of the selectivity estimator used. Here we extend
the sampling-based approach used in Chapter 2, which was first proposed by Haas
et al. [44]. It provides a mathematically rigorous way to quantify potential errors in
selectivity estimates. It remains interesting future work to investigate the possibility
of extending other alternative estimators such as those based on histograms.

4.3.2.1 A Sampling-Based Selectivity Estimator

For self-containment purpose, in the following we briefly describe the sampling-
based selectivity estimator we used. Readers are referred to Section 2.4 for more
details. Suppose that we have a database consisting of K relations R1, ..., RK, where
Rk is partitioned intomk blocks each with size Nk, namely, |Rk| = mkNk. Without
loss of generality, let q be a selection-join query over R1, ..., RK, and let B(k, j) be
the j-th block of relation k (1 6 j 6 mk, and 1 6 k 6 K). Define

B(L1,i1 , ...,LK,iK) = B(1,L1,i1)× · · · × B(K,LK,iK),

where B(k,Lk,ik) is the block (with index Lk,ik) randomly picked from the relation
Rk in the ik-th sampling step. After n steps, we can obtain nK such samples (notice
that these samples are not independent), and the estimator is defined as

ρn =
1
nK

n∑
i1=1

· · ·
n∑
iK=1

ρB(L1,i1 ,··· ,LK,iK)
. (4.4)

Here ρn is the estimated selectivity of q (after n sampling steps), and ρB is the
observed selectivity of q over the sample B. This estimator is shown to be both
unbiased and strongly consistent for the actual selectivity ρ of q [44].2

2Strong consistency is also called almost sure convergence in probability theory (denoted as “a.s.”).
It means that the more samples we take, the closer ρn is to ρ.

85

By applying the Central Limit Theorem, we can show that
√
n

σ

(
ρn − ρ

) d−→N(0, 1).

That is, the distribution of ρn is approximately normal after a large number of
sampling steps [44]: ρn ∼ N(ρ,σ2

n), where σ2
n = σ2/n and σ2 = limn→∞ nVar[ρn].

We present a more detailed study of Var[ρn] in Appendix A.2.
However, here σ2

n is unknown since σ2 is unknown. In [44], the authors further
proposed the following estimator for σ2:

S2
n =

K∑
k=1

(
1

n− 1

n∑
j=1

(Qk,j,n/n
K−1 − ρn)

2
)

, (4.5)

for n > 2 (we set S2
1 = 0). Here

Qk,j,n =
∑

(i1,...,iK)∈Ω
(n)
k (j)

ρB(L1,i1 ,...,LK,iK)
, (4.6)

whereΩ(n)
k (j) = {(i1, ..., iK) ∈ {1, ...,n}K : ik = j}. It can be shown that limn→∞ S2

n =

σ2 a.s. As a result, it is reasonable to approximate σ2 with S2
n when n is large. So

σ2
n ≈ S2

n/n.

4.3.2.2 Efficient Computation of S2
n

Efficiency is crucial for a predictor to be practically useful. We have discussed
efficient implementation of ρn in Section 2.4. Taking samples at runtime might not
be acceptable since it will result in too many random disk I/O’s. Therefore, we
instead take samples off-line and store them as materialized views (i.e., sample
tables). In the following presentation, we use Rs to denote the sample table of a
relation R. In Section 2.4, we further showed that, given a selection-join query, we
can estimate the selectivities of all the selections and joins by running the original
query plan over the sample tables once. The trick is that, since the block size is not

86

specified when partitioning the relations, it could be arbitrary. We can then let a
block be a single tuple so that the cross-product of sample blocks is reduced to the
cross-product of sample tuples.

Example 4.3 (Implementation of ρn). Let us consider the query plan in Figure 4.1 again.
Based on the tuple-level partitioning scheme, by Equation (4.4) we can simply estimate X4

and X5 as
X̂4 =

|Rs1 ./ Rs2 |

|Rs1 | · |Rs2 |
and X̂5 =

|Rs1 ./ Rs2 ./ Rs3 |

|Rs1 | · |Rs2 | · |Rs3 |
.

Also note that we can compute the two numerators by running the query plan over the
sample relations Rs1 , Rs2 , and Rs3 once. That is, to compute Rs1 ./ Rs2 ./ Rs3 , we reuse the join
results from Rs1 ./ Rs2 that has been computed when estimating X4.

We now extend the above framework to further compute S2
n. For this sake we

need to know how to compute the Qk,j,n’s in Equation (4.5). Let us consider the
cases when an operator represents a selection (i.e., a scan), a two-way join, or a
multi-way join query.

Selection In this case, K = 1 and by Equation (4.6) Qk,j,n is reduced to Q1,j,n =

ρB(L1,j). Therefore, S2
n can be simplified as

S2
n =

1
n− 1

n∑
j=1

(ρB(L1,j) − ρn)
2.

Since a block here is just a tuple, ρB(L1,j) = 0 or ρB(L1,j) = 1. We thus have

S2
n =

1
n− 1

(∑
ρB(L1,j)=0

ρ2
n +

∑
ρB(L1,j)=1

(1 − ρn)
2)

=
1

n− 1
(
(n−M)ρ2

n +M(1 − ρn)
2),

87

where M is the number of output tuples from the selection. When n is large,
n ≈ n− 1, so we have

S2
n ≈ (1 −

M

n
)ρ2
n +

M

n
(1 − ρn)

2 = ρn(1 − ρn),

by noticing that ρn = M
n

. Hence S2
n is directly computable for a scan operator once

we know its estimated selectivity ρn.

Two-way Join Consider a join R1 ./ R2. In this case, Qk,j,n (k = 1, 2) can be
reduced to

Q1,j,n =

n∑
i2=1

ρB(L1,j,L2,i2) and Q2,j,n =

n∑
i1=1

ρB(L1,i1 ,L2,j).

Again, since a block here is just a tuple, ρB is either 0 or 1. It is then equivalent to
computing the following two quantities:

• Q1,j,n = |{t1j} ./ R
s
2 |, where t1j is the jth tuple of Rs1 ;

• Q2,j,n = |Rs1 ./ {t2j}|, where t2j is the jth tuple of Rs2 .

That is, to computeQk,j,n (k = 1, 2), conceptually we need to join each sample tuple
of one relation with all the sample tuples of the other relation. However, directly
performing this is quite expensive, for we need to do 2n joins here.

We seek a more efficient solution. Recall that we need to join Rs1 and Rs2 to
compute ρn. Let Rs = Rs1 ./ Rs2 . Consider any t ∈ Rs. t must satisfy t = t1i ./ t2j,
where t1i ∈ Rs1 and t2j ∈ Rs2 . Then t contributes 1 to Q1,i,n and 1 to Q2,j,n. On
the other hand, any t in Rs1 × Rs2 but not in Rs will contribute nothing to the Q’s.
Based on this observation, we only need to scan the tuples in Rs and increment the
corresponding Q’s. The remaining problem is how to know the indexes i and j as
in t = t1i ./ t2j. For this purpose, we assign an identifier to each tuple in the sample
tables when taking the samples. This is akin to the idea in data provenance research
where tuples are annotated to help tracking the lineages of the query results [41].

88

Multi-way Joins The approach of processing two-way joins can be easily general-
ized to handle multi-way joins. Now we have

Qk,j,n = |Rs1 ./ · · · ./ {tkj} ./ · · · ./ RsK|.

As a result, if we let Rs = Rs1 ./ · · · ./ RsK, then any t ∈ Rs satisfies t = t1i1 ./

· · · ./ tKiK . t ∈ Rs1 × · · · × RsK will contribute 1 to each Qk,ik,n (1 6 k 6 K) if and
only if t ∈ Rs. Therefore, as before, we can just simply scan Rs and increment the
corresponding Q’s when processing each tuple.

Putting It Together Algorithm 4 summarizes the procedure of computing ρn and
S2
n for a single operator O. It is straightforward to incorporate it into the previous

framework where the selectivities of the operators are refined in a bottom-up fashion
(recall Algorithm 1). We discuss some implementation details in the following.

First, the selectivity estimator cannot work for operators such as aggregates. Our
current strategy is to use the original cardinality estimates from the optimizer to
compute ρn, and we simply set S2

n to be 0 for these operators (lines 3 to 5). This
may cause inaccuracy in the prediction as well as our estimate of its uncertainty,
if the optimizer does a poor job in estimating the cardinalities. However, we find
that it works reasonably well in our experiments. Nonetheless, it is interesting
future work to incorporate sampling-based estimators for aggregates (e.g., the GEE
estimator [19]) into our current framework.

Second, to compute the Qk,ik,n’s, we maintain a hash map Hk for each kwith
ik’s the keys and Qk,ik,n’s the values. The size of Hk is upper bounded by |Rsk| and
usually is much smaller.

Third, for simplicity of exposition, in Algorithm 4 we first compute the whole
Rs and then scan it. In practice we actually do not need to do this. Typical join
operators, such as merge join, hash join, and nested-loop join, usually compute join
results on the fly. Once a join tuple is computed, we can immediately postprocess
it by increasing the correspondingQk,ik,n’s. Therefore, we can avoid the additional

89

Algorithm 4: Computation of ρn and S2
n.

Input: O, an operator; Rs = {Rs1 , ...,RsK}, the sample tables; Agg, if some
O ′ ∈ Desc(O) is an aggregate

Output: ρn, estimated selectivity of O; S2
n, sample variance

1 Rs ← RunOperator(O,Rs);
2 if Agg then
3 M← CardinalityByOptimizer(O);
4 ρn ← M∏K

k=1 |Rk|
;

5 S2
n ← 0;

6 else if O is a scan then
7 ρn ← |Rs|

|Rs1 |
;

8 S2
n ← ρn(1 − ρn);

9 else if O is a join then
10 ρn ← |Rs|∏K

k=1 |R
s
k|

;
11 foreach t = t1i1 ./ · · · ./ tKiK ∈ Rs do
12 Qk,ik,n ← Qk,ik,n + 1, for 1 6 k 6 K;
13 end

14 S2
n ←

∑K
k=1

(
1
n−1
∑n
j=1(Qk,j,n/n

K−1 − ρn)
2
)

;

15 else
16 ρn ← µ̂l, S2

n ← σ̂2
l; // Let Xl ∼ N(µ̂l, σ̂2

l).
17 end
18 return ρn and S2

n;

memory overhead of caching intermediate join results, which might be large even
if the sample tables are small.

4.4 Cost Functions

By Equation (4.2), to infer the distribution of tq for a query q, we also need to know
the explicit form of g. According to Equation (4.1), g relies on the cost functions
of operators that map the selectivities to the n’s. As mentioned in Section 4.1, we
use logical cost functions in our work. While different DBMS may differ in their

90

implementations of a particular operator, e.g., nested-loop join, they follow the
same execution logic and therefore have the same logical cost function. In the
following, we first present a detailed study of representative cost functions. We
then formulate the computation of cost functions as an optimization problem that
seeks the best fit for the unknown coefficients, and we use standard quadratic
programming techniques to solve this problem.

4.4.1 Types of Functions

We consider the following types of cost functions in this chapter:

(C1) f = a0: The cost function is a constant. For instance, since a sequential scan
has no random disk reads, nr = 0.

(C2) f = a0M+a1: The cost function is linear with respect to the output cardinality.
For example, the number of random reads of an index-based table scan falls
into this category, which is proportional to the number of qualified tuples
that pass the selection predicate.

(C3) f = a0Nl + a1: The cost function is linear with respect to the input cardinality.
This happens for unary operators that process each input tuple once. For
example, materialization is such an operator that creates a buffer to cache the
intermediate results.

(C4) f = a0N
2
l + a1Nl + a2: The cost function is nonlinear with respect to the input

cardinality. For instance, the number of CPU operations (i.e., co) performed by
a sort operator is proportional to Nl logNl. While different nonlinear unary
operators may have specific cost functions, we choose to only use quadratic
polynomials based on the following observations:

• It is quite general to approximate the nonlinear cost functions used by
current relational operators. First, as long as a function is smooth (i.e.,
it has continuous derivatives up to some desired order), it can be ap-
proximated by using the well-known Taylor series, which is basically

91

a polynomial of the input variable. Second, for efficiency reasons, the
overhead of an operator usually does not go beyond quadratic of its input
cardinality — we are not aware of any operator implementation whose
time complexity isω(N2). Similar observations have been made in [30].

• Compared with functions such as logarithmic ones, polynomials are
mathematically much easier to manipulate. Since we need to further
infer the distribution of the predicted query execution time based on the
cost functions, this greatly simplifies the derivations.

(C5) f = a0Nl + a1Nr + a2: This cost function is linear with respect to the input
cardinalities when the operator is binary. An interesting observation here
is that the cost functions in the case of binary operators are not necessarily
nonlinear. For example, the number of I/O’s involved in a hash join is only
proportional to the number of input tuples.

(C6) f = a0NlNr + a1Nl + a2Nr + a3: The cost function here also involves the
product of the left and right input cardinalities of a binary operator. This
happens typically in a nested-loop join, which iterates over the inner (i.e., the
right) input table multiple times with respect to the number of rows in the
outer (i.e., the left) input table.

It is straightforward to translate these cost functions in terms of selectivities.
Specifically, we have Nl = |Rl|Xl, Nr = |Rr|Xr, and M = |R|X. The above six cost
functions can be rewritten as:

(C1’) f = b0, where b0 = a0.

(C2’) f = b0X+ b1, where b0 = a0|R| and b1 = a1.

(C3’) f = b0Xl + b1, where b0 = a0|Rl| and b1 = a1.

(C4’) f = b0X
2
l + b1Xl + b2, where b0 = a0|Rl|

2, b1 = a1|Rl|, and b2 = a2.

(C5’) f = b0Xl + b1Xr + b2, where b0 = a0|Rl|, b1 = a1|Rr|, and b2 = a2.

92

(C6’) f = b0XlXr+b1Xl+b2Xr+b3, where b0 = a0|Rl|· |Rr|, b1 = a1|Rl|, b2 = a2|Rr|,
and b3 = a3.

4.4.2 Computation of Cost Functions

To compute the cost functions, we use an approach that is similar to the one pro-
posed in [30]. Regarding the types of cost functions we considered, the only un-
knowns given the selectivity estimates are the coefficients in the functions (i.e., the
b’s). Moreover, notice that f is a linear function of the b’s once the selectivities are
given. We can then collect a number of f values by feeding in the cost model with
different X’s and find the best fit for the b’s.

As an example, consider (C4’). Suppose that we invoke the cost modelm times
and obtainm points:

{(Xl1, f1), ..., (Xlm, fm)}.

Let y = (f1, ..., fm), b = (b0,b1,b2), and

A =

X2
l1 Xl1 1
...
X2
lm Xlm 1

 .

The optimization problem we are concerned with is:

minimize
b

‖Ab − y‖

subject to bi > 0, i = 0, 1.

Note that we require b0 and b1 be nonnegative since they have the natural semantics
in the cost functions as the amount of work with respect to the corresponding terms.
For example, b1Xl = a1Nl is the amount of work that is proportional to the input
cardinality. To solve this quadratic programming problem, we use the qpsolve
function of Scilab [81]. Other equivalent solvers could also be used.

The remaining problem is how to pick these (X, f)’s. In theory, one could
arbitrarily pick the X’s from [0, 1] to obtain the corresponding f’s as long as we have

93

more points than unknowns. Although more points usually mean we can have
better fittings, in practice we cannot afford too many points due to the efficiency
requirements when making the prediction. On the other hand, given that the X’s
here follow normal distributions and the variances are usually small when the
sample size is large, the likely selectivity estimates are usually concentrated in a
much shorter interval than [0, 1]. Intuitively, we should take more points within
this interval, for we can then have a more accurate view of the shape of the cost
function restricted to this interval. Therefore, in our current implementation, we
adopt the following strategy.

Let X ∼ N(µ,σ2). Consider the interval I = [µ − 3σ,µ + 3σ]. It is well known
that Pr(X ∈ I) ≈ 0.997, which means the probability that X falls out of I is less than
0.3%. We then proceed by partitioning I intoW subintervals of equal width, and
pick the W + 1 boundary X’s to invoke the cost model. Generalizing this idea to
binary cost functions is straightforward.

Suppose Xl ∼ N(µl,σ2
l) and Xr ∼ N(µr,σ2

r). Let Il = [µl − 3σl,µl + 3σl] and
Ir = [µr − 3σr,µr + 3σr]. We then partition Il × Ir into aW ×W grid and obtain
(W + 1)× (W + 1) points (Xl,Xr) to invoke the cost model.

4.5 Distribution of Running Times

We have discussed how to estimate the distributions of input parameters (i.e., the
c’s and the X’s) and how to estimate the cost functions of each operator. In this
section, we discuss how to combine these two to further infer the distribution of tq
for a query q.

Since tq = g(c, X), the distribution of tq relies on the joint distribution of (c, X).3

We therefore first present a detailed analysis of the correlations between the c’s and
the X’s. Based on that, we then show that the distribution of tq is asymptotically
normal and thus reduce the problem to estimating the two parameters of normal

3Note that the distributions of the c’s and X’s that we obtained in Section 4.3 are marginal rather
than joint distributions.

94

distributions, i.e., the mean and variance of tq. We further address the nontrivial
problem of computing Var[tq] due to correlations between selectivity estimates.

4.5.1 Correlations of Input Variables

In our current setting, it is reasonable to assume that the c’s and the X’s are inde-
pendent. We next analyze the correlations within the c’s and the X’s.

4.5.1.1 Correlations Between Cost Units

Since the randomness within the c’s comes from the variations in hardware ex-
ecution speeds, by using our current framework we have no way to observe the
true values of the c’s and thus it is impossible to obtain the exact joint distribution
of the c’s. Nonetheless, it might be reasonable to assume the independence of
the c’s. First, since the CPU and I/O cost units measure the speeds of different
hardware devices, their values do not depend on each other. Second, within each
group (i.e., CPU or I/O cost units), we used independent calibration queries for
each individual cost unit.

Assumption 1. The c’s are independent of each other.

We further note here that the independence of the c’s depends on the cost
model as well as the hardware configurations. For instance, if certain devices are
connected via the same infrastructure (e.g., a bus), then they might influence each
other’s communication patterns. Our current framework for calibrating the c’s
cannot capture the correlations of the c’s. However, perhaps low-level tools for
monitoring hardware execution status could be used for this purpose. We leave it as
interesting future work to investigate such possibilities and study the effectiveness
of incorporating correlation information of the c’s into our current framework.

95

4.5.1.2 Correlations Between Selectivity Estimates

The X’s are clearly not independent, because the same samples are used to estimate
the selectivities of different operators. In the following, we study the correlations
between the X’s in detail.

Let O and O ′ be two operators, and R and R ′ be the corresponding leaf tables.
Consider the two corresponding selectivity estimates ρn and ρ ′n as defined by
Equation (4.4). Since the samples from each table are drawn independently, we first
have the following observation:

Lemma 4.4. If R ∩ R ′ = ∅, then ρn⊥ρ ′n.4

For binary operators, the next result follows from Lemma 4.4 immediately:

Lemma 4.5. Let O be binary. If Rl ∩ Rr = ∅, then Xl⊥Xr.

That is, Xl and Xr will only be correlated if Rl and Rr share common relations.
However, in practice, we can maintain more than one sample table for each relation.
When the database is large, this is affordable since the number of samples is very
small compared to the database size (see Section 2.5). Since the samples from
each relation are drawn independently, Xl and Xr are still independent if we use a
different sample table for each appearance of a shared relation. We thus assume
Xl⊥Xr in the rest of the chapter.

More generally, X and X ′ are independent as long as neither O ∈ Desc(O ′) nor
O ′ ∈ Desc(O). However, the above discussion cannot be applied if O ∈ Desc(O ′)
(or vice versa). This is because we pass the join results from downstream joins to
upstream joins when estimating the selectivities (recall Example 4.3). So R and R ′

are naturally not disjoint. In fact, R ⊆ R ′. To make ρn and ρ ′n independent, we need
to replace each of the sample tables used in computing ρ ′n with another sample
table from the same relation, which basically is the same as run the query plan
again on a different set of sample tables. The number of runs is then in proportion
to the number of selective operators (i.e., selections and joins) in the query plan,

4We use Y⊥Z to denote that Y and Z are independent.

96

and the runtime overhead might be prohibitive in practice. We summarize this
observation as follows:

Lemma 4.6. Given that multiple sample tables of the same relation can be used, ρn and
ρ ′n are correlated if and only if either O ∈ Desc(O ′) or vice versa.

4.5.2 Asymptotic Distributions

Now for specificity suppose that the query plan of q containsm operators O1, ...,
Om. Since tq is the sum of the predicted execution time spent on each operator, it
can be expressed as tq =

∑m
k=1 tk, where tk is the predicted execution time of Ok

and is itself a random variable.
We next show that tk is asymptotically normal, and then by using very similar

arguments, we can show that tq is asymptotically normal as well. Since tk can
be further expressed in terms of Equation (4.1), to learn its distribution we need
to know the distributions of cost functions that map the selectivities to the n’s.
We therefore start by discussing the distributions of the typical cost functions as
presented in Section 4.4.1.

4.5.2.1 Asymptotic Distributions of Cost Functions

In the following discussion, we assume that X ∼ N(µ,σ2), Xl ∼ N(µl,σ2
l), and

Xr ∼ N(µr,σ2
r). The distributions of the six types of cost functions previously

discussed are as follows:

(C1’) f = b0: f ∼ N(b0, 0).

(C2’) f = b0X+ b1: f ∼ N(b0µ+ b1,b2
0σ

2).

(C3’) f = b0Xl + b1: f ∼ N(b0µl + b1,b2
0σ

2
l).

(C4’) f = b0X
2
l + b1Xl + b2: In this case Pr(f) is not normal. Although it is possible

to derive the exact distribution of f based on the distribution of Xl, the deriva-
tion would be very messy. Instead, we consider fN ∼ N(E[f], Var[f]) and use

97

k Non-central moment E(Xk)
1 µ

2 µ2 + σ2

3 µ3 + 3µσ2

4 µ4 + 6µ2σ2 + 3σ4

Table 4.2: Non-central moments of X ∼ N(µ,σ2).

this to approximate Pr(f). We present the formula of Var[f] in Lemma 4.7
below. Obviously, fN and f have the same expected value and variance. More-
over, we can actually show that fN and f (and therefore their corresponding
distributions) are very close to each other when the number of samples is
large (see Theorem 4.8 below).

(C5’) f = b0Xl + b1Xr + b2: Since Xl⊥Xr by Lemma 4.5, f ∼ N(b0µl + b1µr +

b2,b2
0σ

2
l + b

2
1σ

2
r).

(C6’) f = b0XlXr + b1Xl + b2Xr + b3: Again, Pr(f) is not normal. Since Xl⊥Xr,
XlXr follows the so called normal product distribution [13], whose exact form is
again complicated. We thus use the same strategy as in (C4’) (see Lemma 4.10
and Theorem 4.11 below).

Lemma 4.7. If Xl ∼ N(µl,σ2
l) and f = b0X

2
l + b1Xl + b2, then

Var[f] = σ2
l[(b1 + 2b0µl)

2 + 2b2
0σ

2
l].

Proof. Table 4.2 presents the non-central moments of a normal variable X ∼ N(µ,σ2).
By Table 4.2, Var[X2

l] = 2σ2
l(2µ2

l + σ
2
l), and Cov(X2

l,Xl) = 2µlσ2
l. Thus

Var[f] = b2
0 Var[X4

l] + b
2
1 Var[Xl] + 2b0b1 Cov(X2

l,Xl)

= σ2
l[(b1 + 2b0µl)

2 + 2b2
0σ

2
l].

This completes the proof of the lemma.

98

Theorem 4.8. Suppose that Xl ∼ N(µl,σ2
l) and f = b0X

2
l + b1Xl + b2. Let fN ∼

N(E[f], Var[f]), where Var[f] is shown in Lemma 4.7. Then fN p−→ f.5

To prove the theorem, we need the following result:

Theorem 4.9. Var[ρn] in Equation (A.1) can be bounded as:

Var[ρn] 6
(
1 − (1 −

1
n
)K
)
ρ(1 − ρ).

Proof. The proof is straightforward since this is a special case of Theorem A.10 (see
Appendix A.4). Specifically, we have Var[ρn] = Cov(ρn, ρn). By letting m = K in
Theorem A.10, we obtain Var[ρn] 6 f(n,K)g(ρ)2, where f(n,K) = 1 − (1 − 1

n
)K and

g(ρ) =
√
ρ(1 − ρ). This completes the proof.

By Theorem 4.9, Var[ρn]→ 0 asn→∞. We are now ready to prove Theorem 4.8:

Proof. (of Theorem 4.8) Let µl = ρn, and E[ρn] = ρ. Define g(X) = b0X
2 + b1X+ b2.

Since ρn is strongly consistent, ρn
as−→ ρ. Moreover, since g is continuous, f =

g(ρn)
as−→g(ρ) by the continuous mapping theorem. Note that g(ρ) is a constant.

On the other hand, by Lemma 4.7 and Theorem 4.9, Var[f]→ 0 as n→∞. Hence,

fN
d−→ E[f] = g(ρ).

Since f as−→g(ρ) implies f p−→ g(ρ),

fN − f
d−→g(ρ) − g(ρ) = 0

by Slutsky’s theorem. Since 0 is a constant, fN − f
p−→ 0 as well. As a result, we

have fN p−→ f.

Lemma 4.10. If Xl ∼ N(µl,σ2
l), Xr ∼ N(µr,σ2

r), and f = b0XlXr + b1Xl + b2Xr + b3,
then we have

Var[f] = σ2
l

(
b0µr + b1

)2
+ σ2

r

(
b0µl + b2

)2
+ b2

0σ
2
lσ

2
r.

5fN
p−→ fmeans fN converges in probability to f.

99

Proof. Since Xl⊥Xr, Cov(Xl,Xr) = 0. So

Var[f] = b2
0 · Var[XlXr] + b2

1σ
2
l + b

2
2σ

2
r

+ 2b0b1 · Cov(XlXr,Xl)

+ 2b0b2 · Cov(XlXr,Xr).

Since
Var[XlXr] = µ2

lσ
2
r + µ

2
rσ

2
l + σ

2
lσ

2
r,

Cov(XlXr,Xl) = µrσ2
l,

and similarly,
Cov(XlXr,Xr) = µlσ2

r,

we can have the desired expression for Var[f] by substituting these quantities.

Theorem 4.11. Suppose that Xl ∼ N(µl,σ2
l), Xr ∼ N(µr,σ2

r), and f = b0XlXr +

b1Xl + b2Xr + b3. Let fN ∼ N(E[f], Var[f]), where Var[f] is shown in Lemma 4.10.
Then fN p−→ f.

Proof. Let µl = ρn and µr = ρ ′n. Suppose that E[ρn] = ρ and E[ρ ′n] = ρ ′. Define

g(X, Y) = b0XY + b1X+ b2Y + b3.

Since µl and µr are both strongly consistent, ρn
as−→ ρ and ρ ′n

as−→ ρ ′. Moreover,
since g is continuous, by the continuous mapping theorem we have

f = g(ρn, ρ ′n)
as−→g(ρ, ρ ′).

Note that g(ρ, ρ ′) is a constant. On the other hand, by Lemma 4.10 and Theorem 4.9,
Var[f]→ 0 as n→∞. As a result, since Xl⊥Xr by Lemma 4.5, it follows that

fN
d−→ E[f] = g(ρ, ρ ′).

100

Since f as−→g(ρ, ρ ′) implies f p−→ g(ρ, ρ ′),

fN − f
d−→g(ρ, ρ ′) − g(ρ, ρ ′) = 0

by Slutsky’s theorem. Since 0 is a constant, fN − f
p−→ 0 as well. As a result, we

have fN p−→ f.

4.5.2.2 Asymptotic Distribution of tk

Based on the previous analysis, the cost functions (or equivalently, the n’s in Equa-
tion (4.1)) are asymptotically normal. Since the c’s are normal and independent
of the X’s (and hence the n’s as well), by Equation (4.1) again tk is asymptotically
the sum of products of two independent normal random variables. Specifically,
let C = {cs, cr, ct, ci, co}, and for c ∈ C, let fkc be the cost function indexed by c.
Defining tkc = fNkcc, we have

tk ≈
∑
c∈C

tkc =
∑
c∈C

fNkcc.

Again, each tkc is not normal. But we can apply techniques similar to that in
Theorem 4.8 here by using the normal random variable

tNkc ∼ N(E[fNkcc], Var[fNkcc]) = N(E[fkcc], Var[fkcc])

as an approximation of tkc. Defining Z = E[fkc]c, we have

Theorem 4.12. tkc
d−→Z, and tNkc

d−→Z.

Proof. Since fkc and c are independent, we have

E[tkc] = E[fNkcc] = E[fkc]E[c]

and
Var[tkc] = E2[fkc]Var[c] + E2[c]Var[fkc] + Var[c]Var[fkc].

101

Since Var[fkc]→ 0 as n→∞,

Pr(tNkc)→ N(E[fkc]E[c],E2[fkc]Var[c]).

In other words, tNkc
d−→ E[fkc]c.

On the other hand, fNkc
p−→ E[fkc] and c p−→ c. As a result, we have

(fNkc, c)
p−→ (E[fkc], c).

By the continuous mapping theorem, fNkcc
p−→ E[fkc]c. That is, tkc

p−→ E[fkc]c,
which implies tkc

d−→ E[fkc]c. This completes the proof of the theorem.

Theorem 4.12 implies that tkc and tNkc tend to follow the same distribution as the
sample size grows. Since c is normal, Z is normal as well. Furthermore, the inde-
pendence of the c’s also implies the independence of the Z’s. So tk is approximately
the sum of the independent normal random variables tNkc. Hence tk is itself approx-
imately normal with large sample size.

4.5.2.3 Asymptotic Distribution of tq

Finally, let us consider the distribution of tq. Since tq is merely the sum of the tk’s,
we have exactly the same situation as when we analyze each tk. Specifically, we
can express tq as

tq =

m∑
k=1

tk ≈
∑
c∈C

gcc,

where gc =
∑m
k=1 f

N
kc is the sum of the cost functions of the operators with respect

to the particular c. However, since the fNkc’s are not independent, gc is not normal.
We can again use the normal random variable

gNc ∼ N(E[gc], Var[gc])

102

as an approximation of gc. We show gNc
p−→ gc in Theorem 4.13 below. With exactly

the same argument used in Section 4.5.2.2 we can then see that tq is approximately
normal when the sample size is large.

Theorem 4.13. Let gc =
∑m
k=1 f

N
kc and

gNc ∼ N(E[gc], Var[gc]).

Then gNc
p−→ gc.

Proof. Since by definition fNkc ∼ N(E[fkc], Var[fkc]) and Var[fkc]→ 0, fNkc
d−→ E[fkc].

Since E[fkc] is a constant, it implies that fNkc
p−→ E[fkc]. By the continuous mapping

theorem, gc
p−→
∑m
k=1 E[fkc]. On the other hand, since Var[gc]→ 0, gNc

d−→ E[gc].
Since E[gc] is again a constant, it follows that

gNc
p−→ E[gc] =

m∑
k=1

E[fkc].

As a result, by applying the continuous mapping theorem again, we have gNc −

gc
p−→ 0 and hence gNc

p−→ gc.

4.5.2.4 Discussion

The analysis that tq is asymptotically normal relies on three facts: (1) the selectivity
estimates are unbiased and strongly consistent; (2) the cost model is additive; and
(3) the cost units are independently normally distributed. While the first fact is a
property of the sampling-based selectivity estimator and thus always holds, the
latter two are specific merits of the cost model of PostgreSQL, though we believe
that cost models of other database systems share more or less similar features. (As
far as we know, MySQL [97], IBM DB2 [1], Oracle [2], and Microsoft SQL Server [3]
use similar cost models.) Therefore, we need new techniques when either (2) or
(3) does not hold. For instance, if the cost model is still additive and the c’s are
independent but cannot be modeled as normal variables, then by the analysis in

103

Section 4.5.2.3 we can still see that tq is asymptotically a linear combination of the
c’s and thus the distribution of tq can be expressed in terms of the convolution of
the distributions of the c’s. We may then find this distribution by using generating
functions or characteristic functions [79]. We leave the investigation of other types
of cost models as future work.

4.5.3 Computing Distribution Parameters

As discussed, we can approximate the distribution of tq with a normal distribution
N(E[tq], Var[tq]). We are then left with the problem of estimating the two parame-
ters E[tq] and Var[tq]. While E[tq] is trivial to compute — it is merely the original
prediction from our predictor, estimating Var[tq] is a challenging problem due to
the correlations presented in selectivity estimates.

In more detail, so far we have observed the additive nature of tq, that is, tq =∑m
k=1 tk and tk =

∑
c∈C tkc (Section 4.5.2.2). Recall the fact that for sum of random

variables Y =
∑

16i6m Yi,

Var[Y] =
∑

16i,j6m
Cov(Yi, Yj).

Applying this to tq, our task is then to compute each Cov(ti, tj). Note that

Cov(ti, ti) = Var[ti],

which is easy to compute. So it is left to compute Cov(ti, tj) for i 6= j. By linearity
of covariance,

Cov(ti, tj) = Cov
(∑
c∈C

tic,
∑
c∈C

tjc

)
=
∑
c,c ′∈C

Cov(tic, tjc ′).

In the following discussion, we first specify the cases where direct computation
of Cov(tic, tjc ′) can be done. We then develop upper bounds for those covariances
that cannot be directly computed.

104

4.5.3.1 Direct Computation of Covariances

Any Cov(tic, tjc ′) can fall into the following two cases:

• i = j, the covariance between different cost functions from the same operator;

• i 6= j, the covariance between cost functions from different operators.

Consider the case i = j first. If the operator is unary, regarding the cost func-
tions we are concerned with, we only need to consider Cov(X,X), Cov(X,X2), and
Cov(X2,X2), where X ∼ N(µ,σ2). Since X is normal, the non-central moments of X
can be expressed in terms of µ and σ2. Hence it is straightforward to compute these
covariances [92]. If the operator is binary, then we need to consider Cov(Xl,Xl),
Cov(Xr,Xr), Cov(Xl,Xr), Cov(XlXr,Xl), Cov(XlXr,Xr), and Cov(XlXr,XlXr). By
Lemma 4.5, Xl⊥Xr. So we are able to directly compute these covariances as well.

When i 6= j, while the types of covariances that we need to consider are similar
as before, it is more complicated since the selectivities are no longer independent.
Without loss of generality, we consider two operators O and O ′ such that O ∈
Desc(O ′). By Lemma 4.6, this is the only case where the covariances might not be
zero. Based on the cost functions considered in this chapter, we need to consider the
covariances Cov(Z,Z ′), where Z ∈ {Xl,X2

l,Xr,XlXr} and Z ′ ∈ {X ′l, (X ′l)2,X ′r,X ′lX ′r}.
Some of them can be directly computed by applying Lemma 4.6, while the others
can only be bounded as discussed in the next section.

Example 4.14 (Covariances between selectivities). Consider the two join operators O4

and O5 in Figure 4.1. Assume that the cost functions of O4 and O5 are all linear, i.e., they
are of type (C5’). Based on Lemma 4.5, Cov(X1,X2) = 0 and Cov(X4,X3) = 0. Also,
based on Lemma 4.6, Cov(X1,X3) = 0 and Cov(X2,X3) = 0. However, we are not able to
compute Cov(X1,X4) and Cov(X2,X4). Instead, we provide upper bounds for them.

4.5.3.2 Upper Bounds of Covariances

Based on the fact that the covariance between two random variables is bounded by
the geometric mean of their variances [79], we can establish an upper bound for Z

105

and Z ′ in the previous section:

|Cov(Z,Z ′)| 6
√

Var[Z]Var[Z ′].

Note that the variances are directly computable based on the independence as-
sumptions (Lemma 4.5 and 4.6).

By analyzing the correlation of the samples used in selectivity estimation, we can
develop tighter bounds (details in Appendix A.3). The key observation here is that
the correlations are caused by the samples from the shared relations. Consider two
operators O and O ′ such that O ∈ Desc(O ′). Suppose that |R ∩ R ′| = m (m > 1),
namely, O and O ′ share m common leaf tables. Let the estimators for O and O ′

be ρn and ρ ′n, where n is the number of sample steps. We define S2
ρ(m,n) to be

the variance of samples restricted to the m common relations. This is actually a
generalization of Var[ρn]. To see this, let R ′ = R. Then ρn = ρ ′n and hence

Var[ρn] = Cov(ρn, ρn) = Cov(ρn, ρ ′n) = S2
ρ(K,n),

where K = |R|. We can show that S2
ρ(m,n) is a monotonically increasing function

ofm (see Appendix A.3). As a result, S2
ρ(m,n) 6 Var[ρn] given thatm 6 K. Hence,

we have the following refined upper bound for Cov(ρn, ρ ′n):

|Cov(ρn, ρ ′n)| 6
√
S2
ρ(m,n)S2

ρ ′(m,n) 6
√

Var[ρn]Var[ρ ′n].

To compute S2
ρ(m,n), we use an estimator akin to the estimator σ2

n = S2
n/n that we

used to estimate Var[ρn]. Specifically, define

S2
n,m =

m∑
r=1

(
1

n− 1

n∑
j=1

(Qr,j,n/n
m−1 − ρn)

2
)

,

for n > 2 (we set S2
1,m = 0). Very similarly, we can show that limn→∞ S2

n,m =

nS2
ρ(m,n). As a result, it is reasonable to approximate S2

ρ(m,n) with S2
ρ(m,n) ≈

S2
n,m/n. Moreover, by comparing the expressions of S2

n,m and S2
n (ref. Equa-

106

tion (4.5)), we can see that S2
n = S2

n,K. Therefore it is straightforward to adapt
the implementation framework in Section 4.3.2.2 to compute S2

n,m. More discus-
sions on bounding covariances are in Appendix A.4.

4.6 Experimental Evaluation

We present experimental evaluation results in this section. There are two key
respects that could impact the utility of a predictor: its prediction accuracy and
runtime overhead. However, for the particular purpose of this chapter, we do
not care much about the absolute accuracy of the prediction. Rather, we care if
the distribution of likely running times reflects the uncertainty in the prediction.
Specifically, we measure if the estimated prediction errors are correlated with
the actual errors. To measure the accuracy of the predicted distribution, we also
compare the estimated likelihoods that the actual running times will fall into certain
confidence intervals with the actual likelihoods. On the other hand, we measure the
runtime overhead of the sampling-based approach in terms of its relative overhead
with respect to the original query running time without sampling. We start by
presenting the experimental settings and the benchmark queries we used.

4.6.1 Experimental Settings

We implemented our proposed framework in PostgreSQL 9.0.4. We ran PostgreSQL
under Linux 3.2.0-26, and we evaluated our approaches with both the TPC-H
1GB and 10 GB databases. Since the original TPC-H database generator uses
uniform distributions, to test the effectiveness of the approach under different data
distributions, we used the skewed TPC-H database generator [5] to create skewed
databases using z = 1 (ref. Section 2.5). All experiments were conducted on two
machines with the following configurations:

• PC1: Dual Intel 1.86 GHz CPU and 4GB of memory;

• PC2: 8-core 2.40GHz Intel CPU and 16GB of memory.

107

4.6.2 Benchmark Queries

We created three benchmarks MICRO, SELJOIN, and TPCH:

• MICRO consists of pure selection queries (i.e., scans) and two-way join
queries. It is a micro-benchmark with the purpose of exploring the strength
and weakness of our proposed approach at different points in the selectivity
space. We generated the queries with the similar ideas used in the Picasso
database query optimizer visualizer [76]. Since the queries have either one
(for scans) or two predicates (for joins), the selectivity space is either one
or two dimensional. We generated SQL queries that were evenly across the
selectivity space, by using the statistics information (e.g., histograms) stored
in the database catalogs to compute the selectivities.

• SELJOIN consists of selection-join queries with multi-way joins. We gen-
erated the queries in the following way. We analyzed each TPC-H query
template, and identified the “maximal” sub-query without aggregates. We
then randomly generated instance queries from these reduced templates. The
purpose is to test the particular type of queries to which our proposed ap-
proach is tailored — the selection-join queries.

• TPCH consists of instance queries from the TPC-H templates. These queries
also contain aggregates, and our current strategy is simply ignoring the un-
certainty there (recall Section 4.3.2.2). The purpose of this benchmark is to
see how this simple work-around works in practice. We used 14 TPC-H tem-
plates: 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, and 19. We did not use the other
templates since their query plans contain structures that cannot be handled
by our current framework (e.g., sub-query plans or views).

We ran each query 5 times and took the average as the actual running time of a
query. We cleared both the filesystem cache and the database buffer pool between
each run of each query.

108

4.6.3 Usefulness of Predicted Distributions

Since our goal is to quantify the uncertainty in the prediction and our output
is a distribution of likely running times, the question is then how we can know
that we have something useful. A reasonable metric here could be the correlation
between the standard deviation of the predicted (normal) distribution and the
actual prediction error. Intuitively, the standard deviation indicates the confidence
of the prediction. A larger standard deviation indicates lower confidence and hence
larger potential prediction error. With this in mind, if our approach is effective, we
would expect to see positive correlations between the standard deviations and the
real prediction errors when a large number of queries are tested.

A common metric used to measure the correlation between two random vari-
ables is the Pearson correlation coefficient rp. Suppose that we have n queries q1,
..., qn. Let σi be the standard deviation of the distribution predicted for qi, µi and
ti be the predicted (mean) and actual running time of qi, and ei = |µi − ti| be the
prediction error. rp is then defined as

rp =

∑n
i=1(σi − σ̄)(ei − ē)√∑n

i=1(σi − σ̄)
2
√∑n

i=1(ei − ē)
2
, (4.7)

where σ̄ = 1
n

∑n
i=1 σi and ē = 1

n

∑n
i=1 ei.

Basically, rp measures the linear correlation between the σ’s and the e’s. The
closer rp is to 1, the better the correlation is. However, there are two issues here.
First, even if the σ’s and the e’s are positively correlated, the correlation may not
be linear. Second, rp is not robust and its value can be misleading if outliers are
present [31]. Therefore, we also measure the correlations by using another well
known metric called the Spearman’s rank correlation coefficient rs [69]. The formula
of rs is the same as Equation (4.7) except for that the σ’s and e’s are replaced with
their ranks in the ascending order of the values. For instance, given three σ’s σ1 = 4,
σ2 = 7, and σ3 = 5, their ranks are 1, 3, and 2 respectively. Intuitively, rs indicates
the linear correlation between the ranks of the values, which is more robust than
rp since the mapping from the values to their ranks can be thought of as some

109

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(a) MICRO, Uniform 1GB, PC2

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(b) SELJOIN, Uniform 1GB, PC1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

rs
rp

(c) TPCH, Skewed 10GB, PC1

Figure 4.2: rs and rp of the benchmark queries over different experimental settings.

110

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(a) Case (1)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(b) Case (1) w/o the outlier

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

A
ct

ua
l P

re
di

ct
io

n
E

rr
or

 (
s)

Estimated Standard Deviation (s)

Data
Best-Fit

(c) Case (2)

Figure 4.3: Robustness of rs and rp with respect to outliers.

111

normalization procedure that reduces the impact of outliers. In fact, rs assesses how
well the correlation can be characterized by using a monotonic function and rs = 1
means the correlation is perfect.

In Figure 4.2, we report the rs’s (and the corresponding rp’s) for the benchmark
queries over different experimental settings. Here, sampling ratio (SR) stands for
the fraction of the sample size with respect to the database size. For instance, SR =
0.01 means that 1% of the data is taken as samples. We have several observations.

First, for most of the cases we tested, both rs and rp are above 0.7 (in fact
above 0.9), which implies strong positive (linear) correlation between the standard
deviations of the predicted distributions and the actual prediction errors.6 Second,
in Chapter 2 we showed that as expected, prediction errors can be reduced by using
larger number of samples. Interestingly, it is not necessarily the case that more
samples can improve the correlation between the predicted and actual errors. This
is because taking more samples simultaneously reduces the errors in selectivity
estimates and the uncertainty in the predicted running times. So it might improve
the estimate but not the correlation with the true errors. Third, reporting both rs
and rp is necessary since they sometimes disagree with each other. For instance,
consider the following two cases in Figure 4.2(a) and 4.2(b):

(1) On PC2, the MICRO queries over the uniform TPC-H 1GB database give rs =
0.9400 but rp = 0.5691 when SR = 0.01;

(2) On PC1, the SELJOIN queries over the uniform TPC-H 1GB database give rs =
0.6958 but rp = 0.8414 when SR = 0.05.

In Figure 4.3(a) and 4.3(c), we present the scatter plots of these two cases. Fig-
ure 4.3(b) further shows the scatter plot after the rightmost point is removed from
Figure 4.3(a). We find that now rs = 0.9386 but rp = 0.8868. So rp is much more
sensitive to outliers in the population. Since in our context there is no good criterion
to remove outliers, rs is thus more trustworthy. On the other hand, although the

6It is generally believed that two variables are strongly correlated if their correlation coefficient
is above 0.7.

112

rp of (2) is better than that of (1), by comparing Figure 4.3(b) with Figure 4.3(c) we
would instead conclude that the correlation of (2) seems to be worse. This is again
implied by the worse rs of (2).

Nonetheless, the strong positive correlations between the estimated standard
deviations and the actual prediction errors may not be sufficient to conclude that the
distributions of likely running times are useful. For our purpose of informing the
consumer of the running time estimates of the potential prediction errors, it might
be worth to further consider what information regarding the errors the predicted
distributions really carry. Formally, consider the n queries q1, ..., qn as before. Since
the estimated distributions are normal, with the previous notation the distribution
for the likely running times Ti of qi is Ti ∼ N(µi,σ2

i). As a result, assuming α > 0,
without loss of generality the estimated prediction error Ei = |Ti − µi| follows the
probability distribution

Pr(Ei 6 ασi) = Pr(−α 6
Ti − µi
σi

6 α) = 2Φ(α) − 1,

whereΦ is the cumulative distribution function of the standard normal distribution
N(0, 1). Therefore, if we define the statistic E ′i =

Ei
σi

= |Ti−µi
σi

|, then Pr(E ′i 6 α) =

Pr(Ei 6 ασi). Note that Pr(E ′i 6 α) is determined by α but not i. We thus simply
use Pr(α) to denote Pr(E ′i 6 α). On the other hand, we can estimate the actual
likelihood of E ′i 6 α by using

Prn(α) =
1
n

n∑
i=1

I(e ′i 6 α), where e ′i =
ei

σi
= |
ti − µi
σi

|.

Here I is the indicator function. To measure the proximity of Prn(α) and Pr(α), we
define the following metric

Dn(α) = |Prn(α) − Pr(α)|.

Clearly, a smaller Dn(α) means Pr(α) is closer to Prn(α), which implies better
quality of the distributions. We further generated α’s from the interval (0, 6) which

113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(a) MICRO

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(b) SELJOIN

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0.01 0.05 0.1

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Sampling Ratio

PC1
PC2

(c) TPCH

Figure 4.4: Dn of the benchmark queries over uniform TPC-H 10GB databases.

114

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(a) Case (1), Dn = 0.2532

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(b) Case (2), Dn = 0.1098

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.5 4

P
ro

ba
bi

lit
y

α

Prn(α)

Pr(α)

(c) Case (3), Dn = 0.0535

Figure 4.5: The proximity of Prn(α) and Pr(α) with respect to different Dn’s.

115

is sufficiently wide for normal distributions and computed the average of the
Dn(α)’s (denoted as Dn). Figure 4.4 reports the results for the benchmark queries
over uniform TPC-H 10GB databases.

We observe that in most cases the Dn’s are below 0.3 with the majority below
0.2, which suggests that the estimated Pr(α)’s are reasonably close to the observed
Prn(α)’s. To shed some light on what is going on here, in Figure 4.5 we further plot
the Pr(α) and Prn(α) for the (1) MICRO, (2) SELJOIN, and (3) TPCH queries over
the uniform TPC-H 10GB database on PC2 when SR = 0.05, which giveDn = 0.2532,
0.1098, and 0.0535 respectively (see Figure 4.4). We can see that we overestimated
the Pr(α)’s for small α’s. In other words, we underestimated the prediction errors
by presenting smaller than actual variances in the distributions. Moreover, we
find that overestimate is more significant for the MICRO queries (Figure 4.5(a)).
One possible reason is that since these queries are really simple the predictor
tends to be over-confident by underestimating the variances even more. When
handling SELJOIN and TPCH queries, the confidence of the predictor drops and
underestimate tends to be alleviated (Figure 4.5(b) and 4.5(c)).

4.6.4 Runtime Overhead of Sampling

We also measured the relative overhead of running the queries over the sample
tables compared with that of running them over the original tables. Figure 4.6
presents the results of the TPCH queries on PC1. We observe that the relative
overhead is comparable to that reported in Section 2.5. For instance, for the TPC-H
10GB database, the relative overhead is around 0.04 to 0.06 when the sampling
ratio is 0.05. Note that, here we computed the estimated selectivities as well as
their variances by only increasing the relative overhead a little. Also note that, here
we measured the relative overhead based on disk-resident samples. The relative
overhead can be dramatically reduced by using the common practice of caching
the samples in memory [75].

116

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

0.01 0.05 0.1

R
el

at
iv

e
O

ve
rh

ea
d

of
 S

am
pl

in
g

Sampling Ratio

TPCH-1G
TPCH-1G-Skew
TPCH-10G
TPCH-10G-Skew

Figure 4.6: Relative overhead of TPCH queries on PC1.

4.6.5 Applications

We discuss some potential applications that could take advantage of the distribu-
tional information of query running times. The list of applications here is by no
means exhaustive, and it is our hope that our study in this chapter could stimulate
further research in this direction and more applications could emerge in the future.

4.6.5.1 Query Optimization

Although significant progress has been made in the past several decades, query
optimization remains challenging for many queries due to the difficulty in accurately
estimating query running times. Rather than betting on the optimality of the plan
generated based on (perhaps erroneous) point estimates for parameters such as
selectivities and cost units, it makes sense to also consider the uncertainties of these
parameters. In fact, there has been some theoretical work investigating optimization
based on least expected cost (LEC) based upon distributions of the parameters of
the cost model [28]. However, that work did not address the problem of how to
obtain the distributions. It would be interesting future work to see the effectiveness
of LEC plans by incorporating our techniques into query optimizers.

117

4.6.5.2 Query Progress Monitoring

State-of-the-art query progress indicators [23, 57, 61, 64] provide estimates of the
percentage of the work that has been completed by a query at regular intervals
during the query’s execution. However, it has been shown that in the worst case no
progress indictor can outperform a naive indicator simply saying the progress is
between 0% and 100% [21]. Hence, information about uncertainty in the estimate
of progress is desirable. Our work provides a natural building block that could
be used to develop an uncertainty-aware query progress indicator: the progress
indicator could call our predictor to make a prediction for the remaining query
running time as well as its uncertainty.

4.6.5.3 Database as a Service

The problem of predicting query running time is revitalized by the recent move
towards providing database as a service (DaaS). Distributional information enables
more robust decision procedures in contrast to point estimates. Recent work [26] has
shown the benefits in query scheduling by leveraging distributional information.
Similar ideas have also been raised in [96] for admission control. Again, these
work did not address the fundamental issue of obtaining the distributions without
running the queries. It would be interesting to see the effectiveness of our proposed
techniques in these DaaS applications.

4.7 Related Work

The problem of predicting query execution time has been extensively studied quite
recently [10, 11, 33, 36, 60, 93, 94]. We have comprehensively discussed this line of
work in Chapter 2 and 3.

The idea of using samples to estimate selectivity goes back more than two
decades ago (e.g., [14, 19, 43, 44, 45, 49, 50, 62]). While we focused on estimators
for selection and join queries [44], some estimators that estimate the number of
distinct values might be further used to refine selectivity estimates of aggregate

118

queries [19, 43]. However, not only do we need an estimate of selectivity, we need
an estimated distribution as well. So far, we are not aware of any previous study
towards this direction for aggregate queries. Regarding the problem of estimating
selectivity distributions for selection and join queries, there are options other than
the one used in this chapter. For example, Babcock and Chaudhuri [14] proposed
a framework to learn the posterior distributions of the selectivities based on join
synopses [8]. Unfortunately, this solution is restricted to SPJ (i.e., Select-Project-
Join) expressions with foreign-key joins, due to the overhead of computing and
maintaining join synopses over a large database.

The framework proposed in this chapter also relies on accurate approximation of
the cost models used by the optimizer. Du et al. [32] first proposed the idea of using
logical cost functions in the context of heterogenous database systems. Similar
ideas were later on used in developing generic cost models for main memory based
database systems [65] and identifying robust plans in the plan diagram generated
by the optimizer [30]. Our idea of using optimization techniques to find the best
coefficients in the logical cost functions is motivated by the approach used in [30].

4.8 Summary

In this chapter, we take a first step towards the problem of measuring the uncertainty
within query execution time prediction. We quantify prediction uncertainty using
the distribution of likely running times. Our experimental results show that the
standard deviations of the distributions estimated by our proposed approaches are
strongly correlated with the actual prediction errors.

The idea of leveraging cost models to quantify prediction uncertainty need
not be restricted to single standalone queries. The key observation is that the
selectivities of the operators in a query are independent of whether or not it is
running with other queries (ref. Chapter 3). Hence it is promising to consider
applying the techniques proposed in this chapter to multi-query workloads by
viewing the interference between queries as changing the distribution of the c’s.
We regard this as a compelling area for future work.

119

Chapter 5

Sampling-Based Query
Re-Optimization

In the previous chapters, we have investigated the effectiveness of using sampling-
based cardinality estimates to get better query running time predictions. Sampling
incurs higher overhead and must be used conservatively. Our key observation
is the following: while it is infeasible to use sampling for all plans explored by
the optimizer during its search for an optimal plan, it is feasible to use sampling
as a post-processing step after the search is finished to detect potential errors in
optimizer’s original cardinality estimates for the final chosen plan.

However, if there were really significant errors, the optimality of this final plan
would itself be questionable. A natural question is then if sampling could be further
used to improve query plans. In this chapter, we study how to exploit the power of
sampling in query optimization without significantly increasing optimization time.
Built on top of our previous idea of using sampling as a post-processing validation
step, we go one step further by introducing a feedback loop from sampling to the
query optimizer: if there are significant cardinality estimation errors, we use an
iterative procedure to give the optimizer a chance to generate a better plan. We study
this re-optimization procedure in detail, both theoretically and experimentally. Our
theoretical analysis suggests that the efficiency of this procedure and the quality

120

of the final plan returned can be guaranteed under certain assumptions, and our
experimental evaluation on the TPC-H benchmark as well as our own database
with highly correlated data demonstrates the effectiveness of this approach.

5.1 Introduction

Cost-based query optimizers rely on reasonable cost estimates of query plans.
Cardinality (or selectivity) estimation is crucial for the accuracy of cost estimates.
Unfortunately, although decades of research has been devoted to this area and
significant progress has been made, cardinality estimation remains challenging in
practice. In current database systems, the dominant approach is to keep various
statistics about the data, such as histograms, number of distinct values, and list
of most common values (MCV’s). While these statistics can work effectively for
estimating selectivities of predicates over a single column, they can fail to accurately
estimate selectivities for conjunctions of multiple predicates, especially when data
correlation is present [63].

Because sampling-based approaches (e.g., [19, 44, 62]) automatically reflect cor-
relation in the data and between multiple predicates over the data, they can provide
better cardinality estimates on correlated data than histogram-based approaches.
However, sampling also incurs higher overhead and must be used conservatively.

In this chapter, we study how to exploit the power of sampling in query op-
timization without significantly increasing optimization time. Inspired by the
observation that it is feasible to use sampling as a post-processing step to validate
cardinality estimates for the final plan returned by the optimizer, our basic idea is
simple: if significant cardinality estimation errors are detected, the optimality of
the returned plan is then itself questionable, so we go one step further to let the op-
timizer re-optimize the query by also feeding it the cardinality estimates refined via
sampling. This gives the optimizer second chance to generate a different, perhaps
better, plan. Note that we can again apply the sampling-based validation step to
this new plan returned by the optimizer. It therefore leads to an iterative procedure
based on feedback from sampling: we can repeat this optimization-then-validation

121

loop until the plan chosen by the optimizer does not change. In some sense, our
approach can be viewed as a compromise between a histogram-based approach
to cardinality estimation and a sampling-based approach — we use sampling to
validate cardinality estimates only for a subset (rather than all) of the candidate
plans considered by the optimizer and choose the final optimal plan from these
validated candidates. The hope is that this re-optimization procedure can catch
large optimizer errors before the system even begins executing the chosen plan.

A couple of natural concerns arise regarding this simple re-optimzation ap-
proach. First, is it efficient? As we have just said, sampling should not be abused
given its overhead. Since we propose to run plans over samples iteratively, how fast
does this procedure converge? To answer this question, we conduct a theoretical
analysis as well as an experimental evaluation. Our theoretical study suggests that,
in the worst case, the expected number of iterations can be bounded by O(

√
N),

where N is the number of plans considered by the optimizer in its search space. In
practice, this can rarely happen, though. Re-optimization for most of the queries
tested in our experiments converges after only a few rounds (most likely only one
round) of iteration, and the time spent on re-optimization is ignorable compared
with the corresponding query running time.

Second, is it useful? Namely, does re-optimization really generate a better plan?
In theory, we can prove that, if the cost model used by the optimizer and the
sampling-based cardinality estimates are accurate enough, then the re-optimized
plan is guaranteed to be no worse than the original plan. However, in practice,
cost models are often imperfect, and sampling-based cardinality estimates are
imperfect as well. We have implemented our approach in PostgreSQL. Based on
experimental results of this implementation, the answer to the above question is:
sometimes, but not always. One intriguing example is Q21 of the TPC-H benchmark
database. At the scale of 10GB, the running time of the re-optimized plan is about
1 hour while the original plan takes almost 6 hours to finish. For most other TPC-
H queries, the re-optimized plans are exactly the same as the original ones. To
further evaluate the effectiveness of the re-optimization procedure, we created
another database with strong data correlations. Not only PostgreSQL but also

122

two commercial RDBMS suffer from major query optimization mistakes on this
database. Given that optimizers have to handle both common cases and difficult,
corner cases, our goal is to help cover some of those corner cases. Our experimental
results show the superiority of our approach on this database.

The idea of query re-optimization goes back to nearly two decades ago [56,
66]. The main difference between this line of work and our approach is that re-
optimization was previously done after a query begins to execute while our re-
optimization is done before that. While performing re-optimization during the
execution of the query has the advantage of being able to observe accurate cardinali-
ties, it suffers from (sometimes significant) runtime overheads such as materializing
intermediate results that have been generated in the past period of execution. Mean-
while, runtime re-optimization frameworks usually require significant changes to
query optimizer’s architecture, such as adding operators that can monitor execu-
tions of query plans and adding code that can support switching between query
optimization and execution. Our compile-time re-optimization approach is more
lightweight. The only additional cost is due to running tentative query plans over
samples. The modification to the query optimizer and executor is also limited: our
implementation in PostgreSQL needs only several hundred lines of C code. On
the other hand, compile-time re-optimization still relies on imperfect cardinality
estimates obtained via sampling while runtime re-optimization can benefit from
the true cardinalities. Furthermore, we should also note that our compile-time
re-optimization approach actually does not conflict with these previous runtime
re-optimization techniques: the plan returned by our re-optimization procedure
could be further refined by using runtime re-optimization. It remains interesting
to investigate the effectiveness of this combination framework.

The rest of this chapter is organized as follows. We present the details of our
iterative sampling-based re-optimization algorithm in Section 5.2. We then present
a theoretical analysis of its efficiency in terms of the number of iterations it requires
and the quality of the final plan it returns in Section 5.3. To evaluate the effectiveness
of this approach, we further present a database with highly correlated data in
Section 5.4, and we report experimental evaluation results on this database as well

123

as the TPC-H benchmark databases in Section 5.5. We discuss related work in
Section 5.6 and summarize this chapter in Section 5.7.

5.2 The Re-Optimization Algorithm

In this section, we first introduce necessary background information and terminol-
ogy, and then present the details of the re-optimization algorithm. We focus on
using sampling to refine selectivity estimates for join predicates. As was recently
pointed out by Guy Lohman [63], while histogram-based approaches have worked
well for estimating selectivities of local predicates (i.e., predicates over a column of a
single base table), accurate estimation of selectivities for join predicates (and how to
combine them) remains challenging. As in previous chapters, the sampling-based
selectivity estimator we used is tailored for join queries [44], and it is our goal in
this chapter to study its effectiveness in query optimization when combined with
our proposed re-optimization procedure. Nonetheless, sampling can also be used
to estimate selectivities for other types of operators, such as aggregates (i.e., “group
by” clauses) that require estimation of the number of distinct values (e.g. [19]). We
leave the exploration of integrating other sampling-based selectivity estimation
techniques into query optimization as interesting future work.

5.2.1 Preliminaries

In previous chapters, we used a sampling-based selectivity estimator proposed
by Haas et al. [44] for the purpose of predicting query running times. For self-
containment purpose, here we provide an informal description of this estimator.

Let R1, ..., RK be K relations, and let Rsk be the sample table of Rk for 1 6 k 6 K.
Consider a join query q = R1 ./ · · · ./ RK. The selectivity ρq of q is estimated as

ρ̂q =
|Rs1 ./ · · · ./ RsK|
|Rs1 |× · · · × |RsK|

.

124

It has been shown that this estimator is both unbiased and strongly consistent [44]:
the larger the samples are, the more accurate this estimator is. Note that this
estimator can be applied to joins that are sub-queries of q as well.

5.2.2 Algorithm Overview

As mentioned in Section 5.1, cardinality estimation is challenging and cardinality
estimates by optimizers can be erroneous. This potential error can be noticed once
we apply the aforementioned sampling-based estimator to the query plan generated
by the optimizer. However, if there are really significant errors in cardinality
estimates, the optimality of the plan returned by the optimizer can be in doubt.

If we replace the optimizer’s cardinality estimates with sampling-based es-
timates and ask it to re-optimize the query, what would happen? Clearly, the
optimizer would either return the same query plan, or a different one. In the former
case, we can just go ahead to execute the query plan: the optimizer does not change
plans even with the new cardinalities. In the latter case, the new cardinalities cause
the optimizer to change plans. However, this new plan may still not be trustworthy
because the optimizer may still decide its optimality based on erroneous cardinality
estimates. To see this, let us consider the following example.

Example 5.1. Consider the two join trees T1 and T2 in Figure 5.1. Suppose that the opti-
mizer first returns T1 as the optimal plan. Sampling-based validation can then collect re-
fined cardinality estimates for the three joins: A ./ B,A ./ B ./ C, andA ./ B ./ C ./ D.
Upon knowing these refined estimates, the optimizer then returns T2 as the optimal plan.
However, the join C ./ D in T2 is not observed in T1 and its cardinality estimate has not
been validated yet by using sampling.

Hence, we can again apply the sampling-based estimator to this new plan and
repeat the re-optimization. This leads to an iterative procedure.

Algorithm 5 outlines the above idea. Here, we use Γ to represent the sampling-
based cardinality estimates for sub-queries that have been validated by using sam-
pling. Initially, Γ is empty. In the round i (i > 1), the optimizer generates a query

125

plan Pi based on the current information preserved in Γ (line 5). If Pi is the same as
Pi−1, then we can terminate the iteration (lines 6 to 8). Otherwise, Pi is new and
we invoke the sampling-based estimator over it (line 9). We use ∆i to represent the
sampling-based cardinality estimates for Pi, and we update Γ by merging ∆i into it
(line 10). We then move to the round i+ 1 and repeat the above procedure (line 11).

Algorithm 5: Sampling-based query re-optimization.
Input: q, a given SQL query
Output: Pq, query plan of q after re-optimization

1 Γ ← ∅;
2 P0 ← null;
3 i← 1;
4 while true do
5 Pi ← GetPlanFromOptimizer(Γ);
6 if Pi is the same as Pi−1 then
7 break;
8 end
9 ∆i ← GetCardinalityEstimatesBySampling(Pi);

10 Γ ← Γ ∪ ∆i;
11 i← i+ 1;
12 end
13 Let the final plan be Pq;
14 return Pq;

In our current implementation of Algorithm 5, we implemented Γ as a hash
map where the keys are the joins and the values are the corresponding cardinalities.
When the optimizer needs to estimate the cardinality of a join, it first looks up
Γ to see if the join is present. If yes, then it simply uses the recorded cardinality.
Otherwise, it invokes the histogram-based approaches to estimate the cardinality
of the join as usual.

Note that this iterative process has as its goal improving the selected plan, not
finding a new globally optimal plan. It is certainly possible that the iterative process
misses a good plan because the iterative process does not explore the complete
plan space — it only explores neighboring transformations of the chosen plan.

126

A B

⋈ C

⋈ D

⋈T1

A B

⋈C

⋈ D

⋈T1’

A B

⋈

C

⋈

D

⋈

T2

C D

⋈

A

⋈

B

⋈

T2'

Figure 5.1: Join trees and their local transformations.

Nonetheless, as we will see in Section 5.5, this local search is sufficient to catch and
repair some very bad plans.

5.3 Theoretical Analysis

In this section, we present an analysis of Algorithm 5 from a theoretical point of
view. We are interested in two aspects of the re-optimization procedure:

• Efficiency, i.e., how many rounds of iteration does it require before it ends?

• Effectiveness, i.e., how good is the final plan it returns compared to the original
plan, in terms of the cost metric used by the query optimizer?

Our following study suggests that (i) the expected number of rounds of iteration in
the worst case is upper-bounded by O(

√
N) where N is the number of query plans

explored in the optimizer’s search space (Section 5.3.3); and (ii) the final plan is
guaranteed to be no worse than the original plan if sampling-based cost estimates
are consistent with the actual costs (Section 5.3.4).

5.3.1 Local and Global Transformations

We start by introducing the notion of local/global transformations of query plans.
In the following, we use tree(P) to denote the join tree of a query plan P, which is rep-

127

resented as the set of (logical) joins contained in P. For example, the representation
of T1 in Figure 5.1 is T1 = {A ./ B,A ./ B ./ C,A ./ B ./ C ./ D}.

Definition 5.2 (Local/Global Transformations). Two join trees T and T ′ are local
transformations of each other if T and T ′ contain the same (logical) joins. Otherwise, they
are global transformations.

In other words, local transformations are join trees that subject to only exchanges
of left/right subtrees and specific choices of physical join operators (e.g., hash join
vs. sort-merge join). In Figure 5.1 we further present two join trees T ′1 and T ′2 that
are local transformations of T1 and T2.

Given two plans P and P ′, we also say that P ′ is a local/global transformation
of P if tree(P ′) is a local/global transformation of tree(P).

5.3.2 Convergence Conditions

At a first glance, even the convergence of Algorithm 5 is questionable. Is it possible
that Algorithm 5 keeps looping without termination? For instance, it seems to be
possible that the re-optimization procedure might alternate between two plans P1
and P2, i.e., the plans generated by the optimizer are P1, P2, P1, P2, ... As we will
see, this is impossible and Algorithm 5 is guaranteed to terminate. We next present
a sufficient condition for the convergence of the re-optimization procedure. We
first need one more definition regarding plan coverage.

Definition 5.3 (Plan Coverage). Given a query plan P and a set of query plans P, P is
covered by P if

tree(P) ⊆
⋃
P ′∈P

tree(P ′).

That is, all the joins in the join tree of P are included in the join trees of P. As a
special case, any plan that belongs to P is covered by P.

Let Pi (i > 1) be the plan returned by the optimizer in the i-th step during the
re-optimization procedure.

128

Theorem 5.4 (Condition of Convergence). The re-optimization procedure terminates
after n+ 1 (n > 1) steps if Pn is covered by P = {P1, ...,Pn−1}.

Proof. If Pn is covered by P, then using sampling-based validation will not con-
tribute anything new to the statistics Γ . That is, ∆n ∪ Γ = Γ . Therefore, Pn+1 will
be the same as Pn, because the optimizer will see the same Γ in the round n+ 1 as
that in the round n. Algorithm 5 then terminates accordingly (by lines 6 to 8).

Note that the convergence condition stated in Theorem 5.4 is sufficient by not
necessary. It could happen that Pn is not covered by the previous plans {P1, ...,Pn−1}

but Pn+1 = Pn after using the validated statistics (e.g., if there were no significant
errors detected in cardinality estimates of Pn).

Corollary 5.5 (Guarantee of Convergence of Re-optimization). The re-optimization
procedure is guaranteed to terminate.

Proof. Based on Theorem 5.4, the re-optimization procedure would only continue
if Pn is not covered by P = {P1, ...,Pn−1}. In that case, Pn should contain at least
one join that has not been included by the plans in P. Since the total number of
possible joins considered by the optimizer is finite, P will eventually reach some
fixed point if it keeps growing. The re-optimization procedure is guaranteed to
terminate upon that fixed point, again by Theorem 5.4.

Theorem 5.4 also implies the following special case:

Corollary 5.6. The re-optimization procedure terminates after n + 1 (n > 1) steps if
Pn 6∈ P but Pn is a local transformation of some P ∈ P = {P1, ...,Pn−1}.

Proof. If Pn is a local transformation of some P ∈ P, then tree(Pn) and tree(P)
contain the same joins. By Definition 5.3, Pn is covered by P. Therefore, the re-
optimization procedure terminates after n+ 1 steps, by Theorem 5.4.

Also note that Corollary 5.6 has covered a common case in practice that Pn is a
local transformation of Pn−1.

129

Based on Corollary 5.6, in the following we present an important property of
the re-optimization procedure.

Theorem 5.7. When the re-optimization procedure terminates, exactly one of the following
three cases holds:

(1) It terminates after 2 steps with P2 = P1.

(2) It terminates after n + 1 steps (n > 1). For 1 6 i 6 n, Pi is a global transformation
of Pj with j < i.

(3) It terminates aftern+1 steps (n > 1). For 1 6 i 6 n−1, Pi is a global transformation
of Pj with j < i, and Pn is a local transformation of some P ∈ P = {P1, ...,Pn−1}.

Proof. First note that the three cases are mutually exclusive. Next, they are also com-
plete. To see this, note that the only situation not covered is that the re-optimization
procedure terminates after n + 1 steps (n > 1) and during re-optimization there
exists some j < i (1 6 i 6 n − 1) such that Pi is a local transformation of Pj. But
this is impossible, because by Corollary 5.6 the re-optimization procedure would
then terminate after i + 1 steps. Since i 6 n − 1, we have i + 1 6 n, which is
contradictory with the assumption that the re-optimization procedure terminates
after n + 1 steps. Therefore, we have shown the completeness of the three cases
stated in Theorem 5.7.

We are left with proving that all these three cases could happen when the re-
optimization procedure terminates. Case (1) and (2) are clearly possible, while Case
(3) is implied by Corollary 5.6. This completes the proof of the theorem.

That is, when the procedure does not terminate trivially (Case (1)), it can be
characterized as a sequence of global transformations with at most one more local
transformation before its termination (Case (2) or (3)). Figure 5.2 illustrates the
latter two nontrivial cases.

130

P1 Pn = Pn+1

g
...

g
Pn-1

g

P1 Pn = Pn+1

g
...

g
Pn-1

l

l
l

Case (2):

Case (3):

Figure 5.2: Characterization of the re-optimization procedure (g and l stand for
global and local transformations, respectively). For ease of illustration, Pi is only
noted as a global transformation of Pi−1, but we should keep in mind that Pi is also
a global transformation of all the Pj’s with j < i.

5.3.3 Efficiency

We are interested in how fast the re-optimization procedure terminates. As pointed
out by Theorem 5.7, the convergence speed depends on the number of global transfor-
mations the procedure undergoes. In the following, we first develop a probabilistic
model that will be used in our analysis, and then present analytic results for the
general case and several important special cases.

5.3.3.1 A Probabilistic Model

Consider a queue ofN balls. Originally all balls are not marked. We then conduct
the following procedure:

Procedure 1. In each step, we pick the ball at the head of the queue. If it is marked, then the
procedure terminates. Otherwise, we mark it and randomly insert it back into the queue:
the probability that the ball will be inserted at the position i (1 6 i 6 N) is uniformly 1/N.

We next study the expected number of steps that Procedure 1 would take before
its termination.

Lemma 5.8. The expected number of steps that Procedure 1 takes before its termination is:

SN =

N∑
k=1

k · (1 −
1
N
) · · · (1 −

k− 1
N

) · k
N

. (5.1)

131

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

S
N

N

(N, SN)

f(N)=√N

g(N)=2√N

Figure 5.3: SN with respect to the growth of N.

We include a proof of Lemma 5.8 in Appendix A.5. We can further show that
SN is upper-bounded by O(

√
N).

Theorem 5.9. The expected number of steps SN as presented in Lemma 5.8 satisfies

SN = O(
√
N).

The proof of Theorem 5.9 is in Appendix A.6. In Figure 5.3, we plot SN by
increasingN from 1 to 1000. As we can see, the growth speed of SN is very close to
that of f(N) =

√
N.

5.3.3.2 The General Case

In a nutshell, query optimization can be thought of as picking a plan with the lowest
estimated cost among a number of candidates. Different query optimizers have
different search spaces, so in general we can only assume a search space with N
different join trees that will be considered by an optimizer.1 Let these trees be T1,
..., TN, ordered by their estimated costs. The re-optimization procedure can then

1By “different” join trees, we mean join trees that are global transformations of each other. We
use this convention in the rest of this chapter unless specific clarifications are noted.

132

be thought of as shuffling these trees based on their refined cost estimates. This
procedure terminates whenever (or even before) the tree with lowest estimated cost
reoccurs, that is, when some tree appears at the head position for the second time.
Therefore, the probabilistic model in the previous section applies here. As a result,
by Lemma 5.8, the expected number of steps for this procedure to terminate is SN.
We formalize this result as the following theorem:

Theorem 5.10. Assume that the position of a plan (after sampling-based validation) in
the ordered plans with respect to their costs is uniformly distributed. Let N be the num-
ber of different join trees in the search space. The expected number of steps before the re-
optimization procedure terminates is then SN, where SN is computed by Equation (5.1).
Moreover, SN = O(

√
N) by Theorem 5.9.

We emphasize that the analysis here only targets worst-case performance, which
might be too pessimistic. This is because Procedure 1 only simulates the Case (3)
stated in Theorem 5.7, which is the worst one among the three possible cases. In our
experiments, we have found that all queries we tested require less than 10 rounds
of iteration, most of which require only 1 or 2 rounds.

Remark The uniformity assumption in Theorem 5.10 may not be valid in practice.
It is possible that a plan after sampling-based validation (or, a marked ball in terms
of Procedure 1) is more likely to be inserted into the front/back half of the queue.
Such cases imply that, rather than with an equal chance of overestimation/un-
derestimation, the optimizer tends to overestimate/underestimate the costs of all
query plans (for a particular query). This is, however, not impossible. In prac-
tice, significant cardinality estimation errors usually appear locally and propagate
upwards. Once the error at some join were corrected, the errors in all plans that
contain that join would also be corrected. In other words, the correction of the
error at a single join can lead to the correction of errors in many candidate plans.
In Appendix A.7, we further present analysis for two extreme cases: all local errors
are overestimates/underestimates. Any real case sits in between. To summarize,
for left-deep join trees, we have the following two results:

133

• If all local errors are overestimates, then in the worst case the re-optimization
procedure will terminate in at mostm+ 1 steps, wherem is the number of
joins contained in the query.

• If all local errors are underestimates, then in the worst case the re-optimization
procedure is expected to terminate in SN/M steps, where N is the number of
different join trees in the optimizer’s search space and M is the number of
edges in the join graph.

Note that both results are better than the bound stated in Theorem 5.10. For instance,
in the underestimation-only case, if N = 1000 and M = 10, we have SN = 39 but
SN/M = 12.

5.3.4 Optimality of the Final Plan

We can think of the re-optimization procedure as progressive adjustments of the
optimizer’s direction when it explores its search space. Of course, the search space
depends on the algorithm or strategy used by the optimizer, and thus the impact of
re-optimization also depends on that. But we can still have some general conclusions
about the optimality of the final plan regardless of the search space.

Assumption 2. The cost estimates of plans after using sampling-based cardinality refine-
ment are consistent. That is, for any two plans P1 and P2, if costs(P1) < costs(P2), then
costa(P1) < costa(P2). Here, costs(P) and costa(P) are the estimated cost based on
sampling and the actual cost of plan P, respectively.

We have the following theorem based on Assumption 2.

Theorem 5.11. Let P1, ..., Pn be a series of plans generated during re-optimization. Then
costs(Pn) 6 costs(Pi), and thus, by Assumption 2, it follows that costa(Pn) 6 costa(Pi),
for 1 6 i 6 n− 1.

Proof. First note that costs(Pi) is well defined for 1 6 i 6 n, because all these plans
have been validated via sampling. As a result, all the statistics regarding P1, ...,

134

Pn−1 were already included in Γ when the re-optimization procedure returned Pn
as the optimal plan. Since Pn is the final plan, it implies that it did not change in
the final round of iteration, where Γ also included statistics of Pn as well. Then the
only reason for the optimizer to pick Pn as the optimal plan is costs(Pn) 6 costs(Pi)
(1 6 i 6 n− 1).

That is, the plan after re-optimization is guaranteed to be better than the original
plan. Nonetheless, it is difficult to conclude that the plans are improved monotoni-
cally, namely, in general it is not true that costs(Pi+1) 6 costs(Pi), for 1 6 i 6 n− 1.
However, we can prove that this is true if we only have overestimates.

Corollary 5.12. Let P1, ..., Pn be a series of plans generated during re-optimization. If in
the re-optimization procedure only overestimates occur, then costs(Pi+1) 6 costs(Pi) for
1 6 i 6 n− 1.

Proof. The argument is similar to that used in the proof of Theorem 5.11. When
the optimizer returned Pi+1 as the optimal plan, it had already seen the statistics
of Pi after sampling. The only reason it chose Pi+1 is then costo(Pi+1) 6 costs(Pi).
Here costo(Pi+1) is the original cost estimate of Pi+1 (perhaps based on histograms),
because at this point sampling has not been used for Pi+1 yet. But given that only
overestimation is possible during re-optimization, it follows that costs(Pi+1) 6

costo(Pi+1). As a result, costs(Pi+1) 6 costs(Pi). Note that i is arbitrary in the
argument so far. Thus we have proved the theorem.

Our last result on the optimality of the final plan is in the sense that it is the best
among all the plans that are local transformations of the final plan.

Theorem 5.13. Let P be the final plan returned by the re-optimization procedure. For any
P ′ such that P ′ is a local transformation of P, it holds that costs(P) 6 costs(P ′).

Proof. The proof is straightforward. By Theorem 5.7, local transformation is only
possible in the last second step of re-optimization. At this stage, Γ has already
included all statistics regarding P and P ′: actually they share the same joins given
that they are local transformations. Therefore, costs(P) and costs(P ′) are both

135

known to the optimizer. Then costs(P) 6 costs(P ′) must hold because the optimizer
decides that P, rather than P ′, is the optimal plan.

5.3.5 Discussion

We call the final plan returned by the re-optimization procedure the fixed point
with respect to the initial plan generated by the optimizer. According to Theo-
rem 5.11, this plan is a local optimum with respect to the initial plan. Note that, if
P = {P1, ...,Pn} covers the whole search space, that is, any plan P in the search space
is covered by P, then the locally optimal plan obtained is also globally optimal.

A natural question is then the impact of the initial plan. Intuitively, it seems
that the initial plan can affect both the fixed point and the time it takes to converge
to the fixed point. (Note that it is straightforward to prove that the fixed point must
exist and be unique, with respect to the given initial plan.) There are also other
related interesting questions. For example, if we start with two initial plans with
similar cost estimates, would they converge to fixed points with similar costs as
well? We leave all these problems as interesting directions for further investigation.

Moreover, the convergence of the re-optimization procedure towards a fixed
point can also be viewed as a validation procedure of the costs of the plans V that
can be covered by P = {P1, ...,Pn}. Note that V is a subset of the whole search
space explored by the optimizer, and V is induced by P1 — the initial plan that is
deemed as optimal by the optimizer. It is also interesting future work to study the
relationship between P1 and V, especially how much of the complete search space
can be covered by V.

5.4 Optimizer “Torture Test”

Evaluating the effectiveness of a query optimizer is challenging. As we mentioned
in Section 5.1, query optimizers have to handle not only common cases but also
difficult, corner cases. In view of this, we conduct performance evaluation for both
common cases and corner cases. For the former, we use the TPC-H benchmark

136

databases. For the latter, we focus on queries whose cardinalities are difficult to
be accurately estimated by using histogram-based approaches. Specifically, we
generate a special database as well as a special set of queries with controlled degree
of data correlation. We call it “optimizer torture test” (OTT), given that our goal
is to sufficiently challenge the cardinality estimation approaches used by current
query optimizers. We next describe the details of OTT.

5.4.1 Design of the Database and Queries

Since we target cardinality/selectivity estimation, we can focus on queries that only
contain selections and joins. In general, a selection-join query q over K relations R1,
..., RK can be represented as

q = σF(R1 ./ · · · ./ RK),

where F is a selection predicate as in relational algebra (i.e., a boolean formula).
Moreover, we can just focus on equality predicates, i.e., predicates of the formA = c

where A is an attribute and c is a constant. Any other predicate can be represented
by unions of equality predicates. As a result, we can focus on F of the form

F = (A1 = c1)∧ · · ·∧ (AK = cK),

where Ak is an attribute of Rk, and ck ∈ Dom(Ak) (1 6 k 6 K). Here, Dom(Ak) is
the domain of the attribute Ak.

Based on these observations, our design of the database and queries is as follows:

(1) We have K relations R1(A1,B1), ..., RK(AK,BK).

(2) We use Ak’s for selections and Bk’s for joins.

(3) Let R ′k = σAk=ck(Rk) for 1 6 k 6 K. The queries of our benchmark are then of
the following form:

R ′1 ./B1=B2 R
′
2 ./B2=B3 · · · ./BK−1=BK R

′
K. (5.2)

137

The remaining question is how to generate data for R1, ..., RK so that we can
easily control the selectivities for the selection and join predicates. This requires us
to consider the joint data distribution for (A1, ...,AK,B1, ...,BK). A straightforward
way could be to specify the contingency table of the distribution. However, there is a
subtle issue of this approach: we cannot just generate a large table with attributesA1,
..., AK, B1, ..., BK and then split it into different relations R1(A1,B1), ..., RK(AK,BK).
To see why this is incorrect, let us consider the following example.

Example 5.14 (Approach Using Joint Distribution). Suppose that we need to generate
binary values for two attributes A1 and A2, with the following joint distribution:

(1) p00 = Pr(A1 = 0,A2 = 0) = 0.1;

(2) p01 = Pr(A1 = 0,A2 = 1) = 0;

(3) p10 = Pr(A1 = 1,A2 = 0) = 0;

(4) p11 = Pr(A1 = 1,A2 = 1) = 0.9.

Assume that we generate 10 tuples (A1,A2) according to the above distribution. Then we
would expect to obtain a multiset of tuples: {1 · (0, 0), 9 · (1, 1)}. Here the notation 1 · (0, 0)
means there is one (0, 0) in the multiset. If we project the tuples onto A1 and A2 (without
removing duplicates), we have A1 = A2 = {1 · 0, 9 · 1}. Now what is the joint distribution
of (A1,A2) once we see such a database? Note that we have no idea about the true joint
distribution that governs the generation of the data, because we are only allowed to see the
marginal distributions of A1 and A2. A natural inference of the joint distribution could
be to consider the cross product A1 ×A2. In this case we have

A1 ×A2 = {1 · 0, 9 · 1}× {1 · 0, 9 · 1}

= {1 · (0, 0), 9 · (0, 1), 9 · (1, 0), 81 · (1, 1)}.

Hence, the “observed” joint distribution of A1 and A2 is:

(1) p ′00 = Pr ′(A1 = 0,A2 = 0) = 1/100 = 0.01;

138

(2) p ′01 = Pr ′(A1 = 0,A2 = 1) = 9/100 = 0.09;

(3) p ′10 = Pr ′(A1 = 1,A2 = 0) = 9/100 = 0.09;

(4) p ′11 = Pr ′(A1 = 1,A2 = 1) = 81/100 = 0.81.

The “observed” joint distribution is indeed “the” joint distribution when tables
are joined. It might be easier to see this if we rewrite the query in Equation (5.2) as

σA1=c1∧···∧AK=cK∧B1=B2∧···∧BK−1=BK(R1 × · · · × RK). (5.3)

The previous example shows that there is information loss when marginalizing
out attributes, which is somewhat similar to the notion of lossless/lossy joins in
database normalization theory. This discrepancy between the true and observed
joint distributions calls for a new approach.

5.4.2 The Data Generation Algorithm

The previous analysis suggests that we can only generate data for each Rk(Ak,Bk)
separately and independently, without resorting to their joint distribution. To
generate correlated data, we therefore have to make Ak and Bk correlated, for
1 6 k 6 K. Because our goal is to challenge the optimizer’s cardinality estimation
algorithm, we choose to go to the extreme of this direction: let Bk be the same as
Ak. Algorithm 6 presents the details of this idea.

Algorithm 6: Data generation for the OTT database.
Input: Pr(Ak), the distribution of Ak, for 1 6 k 6 K
Output: Rk(Ak,Bk), tables generated, for 1 6 k 6 K

1 for 1 6 k 6 K do
2 Pick a seed independently for the random number generator;
3 Generate Ak with respect to Pr(Ak);
4 Generate Bk = Ak;
5 end
6 return Rk(Ak,Bk), 1 6 k 6 K;

139

We are left with the problem of specifying Pr(Ak). While Pr(Ak) could be arbi-
trary, we should reconsider our goal of sufficiently challenging the optimizer. We
therefore need to know some details about how the optimizer estimates selectivi-
ties/cardinalities. Of course, different query optimizers have different implementa-
tions, but the general principles are similar. In the following, we present the specific
technique used by PostgreSQL, which is used in our evaluation in Section 5.5.

5.4.2.1 PostgreSQL’s Approaches

PostgreSQL stores the following three types of statistics for each attribute A in its
pg_stats view [4], if the ANALYZE command is invoked for the database:

• the number of distinct values n(A) of A;

• a list of most common values (MCV’s) of A and their frequency;

• an equal-depth histogram for the other values of A except for the MCV’s.

The above statistics can be used to estimate the selectivity of a predicate over a
single attribute in a straightforward manner. For instance, for the predicate A = c

in our OTT queries, PostgreSQL first checks if c is in the MCV’s. If c is present, then
the optimizer simply uses the (exact) frequency recorded. Otherwise, the optimizer
assumes a uniform distribution over the non-MCV’s and estimates the frequency
of c based on n(A).

The approach used by PostgreSQL to estimate selectivities for join predicates is
more sophisticated. Consider an equal-join predicate B1 = B2. If MCV’s for either
B1 or B2 are not available, then the optimizer uses an approach first introduced in
System R [82] by estimating the reduction factor as 1/max{n(B1),n(B2)}. If, on the
other hand, MCV’s are available for both B1 and B2, then PostgreSQL tries to refine
its estimate by first “joining” the two lists of MCV’s. For skewed data distributions,
this can lead to much better estimates because the join size of the MCV’s, which is
accurate, would be very close to the actual join size. Other database systems, such
as Oracle [16], use similar approaches.

140

To combine selectivities from multiple predicates, PostgreSQL relies on the
attribute-value-independence (AVI) assumption, which assumes that the distribu-
tions of values of different attributes are independent.

5.4.2.2 The Distribution Pr(Ak) And Its Impact

From the previous discussion we can see that whether Pr(Ak) is uniform or skewed
would have little difference in affecting the optimizer’s estimates if MCV’s were
leveraged, simply because MCV’s have recorded the exact frequency for those
skewed values. We therefore can just let Pr(Ak) be uniform. We next analyze the
impact of this decision by computing the differences between the estimated and
actual cardinalities for the OTT queries.

Let us first revisit the OTT queries presented in Equation (5.2). Note that for an
OTT query to be non-empty, the following condition must hold:

B1 = B2 = · · · = BK−1 = BK.

Because we have intentionally set Ak = Bk for 1 6 k 6 K, this then implies

A1 = A2 = · · · = AK−1 = AK. (5.4)

The query size can thus be controlled by the values of the A’s. The query is simply
empty if Equation (5.4) does not hold. We now compute the query size when
Equation (5.4) holds.

Consider a specific query qwhere the constants in the selection predicates are
fixed. Let us compute the cardinality of q, which is equivalent to computing the
selectivity of the predicate in Equation (5.3). In probabilistic sense, the selectivity s
can be interpreted as the chance that a (randomly picked) tuple from R1 × · · · × RK
making the selection predicate true. That is,

s = Pr(A1 = c1, · · · ,AK = cK,B1 = · · · = BK).

141

Lemma 5.15. When Equation (5.4) holds, we have

s =
∏K

k=1

1
n(Ak)

.

Proof. We have s = Pr(A1 = c1, · · · ,AK = cK,B1 = · · · = BK), or equivalently,

s = Pr(B1 = · · · = BK|A1 = c1, · · · ,AK = cK)

× Pr(A1 = c1, · · · ,AK = cK).

For notational convenience, define

Pr(B|A) = Pr(B1 = · · · = BK|A1 = c1, · · · ,AK = cK),

and similarly define

Pr(A) = Pr(A1 = c1, · · · ,AK = cK).

Since Bk = Ak (1 6 k 6 K), Pr(B|A) = 1 when Equation (5.4) holds. Therefore,
s = Pr(A). Moreover, since we generate Rk independently and Pr(Ak) is uniform
(1 6 k 6 K), it then follows that

s = Pr(A) =
∏K

k=1
Pr(Ak = ck) =

∏K

k=1

1
n(Ak)

,

where n(Ak) is the number of distinct values of Ak as before. This completes the
proof of the lemma.

As a result, the size of the query q is

|q| = s ·
∏K

k=1
|Rk| =

∏K

k=1

|Rk|

n(Ak)
.

142

To summarize, we have

|q| =

{ ∏K
k=1

|Rk|

n(Ak)
, if c1 = · · · = cK;

0, otherwise.

Now what would be the query size estimated by the optimizer? Again, let us
compute the estimated selectivity ŝ, assuming that the optimizer knows the exact
histograms of the Ak and Bk (1 6 k 6 K). Note that this assumption is stronger
than the case in Section 5.4.2.1, where the optimizer possesses exact histograms
only for MCV’s. We then have the following result:

Lemma 5.16. Suppose that the AVI assumption is used. Assuming that Dom(Bk) is the
same for 1 6 k 6 K and |Dom(Bk)| = L, we have

ŝ =
1

LK−1

∏K

k=1

1
n(Ak)

.

Proof. Assume that Dom(Bk) = {C1, ...,CL} for 1 6 k 6 K. We have ŝ = Pr(A1 =

c1, · · · ,AK = cK,B1 = B2, · · · ,BK−1 = BK). According to the AVI assumption, it
follows that

ŝ =
∏K

k=1
Pr(Ak = ck)×

∏K−1

k=1
Pr(Bk = Bk+1).

Let us consider Pr(Bk = Bk+1). We have

Pr(Bk = Bk+1) =

L∑
l=1

L∑
l ′=1

(
Pr(Bk = Cl,Bk+1 = Cl ′)

× Pr(Bk = Bk+1|Bk = Cl,Bk+1 = Cl ′)
)
.

Since Pr(Bk = Bk+1|Bk = Cl,Bk+1 = Cl ′) = 1 if and only if l = l ′ (otherwise it
equals 0), it follows that

Pr(Bk = Bk+1) =
∑L

l=1
Pr(Bk = Cl,Bk+1 = Cl).

143

Moreover, since we have assumed that the optimizer knows exact histograms and
Pr(Bk) is uniform for 1 6 k 6 K (recall that Bk = Ak and Pr(Ak) is uniform),

Pr(Bk = Cl,Bk+1 = Cl) =
n(Bk = Cl,Bk+1 = Cl)

|Bk| · |Bk+1|

=
n(Bk = Cl)

|Bk|
· n(Bk+1 = Cl)

|Bk+1|

=
1

n(Bk) · n(Bk+1)
.

Because n(Bk) = L for 1 6 k 6 K, it follows that

Pr(Bk = Bk+1) = L×
1
L2 =

1
L

,

and as a result,

ŝ =
1

LK−1

∏K

k=1
Pr(Ak = ck) =

1
LK−1

∏K

k=1

1
n(Ak)

.

This completes the proof of the lemma.

Hence, the estimated size of the query q is

|̂q| = ŝ ·
∏K

k=1
|Rk| =

1
LK−1

∏K

k=1

|Rk|

n(Ak)
.

Note that this is regardless of if Equation (5.4) holds or not. In our experiments
(Section 5.5) we used this property to generate instance OTT queries.

Comparing the expressions of |q| and |̂q|, if we define

d =| |q|− |̂q| |,

it then follows that

d =

{ (
1 − 1

LK−1

)
·
∏K
k=1

|Rk|

n(Ak)
, if c1 = · · · = cK;

1
LK−1 ·

∏K
k=1

|Rk|

n(Ak)
, otherwise.

144

Let us further get some intuition about how large d could be by considering the
following specific example.

Example 5.17. For simplicity, assume that M = |Rk|/n(Ak) is the same for 1 6 k 6 K.
M is then the number of tuples per distinct value of Ak (1 6 k 6 K). In this case,

d =

{ (
1 − 1/LK−1) ·MK, if c1 = · · · = cK;
MK/LK−1, otherwise.

If L = 100 andM = 100, it then follows that

d =

{
100K − 100, if c1 = · · · = cK;
100, otherwise.

For K = 4 (i.e., just 3 joins), d ≈ 108 if it happens to be that c1 = · · · = cK. Moreover, if
c1 = · · · = cK, then |q| > |̂q|. Therefore, the optimizer would significantly underestimate
the size of the join (by 108). So it is likely that the optimizer would pick an inefficient plan
that it thought were efficient.

5.5 Experimental Evaluation

We present experimental evaluation results of our proposed re-optimization proce-
dure in this section.

5.5.1 Experimental Settings

We implemented our proposed re-optimization framework in PostgreSQL 9.0.4.
The modification to the optimizer is small, limited to several hundred lines of C
code, which demonstrates the feasibility of including our framework into current
query optimizers. We conducted our experiments on a PC configured with 2.4GHz
Intel dual-core CPU and 4GB memory, and we ran PostgreSQL under Linux 2.6.18.

145

5.5.1.1 Databases and Performance Metrics

We used both the standard version and a skewed version [5] of the TPC-H bench-
mark database, as well as our own OTT database described in Section 5.4.

TPC-H Benchmark Databases We used 10GB TPC-H databases in our experi-
ments. As before, we generated a skewed database by setting z = 1.

OTT Database We created a specific instance of the OTT database in the following
manner. We first generated a standard 1GB TPC-H database. We then extended
the 6 largest tables (lineitem, orders, partsupp, part, customer, supplier) by adding
two additional columns A and B to each of them. As discussed in Section 5.4.2,
we populated the extra columns with uniform data. The domain of a column is
determined by the number of rows in the corresponding table: if the table contains
r rows, then the domain is {0, 1, ..., r/100 − 1}. In other words, each distinct value in
the domain would appear roughly 100 times in the generated column. We further
created an index on each added column.

Performance Metrics We measured the following performance metrics for each
query on each database:

(1) the original running time of the query;

(2) the number of iterations the re-optimization procedure requires;

(3) the time spent on the re-optimization procedure;

(4) the total running time of the query including the re-optimization time.

Based on studies in previous chapters, in all of our experiments we set the sampling
ratio to be 0.05, namely, 5% of the data were taken as samples.

146

5.5.1.2 Calibrating Cost Models

In Chapter 2, we have also shown that, after proper calibration of the cost models
used by the optimizer, we could have better estimates of query running times. An
interesting question is then: would calibration also help with query optimization?

In our experiments, we also investigated this problem. Specifically, we ran the
offline calibration procedure (details in Section 2.3) and replaced the default values
of the five cost units in postgresql.conf (i.e., the configuration file of PostgreSQL
server) with the calibrated values. In the following, we also report results based on
calibrated cost models.

5.5.2 Results on the TPC-H Benchmark

We tested 21 TPC-H queries. (We excluded Q15, which is not supported by our
current implementation because it requires to create a view first.) For each TPC-H
query, we randomly generated 10 instances. We cleared both the database buffer
pool and the file system cache between each run of each query.

5.5.2.1 Results on Uniform Database

Figure 5.4 presents the average running times and their standard deviations (as
error bars) of these queries over the uniform database.

We have two observations. First, while the running times for most queries almost
do not change, we can see significant improvement for some queries. For example,
as shown in Figure 5.4(a), even without calibration of the cost units, the average
running time of Q9 drops from 4,446 seconds to only 932 seconds, a 79% reduction;
more significantly, the average running time of Q21 drops from 20,746 seconds (i.e.,
almost 6 hours) to 3,508 seconds (i.e., less than 1 hour), a 83% reduction.

Second, calibration of the cost units can sometimes significantly reduce the
running times for some queries. For example, comparing Figure 5.4(a) with Fig-
ure 5.4(b) we can observe that the average running time of Q8 drops from 3,048

147

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Original Plan
Re-optimized Plan

(a) Without calibration of the cost units

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Original Plan
Re-optimized Plan

(b) With calibration of the cost units

Figure 5.4: Query running time over uniform 10GB TPC-H database (z = 0).

seconds to only 339 seconds, a 89% reduction, by just using calibrated cost units
without even invoking the re-optimization procedure.

We further studied the re-optimization procedure itself. Figure 5.5 presents
the number of plans generated during re-optimization. It substantiates our ob-
servation in Figure 5.4: for the queries whose running times were not improved,
the re-optimization procedure indeed picked the same plans as those originally
chosen by the optimizer. Figure 5.6 further compares the query running time
excluding/including the time spent on re-optimization. For all the queries we
tested, re-optimization time is ignorable compared to query execution time, which
demonstrates the low overhead of our re-optimization procedure.

148

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

N
um

be
r

of
 P

la
ns

TPC-H Query

Without Calibration
With Calibration

Figure 5.5: The number of plans generated during re-optimization over uniform
10GB TPC-H database (z = 0).

5.5.2.2 Results on Skewed Database

On the skewed database, we have observed results similar to that on the uniform
database. Figure 5.7 presents the running times of the queries, with or without
calibration of the cost units. While it looks quite similar to Figure 5.4, there is one
interesting phenomenon not shown before. In Figure 5.7(a) we see that, without
using calibrated cost units, the average running times for Q8 and Q9 actually
increase after re-optimization. Recall that in Section 5.3.4 (specifically, Theorem 5.11)
we have shown the local optimality of the plan returned by the re-optimization
procedure. However, that result is based on the assumption that sampling-based
cost estimates are consistent with actual costs (Assumption 2). Here this seems not
the case. Nonetheless, after using calibrated cost units, both the running times of
Q8 and Q9 were significantly improved (Figure 5.7(b)).

We further present the number of plans considered during re-optimization in
Figure 5.8. Note that re-optimization seems to be more active on skewed data.
Figure 5.9 shows the running times excluding/including the re-optimization times
of the queries. Again, the additional overhead of re-optimization is trivial.

149

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Execution Only
Re-optimization + Execution

(a) Without calibration of the cost units

 0

 2000

 4000

 6000

 8000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Execution Only
Re-optimization + Execution

(b) With calibration of the cost units

Figure 5.6: Query running time excluding/including re-optimization time over
uniform 10GB TPC-H database (z = 0).

5.5.2.3 Discussion

While one might expect the chance for re-optimization to generate a better plan
is higher on skewed databases, our experiments show that this may not be the
case, at least for TPC-H queries. There are several different situations, though.
First, if a query is too simple, then there is almost no chance for re-optimization.
For example, Q1 contains no join, whereas Q16 and Q19 involve only one join so
only local transformations are possible. Second, the final plan returned by the
re-optimization procedure heavily relies on the initial plan picked by the optimizer,
which is the seed or starting point where re-optimization originates. Note that,

150

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Original Plan
Re-optimized Plan

(a) Without calibration of the cost units

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Original Plan
Re-optimized Plan

(b) With calibration of the cost units

Figure 5.7: Query running time over skewed 10GB TPC-H database (z = 1).

even if the optimizer has picked an inefficient plan, re-optimization cannot help
if the estimated cost of that plan is not significantly erroneous. One question is if
this is possible: the optimizer picks an inferior plan whose cost estimate is correct?
This actually could happen because the optimizer may (incorrectly) overestimate
the costs of the other plans in its search space. Another subtle point is that the
inferior plan might be robust to certain degree of errors in cardinality estimates.
Previous work has reported this phenomenon by noticing that the plan diagram
(i.e., all possible plans and their governed optimality areas in the selectivity space)
is dominated by just a couple of plans [77].

151

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

N
um

be
r

of
 P

la
ns

TPC-H Query

Without Calibration
With Calibration

Figure 5.8: The number of plans generated during re-optimization over skewed
10GB TPC-H database (z = 1).

In summary, the effectiveness of re-optimization depends on factors that are
out of the control of the re-optimization procedure itself. Nevertheless, we have
observed intriguing improvement for some long-running queries by applying re-
optimization, especially after calibration of the cost units.

5.5.3 Results of the Optimizer Torture Test

We created queries following our design of the OTT in Section 5.4.1. Specifically,
if a query contains n tables (i.e., n − 1 joins), we let m of the selections be A = 0
(A = 1), and let the remaining n −m selections be A = 1 (A = 0). We generated
two sets of queries: (1) n = 5 (4 joins),m = 4; and (2) n = 6 (5 joins),m = 4. Note
that the maximal non-empty sub-queries then contain 3 joins over 4 tables with
result size of roughly 1004 = 108 rows.2 However, the size of each (whole) query is
0. So we would like to see the ability of the optimizer as well as the re-optimization
procedure to identify the empty/non-empty sub-queries.

Figure 5.10 and 5.11 present the running times of the 4-join and 5-join queries,
respectively. We generated in total 10 4-join queries and 30 5-join queries. Note that
the y-axes are in log scale and we do not show queries that finish in less than 0.1

2Recall that a non-empty query must have equal A’s (Equation (5.4)) and we generated data
with roughly 100 rows per distinct value (Section 5.5.1).

152

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Execution Only
Re-optimization + Execution

(a) Without calibration of the cost units

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22

R
un

ni
ng

 T
im

e
(s

)

TPC-H Query

Execution Only
Re-optimization + Execution

(b) With calibration of the cost units

Figure 5.9: Query running time excluding/including re-optimization time over
skewed 10GB TPC-H database (z = 1).

second. As we can see, sometimes the optimizer failed to detect the existence of
empty sub-queries: it generated plans where empty join predicates were evaluated
after the non-empty ones. The running times of these queries were then hundreds or
even thousands of seconds. On the other hand, the re-optimization procedure did
an almost perfect job in detecting empty joins, which led to very efficient query plans
where the empty joins were evaluated first: all the queries after re-optimization
finished in less than 1 second.

One might argue that the OTT queries are really contrived: they are hardly to see
in real-world workloads. While this might be true, we think these queries serve our

153

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan Re-optimized Plan

(a) Without calibration of the cost units

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan Re-optimized Plan

(b) With calibration of the cost units

Figure 5.10: Query running times of 4-join queries.

purpose as exemplifying extremely hard cases for query optimization. Note that
hard cases are not merely long-running queries: queries as simple as sequentially
scanning huge tables are long-running too, but there is nothing query optimization
can help with. Hard cases are queries where efficient execution plans do exist but
it might be difficult for the optimizer to find them. The OTT queries are just these
instances. Based on the experimental results of the OTT queries, re-optimization is
helpful to give the optimizer second chances if it initially made a bad decision.

Another concern is if commercial database systems could do a better job on the
OTT queries. In regard of this, we also ran the OTT over two major commercial
database systems. The performance is very similar to that of PostgreSQL (Figure 5.12

154

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan Re-optimized Plan

(a) Without calibration of the cost units

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan Re-optimized Plan

(b) With calibration of the cost units

Figure 5.11: Query running times of 5-join queries.

and 5.13). We therefore speculate that commercial systems could also benefit from
our re-optimization technique proposed in this chapter.

5.5.4 A Note on Multidimensional Histograms

Note that even using multidimensional histograms (e.g., [18, 68, 73]) may not be
able to detect the data correlation presented in the OTT queries, unless the buckets
are so fine-grained that the exact joint distributions are retained. To understand
this, let us consider the following example.

155

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan

(a) 4-join OTT queries

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan

(b) 5-join OTT queries

Figure 5.12: Query running times of the OTT queries on the system A.

Example 5.18. Following our design of OTT, suppose that now we only have two tables
R1(A1,B1) and R2(A2,B2). Moreover, suppose that each Ak (and thus Bk) contains m =

2l distinct values, and we construct (perfect) 2-dimensional histograms on (Ak,Bk) (k =

1, 2). Each dimension is evenly divided into m
2 = l intervals, so each histogram contains

l2 buckets. The joint distribution over (Ak,Bk) estimated by using the histogram is then:{
Pr(2r− 2 6 Ak < 2r, 2r− 2 6 Bk < 2r) = 1

l
, 1 6 r 6 l;

Pr(al 6 Ak < a2,b1 6 Bk < b2) = 0, other buckets.

156

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan

(a) 4-join OTT queries

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
un

ni
ng

 T
im

e
(s

)

OTT Query

Original Plan

(b) 5-join OTT queries

Figure 5.13: Query running times of the OTT queries on the system B.

For instance, ifm = 100, then l = 50. So we have

Pr(0 6 Ak < 2, 0 6 Bk < 2) = · · · = Pr(98 6 Ak < 100, 98 6 Bk < 100) = 1
50,

while all the other buckets are empty. On the other hand, the actual joint distribution is

Pr(Ak = a,Bk = b) =

{
1
m

, if a = b;
0, otherwise.

Now, let us consider the selectivities for two OTT queries:

157

(q1) σA1=0(R1) ./ σA2=1(R2) = σA1=0∧A2=1∧B1=B2(R1 × R2);

(q2) σA1=0(R1) ./ σA2=0(R2) = σA1=0∧A2=0∧B1=B2(R2 × R2).

We know that q1 is empty but q2 is not. However, the estimated selectivity (and thus
cardinality) of q1 and q2 is the same by using the 2-dimensional histogram. To see this, let
us compute the estimated selectivity ŝ1 of q1. We have

ŝ1 = Pr(A1 = 0,A2 = 1,B1 = B2)

=
∑

06c6m−1
Pr(A1 = 0,A2 = 1,B1 = c,B2 = c)

=
∑

c=0,1
Pr(A1 = 0,A2 = 1,B1 = c,B2 = c)

=
∑

c=0,1
Pr(A1 = 0,B1 = c)× Pr(A2 = 1,B2 = c)

=
∑

c=0,1
(
1
l
· 1

4)× (
1
l
· 1

4) =
1

8l2 .

The last step follows from the assumption used by histograms that data inside each bucket is
uniformly distributed. We can conclude that the estimated selectivity ofq2 is ŝ2 = ŝ1 =

1
8l2 ,

by simply replacing A2 = 1 with A2 = 0 in the above derivation. With the setting used
in our experiments,m = 100 and thus l = 50. So each 2-dimensional histogram contains
l2 = 2, 500 buckets. However, even such detailed histograms cannot help the optimizer
distinguish empty joins from nonempty ones. Furthermore, note that our conclusion is
independent ofm, while the number of buckets increases quadratically inm. For instance,
whenm = 104 which means we have histograms containing 2.5×107 buckets, the optimizer
still cannot rely on the histograms to generate efficient query plans for OTT queries.

5.6 Related Work

Query optimization has been studied for decades, and we refer the readers to [20]
and [52] for surveys in this area.

Cardinality estimation is a critical problem in cost-based query optimization,
and has triggered extensive research in the database community. Approaches for
cardinality estimation in the literature are either static or dynamic. Static approaches

158

usually rely on various statistics that are collected and maintained periodically in
an off-line manner, such as histograms (e.g., [53, 73]), samples (e.g., [19, 44, 62]),
sketches (e.g., [12, 80]), or even graphical models (e.g. [37, 89]). In practice, ap-
proaches based on histograms are dominant in the implementations of current query
optimizers. However, histogram-based approaches have to rely on the notorious
attribute-value-independence (AVI) assumption, and they often fail to capture data
correlations, which could result in significant errors in cardinality estimates. While
variants of histograms (in particular, multidimensional histograms, e.g., [18, 68, 73])
have been proposed to overcome the AVI assumption, they suffer from signifi-
cantly increased overhead on large databases. Meanwhile, even if we can afford
the overhead of using multidimensional histograms, they are still insufficient in
many cases, as we discussed in Section 5.5.4. Compared with histogram-based
approaches, sampling is better at capturing data correlation. One reason for this is
that sampling evaluates queries on real rather than summarized data.

On the other hand, dynamic approaches further utilize information gathered
during query runtime. Approaches in this direction include dynamic query plans
(e.g., [29, 40]), parametric query optimization (e.g. [54]), query feedback (e.g., [17,
85]), mid-query re-optimization (e.g. [56, 66]), and quite recently, plan bouquets [34].
The ideas behind dynamic query plans and parametric query optimization are
similar: rather than picking one single optimal query plan, all possible optimal
plans are retained and the decision on which one to use is deferred until runtime.
Both approaches suffer from the problem of combinatorial explosion and are usually
used in contexts where expensive pre-compilation stages are affordable. The recent
development of plan bouquets [34] is built on top of parametric query optimization
so it may also incur a heavy query compilation stage. Unlike standard parametric
query optimization that sticks to a single plan at runtime, it chooses a pool of
candidate plans and runs them one by one with respect to the increasing order of
their estimated costs. While this idea is effective in quickly identifying bad plans
that are due to underestimation of their costs, it would increase query running time
in general. Therefore, this idea seems to be more attractive if robustness is more
important than average performance.

159

Meanwhile, approaches based on query feedback record statistics of past queries
and use this information to improve cardinality estimates for future queries. Some of
these approaches have been adopted in commercial systems such as IBM DB2 [85]
and Microsoft SQL Server [17]. Nonetheless, collecting query feedback incurs
additional runtime overhead as well as storage overhead of ever-growing volume
of statistics. Moreover, the effectiveness of using a mixture of actual/estimated
statistics for parts of plans that have/have not been observed in past queries remains
debatable. That is, it is unclear if the optimizer could bring up a better plan by
giving it partially improved cardinalities [25]. While our proposed framework faces
the same issue, we remedy that by introducing the sampling-based validation stage.

The most relevant work in the literature is perhaps the line along mid-query re-
optimization [56, 66]. We have articulated the connection between our work and this
work in Section 5.1. In some sense, our approach sits between static and dynamic
approaches. We combine the advantage of lower overheads from static approaches
and the advantage of more optimization opportunities from dynamic approaches.
This compromise leads to a lightweight query re-optimization procedure that could
bring up better query plans.

Finally, we note that we are not the first that investigates the idea of incorpo-
rating sampling into query optimization. Ilyas et al. proposed using sampling to
detect data correlations and then collecting joint statistics for those correlated data
columns [51]. However, this seems to be insufficient if data correlation is caused by
specific selection predicates, such as those OTT queries used in our experiments.
Babcock and Chaudhuri also investigated the usage of sampling in developing a
robust query optimizer [14]. While robustness is another interesting goal for query
optimizer, it is beyond the scope of this chapter.

5.7 Summary

In this chapter, we studied the problem of incorporating sampling-based cardinality
estimates into query optimization. We proposed an iterative query re-optimization
procedure that supplements the optimizer with refreshed cardinality estimates via

160

sampling and gives it second chances to generate better query plans. We show the
efficiency and effectiveness of this re-optimization procedure both theoretically
and experimentally. While we have demonstrated that our approach can catch and
fix some bad plans, we are not saying this is the only way to do that — in particular,
in some cases creating more comprehensive histograms (e.g., multidimensional
histograms) would also help. However, it may be infeasible to cover all cases. For ex-
ample, we may need too many histograms on large databases with complex schemas
and therefore cannot afford the overhead. Multidimensional histograms may also
fail on cases that can be handled by using sampling, as shown in Section 5.5.4. By
using sampling as a post-processing step, it is actually orthogonal to the types of
histograms used by the optimizer: the optimizer is free to use multidimensional
histograms to improve the query plan it returns, which can be further improved by
using our sampling-based re-optimization procedure.

There are several directions worth further exploring. First, as we have mentioned,
the initial plan picked by the optimizer would have great impact on the final plan
returned by re-optimization. While it remains interesting to study this impact
theoretically, it might also be an intriguing idea to think about varying the way that
the query optimizer works. For example, rather than just returning one plan, the
optimizer could return several candidates and let the re-optimization procedure
work on each of them. This might make up for the potentially bad situation currently
faced by the re-optimization procedure that it may start with a bad seed plan.
Second, the re-optimization procedure itself could be further improved. As an
example, note that in this chapter we let the optimizer unconditionally accept
cardinality estimates by sampling. However, sampling is by no means perfect.
A more conservative approach is to consider the uncertainty of the cardinality
estimates returned by sampling as well. In Chapter 4, we investigated the problem
of quantifying uncertainty in sampling-based query running time estimation. It
is very interesting to study a combination of that framework with the query re-
optimization procedure proposed in this chapter. We leave all these as promising
areas for future work.

161

Chapter 6

Conclusion

In this dissertation, we developed sampling-based techniques that are useful for
query execution time prediction and query optimization. Our key idea is to use
sampling as a post-processing, validation step that is only applied to the final plan
returned by the query optimizer. We show that, with little additional overhead,
this idea can help refine cardinality estimates and therefore query execution time
predictions as well. It can further help quantify the uncertainty in cardinality
estimates and thus query execution time predictions. Moreover, by introducing
a feedback loop from sampling to the query optimizer, we can improve the final
query plan returned by the optimizer via an iterative re-optimization procedure.
Figure 6.1 highlights this high-level big picture.

Query

Optimizer

Sampling-based

Validation
q

Feedback

1. tq
2. Pr(tq)

Estimated Running Time and Its

Uncertainty

Plan Pq

Improved Query Plan

Figure 6.1: Use sampling as a post-processing, validation step.

162

Although we have discussed interesting directions for future work in each
chapter, we have some further thoughts regarding the idea of using sampling-based
techniques in query optimization. While sampling-based cardinality estimation
techniques have been extensively studied in the literature, they are rarely used in
current query optimizer implementations, mainly due to the runtime overhead
they would incur. It is perhaps time to rethink the role of sampling, given the ever-
growing memory sizes of modern computers. As demonstrated in this dissertation,
the additional overhead of sampling is usually ignorable on large databases. If
samples could be memory-resident, we would expect a further drop in this overhead,
which, as a result, would allow us to use sampling-based techniques to validate
more query plans. At a higher level, there is a trade-off between the time that could
be spent on query optimization and the quality of the final query plan. Given that
cardinality estimates are crucial for the accuracy of cost estimates and sampling can
help improve cardinality estimates, we believe that it is worth to use sampling more
intensively if its overhead is manageable. One possible way, as we have discussed
in Chapter 5, is to bring uncertainty into query optimization and use sampling for
those query plans about which traditional, histogram-based approaches have little
confidence. Of course, it remains an interesting question to study how to measure
the uncertainty or confidence for cost estimates based on histograms. We hope our
work in Chapter 5 might encourage further research in this area.

Finally, we would like to give some critiques to the techniques developed in this
dissertation. First, as we mentioned, the approach we used to calibrate cost units in
Chapter 2 is based on the linearity of PostgreSQL’s cost model. While cost models
of other database systems are similar, they, especially those of commercial database
systems, might be more complicated and involve more parameters. We therefore
view our work only as a case study that points out basic elements in cost models
and general principles of calibration.

Second, while the sampling-based selectivity estimator we used performs well
in practice, we should note here that there was also some theoretic negative result
on random sampling over joins [22]. It suggests that, in certain cases, it is impossible
to take a random sample from a join by using uniform samples over base tables,

163

unless the sample sizes are comparable to the base table sizes. However, this
could only happen when the join is highly selective. In this case, the estimated
selectivity would be 0 unless the sample sizes are sufficiently large. In fact, if we
keep sampling (rather than taking a fixed amount of samples), we will observe large
sample variances. Nonetheless, the problem of selectivity/cardinality estimation
is different from that of taking random samples from join results. When the join
selectivity is very small, an estimate of 0 is perhaps still useful. This only becomes
an issue if the join result needs to be further joined with another huge table that
might lead to nontrivial join size. Another problem that is not discussed in this
dissertation is how to update samples when the underlying database changes.
While periodically updating samples is one option, there was some interesting
previous work exploring the idea of utilizing execution feedback [58]: samples are
updated if the estimates turn out to be far away from the actual cardinalities.

Third, cost estimation is not just cardinality estimation; its accuracy further
depends on the cost model itself. Our calibration techniques in Chapter 2 and 3
assumed that the cost models used by current optimizers are reasonably accurate.
However, this is not the case for some queries, and we still observe significant
errors over these queries. Our work on measuring uncertainty in query execution
time estimation in Chapter 4 also did not address the inaccuracy in cost models. A
study in this direction is desirable but seems quite challenging. Cost models are
currently handcrafted by query optimizer developers, and there is little work in the
literature on systematic, formal approaches for cost modeling. Partially due to the
difficulty in formalizing cost models, our study in Chapter 5 on re-optimizing query
by using sampling-based cardinality estimates still lacks theoretical guarantees
on the optimality of the final query plan. In the bigger picture, the relationship
between the accuracy of cost modeling and the optimality of query plan returned
by the optimizer remains unclear. So far, we are not aware of any theoretical work
on this important problem. We would like to treat all these critiques as interesting,
unsolved questions that call for future research.

164

Appendix A

Theoretic Results

In this appendix, we present theoretic results (e.g., proofs of certain lemmas and
theorems) that are too long to be included in the main text of this dissertation.

A.1 Proof of Lemma 2.8

Proof. The proof idea is briefly sketched in Appendix D of [44] but not fully devel-
oped. For completeness purpose we provide a proof here following that sketch.

Define X(i, j) = 1 if the block we take from the relation R1 in the i-th sam-
pling step is B(1, j), and X(i, j) = 0 otherwise, where 1 6 j 6 m1. Define Xi =
(X(i, 1), ...,X(i,m1)). Since we sample with replacement, X1, ..., Xn are i.i.d. random
vectors with (common) expectation

µX = E
[
Xi
]
= (

1
m1

, ..., 1
m1

).

Let

X̄n =
1
n

n∑
i=1

Xi = (X̄(n, 1), ..., X̄(n,m1)),

165

where X̄(n, j) = 1
n

∑n
i=1 X(i, j). Then by the strong law of large numbers,

Pr
[

lim
n→∞ X̄n = µX

]
= 1.

On the other hand, define

Y(n, j) = 1
nK−1

n∑
i2=1

· · ·
n∑
iK=1

ρB(j,L2,i2 ,...,LK,iK)
,

and Yn = (Y(n, 1), ...,Y(n,m1)). We have

µY = E
[
Yn
]
= (ρ1, ρ2, ..., ρm1),

where

ρj =
1∏K

k=2mk

m2∑
i2=1

· · ·
mK∑
iK=1

ρB(j,i2,...,iK).

Note that we can now write Equation (2.2) as

ρ̃cpR = X̄n · Yn =

m1∑
j=1

X̄(n, j)Y(n, j).

Our next goal is to show that Pr
[

lim
n→∞Yn = µY

]
= 1. If this is true, then we have

Pr
[

lim
n→∞ ρ̃cpR = µX · µY

]
= 1.

Since

µX · µY =
1
m1

m1∑
j=1

1∏K
k=2mk

m2∑
i2=1

· · ·
mK∑
iK=1

ρB(j,i2,...,iK)

=
1∏K

k=1mk

m1∑
i1=1

· · ·
mK∑
iK=1

ρB(i1,i2,...,iK) = ρR,

we therefore prove the strong consistency of ρ̃cpR .

166

We now show that Pr
[

lim
n→∞Yn = µY

]
= 1 by induction on K. When K = 2,

Y(n, j) = 1
n

n∑
i2=1

ρB(j,L2,i2)
.

Note that, with a fixed j, the ρB(j,L2,i2)
’s are i.i.d. random variables. So by the strong

law of large numbers, Pr
[

lim
n→∞ Y(n, j) = ρj

]
= 1, and hence Pr

[
lim
n→∞Yn = µY

]
= 1.

Now assume that the strong consistency holds for K relations. Consider the case of
K+ 1 relations:

Y(n, j) = 1
nK

n∑
i2=1

· · ·
n∑

iK+1=1

ρB(j,L2,i2 ,...,LK+1,iK+1)
.

Define

Y(n, j, i2) =
1

nK−1

n∑
i3=1

· · ·
n∑

iK+1=1

ρB(j,L2,i2 ,...,LK+1,iK+1)
.

By induction hypothesis,

Pr
[

lim
n→∞ Y(n, j, i2) = ρj,i2

]
= 1,

where

ρj,i2 =
1∏K+1

k=3 mk

m2∑
i3=1

· · ·
mK+1∑
iK+1=1

ρB(j,i2,...,iK+1).

Since

Y(n, j) = 1
n

n∑
i2=1

Y(n, j, i2),

and for fixed j, Y(n, j, i2) are i.i.d. random variables with (common) mean

E
[
Y(n, j, i2)

]
=

1
m2

m2∑
i2=1

ρj,i2 =
1∏K+1

k=2 mk

m2∑
i2=1

· · ·
mK+1∑
iK+1=1

ρB(j,i2,...,iK+1) = ρj.

167

We hence have
Pr
[

lim
n→∞ Y(n, j) = ρj

]
= 1,

by applying the strong law of large numbers again. This completes the proof.

A.2 Variance of The Selectivity Estimator

The variance of the selectivity estimator ρn (ref. Section 4.5), unfortunately, is
nontrivial when writing it mathematically:

Theorem A.1. The variance of ρn is [44]:

Var[ρn] =

K∑
r=1

(n− 1)K−r
nK

(A.1)

×
∑
S∈Sr

(
1

|Λ(S)|

∑
l∈Λ(S)

(ρS(l) − ρ)2
)

.

Here S = {k1, ...,kr} ⊆ {1, 2, ...,K} such that k1 < k2 < · · · < kr, Sr is the collection
of all subsets of {1, 2, ...,K} with size r (for 1 6 r 6 K), and Λ(S) is defined to be

Λ(S) = {1, 2, ...,mk1}× · · · × {1, 2, ...,mkr}.

Moreover, for l = (l1, ..., lr) ∈ Λ(S), ρS(l) is the average selectivity over B(L1, ...,LK)
such that Lkj = lj (1 6 j 6 r). For example, if K = 4, S = {2, 3} and l = (8, 9), then

ρS(l) = (m1m4)
−1

m1∑
L1=1

m4∑
L4=1

ρB(L1,8,9,L4).

We next prove Theorem A.1. Roughly speaking, the idea of the proof is to first
partition the samples into groups based on how many blocks they share, then
compute the variance of each group, and finally sum them up. We start with the
following standard result from probability theory:

168

Lemma A.2. Let X1, ..., Xn be n random variables, then

Var[
n∑
i=1

Xi] =

n∑
i=1

n∑
j=1

Cov(Xi,Xj),

where Cov(Xi,Xj) is the covariance of Xi and Xj:

Cov(Xi,Xj) = E[(Xi − E[Xi])(Xj − E[Xj])].

Now define X to be the set of all sample blocks, namely,

X = {ρB(L1,i1 ,··· ,LK,iK)
|1 6 ik 6 n, 1 6 k 6 K}.

Based on Lemma A.2 and Equation (4.4), we have

Var[ρn] =
1

(nK)2

∑
X∈X

∑
X ′∈X

Cov(X,X ′). (A.2)

Consider any X = ρB(j1,...,jK) and X ′ = ρB(j ′1,...,j ′K) in the summands of Equation (A.2).
If jk 6= j ′k for 1 6 k 6 K, then X and X ′ are independent and Cov(X,X ′) = 0. Hence,
only X and X ′ that share at least one common coordinate will contribute a non-zero
summand to Equation (A.2). We thereby partition the pairs (X,X ′) according to the
number of coordinates they share. Specifically, for S = {k1, ...,kr} ⊆ {1, 2, ...,K}, we
denote X ∼S X

′ if jkm = j ′km for 1 6 m 6 r. This gives us the following equivalent
expression for Var[ρn]:

Var[ρn] =
1

(nK)2

K∑
r=1

∑
S∈Sr

∑
X∼SX ′

Cov(X,X ′). (A.3)

169

Lemma A.3. For a fixed S ∈ Sr, the number of pairs (X,X ′) such that X ∼S X
′ is (n −

1)K−rnK. As a result, Var[ρn] can be further expressed as:

Var[ρn] =
K∑
r=1

(n− 1)K−r
nK

×
∑
S∈Sr

Cov(X,X ′). (A.4)

Our next goal is to give an expression for Cov(X,X ′) when X ∼S X
′, as shown in

Lemma A.4. Equation (A.1) in Theorem A.1 then follows by combining Lemma A.3
and A.4. This completes the proof of Theorem A.1.

Lemma A.4. If X ∼S X
′, then

Cov(X,X ′) = 1
|Λ(S)|

∑
l∈Λ(S)

(ρS(l) − ρ)2.

Proof. We have

Cov(X,X ′) = EX∼SX ′[(X− E[X])(X ′ − E[X ′])].

Since E[X] = E[X ′] = ρ, it follows that

Cov(X,X ′) = EX∼SX ′[(X− ρ)(X ′ − ρ)].

We further denoteX ∼S(l) X
′ for l = (l1, ..., lr), ifX ∼S X

′ and jkm = lm for 1 6 m 6 r.
We then have

Cov(X,X ′) = 1
|Λ(S)|

∑
l∈Λ(S)

EX∼S(l)X ′[(X− ρ)(X ′ − ρ)].

Now consider EX∼S(l)X ′[(X − ρ)(X ′ − ρ)]. By definition, it is the average of the
following quantities

γ = (ρB(j1,...,jK) − ρ)(ρB(j ′1,...,j ′K) − ρ)

170

by setting jkm = j ′km = lm for 1 6 m 6 r. Let Sc = {1, ...,K}− S be the complement
of S. We then have

E = EX∼S(l)X ′[(X− ρ)(X ′ − ρ)] =
(1
|Λ(Sc)|

)2 ∑
Λ(Sc)

∑
Λ(Sc)

γ.

After some rearrangement of the summands, we can have

E =
(1
|Λ(Sc)|

)2(∑
Λ(Sc)

(ρB(j1,...,jK) − ρ)
)2

=
(1
|Λ(Sc)|

∑
Λ(Sc)

(ρB(j1,...,jK) − ρ)
)2

=
(
(

1
|Λ(Sc)|

∑
Λ(Sc)

ρB(j1,...,jK)) − ρ
)2

= (ρS(l) − ρ)2.

This completes the proof of the lemma.

A.3 A Tighter Upper Bound for Covariance

Consider two operators O and O ′ where O ∈ Desc(O ′). Suppose that |R| = K,
|R ′| = K ′, and |R ∩ R ′| = m (m > 1). Let the estimators for O and O ′ be ρn and ρ ′n
where n is the number of sample steps, and define ρ = E[ρn] and ρ ′ = E[ρ ′n].

Theorem A.5. Let Sr,Λ(S), and ρS(l) be the same as that defined in Theorem A.1. Define

σ2
S =

1
|Λ(S)|

∑
l∈Λ(S)

(ρS(l) − ρ)2,

and

S2
ρ(m,n) =

m∑
r=1

(
1 −

1
n

)m−r(1
n

)r∑
S∈Sr

σ2
S.

171

We then have

|Cov(ρn, ρ ′n)| 6
√
S2
ρ(m,n)S2

ρ ′(m,n) 6
√

Var[ρn]Var[ρ ′n].

We next prove Theorem A.5. To establish the first inequality, namely,

|Cov(ρn, ρ ′n)| 6
√
S2
ρ(m,n)S2

ρ ′(m,n),

we need two lemmas. The first one gives an explicit expression of the covariance
Cov(ρn, ρ ′n), which is similar to the expression of Var[ρn] shown in Theorem A.1.

Lemma A.6. Let Sr be the collection of all subsets of R with size r (for 1 6 r 6 m). Define

CovS(ρ, ρ ′) = 1
|Λ(S)|

∑
l∈Λ(S)

(ρS(l) − ρ)(ρ ′S(l) − ρ ′).

Then

Cov(ρn, ρ ′n) =
m∑
r=1

(n− 1)m−r

nm

∑
S∈Sr

CovS(ρ, ρ ′).

Here ρS(l) and ρ ′S(l) are the same as that in Theorem A.1, defined over R and R ′.

Proof. The idea is similar to our proof of Theorem A.1. Let K = |R| and K ′ = |R ′|.
We have

ρn =
1
nK

n∑
i1=1

· · ·
n∑
iK=1

ρB(L1,i1 ,··· ,LK,iK)
,

and

ρ ′n =
1
nK

′

n∑
i1=1

· · ·
n∑

iK ′=1

ρ ′B(L1,i1 ,··· ,LK,i
K ′

).

Therefore,

E[ρnρ ′n] =
1

nK+K
′

nK∑
k=1

nK
′∑

k ′=1

E[ρBρ
′
B],

172

and

E[ρn]E[ρ ′n] =
1

nK+K
′

nK∑
k=1

nK
′∑

k ′=1

E[ρB]E[ρ ′B].

Hence, by letting dn = Cov(ρn, ρ ′n) = E[ρnρ ′n] − E[ρn]E[ρ ′n],

dn =
1

nK+K
′

nK∑
k=1

nK
′∑

k ′=1

(
E[ρBρ

′
B] − E[ρB]E[ρ ′B]

)
=

1
nK+K

′

nK∑
k=1

nK
′∑

k ′=1

Cov(ρB, ρ ′B).

If B and B ′ share no blocks, then ρB and ρ ′B are independent and thus Cov(ρB, ρ ′B) =
0. Thus we only need to consider the case that B and B ′ share at least one block.
Similarly as before, we partition the pairs (ρB, ρ ′B) based on the number of blocks
B and B ′ share. According to Lemma A.3, for a fixed S ∈ Sr, the number of pairs
(ρB, ρ ′B) such that ρB ∼S ρ

′
B is

nK(n− 1)m−rnK
′−m = nK+K

′−m(n− 1)m−r.

We hence have

Cov(ρn, ρ ′n) =
m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

Cov(ρB, ρ ′B).

Similarly as in Lemma A.4, we have

Cov(ρB, ρ ′B) = EρB∼Sρ
′
B
[(ρB − ρ)(ρ ′B − ρ ′)],

and hence

Cov(ρB, ρ ′B) =
1

|Λ(S)|

∑
l∈Λ(S)

EρB∼S(l)ρ
′
B
[(ρB − ρ)(ρ ′B − ρ ′)].

173

Now let K and K ′ be the indexes of the relations in R and R ′ respectively. Denote
ScK = K− S and ScK ′ = K ′ − S. Let

E = EρB∼S(l)ρ
′
B
[(ρB − ρ)(ρ ′B − ρ ′)].

We have

E =
1

|Λ(ScK)| · |Λ(ScK ′)|
∑
Λ(ScK)

∑
Λ(Sc

K ′)

(
(ρB − ρ)(ρ ′B − ρ ′)

)
=

(1
|Λ(ScK)|

∑
Λ(ScK)

(ρB − ρ)
)(1

|Λ(ScK ′)|

∑
Λ(Sc

K ′)

(ρ ′B − ρ ′)
)

=
(
(

1
|Λ(ScK)|

∑
Λ(ScK)

ρB) − ρ
)(
(

1
|Λ(ScK ′)|

∑
Λ(Sc

K ′)

ρ ′B) − ρ
′)

= (ρS(l) − ρ)(ρ ′S(l) − ρ ′).

This completes the proof of the lemma.

Our second lemma further provides an upper bound for CovS(ρ, ρ ′):

Lemma A.7. Let S ∈ Sr. Then we have

|CovS(ρ, ρ ′)| 6
√
σ2
S · (σ ′S)2.

Proof. Let dS = CovS(ρ, ρ ′) and d2
ρ = (ρS(l) − ρ)2. We have

d2
S =

1
|Λ(S)|2

(∑
l∈Λ(S)

(ρS(l) − ρ)(ρ ′S(l) − ρ ′)
)2

6
1

|Λ(S)|2
(∑

l∈Λ(S)

d2
ρ

)(∑
l∈Λ(S)

d2
ρ ′

)
=

(1
|Λ(S)|

∑
l∈Λ(S)

d2
ρ

)(1
|Λ(S)|

∑
l∈Λ(S)

d2
ρ ′

)
= σ2

S · (σ ′S)2,

174

by the Cauchy-Schwarz inequality. It then follows that

|dS| = |CovS(ρ, ρ ′)| 6
√
σ2
S · (σ ′S)2,

which completes the proof of the lemma.

We can now prove the first inequality in Theorem A.5:

Proof. Let dn = Cov(ρn, ρ ′n). By Lemma A.6 and A.7 we have

|dn| = |

m∑
r=1

(
1 −

1
n

)m−r(1
n

)r∑
S∈Sr

CovS(ρ, ρ ′)|

6
m∑
r=1

(
1 −

1
n

)m−r(1
n

)r∑
S∈Sr

√
σ2
S(σ

′
S)

2.

By the Cauchy-Schwarz inequality, we have

∑
S∈Sr

√
σ2
S(σ

′
S)

2 6

√∑
S∈Sr

σ2
S

∑
S∈Sr

(σ ′S)
2.

Combining these two inequalities, we obtain

|dn| 6
m∑
r=1

(
1 −

1
n

)m−r(1
n

)r√∑
S∈Sr

σ2
S

∑
S∈Sr

(σ ′S)
2.

Now define
Ar =

√(
1 −

1
n

)m−r(1
n

)r∑
S∈Sr

σ2
S.

Then it follows that

|dn| 6
m∑
r=1

ArA
′
r.

175

Applying the Cauchy-Schwarz inequality again,

|dn| 6

√√√√(m∑
r=1

A2
r

)(m∑
r=1

(A ′)2
r

)
=
√
S2
ρ(m,n)S2

ρ ′(m,n),

which completes the proof of the inequality.

To establish the second inequality in the theorem, namely,√
S2
ρ(m,n)S2

ρ ′(m,n) 6
√

Var[ρn]Var[ρ ′n],

we need two more lemmas. The first one states that the σ2
S has some nice mono-

tonicity property:

Lemma A.8. Let S ∈ Sr and S ′ ∈ Sr+1 such that S ⊂ S ′, for 1 6 r 6 K − 1. Then it
holds that σ2

S 6 σ2
S ′ .

Proof. Without loss of generality, let S = {1, ..., r} and S ′ = {1, ..., r + 1}. For a
given l = (j1, ..., jr) ∈ Λ(S), let l ′j = (j1, ..., jr, j), for 1 6 j 6 mr+1. Since Λ(S ′) =

Λ(S) × {1, ...,mr+1}, we have Λ(Sc) = Λ((S ′)c) × {1, ...,mr+1} and thus |Λ(Sc)| =

mr+1|Λ((S
′)c)|. Therefore, by letting d2

ρ = (ρS(l) − ρ)2, it follows that

d2
ρ =

(
(

1
|Λ(Sc)|

∑
Λ(Sc)

ρB) − ρ
)2

=
(1
|Λ(Sc)|

∑
Λ(Sc)

(ρB − ρ)
)2

=
(1
mr+1|Λ((S ′)c)|

mr+1∑
j=1

∑
Λ((S ′)c)

(ρB − ρ)
)2

=
1

m2
r+1

(mr+1∑
j=1

1
|Λ((S ′)c)|

∑
Λ((S ′)c)

(ρB − ρ)
)2.

176

By the Cauchy-Schwarz inequality, we have

d2
ρ =

1
mr+1

mr+1∑
j=1

(1
|Λ((S ′)c)|

∑
Λ((S ′)c)

(ρB − ρ)
)2

=
1

mr+1

mr+1∑
j=1

(
(

1
|Λ((S ′)c)|

∑
Λ((S ′)c)

ρB) − ρ
)2

=
1

mr+1

mr+1∑
j=1

(ρS ′(l ′j) − ρ)2.

Therefore,

σ2
S =

1
|Λ(S)|

∑
Λ(S)

(ρS(l) − ρ)2

6
1

|Λ(S)|mr+1

∑
Λ(S)

mr+1∑
j=1

(ρS ′(l ′j) − ρ)2

=
1

|Λ(S ′)|

∑
Λ(S ′)

(ρS ′(l ′) − ρ)2

= σ2
S ′ .

This completes the proof of the lemma.

Our next lemma shows that the S2
ρ(m,n) also has some monotonicity property:

Lemma A.9. Form > 1, we have

S2
ρ(m,n) 6 S2

ρ(m+ 1,n).

Proof. We should be careful now since Sr is actually related tom. Specifically, Sr
is all the r-subsets of {1, ...,m}.1 To make this more explicit, we further use S

(m)
r to

1More generally, the indexes could be represented as Jm = {j1, ..., jm} and Jm+1 = {j1, ..., jm, jm+1}
such that Jm ⊂ Jm+1. We used Jm = {1, ...,m} and Jm+1 = {1, ...,m,m + 1} in our proof without
loss of generality.

177

indicate this relationship. Moreover, to simplify notation, we define

A(m)
r =

∑
S∈S(m)

r

σ2
S.

Furthermore, if r = m, then S
(m)
m contains only one single element {1, ...,m}. We

thus simply use σ2
m to represent A(m)

m , i.e.,

σ2
m =

∑
S∈S(m)

m

σ2
S.

Now consider Sm+1 = S
2
ρ(m+ 1,n). We have

Sm+1 =

m+1∑
r=1

(
1 −

1
n

)m+1−r(1
n

)r
A(m+1)
r

=

m∑
r=1

(
1 −

1
n

)m+1−r(1
n

)r
A(m+1)
r +

(1
n

)m+1
σ2
m+1.

Define ∆(m+1)
r =

∑
S∈S(m+1)

r \S
(m)
r
σ2
S. Then

∆(m+1)
r = A(m+1)

r −A(m)
r .

We therefore have Sm+1 =
(
1 − 1

n

)
Sm + Bm, where

Bm =

m∑
r=1

(
1 −

1
n

)m+1−r(1
n

)r
∆(m+1)
r +

(1
n

)m+1
σ2
m+1.

Let us further define S
(m)
r = ∅ if r > m. Then ∆(m+1)

m+1 = σ2
m+1, and therefore

Bm =

m+1∑
r=1

(
1 −

1
n

)m+1−r(1
n

)r
∆(m+1)
r .

178

Next, consider some S ∈ S
(m+1)
r \ S

(m)
r where r > 2. Note that S must contain

m + 1 since otherwise S ∈ S
(m)
r . What’s more, if we remove m + 1 from S, then

S must be now in S
(m)
r−1 , that is, S \ {m + 1} ∈ S

(m)
r−1 . On the other hand, for any

S ′ ∈ S
(m)
r−1 , we can obtain an element in S

(m+1)
r \ S

(m)
r by simply addingm+ 1, that

is, S ′ ∪ {m + 1} ∈ S
(m+1)
r \ S

(m)
r . We therefore have established a 1-1 mapping ϕ

between S
(m+1)
r \ S

(m)
r and S

(m)
r−1 .

Furthermore, note that for any S ∈ S
(m+1)
r \ S

(m)
r , we have ϕ(S) ⊂ S. Hence by

Lemma A.8, σ2
ϕ(S) 6 σ

2
S. Therefore, we have

∆(m+1)
r =

∑
S∈S(m+1)

r \S
(m)
r

σ2
S >

∑
ϕ(S)∈S(m)

r−1

σ2
ϕ(S) = A

(m)
r−1 .

As a result, we have

Bm > Cm +

m+1∑
r=2

(
1 −

1
n

)m+1−r(1
n

)r
A

(m)
r−1

= Cm +

m∑
r ′=1

(
1 −

1
n

)m+1−(r ′+1)(1
n

)r ′+1
A

(m)
r ′

= Cm +
1
n

m∑
r ′=1

(
1 −

1
n

)m−r ′(1
n

)r ′
A

(m)
r ′

= Cm +
1
n
Sm,

where
Cm =

(
1 −

1
n

)m 1
n
∆

(m+1)
1 =

1
n

(
1 −

1
n

)m
σ2
{m+1} > 0.

Hence, Bm > 1
n
Sm. Since Sm+1 =

(
1 − 1

n

)
Sm + Bm, we conclude that Sm+1 > Sm.

This completes the proof of the lemma.

It is now easy to prove the second inequality in Theorem A.5:

Proof. Based on Lemma A.9, by induction, we can easily prove that S2
ρ(m,n) 6

Var[ρn] and S2
ρ ′(m,n) 6 Var[ρ ′n], since m 6 min{K,K ′}. The second inequality in

Theorem A.5 then follows.

179

For our special case in this dissertation where Cov(ρn, ρ ′n) 6= 0, we will always
have m = min{K,K ′}. Without loss of generality, let m = K. Then S2

ρ(m,n) =

Var[ρn], and we only need to approximate S2
ρ ′(m,n) with S2

ρ ′(K,n), which by
Lemma A.9 is guaranteed to be superior to Var[ρ ′n]. Intuitively, the bigger K ′ − K
is, the bigger the gap is between S2

ρ ′(K,n) and Var[ρ ′n]. In fact, in the proof of
Lemma A.9, we have actually showed that Sm+1 > Sm + Cm. So we can roughly
estimate that

Var[ρ ′n] − S2
ρ ′(K,n) > 1

n

(
1 −

1
n

)K K ′∑
r=K+1

σ2
{r}.

A.4 More Discussions on Covariances

We can actually have another upper bound for Cov(ρn, ρ ′n):

Theorem A.10. We have

|Cov(ρn, ρ ′n)| 6 f(n,m)g(ρ)g(ρ ′),

where f(n,m) = 1 − (1 − 1
n
)m and g(ρ) =

√
ρ(1 − ρ).

Proof. As in the proof of Lemma A.6, let K and K ′ be the indexes of the relations in
R and R ′. By Lemma A.8, we have σ2

S 6 σ2
K and (σ ′S)

2 6 σ2
K ′ . Moreover, consider

σ2
K =

1
|Λ(K)|

∑
l∈Λ(K)

(ρK(l) − ρ)2.

Since we use the tuple-level partition scheme, we have ρK(l) = 1 or ρK(l) = 0.
Therefore, it follows that

σ2
K = (1 − ρ)2 · 1

|Λ(K)|

∑
l∈Λ(K)

I(ρK(l) = 1) + ρ2 · 1
|Λ(K)|

∑
l∈Λ(K)

I(ρK(l) = 0)

= (1 − ρ)2 · ρ+ ρ2 · (1 − ρ)

= ρ(1 − ρ).

180

Similarly, we have σ2
K ′ = ρ

′(1 − ρ ′). Hence,

CovS(ρ, ρ ′) 6
√
σ2
S(σ

′
S)

2 6
√
ρ(1 − ρ) · ρ ′(1 − ρ ′),

and therefore, by letting g(ρ) =
√
ρ(1 − ρ),

|Cov(ρn, ρ ′n)| = |

m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

CovS(ρ, ρ ′)|

6
m∑
r=1

(n− 1)m−r

nm
×
∑
S∈Sr

g(ρ)g(ρ ′)

= g(ρ)g(ρ ′)

m∑
r=1

(
m

r

)(1
n

)r(1 −
1
n

)m−r

= g(ρ)g(ρ ′)[1 − (1 −
1
n
)m].

This completes the proof of the theorem.

When n is large, (1 − 1
n
)m ≈ 1 − m

n
. As a result, 1 − (1 − 1

n
)m ≈ m

n
. Therefore,

when n → ∞, Cov(ρn, ρ ′n) → 0. This is intuitively true considering the strong
consistency of ρn. If we keep taking samples, finally the estimated selectivity should
converge to the actual selectivity (a constant). On the other hand, a largerm implies
a larger bound since the computations of ρn and ρ ′n share more samples. Another
interesting observation is that the bound also depends on the actual selectivities
ρ and ρ ′. Note that g(ρ) is minimized at ρ = 0 or ρ = 1 (with gmin = 0), and is
maximized at ρ = 1

2 (with gmax = 1
2). To shed some light on this, observe that

whenever ρ or ρ ′ is 0 or 1, ρn or ρ ′n is always 0 or 1 regardless of the number of
samples. Hence Cov(ρn, ρ ′n) = 0 in such cases.

A natural question is how good this bound is compared with the two bounds in
Section 4.5.3.2. Let us name these three bounds as:

(B1)
√
S2
ρ(m,n)S2

ρ ′(m,n), the first bound in Theorem A.5;

(B2)
√

Var[ρn]Var[ρ ′n], the second bound in Theorem A.5;

181

(B3) f(n,m)g(ρ)g(ρ ′), the bound in Theorem A.10.

By Theorem A.5, we already know that B1 6 B2. Next, according to the proof of
Theorem A.10, σ2

S 6 ρ(1 − ρ) and (σ ′)2
S 6 ρ ′(1 − ρ ′). We then immediately have√

S2
ρ(m,n)S2

ρ ′(m,n) 6 f(n,m)g(ρ)g(ρ ′),

by the definition of S2
ρ(m,n). That is, B1 6 B3. Moreover, by Theorem 4.9, we have

|Cov(ρn, ρ ′n)| 6
√

Var[ρn]Var[ρ ′n] 6 f(n)g(ρ)g(ρ ′),

where

f(n) =

√(
1 − (1 −

1
n
)K
)(

1 − (1 −
1
n
)K ′
)
.

When n is large, 1−(1− 1
n
)K ≈ K

n
, and 1−(1− 1

n
)K
′ ≈ K ′

n
. Therefore, the right hand

is close to
√
KK ′

n
g(ρ)g(ρ ′). Since m 6 min{K,K ′} <

√
KK ′, we know that B3 is better

than the upper bound of B2. However, in general B2 and B3 are incomparable.
One more issue of B3 is that it includes the true selectivities ρ and ρ ′ that are

not known without running the query. As a result, B3 is not directly computable.
Nonetheless, when n is large, we can simply use the observed ρn and ρ ′n as approx-
imations due to the strong consistency of ρn.

A.5 Proof of Lemma 5.8

Proof. The procedure terminates when the head ball is marked. Since a marked
ball is uniformly placed at any position in the queue, the probability that a ball is
marked after k steps is k/N (1 6 k 6 N). So is the probability that the head ball is
marked. Formally, let Ak be the event that the head ball is marked after exactly k
steps. Then Pr(A1) = 1/N and Pr(Ak|Ā1 ∩ · · · ∩ Āk−1) = k/N. As a result, letting

182

Bk = Ā1 ∩ · · · ∩ Āk−1 we have

Pr(Ak) = Pr(Ak|Bk)Pr(Bk) + Pr(Ak|B̄k)Pr(B̄k)

=
k

N
· Pr(Bk) + 0 · Pr(B̄k)

=
k

N
· Pr(Bk).

Now let us calculate Pr(Bk). We have

Pr(Bk) = Pr(Ā1 ∩ · · · ∩ Āk−1)

= Pr(Āk−1|Ā1 ∩ · · · ∩ Āk−2)Pr(Ā1 ∩ · · · ∩ Āk−2)

= (1 −
k− 1
N

)Pr(Bk−1).

Therefore, we now have a recurrence equation for Pr(Bk) and thus,

Pr(Bk) = (1 −
k− 1
N

) · · · (1 −
2
N
)Pr(B2)

= (1 −
k− 1
N

) · · · (1 −
2
N
)Pr(Ā1)

= (1 −
k− 1
N

) · · · (1 −
2
N
)(1 −

1
N
).

As a result, the expected number of steps that the procedure would take before its
termination is then

SN =

N∑
k=1

k · Pr(Ak)

=

N∑
k=1

k · (1 −
1
N
) · · · (1 −

k− 1
N

) · k
N

.

This completes the proof of the lemma.

183

A.6 Proof of Theorem 5.9

We need the following lemma before we prove Theorem 5.9.

Lemma A.11. Let the k-th summand in SN be Xk, i.e.,

Xk = k · (1 −
1
N
) · · · (1 −

k− 1
N

) · k
N

=
N!

(N− k)! ·
1
Nk
· k

2

N
.

For any k > N1/2+ε (ε > 0), we have Xk = O(e−N
2ε
).

Proof. We prove this in two steps:

(i) if N1/2+ε 6 k 6 N/2, then Xk = O(e−N
2ε
);

(ii) if k > N/2, then Xk+1 < Xk for sufficiently large N (N > 5 indeed).

We prove (i) first. Consider lnXk. We have

lnXk = ln
(
N!
)
− ln

(
(N− k)!

)
+ 2 ln k− (k+ 1) lnN.

By using Stirling’s formula,

ln
(
N!
)
= N lnN−N+O(lnN).

It then follows that

lnXk = (N− k) lnN− (N− k) ln(N− k) − k+O(lnN)

= (N− k) ln
(N

N− k

)
− k+O(lnN)

= (N− k) ln
(
1 +

k

N− k

)
− k+O(lnN).

184

Using Taylor’s formula for f(x) = ln(1 + x), we have

ln
(
1 +

k

N− k

)
=

k

N− k
−

1
2 ·

k2

(N− k)2 +O
(1

3 ·
k3

(N− k)3

)
.

Therefore, it follows that

lnXk = −
1
2 ·

k2

N− k
+O

(1
3 ·

k3

(N− k)2

)
+O(lnN).

Since k 6 N/2, k
N−k

6 1. As a result,

k3

(N− k)2 =
k

N− k
· k2

N− k
6

k2

N− k
.

On the other hand, since k > N1/2+ε, k2 > N1+2ε and thus,

k2

N− k
>
k2

N
> N2ε > O(lnN).

Therefore, lnXk is dominated by the term k2

N−k
. Hence

lnXk = O(−
k2

N− k
) = O(−N2ε),

which implies Xk = O(e−N
2ε
).

We next prove (ii). We consider the ratio of Xk+1 and Xk, which gives

rk =
Xk+1

Xk
=
N− k

N
· (k+ 1)2

k2 =
(
1 −

k

N

)
·
(
1 +

1
k

)2.

Since k > N/2, 1 − k
N

6 1/2 and 1
k
6 2/N. It follows that

rk 6
1
2 ·
(
1 +

2
N

)2.

185

Letting rk < 1 gives N > 2(
√

2 + 1) ≈ 4.83. So we have rk < 1 when N > 5, which
concludes the proof of the lemma.

We are ready to give a proof to Theorem 5.9.

Proof. (of Theorem 5.9) Let Xk be the same as defined in Lemma A.11. Then

SN =

N∑
k=1

Xk.

According to Lemma A.11, Xk = O(e−N
2ε
) if k > N1/2+ε. It then follows that∑

k>N1/2+ε
Xk = O(N · e−N2ε

) = o(
√
N).

On the other hand, when k < N1/2+ε, we can pick a sufficiently small ε so that
k 6 N1/2. If this is the case, then k2 6 N and thus k2

N
6 1. As a result, Xk 6 1 and

hence we have ∑
k<N1/2+ε

Xk 6
√
N.

It follows that

SN =
∑

k>N1/2+ε
Xk +

∑
k<N1/2+ε

Xk = O(
√
N),

which completes the proof of the theorem.
To pick such an ε, note that it is sufficient if ε satisfies N1/2+ε 6 bN1/2c+ 1. It

then follows that
ε 6 ln

(
1 + b

√
Nc
)
/ lnN− 1/2.

Note that the right hand side must be greater than 0, because ln
(
1+b
√
Nc
)
> ln

√
N.

As an example, if N = 100, then ε 6 0.0207.

186

A.7 Additional Analysis of Re-Optimization

Continuing with our study of the efficiency of the re-optimization procedure in
Section 5.3.3, we now consider two special cases where the optimizer significantly
overestimates or underestimates the selectivity of a particular join in the returned
optimal plan. We focus our discussion on left-deep join trees. Before we proceed,
we need the following assumption of cost functions.

Assumption 3. Cost functions are monotonically non-decreasing functions with respect
to input cardinalities.

We are unaware of cost functions that do not conform to this assumption, though.

A.7.1 Overestimation Only

Suppose that the error is an overestimate, that is, the actual cardinality is smaller
than the one estimated by the optimizer. Let that join operator be O, and let the
corresponding subtree rooted at O be tree(O). Now consider a candidate plan P in
the search space, and let cost(P) be the estimated cost of P. Note that the following
property holds:

Lemma A.12. cost(P) is subject to change only if tree(O) is a subtree of tree(P).

Moreover, under Assumption 3, the refined cost estimate cost ′(P) satisfies
cost ′(P) < cost(P) because of the overestimate. Therefore, if we let the set of
all such plans P be P, then the next optimal plan picked by the optimizer must be
from P. We thus can prove the following result:

Theorem A.13. Suppose that we only consider left-deep join trees. Let m be the number
of joins in the query. If all estimation errors are overestimates, then in the worst case the
re-optimization procedure would terminate in at mostm+ 1 steps.

Proof. We use Pi to denote the plan returned in the i-th step, and use Oi to denote
the lowest join in Pi where an overestimate occurs. We use I(Oi) to denote the index
of Oi in tree(Pi) by ordering the joins in a bottom-up, left-to-right manner.

187

LetPi be the plans whose join trees contain tree(Oi) as a subtree. By Lemma A.12,
Pi+1 ∈ Pi. Moreover, we must have I(Oi+1) > I(Oi), that is, the lowest join in Pi+1

with an overestimate must be at a higher level than that in Pi, because tree(Oi) is
a subtree of tree(Pi+1) and tree(Oi) has been validated when validating Pi. Note
that we can only have at most m different I(Oi)’s given that the query contains
m joins. Therefore, after (at most)m steps, we must have Pm = ∅. As a result, by
Theorem 5.7 we can only have at most one additional local transformation on top
of Pm. But this cannot occur for left-deep trees, because tree(Pm−1) = tree(Pm) if
the worst case really occurs (i.e., in every step an overestimate occurs such that
I(Oi+1) = I(Oi) + 1). So any local transformation must have been considered
when generating Pm by using validated cardinalities from Pm−1. Hence the re-
optimization procedure terminates in at mostm+ 1 steps: the (m+ 1)-th step just
checks Pm+1 = Pm, which must be true.

We emphasize thatm+1 is a worst-case upper bound only. The intuition behind
Theorem A.13 is that, for left-deep join trees, the validated subtree belonging to
the final re-optimized plan can grow by at least one more level (i.e., with one more
validated join) in each re-optimization step.

A.7.2 Underestimation Only

Suppose that, on the other hand, the error is an underestimate, that is, the actual
cardinality is larger than the one estimated by the optimizer. Then things become
more complicated: not only those plans that contain the subtree rooted at the
erroneous node but the plan with the lowest estimated cost in the rest of the search
space (which is not affected by the estimation error) also has the potential of being
the optimal plan, after the error is corrected (see Figure A.1). We next again focus
on left-deep trees and present some analysis in such context.

Suppose that the join graph G contains M edges. We partition the join trees
based on their first joins, which must be the edges of G. So we haveM partitions.

Let si be the state when a plan returned by the optimizer uses the i-th edge in G
(1 6 i 6M) as its first join. The re-optimization procedure can then be thought of

188

Plans with tree(O)

as subtree
The other plans

All plans

O

tree(O)

(a) Overestimation Only

Plans with tree(O)

as subtree

The other plans

(Plan P w/ min-cost)

O

tree(O)

(b) Underestimation Only

All plans

Figure A.1: Comparison of the space of candidate optimal plans when local estima-
tion errors are overestimation-only or underestimation-only. Candidate optimal
plans are shaded.

as transitions between theseM states, i.e., a Markov chain. As before, we assume
that the transition probabilities are uniform, i.e., for 1 6 i, j 6M,

π(sj|si) = 1/M.

In other words, it is equally likely that the next plan generated would have its
first join in the partition i (1 6 i 6 M). Then the equilibrium state distribution
of this Markov chain is also uniform. That is, given any plan generated in the
re-optimization procedure, it is equally likely that it would have its first join in the
partition i (1 6 i 6M). We can estimate the expected number of steps before the
procedure terminates as

S =
∑M

i=1
π(si) ·Ni,

where Ni is the number of steps/transitions confined in the partition i before
termination. Since we only consider left-deep trees, Ni = Nj for 1 6 i, j 6M. As a
result, S could be simplified as S = Ni.

As an upper bound, we have S 6 SN/M, whereN is the total number of different
join trees considered by the optimizer, and SN/M is computed by Equation (5.1).
Note that SN/M is usually much smaller than SN, according to Figure 5.3. Again,
we emphasize that the analysis here only targets worst-case expectations, which
might be too pessimistic.

189

References

[1] http://infolab.stanford.edu/~widom/cs346/db2-talk.pdf.

[2] docs.oracle.com/cd/B10500_01/appdev.920/a96595/dci08opt.htm.

[3] http://www.qdpma.com/CBO/SQLServerCostBasedOptimizer.html.

[4] http://www.postgresql.org/docs/9.0/static/view-pg-stats.html.

[5] Skewed TPC-H data generator. ftp://ftp.research.microsoft.com/users/
viveknar/TPCDSkew/.

[6] TPC-H benchmark. http://www.tpc.org/tpch/.

[7] Abiteboul, Serge, Richard Hull, and Victor Vianu. 1995. Foundations of databases.
Addison-Wesley.

[8] Acharya, Swarup, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. 1999. Join synopses for approximate query answering. In SIGMOD,
275–286.

[9] Ahmad, Mumtaz, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala.
2011. Interaction-aware scheduling of report-generation workloads. The VLDB
Journal 20:589–615.

[10] Ahmad, Mumtaz, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu. 2011.
Predicting completion times of batch query workloads using interaction-aware
models and simulation. In EDBT, 449–460.

http://infolab.stanford.edu/~widom/cs346/db2-talk.pdf
docs.oracle.com/cd/B10500_01/appdev.920/a96595/dci08opt.htm
http://www.qdpma.com/CBO/SQLServerCostBasedOptimizer.html
http://www.postgresql.org/docs/9.0/static/view-pg-stats.html
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/
http://www.tpc.org/tpch/

190

[11] Akdere, Mert, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B.
Zdonik. 2012. Learning-based query performance modeling and prediction.
In ICDE, 390–401.

[12] Alon, Noga, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 1999. Track-
ing join and self-join sizes in limited storage. In PODS, 10–20.

[13] Aroian, Leo A. 1947. The probability function of the product of two normally
distributed variables. Ann. Math. Statist 18(2):265–271.

[14] Babcock, Brian, and Surajit Chaudhuri. 2005. Towards a robust query optimizer:
A principled and practical approach. In SIGMOD, 119–130.

[15] Bach, Francis R., and Michael I. Jordan. 2002. Kernel independent component
analysis. Journal of Machine Learning Research 3:1–48.

[16] Breitling, Wolfgang. Joins, skew and histograms. http://www.centrexcc.
com/Joins,SkewandHistograms.pdf.

[17] Bruno, Nicolas, and Surajit Chaudhuri. 2002. Exploiting statistics on query
expressions for optimization. In SIGMOD, 263–274.

[18] Bruno, Nicolas, Surajit Chaudhuri, and Luis Gravano. 2001. Stholes: A multi-
dimensional workload-aware histogram. In SIGMOD, 211–222.

[19] Charikar, Moses, Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya.
2000. Towards estimation error guarantees for distinct values. In PODS,
268–279.

[20] Chaudhuri, Surajit. 1998. An overview of query optimization in relational
systems. In PODS, 34–43.

[21] Chaudhuri, Surajit, Raghav Kaushik, and Ravishankar Ramamurthy. 2005.
When can we trust progress estimators for sql queries? In SIGMOD, 575–586.

[22] Chaudhuri, Surajit, Rajeev Motwani, and Vivek R. Narasayya. 1999. On random
sampling over joins. In SIGMOD, 263–274.

http://www.centrexcc.com/Joins, Skew and Histograms.pdf
http://www.centrexcc.com/Joins, Skew and Histograms.pdf

191

[23] Chaudhuri, Surajit, Vivek R. Narasayya, and Ravishankar Ramamurthy. 2004.
Estimating progress of execution for SQL queries. In SIGMOD, 803–814.

[24] ———. 2008. Diagnosing estimation errors in page counts using execution
feedback. In ICDE, 1013–1022.

[25] ———. 2008. A pay-as-you-go framework for query execution feedback.
PVLDB 1(1):1141–1152.

[26] Chi, Yun, Hakan Hacigümüs, Wang-Pin Hsiung, and Jeffrey F. Naughton. 2013.
Distribution-based query scheduling. PVLDB 6(9):673–684.

[27] Chi, Yun, Hyun Jin Moon, and Hakan Hacıgümüş. 2011. iCBS: Incremental
costbased scheduling under piecewise linear slas. PVLDB 4(9):563–574.

[28] Chu, Francis C., Joseph Y. Halpern, and Praveen Seshadri. 1999. Least expected
cost query optimization: An exercise in utility. In PODS, 138–147.

[29] Cole, Richard L., and Goetz Graefe. 1994. Optimization of dynamic query
evaluation plans. In SIGMOD, 150–160.

[30] D., Harish, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying robust
plans through plan diagram reduction. PVLDB 1(1):1124–1140.

[31] Devlin, Susan J., R. Gnanadesikan, and J. R. Kettenring. 1975. Robust estimation
and outlier detection with correlation coefficients. Biometrika 62(3):531–545.

[32] Du, Weimin, Ravi Krishnamurthy, and Ming-Chien Shan. 1992. Query opti-
mization in a heterogeneous dbms. In VLDB, 277–291.

[33] Duggan, Jennie, Ugur Çetintemel, Olga Papaemmanouil, and Eli Upfal. 2011.
Performance prediction for concurrent database workloads. In SIGMOD, 337–
348.

[34] Dutt, Anshuman, and Jayant R. Haritsa. 2014. Plan bouquets: query processing
without selectivity estimation. In SIGMOD, 1039–1050.

192

[35] Friedman, Jerome H. 2002. Stochastic gradient boosting. Comput. Stat. Data
Anal. 38(4):367–378.

[36] Ganapathi, Archana, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener,
Armando Fox, Michael I. Jordan, and David A. Patterson. 2009. Predicting
multiple metrics for queries: Better decisions enabled by machine learning. In
ICDE, 592–603.

[37] Getoor, Lise, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation
using probabilistic models. In SIGMOD, 461–472.

[38] Graefe, Goetz. 1993. Query evaluation techniques for large databases. ACM
Comput. Surv. 25(2):73–170.

[39] ———. 2011. Robust query processing. In ICDE, 1361.

[40] Graefe, Goetz, and Karen Ward. 1989. Dynamic query evaluation plans. In
SIGMOD, 358–366.

[41] Green, Todd J., Gregory Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In PODS, 31–40.

[42] Guirguis, Shenoda, Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros
Labrinidis, and Kirk Pruhs. 2009. Adaptive scheduling of web transactions. In
ICDE, 357–368.

[43] Haas, Peter J., Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. 1995.
Sampling-based estimation of the number of distinct values of an attribute. In
VLDB, 311–322.

[44] Haas, Peter J., Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. 1996.
Selectivity and cost estimation for joins based on random sampling. J. Comput.
Syst. Sci. 52(3):550–569.

[45] Haas, Peter J., and Arun N. Swami. 1992. Sequential sampling procedures for
query size estimation. In SIGMOD, 341–350.

193

[46] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. 2009. The WEKA data mining software: an update.
SIGKDD Explorations 11(1):10–18.

[47] Hastie, T., R. Tibshirani, and J. H. Friedman. 2003. The Elements of Statistical
Learning. Springer.

[48] Hellerstein, Joseph M., Peter J. Haas, and Helen J. Wang. 1997. Online aggre-
gation. In SIGMOD, 171–182.

[49] Hou, Wen-Chi, and Gultekin Ozsoyoglu. 1991. Statistical estimators for aggre-
gate relational algebra queries. ACM Trans. Database Syst. 16.

[50] Hou, Wen-Chi, Gultekin Özsoyoglu, and Baldeo K. Taneja. 1988. Statistical
estimators for relational algebra expressions. In PODS, 276–287.

[51] Ilyas, Ihab F., Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboul-
naga. 2004. CORDS: automatic discovery of correlations and soft functional
dependencies. In SIGMOD, 647–658.

[52] Ioannidis, Yannis E. 1996. Query optimization. ACM Comput. Surv. 28(1):
121–123.

[53] ———. 2003. The history of histograms (abridged). In VLDB, 19–30.

[54] Ioannidis, Yannis E., Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. 1992.
Parametric query optimization. In VLDB, 103–114.

[55] Jermaine, Christopher M., Subramanian Arumugam, Abhijit Pol, and Alin
Dobra. 2007. Scalable approximate query processing with the dbo engine. In
SIGMOD, 725–736.

[56] Kabra, Navin, and David J. DeWitt. 1998. Efficient mid-query re-optimization
of sub-optimal query execution plans. In SIGMOD, 106–117.

194

[57] König, Arnd Christian, Bolin Ding, Surajit Chaudhuri, and Vivek R. Narasayya.
2011. A statistical approach towards robust progress estimation. PVLDB 5(4):
382–393.

[58] Larson, Per-Åke, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. 2007.
Cardinality estimation using sample views with quality assurance. In SIG-
MOD, 175–186.

[59] Lazowska, Edward D., John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
1984. Quantitative system performance - computer system analysis using queueing
network models. Prentice Hall.

[60] Li, Jiexing, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaud-
huri. 2012. Robust estimation of resource consumption for sql queries using
statistical techniques. PVLDB 5(11):1555–1566.

[61] Li, Jiexing, Rimma V. Nehme, and Jeffrey F. Naughton. 2012. GSLPI: A cost-
based query progress indicator. In ICDE, 678–689.

[62] Lipton, Richard J., Jeffrey F. Naughton, and Donovan A. Schneider. 1990. Prac-
tical selectivity estimation through adaptive sampling. In SIGMOD, 1–11.

[63] Lohman, Guy. Is query optimization a “solved” problem? http://wp.sigmod.
org/?p=1075.

[64] Luo, Gang, Jeffrey F. Naughton, Curt J. Ellmann, and Michael Watzke. 2004.
Toward a progress indicator for database queries. In SIGMOD, 791–802.

[65] Manegold, Stefan, Peter A. Boncz, and Martin L. Kersten. 2002. Generic
database cost models for hierarchical memory systems. In VLDB, 191–202.

[66] Markl, Volker, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and
Hamid Pirahesh. 2004. Robust query processing through progressive opti-
mization. In SIGMOD, 659–670.

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

195

[67] Mishra, Chaitanya, and Nick Koudas. 2009. The design of a query monitoring
system. ACM Trans. Database Syst. 34(1).

[68] Muralikrishna, M., and David J. DeWitt. 1988. Equi-depth histograms for
estimating selectivity factors for multi-dimensional queries. In SIGMOD, 28–
36.

[69] Myers, Jerome L., and Arnold D. Well. 2003. Research design and statistical
analysis. 2nd ed. Lawrence Erlbaum.

[70] Nicola, Victor F., Asit Dan, and Daniel M. Dias. 1992. Analysis of the general-
ized clock buffer replacement scheme for database transaction processing. In
SIGMETRICS, 35–46.

[71] Osman, Rasha, Irfan Awan, and Michael E. Woodward. 2009. Application of
queueing network models in the performance evaluation of database designs.
Electr. Notes Theor. Comput. Sci. 232:101–124.

[72] Patel, Jignesh M., Michael J. Carey, and Mary K. Vernon. 1994. Accurate
modeling of the hybrid hash join algorithm. In SIGMETRICS, 56–66.

[73] Poosala, Viswanath, and Yannis E. Ioannidis. 1997. Selectivity estimation
without the attribute value independence assumption. In VLDB, 486–495.

[74] Quinlan, J. R. 1986. Simplifying decision trees.

[75] Ramamurthy, Ravishankar, and David J. DeWitt. 2005. Buffer-pool aware
query optimization. In CIDR, 250–261.

[76] Reddy, Naveen, and Jayant R. Haritsa. 2005. Analyzing plan diagrams of
database query optimizers. In VLDB, 1228–1240.

[77] ———. 2005. Analyzing plan diagrams of database query optimizers. In
VLDB, 1228–1240.

[78] Reiser, M., and S. S. Lavenberg. 1980. Mean-value analysis of closed multichain
queuing networks. J. ACM 27(2):313–322.

196

[79] Ross, Sheldon. 2009. A First Course in Probability. 8th ed. Prentice Hall.

[80] Rusu, Florin, and Alin Dobra. 2008. Sketches for size of join estimation. ACM
Trans. Database Syst. 33(3).

[81] Scilab Enterprises. 2012. Scilab: Free and open source software for numerical com-
putation. Scilab Enterprises, Orsay, France.

[82] Selinger, Patricia G., Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access path selection in a relational database
management system. In SIGMOD, 23–34.

[83] Sevcik, Kenneth C. 1981. Data base system performance prediction using an
analytical model (invited paper). In VLDB, 182–198.

[84] Soror, Ahmed A., Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,
Peter Kokosielis, and Sunil Kamath. 2008. Automatic virtual machine configu-
ration for database workloads. In SIGMOD, 953–966.

[85] Stillger, Michael, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001.
LEO - DB2’s learning optimizer. In VLDB, 19–28.

[86] Suri, Rajan, Sushanta Sahu, and Mary Vernon. 2007. Approximate mean value
analysis for closed queueing networks with multiple-server stations. In IERC.

[87] Tomov, Neven, Euan W. Dempster, M. Howard Williams, Albert Burger,
Hamish Taylor, Peter J. B. King, and Phil Broughton. 2004. Analytical response
time estimation in parallel relational database systems. Parallel Computing
30(2):249–283.

[88] Tozer, Sean, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad
query mixes to minimize client timeouts under heavy loads. In ICDE, 397–408.

[89] Tzoumas, Kostas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight
graphical models for selectivity estimation without independence assumptions.
PVLDB 4(11):852–863.

197

[90] Unterbrunner, Philipp, Georgios Giannikis, Gustavo Alonso, Dietmar Fauser,
and Donald Kossmann. 2009. Predictable performance for unpredictable
workloads. PVLDB 2(1):706–717.

[91] Wasserman, Ted J., Patrick Martin, David B. Skillicorn, and Haider Rizvi. 2004.
Developing a characterization of business intelligence workloads for sizing
new database systems. In DOLAP, 7–13.

[92] Winkelbauer, Andreas. 2012. Moments and absolute moments of the normal
distribution. arXiv preprint arXiv:1209.4340.

[93] Wu, Wentao, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013.
Towards predicting query execution time for concurrent and dynamic database
workloads. PVLDB 6(10):925–936.

[94] Wu, Wentao, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer
cost models really unusable? In ICDE, 1081–1092.

[95] Wu, Wentao, Xi Wu, Hakan Hacigümüs, and Jeffrey F. Naughton. 2014. Uncer-
tainty aware query execution time prediction. PVLDB 7(14):1857–1868.

[96] Xiong, Pengcheng, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu,
and Hakan Hacıgümüş. 2011. ActiveSLA: a profit-oriented admission control
framework for database-as-a-service providers. In SOCC, 15:1–15:14.

[97] Zaitsev, P., and V. Tkachenko. 2012. High performance mysql: Optimization,
backups, and replication. O’Reilly Media.

[98] Zhang, Ning, Jun’ichi Tatemura, Jignesh M. Patel, and Hakan Hacıgümüş.
2011. Towards cost-effective storage provisioning for DBMSs. PVLDB 5(4):
274–285.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Prediction For Single-Query Workloads
	Prediction For Multi-Query Workloads
	Measuring Uncertainty
	Improving Query Plans by Re-Optimization

	Query Execution Time Prediction for Single-Query Workloads
	Introduction
	The Framework
	Calibrating Cost Units
	Refining Cardinality Estimation
	Experimental Evaluation
	Related Work
	Summary

	Query Execution Time Prediction for Multi-Query Workloads
	Introduction
	The Framework
	Predictive Models
	Experimental Evaluation
	Related Work
	Summary

	Uncertainty-Aware Query Execution Time Prediction
	Introduction
	Preliminaries
	Input Distributions
	Cost Functions
	Distribution of Running Times
	Experimental Evaluation
	Related Work
	Summary

	Sampling-Based Query Re-Optimization
	Introduction
	The Re-Optimization Algorithm
	Theoretical Analysis
	Optimizer ``Torture Test''
	Experimental Evaluation
	Related Work
	Summary

	Conclusion
	Theoretic Results
	Proof of Lemma 2.8
	Variance of The Selectivity Estimator
	A Tighter Upper Bound for Covariance
	More Discussions on Covariances
	Proof of Lemma 5.8
	Proof of Theorem 5.9
	Additional Analysis of Re-Optimization

	References

