
The Case for a Structured Approach
to Managing Unstructured Data

AnHai Doan, Jeffrey F. Naughton,

Akanksha Baid, Xiaoyong Chai, Fei Chen, Ting Chen, Eric Chu, Pedro DeRose,

Byron Gao, Chaitanya Gokhale, Jiansheng Huang, Warren Shen, Ba-Quy Vuong

University of Wisconsin-Madison

ABSTRACT
The challenge of managing unstructured data represents per-
haps the largest data management opportunity for our com-
munity since managing relational data. And yet we are risk-
ing letting this opportunity go by, ceding the playing field to
other players, ranging from communities such as AI, KDD,
IR, Web, and Semantic Web, to industrial players such as
Google, Yahoo, and Microsoft. In this essay we explore what
we can do to improve upon this situation. Drawing on the
lessons learned while managing relational data, we outline
a structured approach to managing unstructured data. We
conclude by discussing the potential implications of this ap-
proach to managing other kinds of non-relational data, and
to the identify of our field.

1. MOTIVATION
Data management, broadly construed to encompass all

kinds of data, has exploded in the past ten or so years.
Once the province of large corporations, now virtually ev-
eryone with access to a computer deals with some form of
online data; furthermore, even within large corporations,
many more people deal with data and the data they deal
with has more variety. A particularly prominent kind of
data is unstructured data, which we take to include text doc-
uments, Web pages, emails, and so forth. In view of this, it
is disconcerting that our community plays only a peripheral
role in most of this data.

Of course, our community has long lamented that large
chunks of the data space, especially those dealing with Web
data, remain outside of our purview. But somehow today
the problem is even more galling, perhaps because of the
tremendous success of companies like Google, Yahoo, Mi-
crosoft, and myriad startups. These companies are making
enormous amounts of money with the basic functionality
of serving up data in response to user queries. This sounds
like something we should care about and participate in. The

purpose of this essay is to speculate on how we might play

a much more central role in the management of this kind of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIDR-2009
Copyright 2009 ACM 1-58113-859-8/04/06 . . .$5.00.

data in the future. We believe that this presents an enor-
mous opportunity for our community — perhaps the largest
since our community started working on relational database
management systems.

A perhaps somewhat surprising aspect of our proposal is
that we are not really proposing a move away from struc-
tured data. Quite the contrary — we believe that our com-
munity’s primary strength and contribution will remain in
the direction of structured data. However, we are proposing
a radical change in the source of the structured data. Rather
than being created as structured data, we argue that in the
future a main source of structured data should be unstruc-
tured data. That is, the structure we manage should be the
structure that is currently hidden within unstructured data.
As we will argue in the rest of the essay, dealing with this
kind of structured data may require fundamental changes to
the entire end-to-end systems we use to manage the data.

We also argue that if we are to be successful, our data

management model should be designed to allow human in-

tervention at key points of the end-to-end data management

process. One way to put this is that we are not propos-
ing that the data management community should solve an
AI-complete problem. In particular, we do not mean to im-
ply that our systems should automatically “understand” the
meaning of unstructured documents. Rather, they should
extract enough structure from these documents that humans
can make deeper use of their content than they can with cur-
rent IR-like systems. Humans may need to be involved in the
loop at various points throughout the entire process, from
extracting the structured data, to building the queries, and
even to refining the entire process if the results they obtain
are not what they wanted.

Or, as a reviewer of the first draft of this essay put it, we
believe that human intervention is a fundamental piece of
end-to-end systems to manage unstructured data. Conse-
quently, if our community is to study such end-to-end sys-
tems (something that we should do and are well-equipped to
do so), we would need to change what we know, and acquire
and extend expertise traditionally left in the HCI commu-
nity to tackle this fundamental piece, one that cannot be
truly factored out and studied separately.

While we think the technical approach has merit, merely
working on techniques to extract structure from unstruc-
tured documents and allowing for human interaction to help
with the AI-complete problems encountered along the way
will not be enough for success. Retrospectively looking back

on some key components in the success of relational systems

may provide some insight as to what else is needed. We can

use this insight to both direct our efforts when we notice
that some component is missing, and/or to decide that we
might not be headed in the right direction if the creation of
the missing component is out of our control.

The main components we have in mind are a data genera-
tion and exploitation model, an end-to-end system blueprint,
and a business target. In particular, we will argue that to
manage unstructured data effectively, we should develop a
clear model of how the data is generated and exploited, and
develop an end-to-end data management system blueprint
that embodies the above model. This system blueprint can
help rally the community and unify the disparate works, and
hopefully enable rapid progress. Finally, we argue that for
ultimate success, there needs to be an accompanying busi-
ness community that ensures a cycle of “ideas to realistic
prototype to commercial transfer back to ideas” for us, and
speculate what that might look like.

The rest of this essay is structured as follows. Section 2
proposes that to maximize our impact, we should focus on
generating and exploiting structure from unstructured data.
Sections 3-5 then argue for the need of a data generation and
exploitation model, an end-to-end system blueprint, and a
business target, and speculate on these components. Sec-
tion 6 discusses how what we propose here may be general-
ized to other types of data, and Section 7 concludes.

2. A FOCUS ON STRUCTURE
In managing unstructured data, if we stay at the text level

and try to improve upon keyword search without changing
the basic underlying approach, then we fear there is rela-
tively little we can do.

Instead, we believe that our ambition should go beyond
just better keyword search. To illustrate, consider Wikipedia
today. With keyword search we cannot ask and obtain an-
swers to questions such as “find the average March-September
temperature in Madison, Wisconsin”, even though the monthly
temperatures appear on the Madison page. The fundamen-
tal reason is that to answer this question, the system must
be able to locate the desired monthly temperatures, then
compute their average, capabilities that are beyond today
search engines. On the other hand, if we generate struc-
ture, such as (“month = September”, “temperature = 70”)
from such data, then we can formulate and answer the above
query over Wikipedia.

Consequently, we advocate that to maximize the benefits
for users, we should focus on uncovering and exploiting the
structure “hidden” in unstructured data.

This focus on structure will be much “in sync” with the
broader research and industry landscape. Many communi-
ties, such as AI, Web, Semantic Web, IR, and KDD, have
worked for years on extracting and exploiting structure from
unstructured data, and they have recently been accelerating
their efforts (e.g., see the WikiAI-08 workshop homepage
at http://lit.csci.unt.edu/ wikiai08/index.php/Main Page).
In the industry, all major Web companies today are carry-
ing out initiatives on extracting structure from unstructured
data. The structure can then be exploited in a wide vari-
ety of applications, ranging from Web search, local search,
portals, question answering forums, blog analysis and mon-
itoring, user intelligence, marketing, to ad matching. More
startups have also appeared recently in this area. Powerset,
for example, is extracting and exploiting facts for question
answering over Wikipedia, while Freebase is trying to ex-

tract then integrate all major publicly available data sets
(e.g., Wikipedia, IMDB, US census data).

Our community however is uniquely well-equipped to en-
ter this crowded arena, because the focus on structure plays
to our traditional strength. We are the “Structure King”,
after all. As we will show in Sections 3-4, the structure fo-
cus raises many practical and interesting research problems.
We are well suited to address them, by building on tech-
niques that we have developed in the relational world. But
we will have to examine and adapt them to deal with the
new context (such as incorporating human intervention and
managing uncertainty).

3. THE NEED FOR A DATA GENERATION
AND EXPLOITATION MODEL

We now argue that to manage unstructured data effec-
tively, a clear data generation and exploitation model (or
DGE model for short) will have to emerge. Unfortunately,
no such model has been identified by our community. We
then speculate on such a model and explain its possible ben-
efits. Section 4 then discusses the kind of data management
systems we can build that embody such a model.

3.1 DGE Models
A DGE model explains the interaction between the data,

the system, and the users. It explains how the data is gen-
erated inside the system, who the users are, what their in-
formation needs are, how they express the needs, and how
they interact with the system to satisfy these needs.

For example, the DGE model we have (implicitly) used
for relational data is as follows. To generate data, a user
defines a schema, populates it with conforming data, and
perhaps modifies the data by update transactions. To ex-
ploit the so-created data, a user poses a SQL query to the
system, which produces an answer (the immediate “user”
is often a program, but the model still holds). As another
example, in the most popular DGE model for IR, data ex-
ploitation means a user’s posing a keyword query to an IR
system over a collection of text documents (given in the data
generation step), then obtaining as answer a ranked list of
the documents.

To manage any kind of data effectively, we argue that it is
important to identify a good DGE model, one that captures
most data management scenarios of interest. We can then
build on the model to develop data models and manage-
ment principles, as well as systems that embody such data
models and principles. Furthermore, by capturing the fun-
damental interactions between the users, system, and data,
such a model can help predict future trends. This in turn
can help us identify problems that may be 5-10 years ahead
of industry, thus putting us in a position to lead instead of
reacting (as we further elaborate in Section 3.3).

3.2 Toward an DGE Model for
Unstructured Data

Given the focus on structured data extracted from un-
structured documents, the DGE models for relational data,
keyword search, as well as those that have been proposed
for the DB+IR context [1], are not appropriate. One main
reason for this is that these models lack the incorporation
of extraction activities. We now discuss what a reasonable
DGE model for unstructured data might contain.

Users: We first consider the types of users that this model
should handle. In the relational context, the DGE model in
essence handles only sophisticated, SQL-knowing develop-
ers. Ordinary users (e.g., those who do not know SQL) play
a very limited role. They interact with the database (to
generate and query the data) simply by invoking canned
SQL commands and queries (written by some developers)
via relatively simple form interfaces.

In contrast, many applications involving unstructured data
want to engage ordinary users actively in both the data gen-
eration and exploitation steps, a desire certainly heightened
by the emergence of Web 2.0. For instance, an application
involving Wikipedia may want ordinary users to participate
in creating the wiki pages, as well as to be able to ask ques-
tions such as “find the average temperature of Madison”
mentioned earlier. Consequently, a reasonable DGE model
for unstructured data should allow not just sophisticated de-
velopers, but also ordinary users to participate in both the
data generation and exploitation steps.

Data Generation: We have proposed to generate new
data by extracting structured data from unstructured data,
where in its simplest form this structured data is attribute-
value pairs, such as temperatures, city names, locations, per-
son names from Wikipedia.

Due to the nature of unstructured data, the extracted
structured data will often be semantically heterogeneous.
For example, the two different names “David Smith” and
“D. Smith” extracted from Wikipedia may in fact refer to
the same person, or attributes location and address extracted
from two Wikipedia infoboxes may in fact match. Conse-
quently, we will often have to perform an information inte-

gration step to resolve the semantic heterogeneity and unify
the extracted structured data.

But automatic IE and II (i.e., information extraction and
integration, respectively) often will not be 100% accurate.
The fundamental reason is that they make many decisions
based on the data semantics, and such semantics is often not
adequately captured in the text, or adequately captured, but
cannot be understood by the techniques (indeed, this is one
of the key lessons learned from the IE and II work of the
past two decades).

Given the above, applications often want to have a human
in the loop, to help improve the accuracy of the underlying
automatic IE/II techniques, as well as the accuracy of the
final result. In the case of Wikipedia, for example, such a hu-
man user can correct semantic matches, or provide domain
knowledge that helps improve matching accuracy. Conse-
quently, our DGE model should allow the option of such
human intervention (henceforth called HI for short).

Since we want ordinary users to be able to participate
actively in the data generation process, it follows that we
should allow not just developers, but also ordinary users in
the HI step. Furthermore, the success of many Web 2.0 ap-
plications suggests that it may be highly beneficial to allow
a multitude of users, instead of just a single one, to be able
to provide feedback, in a mass collaboration fashion. Hence,
it would be highly desirable for our DGE model to allow for
this option.

Finally, many applications may want to generate struc-
tured data incrementally, in a best-effort fashion, as the user
deems necessary (instead of generating all of them in one
shot). For instance, a user looking for a new job may start

out extracting only monthly temperatures from Wikipedia,
as he or she only wants to do an average temperature com-
parison across U.S. cities. Later if the user wants to examine
only cities with at least 500,000 people, then he or she may
want to also extract city populations, and so on. Conse-
quently, our DGE model should allow the structured data
to be generated in an incremental, best-effort fashion, should
the application choose to do so.

Data Exploitation: We turn now to the data exploitation
step. Recall that we want both sophisticated and ordinary
users to be able to exploit the derived structured data. Con-
sider again the question Q = “find the average temperature
of Madison” in the Wikipedia example. Suppose we have
extracted the monthly temperatures, then a sophisticated
user can immediate formulate Q as a structured query (e.g.,
in SQL), and obtain an answer from the system.

An ordinary user however does not know SQL and most
likely would just want to start with a keyword query, such
as “average temperature Madison”. In this case it would be
highly desirable for the system to guide the user somehow
to a structured-query reformulation of Q. One way to do so
is to “guess” and show the user several structured queries
using, say, form interfaces, then ask the user to select the
appropriate one.

In general, then, our DGE model should allow users to
start in whatever data-exploitation mode they deem com-
fortable (e.g., keyword search, structured querying, brows-
ing, visualization), then help them move seamlessly into the
mode that is ultimately appropriate for their information
need. Furthermore, users often start with an ill-defined in-
formation need, then refine it during the exploration process.
Our model should effortlessly support this as well.

Summary: We have argued that a good DGE model for
unstructured data should use a combination of IE, II, and HI
to generate structured data from the originally unstructured
data, in a potentially mass collaboration, best-effort fashion.
The model should allow a broad range of data exploitation
modes (e.g., keyword search, structured querying, brows-
ing, visualization, monitoring), as well as seamless transition
from one mode to another, in an iterative fashion through
interaction with the user.

3.3 Benefits of the Proposed DGE Model
Once we have developed a DGE model for unstructured

data, such as described above, we can benefit from it in two
important ways. First, we can build on it to develop data
models and management principles that are appropriate for
the unstructured data context.

For instance, we have run into examples of what we think
could be interesting data management principles that in-
volve HI. The idea is that in many cases we have run into
situations where it is very easy for users to recognize some-
thing that fits their needs, yet very difficult for them to
generate this something without help. For example, in II,
often narrowing the set of potential matches to a manage-
able number allows users to spot the correct match, when
they would be swamped by the total number of potential
matches and would not succeed if they had no automated
assistance. Similarly, it appears that users are much better
at recognizing when a query form matches their information
need than at writing the equivalent SQL query from scratch.
We think this is just one aspect of a fundamental principle

Physical Layer

Data Storage
Layer

Processing
Layer

User Layer

…

Intermediate structures

Subversion File system RDBMS MediaWiki

I

Declarative IE+II+HI language

II
Programs and triggers

III

Transaction manager

IV

Schema manager

V VI

Uncertainty manager

Provenance manager

Explanation manager

Semantic debugger

Alert monitor

Statistics monitor

Command-line interface

User Services

Keyword search Structured querying
BrowsingVisualization Alert Monitoring

Command-line interface

User Input

Form interface Questions and answers
Wiki GUIExcel-spreadsheet interface

Authentication

User Manager

Reputation manager
Incentive manager

Parser
Reformulator

Optimizer
Execution engine

Data model

Operator library
Crash recovery

Unstructured data

Final structures
User contributions

…

Figure 1: A possible architecture for a general system to manage unstructured data.

that may even be related to the underlying issues in P vs.
NP (ease of discovery of a solution vs. ease of verification
of its correctness.)

As another example, we have found that there are tasks
that would be very difficult for automatic techniques, and
yet easy for human users. Examples include recognize if
a particular person is present in a picture, and if a form
interface is a gateway to an online store (as opposed to, say,
being a subscription interface). Using this principle, during
the data generation step, we can try to isolate and expose
such tasks to HI to maximize their accuracy.

Another potentially important benefit we can derive from
the DGE model is to use it to predict future trends. To il-
lustrate, the vast majority of academic and industrial work
on unstructured data has so far focused only on extracting

structured data. Our proposed DGE model, however, sug-
gests that if such work continues, sooner or later they would
run into a particular exploitation problem, namely, how to
enable ordinary users to easily ask structured queries over
the derived structured data. Attacking such problems can
then help put us in a position to lead, instead of reacting to
current events.

4. THE NEED FOR AN END-TO-END
SYSTEM BLUEPRINT

Having discussed desirable properties for an DGE model
for unstructured data, we now turn to the issue of building
systems that embody such a model.

We start by noting that, in retrospect, the relational world
received a huge benefit from the early creation of complete
prototype systems such as System R and Ingres. With
these systems as examples and context, an entire community
arose working on improving their performance and broad-
ening their scope. This unified a lot of what would other-
wise be disparate work, helped guide research, enabled rapid
progress, and resulted in real-world systems that magnified
the dissemination of the products of our community’s efforts.

In the unstructured data world, we argue that it is highly
desirable to have a similar example system, one that can
rally the community and unify the work, and hopefully en-
able rapid progress. In fact, given the many CS communi-
ties playing today in the data management arena, we should
perhaps focus on the system building angle as a distinguish-

ing aspect: our community builds end-to-end scalable data

management systems. We do not have such a systems today.
But we can speculate on what such a system should contain,
given the above DGE model.

In what follows we discuss such a possible system, as de-
picted in Figure 1. This system consists of four layers: physi-
cal layer, data storage layer, processing layer, and user layer.

The Physical Layer: This layer contains hardware that
runs the data generation and exploitation steps. Given that
IE and II are often very computation intensive and that
many applications involve a large amount of unstructured
data, we need parallel processing in the physical layer. A
popular way to achieve this is to use a computer cluster (as
shown in the figure) running Map-Reduce-like processes.

The Data Storage Layer: This layer stores all forms
of data: the original unstructured data, intermediate struc-
tured data derived from it (kept around for example for
debugging, HI, or optimization purposes), the final struc-
tured data, and user contributions. These different forms
of data have very different characteristics, and may best be
kept in different storage devices, as depicted in the figure
(of course, other choices are possible, such as developing a
single unifying storage device).

For example, if the unstructured data is retrieved daily
from a collection of Web sites, then the daily snapshots will
overlap a lot, and hence may be best stored in a device
such as Subversion, which only stores the “diff” across the
snapshots, to save space. As another example, the system
often executes only sequential reads and writes over inter-
mediate structured data, in which case such data can best
be kept in the file systems. As yet another example, if the
system allows concurrent editing by multiple users on the
final structure, then this structure may be best stored in an
RDBMS, to ensure fast and correct concurrency control.

The Processing Layer: This layer is responsible for
specifying and executing the data generation processes. At
the heart of this layer is a data model, a declarative language
(over this data model) that combines IE, II, and HI, and a
library of basic operators (see Part I of this layer in the
figure).

Developers can then use the language and operators to
write declarative IE+II+HI programs that specifies how to

extract, integrate, and curate the data. These programs
can be parsed, reformulated (to subprograms that are exe-
cutable over the storage devices in the data storage layer),
optimized, then executed (see Part II in the figure). Note
that developers may have to write domain-specific opera-
tors, but the framework makes it easy to use such operators
in the programs.

The remaining four parts, Parts III-VI in the figure, con-
tain modules that provide support for the data generation
process. Part III handles transaction management and crash
recovery. Part IV manages the schema of the derived struc-
ture. Since this structure often is generated in an incremen-
tal, best-effort fashion (see Section 3.2), in many cases the
schema will evolve over time. Hence, Part IV will likely have
to deal with schema evolution challenges.

Part V handles the uncertainty that arise during the IE,
II, and HI processes. It also provides the provenance and
explanation for the derived structured data.

Part VI contains an interesting module called the seman-
tic debugger. This module learns as much as possible about
the application semantics. It then monitors the data gen-
eration process, and alerts the developer if the semantics
of the resulting structure is not “in sync” with the appli-
cation semantics. For example, if this module has learned
that the monthly temperature of a city cannot exceed 130
degrees, then it can flag an extracted temperature of 135 as
suspicious. This part also contain modules to monitor the
status of the entire system and alert the system manager if
something appears to be wrong.

The User Layer: This layer allows users (ordinary and so-
phisticated alike) to exploit the data as well as provide feed-
back into the system. The part “User Services” contains all
common data exploitation modes, such as command-line in-
terface (for sophisticated users), keyword search, structured
querying, etc. The part “User Input” contains all common
interfaces that can be used to solicit user feedback, such as
command-line interface, form interface, wiki, etc. (see the
figure).

We note that modules from both parts will often be com-
bined, so that the user can also conveniently provide feed-
back while querying the data, and vice versa. Finally, this
layer also contains modules that authenticates users, man-
age incentive schemes for soliciting user feedback, and man-
age user reputation (e.g., for mass collaboration).

As described, we believe such a system should be suf-
ficiently general to be applicable to many real-world ap-
plications, ranging from personal information management,
community information management, scientific data man-
agement, local search, Web search, to online ad manage-
ment. It should also encompass many existing IR, IE, and
II systems, and can be viewed as a next logical step in ex-
tending current DB+IR system efforts [1].

It should also be clear from the description that develop-
ing such a system raises numerous challenges, such as IE, II,
HI, large-scale data processing, efficient storage of text data,
declarative query languages, optimization, schema evolu-
tion, uncertainty management, provenance, translating key-
word queries into structured ones, and so on.

As such, such a system blueprint can potentially serve as
a unifying point for many current research challenges (as
well as a starting point for novel ones). To address these
challenges, we can build on techniques that we have devel-

oped in the relational world, but we will have to examine
and adapt them to the new contexts (e.g., handling HI and
text data).

5. THE NEED FOR A BUSINESS TARGET
Developing the technical approach – as we have proposed

– is all well and good. But merely working on models and
systems will not be enough for success. We believe that a
robust data management community cannot be built in a
vacuum without any associated target business use of the
data. For one reason, the community will need the financial
support that only comes with a compelling business applica-
tion. For another reason, students will be unlikely to train
to work in such a community if there are no jobs for them
when they finish. But even for non-financial reasons we
need a business target, so that we can create the virtuous
cycle of ideas to prototypes to commercial distribution back
to ideas. The existence of a successful relational database
management industry has played an essential role in the suc-
cess of our community to date, and we think an equivalent
industry will be essential going forward.

This is not to say that the research community should
function as developers for the business side of the commu-
nity. The relationship between the research community and
the business community may vary over time, sometimes the
two will be close, other times they will diverge for awhile
before reconnecting. But without such a connected busi-
ness community the research community will not reach its
potential.

Currently, there is no such business community based
upon managing unstructured data by extracting the hidden
structure. This raises the question of what we as researchers
should do about this. For most of us it is not within our ex-
pertise to decipher what such a business community should
look like, nor is it within our ability to force one to arise.
But this doesn’t mean that the presence of absence of such
a business community is irrelevant to our work.

Perhaps an approach that makes sense is for us to propose
strawman models for what a business might look like. Un-
doubtedly we will get the details wrong, but such a model
might still prove valuable as a source of guidance for our ef-
forts. Also, if we can’t even envision a business around the
kinds of systems we are proposing, then it is likely that while
we may have found interesting research projects, the systems
are unlikely to provide the thrust for a new expansion of the
size and relevance of our data management community.

What might this industry look like? We think that our
best bet is to focus on managing Web data, since there are
well-proven business models there. Once we have developed
good systems, we can try other domains (just like RDBMSs
were first developed for enterprises, but are now used in
many other domains).

What can we do on the Web? The most well-known appli-
cation of managing unstructured data is Web search, carried
out by large Web companies. It is difficult to build a realistic
Web search prototype, simply because due to the complexity
of Web search, no open source system is close to what the
companies have built, and also because the Web is simply
too large for most research groups to manage. Furthermore,
Web companies will understandably not give out their code
nor provide access to all of their enormous computational re-
sources. So while we can potentially make impact here (e.g.,
by studying how structured data can help Web search), it

may be limited and work well only for a small number of
researchers. If the future is just more Web search, we may
have only limited opportunity to be relevant.

We argue, however, that the future is not likely to look like
the present. Web 2.0 has demonstrated that it is possible to
develop many small-to-medium-size applications, put them
out there, then attract users that use them to manage data.
Examples include Wikipedia, Del.icio.us, Flickr, YouTube,
and numerous social search engines (e.g., Wikia Search),
among many others.

Capitalizing on this trend, Web companies large and small
have found a new business model: they develop such appli-
cations (and often also the hosting platform), then invite de-
velopers to use them to build compelling Web services that
attract eyeballs, then split the ad revenue with the develop-
ers. An example is Yahoo! Search BOSS (Build Your Own
Search Service) platform, which developers, start-ups, and
large Internet companies can use to build and launch Web-
scale search products that utilize the entire Yahoo! Search
index. Another example is Google Knol platform, which
anyone can use to host a group to edit wikis, then split the
ad revenue with Google.

This trend of “we will help your develop and deploy Web
applications, then in return share revenue with us” appears
likely to continue. If so, it provides a possible ecosystem
within which our envisioned new “structure from unstruc-
tured data, with humans in the loop” industry could grow.
We can develop applications that would make it very easy
for developers or ordinary users to extract and exploit struc-
tured data over some slice of the Web. These applications
can then be plugged into such a hosting platform, for real-
world testing. The applications can address a broad range
of problems, such as managing personal data, building por-
tals, wikis, intranets, and so on. Since they handle only a
slice, not the whole Web, we envision that most research
groups can build and manage them (especially if such appli-
cations can be made open source, so that we can build on
each other’s efforts, instead of starting from the scratch).

The above scenario offers an interesting vision for the evo-
lution of the Web: the Web will become increasingly struc-
tured, but in a bottom up fashion. This will happen because
there will be increasingly more applications that try to help
users to generate structured data and exploit the fruits. Our
community could be at the center of this new, increasingly
structured Web, as we help develop such applications.

6. BEYOND UNSTRUCTURED DATA
So far we have made a case for a structured approach

to managing unstructured data, such as emails, text, Web
pages. We believe, however, that this approach may work for
other kinds of data as well, with suitable modifications. One
example is image data, from which we want to extract and
then manipulate real-world objects (e.g., table, car, person).
Another example is sensor data from which we want to infer
real-world events (e.g., someone has entered the room). Yet
another example is heterogeneous data, i.e., data that come
from a collection of disparate sources; here we may want to
infer semantic matches among the data elements, then use
the matches to integrate the data into a coherent whole.

In all of these cases, we want to extract some kind of
higher-level structure from the underlying raw data. Such
extracted structured data will often be semantically hetero-
geneous, suggesting the need for integration techniques. The

inherent imperfection of extraction and integration in turn
suggests that it may be desirable to have humans in the
loop, and so on. The end system then may end up looking
quite similar to the kind of systems we have discussed for
unstructured data, and hence can potentially benefit from
work in that area.

7. CONCLUDING REMARKS
Unstructured data is big and we are risking letting the

opportunities to manage it go by. In this essay we have ar-
gued for a structured approach to manage such data, and
have outlined the components and the challenges of the ap-
proach. We regard this approach as a baseline. Our hope is
that this essay will spark further discussions on how to im-
prove this baseline into an effective approach to managing
unstructured data for our entire community.

Beyond unstructured data, throughout the essay we have
also alluded to questions regarding the identify of our field.
These questions have been perennial at our community gath-
erings. But with the entrance of new fields (e.g., AI, Web,
Semantic Web, KDD, IR) into the data management arena,
and the rapid rise of large Web players (e.g., Google, Yahoo,
Microsoft), answering such questions has become more ur-
gent. This essay has provided a possible answer, namely, we
can count among our unique characteristics a focus on struc-

ture and on building end-to-end scalable data management

system. We hope that the essay can spark further discus-
sions on this matter as well.

Acknowledgment: This work is supported by NSF grants
SCI-0515491, Career IIS-0347943, an Alfred Sloan fellow-
ship, an IBM Faculty Award, and a grant from Microsoft.
We thank the reviewers for invaluable comments on an ear-
lier draft of this essay.

8. REFERENCES
[1] G. Weikum. Db and ir: Both sides now, 2007. Keynote

talk, SIGMOD-07,
www.mpi-sb.mpg.de/ weikum/sigmod07.ppt.

