
DBLife: A Community Information Management Platform
for the Database Research Community

[Demonstration]

Pedro DeRose1, Warren Shen1, Fei Chen1, Yoonkyong Lee2,
Doug Burdick1, AnHai Doan1, Raghu Ramakrishnan3

1University of Wisconsin 2University of Illinois 3Yahoo! Research

1. INTRODUCTION
Community Information Management: There are
many communities on the Web. Some are based on common
interests, such as communities of movie goers, database re-
searchers, and bioinformaticians, while others are based on
a shared purpose, such as organization intranets and online
technical support groups. Community members often want
to discover, monitor, and query entities and relationships in
their community. For example, database researchers might
want to know if there is a connection between two given re-
searchers, where a given paper has been cited in the past
week, or what of interest has happened in the last 24 hours.

Answering such questions often requires retrieving raw,
largely unstructured data from multiple sources (e.g., home
pages, DBLP, mailing lists), then inferring and monitoring
semantic information. Examples of such inference and mon-
itoring include recognizing entity mentions (e.g., “J. Gray”,
“SIGMOD-04”), deciding if two mentions (e.g., “J. Gray”
and “Jim Gray”) refer to the same real-world entity, rec-
ognizing that a relationship (e.g., co-authoring, advising,
giving a talk) exists between two entities, detecting new en-
tities (e.g., new workshops), and inferring that a relationship
(e.g., affiliation with a university) has ceased to exist. The
above inference and monitoring tasks are well known to be
difficult [1, 2, 3, 7, 10]. As online communities proliferate,
developing effective solutions to support their information
needs becomes increasingly important. We call this prob-
lem community information management, or CIM for short.

The Cimple Project: To address the CIM problem, we
have recently started Cimple, a joint project between the
University of Wisconsin and Yahoo! Research [4]. Our goal
is to develop a software platform that a data-rich online com-
munity can quickly deploy and customize to effectively man-
age its data. This software platform can be valuable for com-
munities in a broad range of domains, ranging from scien-
tific data management [5], government agencies, PIM [2, 8],
dataspace management [6], and enterprise intranets, to those

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

on the World-Wide Web. Cimple’s approach has three steps:
(1) We start with a high-quality seed provided by a commu-
nity expert; this seed includes relevant data sources and do-
main knowledge about entities and relationships of interest.
(2) We exploit this seed using simple but focused automatic
methods to create and maintain an entity-relationship graph
of the community. (3) We leverage the community by pro-
viding valuable, carefully crafted functionalities whose use
helps correct, maintain, and evolve this graph.

In general, Cimple attempts to extend the footprints of
DBMSs and more broadly apply database technologies to
manage Web data. A major problem with doing database
and IR research that involves the Web is that the Web is
simply too big. In academic environments, it is possible,
but difficult, to build infrastructures and user bases at the
Web scale to uncover more interesting problems and better
validate solutions. Cimple can be viewed as attempting to
circumvent this problem by focusing on Web communities,
which are in effect “mini-Webs”. At this scale, it may be the
case that it is easier to build infrastructures and user bases,
to perform deeper semantic analysis to infer more complex
structured data, and to apply database/IR technologies.

The DBLife System: To drive and validate research
in Cimple, we are building DBLife, a prototype system that
manages information for the database research community
(see dblife.cs.wisc.edu). Eventually we may want to build
more prototypes for research communities, such as AILife
and IRLife, as well as non-research ones, such as those for
the legal community and the community of movie goers.

DBLife has been live on the Web for about 1.5 years.
DBLife currently monitors nearly 900 data sources, and down-
loads 9,500 pages, or 150+ MB, daily. It tracks roughly
335,000 mentions of 16,600 entities, and provides a vari-
ety of services that exploit the generated entity-relationship
graph, including a daily community newsletter, entity super-
homepages (pages that aggregate all detected and inferred
information about an entity), and community event track-
ing.

We have briefly introduced DBLife at a SIGMOD-06 tu-
torial, and will demonstrate DBLife at CIDR-07. For the
demonstration we will (a) motivate the CIM problem and
Cimple project, (b) showcase a variety of DBLife’s features,
(c) explain the working of DBLife’s internals, and (d) illus-
trate a range of open research issues in CIM. We currently
plan to release a beta version of DBLife in January 2007. If
so, the demonstration will showcase both the features of the
released system, as well as the novel features under develop-
ment. We now provide more details about DBLife and the



demonstration.

2. DEMONSTRATION OVERVIEW

2.1 CIM and Cimple
The first part of the demonstration will briefly describe

and motivate the CIM problem and the Cimple project, as
above.

2.2 DBLife Features
Next, we will demonstrate DBLife’s features. Specifically,

we will demonstrate the community daily newsletter, super-
homepages of researchers, mass collaboration features, and
community event tracking pages. We will also demonstrate
features that are scheduled to be finished by the time of the
demonstration (see below).

Newsletter: DBLife’s newsletter, show in Figure 1, dis-
plays interesting events the system has inferred on a given
day. These events are inferred using simple information ex-
traction rules that exploit structural elements in carefully
chosen data pages. For instance, DBLife can infer when a
researcher is mentioned as a PC member in conference home-
pages, when a call for papers is announced on DBWorld,
when a researcher is giving an invited talk, and many other
such events. We will also demonstrate the provenance fea-
tures of DBLife that are related to the newsletter.

Superhomepages: DBLife creates a page for each entity
(e.g., organizations, researchers, publications) that aggre-
gates all detected or inferred information about that entity.
For example, Figure 2 shows the superhomepage of Divesh
Srivastava. The main block of the page lists all discovered
mentions of him in reverse chronological order. Along the
right-hand side, it displays general information, followed by
inferred relationships, services, and other events, such as
talks and tutorials.

Mass Collaboration: Researcher superhomepages in-
clude a row of images related to that researcher along the
top. This is an example of DBLife’s mass collaboration. The
images are gathered by searching on an image search engine,
and users vote on which images should not be related to the
researcher. Their votes are processed by a mass collabo-
ration system [9], and over time the incorrect images are
weeded out.

Event Trackers: As mentioned above, DBLife infers
events using information extraction rules that exploit docu-
ment structure. These events not only appear in the newslet-
ter and superhomepages, but also in separate tracking pages.
Such pages exist for conference information, paper accep-
tances, and invited talks. A sample of the invited talks
page is shown in Figure 3.

New Features: DBLife is under constant development.
Examples of features we are currently developing include
context-sensitive mass collaboration features, personaliza-
tion, entity-aware search, stronger provenance, and an inte-
grated feedback framework.

2.3 DBLife Internals
In this part of the demonstration we briefly describe DBLife’s

general architecture, then the core workflow that generates
and maintains the ER graph.

Figure 4: DBLife workflow

2.3.1 Architecture
DBLife comprises an easily extensible set of independent

but intercommunicating modules. Each module takes as in-
put XML files and outputs XML files accessible by other
modules. A central configuration file specifies the modules’
input and order of execution; when the system is run, the
configuration file is interpreted, and the modules are exe-
cuted in turn. After each execution, their output is archived
so that it can be accessed at any point in the future.

DBLife’s modules are divided into two groups. The first,
called the core modules, is responsible for creating and main-
taining the system’s ER graph; it is described in more detail
below. The second group, called the application modules, ex-
ploits the ER graph to generate output displayed by DBLife’s
web interface. These application modules are the heart of
DBLife’s features, and their functionality is described above.

2.3.2 Workflow
DBLife follows the Cimple approach of starting with a

high-quality seed, building on this seed with automatic meth-
ods, and filling gaps left by these methods through mass
collaboration. We now demonstrate DBLife’s workflow, il-
lustrated in Figure 4, in the context of the Cimple approach.

High-Quality Seed: As prescribed by Cimple, DBLife
starts with information supplied by a community expert.
This seed includes an initial list of sources to crawl, such as
researcher home pages, conference pages, and the DBWorld
mailing list. It also includes domain knowledge, such as
entities and relationships of interest, and hints for extracting
and maintaining them. For example, the expert provides
a dictionary of entity names, gathered from DBLP, which
DBLife uses to find entity mentions as explained below. The
domain knowledge in this initial seed is used throughout
DBLife’s automatic methods, as illustrated in Figure 4.

Automatic Methods: Next, DBLife uses automatic meth-
ods, implemented as core modules, to create and maintain
the ER graph. These methods rely heavily on domain knowl-
edge, which is currently worked into the algorithms, but
will eventually be expressed separately through a declara-
tive language. DBLife’s core modules are loosely organized
into three layers: the data page, mention, and the entity
layers. The modules in these layers run daily as dictated by
the central configuration file.

Modules in the data page layer crawl the specified sources,
cache downloaded pages, and provides access to previously



Figure 1: DBLife’s front page, featuring the daily newsletter

Figure 2: A researcher’s superhomepage

Figure 3: The event page for invited talks



cached pages. A set of modules extracts metadata for each
page, such as when it first appeared and last changed. Other
modules detect structural elements within pages, from small
constructs, such as lists of proper names, to classifying entire
pages, such as calls for papers on DBWorld. These struc-
tures are used to specify domain knowledge, such as rules
for filtering mentions, inferring relationships, and detecting
events as described in Section 2.2

The next layer handles entity mentions. First, modules
use a dictionary of names supplied by the community ex-
pert to find mentions, represented as asterisks in Figure 4.
Next, mentions from the current day are reconciled with
those from the previous day: modules detect new mentions,
and map old mentions to those from the previous day. This
mention tracking is vital for maintaining the ER graph, since
detecting community changes requires telling old mentions
from new. This problem is difficult because it requires accu-
rately determining the context of a mention within a page.
Finally, a set of modules finds metadata for each mention,
such as when it first appeared.

Last is the entity layer. It matches mentions to one an-
other, disambiguates them, and groups them into entities.
It then infers relationships between entities using domain
knowledge rules, thus creating an entity-relationship graph.
Finally, similarly to mentions, the current set of entities is
reconciled with those from the previous execution: we must
determine that the “Jim Gray” entity from today is the
same as the “Jim Gray” from yesterday. This entity track-
ing problem is also difficult, since not only do the mentions
comprising an entity change, but the real-world entity it-
self also changes. For example, when a researcher changes
affiliations from university U to company C, we must still
recognize him as the same person, even though his old men-
tions will be in the context of U while his new are in the
context of C.

Leveraging the Community: Since automatic methods
are inherently imperfect, DBLife leverages the community
through mass collaboration to correct errors, and to help
maintain and evolve the system’s ER graph. However, using
mass collaboration requires that the user have an incentive,
and also enough information to help. Current DBLife fea-
tures are a first step in this direction, and planned future
features will further address these issues.

For incentive, DBLife provides functionalities that are valu-
able to the user, but also carefully designed so that their use
helps identify or address issues within the system. An ex-
ample is the image feature on superhomepages: users who
wish to see the correct picture for a researcher have an incen-
tive to weed out incorrect ones. Another example, which is
still being developed, will allow users to directly edit certain
parts of their superhomepages. Since users have a vested
interest in keeping their superhomepages accurate, they are
likely to help correct errors and contribute information.

To gain trust and insure quality feedback is provided,
DBLife will provide users insight into the inference process
through two primary mechanisms. First, provenance for all
system inferences will be made available to the user. Exam-
ples include tracking the extraction rules used to generate
a mention, and the logic used to group these mentions into
entities. Second, DBLife will provide a representation of the
uncertainty in the inference results. For example, the system
may be aware that output from different mention extraction

rules have different precision. This could be reflected using
confidence scores assigned to the mentions to reflect esti-
mates of their quality. Leveraging user feedback to update
these estimates is an important area of future research. The
uncertainty representation must also capture the structure
of the uncertainty. For example, how does information that
two mentions are co-referent affect other mention grouping
decisions? Uncertainty management for DBLife is currently
under active development.

2.4 Open Research Issues
We will leverage DBLife to illustrate the broad range of

open research directions in CIM. Examples include how to
perform large-scale information extraction efficiently; how
to integrate information extraction and RDBMS technolo-
gies; how to explain the extracted data to the user; how to
construct provenance, explanation, and uncertainty mecha-
nisms that work for such contexts; how to perform better
disambiguation of inferred data; and how to maintain the
extracted data as the underlying raw data evolves.

3. REFERENCES
[1] P. Andritsos, R. J. Miller, and P. Tsaparas.

Information-theoretic tools for mining database
structure from large data sets. In SIGMOD, 2004.

[2] Y. Cai, X. L. Dong, A. Y. Halevy, J. M. Liu, and
J. Madhavan. Personal information management with
semex. In SIGMOD, 2005.

[3] W. Cohen. Information extraction. Tutorial,
www.cs.cmu.edu/wcohen/ie-survey.ppt, 2003.

[4] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose,
Y. Lee, R. McCann, M. Sayyadian, and W. Shen.
Community information management. In IEEE Data
Engineering Bulletin, Special Issue on Probabilistic
Databases, volume 29, 2006.

[5] J. Gray, D. T. Liu, M. A. Nieto-Santisteban,
A. Szalay, D. J. DeWitt, and G. Heber. Scientific data
management in the coming decade. SIGMOD Record,
34(4), 2005.

[6] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles
of dataspace systems. In PODS, 2006.

[7] T. Johnson and T. Dasu. Data quality and data
cleaning: An overview. In SIGMOD, 2003.

[8] D. R. Karger, K. Bakshi, D. Huynh, D. Quan, and
V. Sinha. Haystack: A general-purpose information
management tool for end users based on
semistructured data. In CIDR, 2005.

[9] R. McCann, A. Kramnik, W. Shen, V. Varadarajan,
O. Sobulo, and A. Doan. Integrating data from
disparate sources: A mass collaboration approach. In
ICDE, 2005.

[10] S. Sarawagi. Graphical models for structure extraction
and information integration. Keynote talk and tutorial
at ICDM-05, 2005.


