
Toward Best-Effort Information Extraction

Warren Shen1, Pedro DeRose1, Robert McCann2, AnHai Doan1, Raghu Ramakrishnan3

1University of Wisconsin-Madison, 2Microsoft Corp., 3Yahoo! Research

ABSTRACT
Current approaches to develop information extraction (IE)
programs have largely focused on producing precise IE re-

sults. As such, they suffer from three major limitations.
First, it is often difficult to execute partially specified IE
programs and obtain meaningful results, thereby produc-
ing a long “debug loop”. Second, it often takes a long time
before we can obtain the first meaningful result (by finish-
ing and running a precise IE program), thereby rendering
these approaches impractical for time-sensitive IE applica-
tions. Finally, by trying to write precise IE programs we
may also waste a significant amount of effort, because an
approximate result – one that can be produced quickly –
may already be satisfactory in many IE settings.

To address these limitations, we propose iFlex, an IE ap-
proach that relaxes the precise IE requirement to enable
best-effort IE. In iFlex, a developer U uses a declarative lan-
guage to quickly write an initial approximate IE program

P with a possible-worlds semantics. Then iFlex evaluates
P using an approximate query processor to quickly extract
an approximate result. Next, U examines the result, and
further refines P if necessary, to obtain increasingly more
precise results. To refine P , U can enlist a next-effort assis-

tant, which suggests refinements based on the data and the
current version of P . Extensive experiments on real-world
domains demonstrate the utility of the iFlex approach.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Experimentation, Languages

1. INTRODUCTION
Over the past decade, the problem of information extrac-

tion (IE) has attracted significant attention. Given a collec-
tion of text or Web pages, many solutions have been devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08,June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

oped to write programs that extract structured information
from the raw data pages (see [1, 11] for recent tutorials).

Virtually all of these solutions, however, have focused only
on developing precise IE programs: those that output exact
IE results. As such, they suffer from several major limita-
tions. First, during the course of developing an IE program,
we often cannot execute a partially specified version of the
program, and even if we can, it is not clear what the pro-
duced result means. This makes it hard to probe whether
the extraction strategy pursued by the program is promis-
ing, and in general produces a long “debug loop”, especially
over complex IE programs.

Second, partly because of the above limitation, it often
takes a long time (days or even weeks) before we can obtain
the first meaningful result (by finishing and running a precise
IE program). This long “lag time” is not acceptable to time-
sensitive IE applications that need extraction results quickly.

Finally, by trying to write precise IE programs we may
also waste a significant amount of effort. In many extraction
settings, perhaps an approximate result – one that can be
produced quickly – is already satisfactory, either because an
exact result is not required (e.g., in mining or exploratory
tasks), or because the approximate result set is already so
small that a human user can sift through it quickly to find
the desired answer.

To address the above limitations, in this paper we ar-
gue that in many extraction settings, writing IE programs
in a best-effort fashion is a better way to proceed, and we
describe iFlex (iterative Flexible Extraction System), an ini-
tial solution in this direction. In iFlex, a developer U quickly
writes an initial approximate extraction program P . Then U
applies the approximate program processor of iFlex to P to
produce an approximate result. After examining this result,
U can refine P in any way he or she deems appropriate. For
this refinement step, U can enlist the next-effort assistant

of iFlex, which can then suggest particular “spots” in P that
can be further refined (to maximize the benefit of U ’s ef-
fort). Then, U iterates with the execution and refinement
steps until he or she is satisfied with the extracted result.
The following example illustrates the above points.

Example 1.1. Given 500 Web pages, each listing a house for
sale, suppose developer U wants to find all houses whose price ex-
ceeds $500000 and whose high school is Lincoln. Then to start, U
can quickly write an initial approximate IE program P , by speci-
fying what he or she knows about the target attributes (i.e., price
and high school in this case). Suppose U specifies only that price
is numeric, and suppose further that there are only nine house
pages where each page contains at least one number exceeding
500000 as well as the word “Lincoln”. Then iFlex can immedi-
ately execute P to return these nine pages as an “approximate

superset” result for the initial extraction program. Since this re-
sult set is small, U may already be able to sift through it and
find the desired houses. Hence, U can already stop with the IE
program.

Now suppose that instead of nine, there are actually 120 house
pages that contain at least one number exceeding 500000 as well
as the word “Lincoln”. Then iFlex will return these 120 pages. At
this point, U realizes that the IE program P is “underspecified”,
and hence will try to refine it further (to “narrow” the result set).
To do so, U can ask the next-effort assistant to suggest what
to focus on next. Suppose that this module suggests to check if
price is in bold font, and that after checking, U adds to the IE
program that price is in bold font. Then iFlex can leverage this
“refinement” to reduce the result set to only 35 houses. Now
U can stop, and sift through the 35 houses to find the desired
ones. Alternatively, U can try to refine the IE program further,
enlisting the next-effort assistant whenever appropriate.

This example underscores the key idea underlying iFlex:
instead of requiring the developer to invest significant time
up front to write relatively complete IE programs before
being able to run them and obtain some results, iFlex can
produce meaningful results from whatever approximate pro-
grams the developer has written so far. Then, as the devel-
oper devotes more time refining the programs, iFlex produces
increasingly precise results.

While attractive, realizing the above key idea however
raises several difficult challenges. The first challenge is to de-
velop a language for writing approximate IE programs with
well-defined semantics. Toward this goal, we extend Xlog, a
Datalog variant recently proposed for writing declarative IE
programs [21]. The extension, called Alog, allows developers
to write approximate extraction rules as well as specify the
types of approximation involved. We then show that Alog

programs have possible-worlds semantics.
Given Alog programs, the second challenge is then to build

an efficient approximate processor for these programs. To-
ward this goal, we first consider how to represent approxi-
mate extracted data. We show that current representations
are not succinct enough for approximate IE results, and then
develop a much more compact text-specific representation
called compact tables. We then show how to efficiently exe-
cute Alog programs over compact tables.

Finally, when refining an Alog program P , we consider
how the next-effort assistant can identify “spots” in P where
the “next effort” of developer U would best be spent. We
formulate this as a problem in which the assistant can ask U
a question (e.g., “is price in bold font?”), and then U can add
the answer to this question to P , as a “refinement”. The key
challenge is then to define the question space as well as a way
to select a good question from this space. We describe an
initial solution to this problem, one that efficiently simulates
what happens if U answers a certain question, and then
selects the question with the highest expected benefit.

To summarize, in this paper we make the following con-
tributions:

• Introduce iFlex, an end-to-end “iterative approximate”
solution for best-effort IE. As far as we know, this is
the first in-depth solution to this important problem.

• Introduce a declarative language to write approximate
IE programs with well-defined semantics.

• Develop techniques to efficiently represent and perform
query processing on approximate extracted text data.

• Develop a novel simulation-based technique to efficiently
assist the developer in refining an approximate IE pro-
gram.

• Perform extensive experiments over several real-world
data sets which show that iFlex can (a) quickly produce
meaningful extraction results, (b) successfully refine
the results in each iteration using the next-effort as-
sistant, and (c) quickly converge to precise extraction
results, in a relatively small number of iterations.

2. APPROXIMATE IE PROGRAMS
We now describe how to write approximate IE programs.

Our goal is to extend a precise IE language for this purpose.
Many such languages have been proposed, such as UIMA,
GATE, Lixto, and Xlog [12, 5, 13, 21]. As a first step, in
this paper we will extend Xlog, a recently proposed Data-
log variant for writing declarative IE programs [21] (leaving
extending other IE languages as future research). We first
describe Xlog, and then build on it to develop Alog, a lan-
guage for writing approximate programs for best-effort IE.

2.1 The Xlog Language
We now briefly describe Xlog (see [21] for more details).

Syntax and Semantics: Like in traditional Datalog, an
Xlog program P consists of multiple rules. Each rule has the
form p :− q1, . . . , qn, where the p and qi are predicates, p is
called the head, and the qi’s form the body. Each predicate
atom in a rule is associated with a relational table. A predi-
cate is extensional if its table has been provided to program
P , and intensional if its table must be computed using the
rules in P . Currently, Xlog does not allow rules with negated
predicates or recursion.

A key distinction of Xlog, compared to Datalog, is that it
can accommodate inherently procedural steps of real-world
IE with p-predicates and p-functions. A p-predicate q has
the form q(a1, . . . , an, b1, . . . , bm), where the ai and bi are
variables. Predicate q is associated with a procedure g (e.g.,
written in Java or Perl) that takes an input tuple (u1, . . . , un),
where ui is bound to ai, i ∈ [1, n], and produces as out-
put a set of tuples (u1, . . . , un, v1, . . . , vm). A p-function
f(a1, . . . , an) takes as input a tuple (u1, . . . , un) and returns
a scalar value.

Example 2.1. Figure 1.a shows an Xlog program that extracts
houses with price above $500000, area above 4500 square feet,
and a top high school. This program contains two p-predicates,
extractHouses(x, p, a, h) and extractSchools(y, s), and one p-

function approxMatch(h, s). The p-predicate extractHouses(x,
p, a, h), for example, takes as input a document x and returns
all tuples (x, p, a, h) where p, a, and h are the price, area, and
high school of a house listed in x, respectively. The p-function
approxMatch(h, s), for example, returns true iff two text spans
(i.e., document fragments) h and s are “similar” according to
some similarity function (e.g., TF/IDF).

Among all types of p-predicate, we single out a special
type called IE predicate. An IE predicate is a p-predicate
that extracts one or more output spans from a single input
document or span. For example, extractHouses(x, p, a, h)
in Figure 1.a is an IE predicate that extracts the attributes
p, a, and h from x. Similarly, extractSchools(y, s) extracts
a school name s from y.

One of the head predicates of an Xlog program P is called
a query, and the result of P is the relation computed for the
query predicate using the rules in P . We define this result by

(b)

Top High Schools and Location (page 1)
Basktall, Cherry Hills
Franklin, Robeson
Vanhise, Champaign

Cozy house on quiet street $351000
5146 Windsor Ave., Champaign
Sqft: 2750
High school: Vanhise High

x1 y1

x2 y2

Amazing house in great location! $619000
3112 Stonecreek Blvd., Cherry Hills
Sqft: 4700
High school: Basktall HS

Top High Schools and Location (page 2)
Hoover, Akron
Skyline, Dubuque
Ossage, Lynneville

(a)

R1: houses(x,p,a,h) :- housePages(x), extractHouses(x,p,a,h)

R2: schools(s) :- schoolPages(y), extractSchools(y,s)

R3: Q(x,p,a,h) :- houses(x,p,a,h), schools(s), p>500000, a>4500, approxMatch(h,s)

Figure 1: Example Xlog program.

applying traditional Datalog semantics (e.g., the least-model
semantics) to the rules in P , using the associated relations
for the p-predicates and p-functions in P .

Example 2.2. We illustrate Xlog by stepping through a con-
ceptual execution of the program in Figure 1.a, assuming that
housePages consists of the two documents x1 and x2, and that
schoolPages consists of the two documents y1 and y2 (all in
Figure 1.b). For each document x in housePages, rule R1 in-
vokes extractHouses(x, p, a, h) to extract the price, area, and
high school of the listed house in x (e.g., to extract the tuple
(x1, 351000, 2750,“Vanhise High”) from x1). Next, rule R2 in-
vokes extractSchools(y, s) for each document y in the school-
Pages relation (e.g., to extract three tuples (y1, “Basktall”), (y1,
“Franklin”), and (y1, “V anhise”) for y1). Finally, rule R3

joins the extracted houses and schools relations, keeping all tu-
ples (x, p, a, h) where document x lists a house with price p above
$500, 000, area a above 4,500 square feet, and high school h being
listed in a school page y in schoolPages. In this example, rule R3

produces the tuple (x2, 619000, 4700,“Basktall HS”).

Usage and Limitations: To write an Xlog program for an
IE task, a developer U first decomposes the task into smaller
tasks. Next, U writes an Xlog program that reflects this de-
composition, “making up” p-predicates and p-functions as
he or she goes along. Finally, U implements made-up predi-
cates and functions, e.g., with C++ or Java procedures. For
example, when writing the Xlog program in Figure 1.a, U
makes up and then implements p-predicates extractHouses
and extractSchools, and p-function approxMatch.

To implement a procedure (e.g., for a p-predicate), U typ-
ically starts by examining the raw data and identifying do-
main constraints involving text features of the target at-
tributes (e.g., “price is numeric”, “school name is bold”).
Next, U writes code (e.g., Perl modules) to extract text
spans that satisfy these constraints, then writes additional
code to further chop, merge, and filter the text spans, to
eventually output the desired extraction result. Once done,
U “plugs” the implemented procedures into the Xlog pro-
gram, executes the program, and analyzes the results for
debugging purposes.

As described, U often must spend a significant amount of
time developing the procedures, and these procedures must
be “fairly complete” before U can run the IE program to ob-
tain some meaningful result. This in turn often makes the
development process difficult, time-consuming, and poten-
tially wasteful, as discussed in Section 1. To address these
problems, we develop a best-effort IE framework in which
we can quickly write approximate IE programs using Alog,
an Xlog extension.

2.2 Best-Effort IE with Alog
Given our observations with Xlog, we propose that a best-

effort IE framework provide support for the developers to:

• Declare any domain constraints regarding text features
of the attributes they are extracting, with as little ex-
tra programming as possible.

• Write approximate IE programs and obtain well-defined
approximate results, such that the more effort the de-
veloper puts in, the more precise the results are.

Our proposed language, an extension of Xlog called Alog,
provides such support. To write an Alog program, a devel-
oper U can quickly start by writing an initial Xlog program,
which is “skeletal” in the sense that it lists all the necessary
IE predicates, but does not yet have any associated proce-
dures for them.

In the next step, instead of implementing these procedures
in their entirety – as is done during the process of developing
an Xlog program – U instead implements them only partially,
doing only as much work as he or she deems appropriate.

Specifically, consider a particular IE predicate q. To im-
plement q, U partially writes one or more description rules,
each declaring a set of domain constraints about the tex-
tual features of the (target) attributes that E extracts (e.g.,
“price is numeric”). Each description rule r therefore can
be viewed as a way to extract approximate values for the
target attributes. Next, U encodes the type of approxima-
tion by annotating r. Such an annotation in effect gives rule
r a possible-worlds interpretation, by “translating” the sin-
gle relation defined by r under Xlog semantics into a set of
possible relations.

Finally, U executes the so-obtained partial IE program,
examines the result, refines the program further by aug-
menting the description rules, executes the newly revised
program, and so on, until satisfied. In the rest of this sec-
tion we describe the above steps in more detail.

2.2.1 Writing an Initial Program
As discussed, to develop an Alog program, a developer

U begins by writing an initial set of traditional Xlog rules.
These rules form a “skeleton” of P , in the sense that each
IE predicate (in the rules) is “empty”: it is not associated
with any procedure yet. Figure 2.a shows a sample skele-
ton program (which is the same program shown in Figure
1.a), where the IE predicates extractHouses(a, p, a, h) and
extractSchools(y, s) do not have any associated procedure.

2.2.2 Writing Predicate Description Rules

Syntax: In the next step, instead of writing procedural
code for each IE predicate q (as in traditional Xlog), U “par-
tially implements” q by writing one or more predicate de-

scription rules (or “description rules” for short) to describe
q using domain constraints.

For example, rule S4 in Figure 2.b describes the IE pred-
icate extractHouses(x, p, a, h). It asserts that p, a, and h
are text spans from x, and that p and a are numeric. Thus,
when provided with a document x as the input, this rule
defines a relation (x, p, a, h) where p, a and h are extracted
from x, and p and h take on numeric values. Similarly, rule
S5 in Figure 2.b describes extractSchools(y, s) and asserts
that s is a bold-font text span from document y.

In general, a description rule r has the form q :− q1, . . . , qn,
just like a traditional Xlog rule, except that the head q is an
IE predicate. Rule r’s semantics are similar to that of an
Xlog rule, except that r only defines a relation when it is
provided with all of the required input. That is, whenever

we assign constant values to the input variables in the head
of r, r defines a relation R such that for any assignment of
constants to the other variables in r, if every predicate in
the body of r is satisfied, then the tuple generated for the
rule head (using the assignment) is also in R.

Using Description Rules to Capture Domain Con-

straints: Developer U typically builds description rules by
adding domain constraints about the extracted attributes
as predicates to the body of the rules. A domain con-
straint f(a) = v states that feature f of any text span that
is a value for attribute a must take value v. For exam-
ple, rule S4 in Figure 2.b imposes two domain constraints:
numeric(p) = yes and numeric(a) = yes. In each iteration
U can refine each description rule by adding more domain
constraints.

In general, text features capture common characteristics
of text spans that we often are interested in extracting.
Example features include numeric, bold-font, italic-font, un-

derlined, hyperlinked, preceded-by, followed-by, min-value, and
max-value. Each feature takes values such as yes, distinct-
yes, no, distinct-no, and unknown. For example, bold-font(s)
= distinct-yes means that s is set in bold font, but the text
surrounding s is not.

iFlex currently uses a rich set of built-in features (Sec-
tion 5.1.1 briefly discusses how to select good features), but
more can be easily added, as appropriate for the domain at
hand. To add a new feature f , a developer needs to im-
plement only two procedures Verify and Refine. (Note that
this is done only once, not per writing an Alog program.)
Verify(s, f, v) checks whether f(s) = v, and Refine(s, f, v)
returns all sub-spans t from s such that f(t) = v (see Sec-
tion 4.2 for more details).

Writing Safe Description Rules: Consider the following
rule
extractHouses(x, p, a, h) :−numeric(p) = yes,

numeric(a) = yes
which states that p and a are numeric. This rule is not

safe because it produces an infinite relation given an input
document x (since p and a can take on any numeric value,
and h can take on any value). Intuitively, this is because the
rule does not indicate where p, a, and h are extracted from.
To address this problem, iFlex provides a built-in from(x, y)
predicate that conceptually extracts all sub-spans y from
document x. Then, U can use this predicate to indicate
that p, a, and h are extracted from document x. Figure
2.b shows the resulting safe description rules, using the from

predicate.
In general, a description rule is safe if each non-input vari-

able in the head also appears in the body, either in an ex-
tensional or intensional predicate, or as an output variable
in an IE predicate. For example, rule S4 in Figure 2.b is
safe because the non-input variables p, a, and h all appear
as output variables in from predicates in the body.

2.2.3 Encoding Approximation Types using
Annotations

As described above, the combination of an Alog rule and
related description rules defines a way to approximately ex-
tract some attributes. For example, rules S1 and S4 in Fig-
ure 2.b together describe a way to approximately extract p,
a, and h.

When writing such rules, a developer U often knows the
type of approximation he or she is using. Hence, we want

to provide a way for U to declare such approximation types.
We then exploit this information to better process Alog pro-
grams. Currently, we focus on providing support for two
common types of approximation: those about the existence

of a tuple, and about the value of an attribute in a tuple,
respectively. We allow a developer U to annotate an Alog

rule to indicate these approximation types.
Specifically, an existence annotation indicates that each

tuple in the relation R produced by a rule r may or may not
exist.

Definition 1 (Existence Annotation). Let p be the head
of a rule r that produces relation R under the normal Xlog seman-
tics. Then adding an existence annotation to r means replacing
p with “p?”. This produces a rule r′ that defines a set of possible
relations R, which is the powerset of the tuples in R.

An attribute annotation indicates that an attribute takes
a value from a given set, but we do not know which value.

Definition 2 (Attribute Annotation). Suppose the head
of rule r is p(a1, . . . , ai, . . . , an). Then annotating attribute ai

means replacing the head with p(a1, . . . , 〈ai〉, . . . , an) to produce
rule r′. Suppose that r defines relation R under the normal Xlog

semantics. Then r′ defines the set R of all possible relations that
can be constructed by grouping R by a1, . . . , ai−1, ai+1, . . . , an

and selecting one value for ai in each group.

We can easily generalize Definition 2 to annotating mul-
tiple attributes. In this case, each possible relation is con-
structed by first grouping R by all non-annotated attributes,
then selecting one value for each annotated attribute in each
group. The following example illustrates both existence and
attribute annotations.

Example 2.3. Evaluating rule S1 in Figure 2.a together with
rule S4 in Figure 2.b would produce the houses table in Figure
2.d, which contains all tuples (x, p, a, h) where x is in housePages,
p, a, and h are extracted from x, and p and a are numeric.

Now suppose we know that each document x in housePages
contains information about exactly one house (i.e., x forms a key
in the true houses relation). Then we can annotate attributes p,
a, and h to produce rule S′

1 in Figure 2.c. Evaluating rule S′
1

would produce the set of possible houses relations as represented
in Figure 2.e, where each possible relation is constructed by se-
lecting just one value (from the corresponding set of values) for
each table cell (see Section 3 for more details). This way, each
possible houses relation contains exactly one tuple for each docu-
ment x, thus accurately reflecting our knowledge of the domain.

Similarly, evaluating rules S2 in Figure 2.a together with rule
S5 in Figure 2.b would produce the schools table in Figure 2.d,
which contains all tuples (s) where s is a bold span coming from
a document y in schoolPages.

Clearly, not all bold spans in each document y are schools.
Thus, we can add an existence annotation to rule S2 to produce
rule S′

2 in Figure 2.c. Evaluating S′
2 would produce the set of

possible schools relations represented in Figure 2.e, where each
possible relation consists of a subset of the extracted tuples.

We represent the annotations for a rule r with a pair
(f,A), where the Boolean f is true iff r has an existence
annotation, and A is the set of attributes in the head pred-
icate of r that have attribute annotations.

Alog Semantics: The result of an Alog program P is then
the set of all possible relations we can compute for the query
predicate in P . Defining this set reduces to defining the set
of all possible relations that each Alog rule r in P computes.

Let r be p :− q1, . . . , qn. Then we compute r as follows.
We know that each predicate qi is associated with a set of
relations Ri. If we select a relation Ri ∈ Ri for each qi,
then we can evaluate p (in the traditional Xlog semantics)
to obtain a relation R.

x p a h

x1 351000 351000 “Cozy”

x1 351000 5146 “Cozy”

x1 351000 2750 “Cozy”

x1 5146 351000 “Cozy”

x2 4700 4700 “HS”

houses

. .
 .

s

“Basktall”

“Champaign”

“Hoover”

“Lynneville”

schools

x p a h

x1

{ 351000,
5146,
2750 }

{ 351000,
5146,
2750 }

{“ Cozy”, “ Cozy house”, ... ,
“Vanhise High”, “High”}

x2

{ 619000,
3112,
4700 }

{ 619000,
3112,
4700 }

{“ Amazing”, “Amazing house”, ... ,
“Basktall HS”, “HS”}

houses

(d)

(e)

(a)

S1: houses(x,p,a,h) :- housePages(x), extractHouses(x,p,a,h)

S2: schools(s) :- schoolPages(y), extractSchools(y,s)

S3: Q(x,p,a,h) :- houses(x,p,a,h), schools(s), p>500000,

a>4500, approxMatch(h,s)

S4: extractHouses(x,p,a,h) :- from(x,p), from(x,a), from(x,h)

numeric(p)=yes, numeric(a)=yes

S5: extractSchools(y,s) :- from(y,s), bold-font(s)=yes

(b)

(c)

S’1: houses(x,<p>,<a>,<h>) :- housePages(x), extractHouses(x,p,a,h)

S’2: schools(s)? :- schoolPages(y), extractSchools(y,s)

S’3: Q(x,p,a,h) :- houses(x,p,a,h), schools(s), p>500000,

a>4500, approxMatch(h,s)

. .
 .

. .
 .

s

“Basktall” ?

“Champaign” ?

“Hoover” ?

“Lynneville” ?

schools

. .
 .

. .
 .

Figure 2: Alog program and execution.

Let the annotations of r be (f,A). Then we must apply
these annotations to R, in order to obtain the true set of
relations presented by p (when each qi receives a relation Ri

as the input). To do so, we first apply attribute annotations
A to R, as described in Definition 2. This produces a set of
relations RA. Next, if r has an existence annotation (i.e., f
is true), then we create the set of relations RAf , where each
relation in this set is a subset of a relation in RA. The set
RAf is then the true set of relations presented by p (when
each qi receives a relation Ri as the input). If f is false, then
RAf is set to be RA.

The set of all possible relations that rule r computes is
then the union of all sets RAf that can be computed as
described above (by assigning to the qi’s a different combi-
nation of the relations Ri’s).

Example 2.4. The following is a conceptual procedure to eval-
uate rule S′

3 in Figure 2.a over the set of possible relations for
houses and schools represented in Figure 2.e. Select one possi-
ble houses relation H and one possible schools relation S. Then,
evaluate S′

3 using H and S to produce an intermediate set of
possible relations (in this particular case, we produce a set with
just one possible relation because S′

3 does not have any annota-
tions). Repeat this process for every possible pair of houses and
schools relations H and S. The output of S′

3 is the union of all
intermediate sets of possible relations.

2.2.4 Executing, Revising, and Cleaning Up
Alog Programs

Once developer U has written an initial Alog program P
(which consists of the“skeleton”Xlog rules, description rules
for IE predicates, and possibly also annotations), he or she
can execute P to obtain an approximate extraction result
(see the next two sections).

Then, U can revise P by adding more domain constraints
to the description rules. To find effective constraints, U can
enlist the next-effort assistant, as Section 5 will discuss.

Eventually, either P has been revised to the point where it
produces precise IE results (in which case U can stop), or to
the point where U feels that adding more domain constraints
will not help improve the extraction result. In this latter
scenario, U may want to just write a “cleanup procedure”
in a procedural language (e.g., Perl) rather than continue to
revise P declaratively (by adding more domain constraints).

One such scenario occurs when an IE task involves a sub-
task that is hard to express declaratively. For example, sup-
pose that U wants to extract publication citations and their
last authors from DBLP. While it may be relatively easy to

extract citations and all of their authors by asserting domain
constraints declaratively, it may be cumbersome to extract
the last author (since Alog does not naturally handle ordered
sequences). Therefore, a more natural solution would be to
assert domain constraints to extract citations and their au-

thor list, and then write a cleanup procedure to extract the
individual authors and select the last author.

To incorporate a cleanup procedure g, U simply needs to
declare a new p-predicate p and associate g with it. After-
ward, U can use p in his or her Alog program just like any
other p-predicate.

3. REPRESENTING APPROXIMATE DATA
We now describe a data model to represent the approxi-

mate extracted data that Alog rules produce.

Approximate Tables: Recall from Section 2 that Alog

accounts for two types of approximation: the existence of
a tuple and the value of an attribute in a tuple. To rep-
resent these types, we can extend the relational model by
introducing approximate tables, or a-tables for short, where
an a-table is a multiset of a-tuples. An a-tuple is a tuple
(V1, . . . , Vn), where each Vi is a multiset of possible values.
An a-tuple may be annotated with a ‘?’, in which case it is
also called a maybe a-tuple [19]. Figure 2.e shows for exam-
ple a-tables for the houses and schools relations (here for
clarity we have omitted the set notation for the x attribute).

An a-table T represents the set of all possible relations
that can be constructed by (a) selecting a subset of the
maybe a-tuples and all non-maybe a-tuple in T , then (b) se-
lecting one possible value for each attribute in each a-tuple
selected in step (a).

Compact Tables: A-tables however are typically not suc-
cinct enough in our setting, where an Alog rule may produce
a huge number of possible extracted values. For example,
in Figure 2.e, the cells for attribute h in houses enumerate
every sub-span in each house page, and schools contains one
tuple for every bold sub-span in the school pages.

Therefore, iFlex employs compact tables, a much more
compact version of a-tables specifically designed for approxi-
mate extracted text. The key idea is to exploit the sequential
nature of text to “pack” the set of values of each cell into a
much smaller set of so-called assignments, when possible.

Toward this goal, we define two types of assignments: ex-

act and contain. An assignment exact(s) encodes a value
that is exactly span s (modulo an optional cast from string
to numeric). For example, exact(“92”) encodes value 92. As

x p a h

x1

{exact(351000),
exact(5146),
exact(2750)}

{exact(351000),
exact(5146),
exact(2750)}

{contain(“Cozy... High”)}

x2

{exact(619000),
exact(3112),
exact(4700)}

{exact(619000),
exact(3112),
exact(4700)}

{contain(“Amazing ... HS”)}

houses

s

expand({contain(“Basktall ... Champaign”), contain(“Hoover ... Lynneville”)}) ?

schools

Figure 3: Compact tables.

shorthand, we will sometimes write exact(s) as simply s. An
assignment contain(s) encodes all values that are s itself or
sub-spans of s. For example, the assignment contain(“Cherry
Hills”) encodes all values that are spans inside“Cherry Hills”
(e.g., “Ch”, “Cherry”, etc.).

Given this, each cell c in a compact table contains a mul-
tiset of assignments: c = {m1(s1), . . . , mn(sn)}, where each
mi is either exact or contain and each si is a span. Let
V(mi(si)) be the set of values encoded by mi(si). Then,
the set of values V(c) encoded by cell c is ∪n

i=1V(mi(si)).
For example, consider the first a-tuple in the houses rela-
tion in Figure 2.e, where the cell for attribute h has possible
values {“Cozy”, “Cozy house”,..., “Vanhise High”, “High”}.
Since these possible values are all the sub-spans of the span
“Cozy...High” from document x1, we can condense the cell
for h to be {contain(“Cozy...High”)}. Similarly, we can con-
dense the possible values for h in the second a-tuple with
another contain assignment. The compact table for houses

in Figure 3 shows the result of condensing the houses a-table
in Figure 2.e, using assignments.

Next, consider the schools table in Figure 2.e. We can con-
dense the a-tuples of this table by representing them all with
one compact tuple (expand({“Basktall”, . . . ,“Lynneville”)}).
In general, if t is a compact tuple with cells (c1, . . . , ci, . . . , cn),
where ci = expand(v1, . . . , vk), then t can be“expanded”into
the set of compact tuples obtained by replacing cell ci with
an assignment exact(vj): (c1, . . . , exact(vj), . . . , cn), where
1 ≤ j ≤ k. We call ci an expansion cell.

Expansion cells can still be condensed further. For exam-
ple, consider again the compact tuple (expand({“Basktall”,
. . . ,“Lynneville”)}). Notice that the values {“Basktall”, . . . ,
“Lynneville”)} is the set of all sub-spans of the two bold
spans “Basktall ... Champaign” in document y1 and“Hoover
... Lynneville” in document y2. Thus, we can condense these
values using two assignments contain(s1) and contain(s2),
where s1 =“Basktall ... Champaign” and s2 =“Hoover ...
Lynneville”. As a result, we can further condense the com-
pact tuple into an equivalent tuple (expand({contain(s1)},
contain(s2))). Figure 3 shows the result of condensing the
schools table in Figure 2.e, using expansion cells. We can
now define compact tables as follows:

Definition 3 (compact table). A compact table is a mul-
tiset of compact tuples. A compact tuple is a tuple of cells
(c1, . . . , cn) where each cell ci is a multiset of assignments or
an expansion cell. A compact tuple may optionally be designated
as a maybe compact tuple, denoted with a ‘?’.

A compact table T represents a set of possible relations
R. We can conceptually construct R by first converting T
into an a-table T ′, then converting T ′ into the set of possible
relations R, as described earlier.

We convert T into the a-table T ′ as follows. Let t ∈ T be
a compact tuple with expansion cell c. Then, we replace t

with the set of compact tuples T , as described earlier. If t is
a maybe compact tuple, then we modify each compact tuple
u ∈ T to be a maybe compact tuple. We continue this pro-
cess until T has no more expansion cells. Finally, we convert
T into the a-table T ′ by converting each cell c into one with a
set of possible values instead of assignments. That is, if cell
c has assignments {m1(s1), . . . ,mn(sn)}, then we replace
those assignments with the set of values ∪n

i=1V(mi(si))).
We note that the compact table representation is not a

complete model for approximate data in that it is not expres-
sive enough to represent any finite set of possible relations
[19]. For example, compact tables cannot represent mutual
exclusion among tuples (e.g., a relation contains either tuple
t1 or tuple t2, but not both).

Nevertheless, in this paper we start with compact tables
for two reasons. First, they can already express two common
types of extraction approximation (the existence of a tuple
and the value of an attribute), and thus can accommodate
a broad variety of IE scenarios. Second, they exploit text
properties, and hence enable efficient IE processing, as dis-
cussed in the next section. In future work we plan to explore
complete, but non-text-specific representations (e.g., those
in [19, 2]) for representing approximate IE results.

4. APPROXIMATE QUERY PROCESSING
We now describe the approximate query processor that

generates and executes an execution plan for an Alog pro-
gram P . First, we unfold the non-description rules in P to
produce a program P ′. Suppose the body of a rule r1 in
P has an IE predicate q, and that q appears in the head of
a description rule r2. Then we unfold r1 by replacing q in
r1 with the body of r2, unifying variables if necessary. We
repeat this process until only IE predicates with associated
procedures appear in the program. For example, in Figure
2.c, after unfolding rules S′

1, S
′
2, and S′

3 (using the descrip-
tion rules S4 and S5), rules S′

1, S
′
2, and S′

3 are transformed
into the rules shown in Figure 4.a.

Next, we construct a logical plan fragment h for each rule
r in P ′, as described in [21]. Initially, we ignore all an-
notations, compiling h as if it processes ordinary relations.
Figure 4.b shows the plan fragments we compile for the rules
in Figure 4.a (for simplicity, we ignore projections).

Then, we change each plan fragment h to work over com-
pact tables instead of ordinary relations, in three steps.
First, we convert each extensional relation into a compact
table by changing the contents of each cell that has a docu-
ment or span value v to instead have the value {exact(v)}.
Second, we modify each operator in h to take compact tables
as input and produce a compact table as output. Third, we
append an “annotation operator” ψ to the root of h, where
ψ converts the set of relations output by h into another set
of possible relations, taking into account the annotations of
the rule r that h corresponds to.

Finally, we form a final execution plan g by “stitching”
together the plan fragments, unifying variables if necessary
(see [21]). Figure 4.c shows the result of stitching together
the plan fragments in Figure 4.b based on the program in
Figure 4.a.

In the rest of this section, we address the challenges in-
volved to convert h to work over compact tables. We start by
showing how to adapt relational operators and p-predicates
to process compact tables. Then, we show how to efficiently
evaluate domain constraints to extract text from compact

housePages(x)

from(x,p)

σnumeric(p)=yes

housePages(x)

from(x,a)

σnumeric(a)=yes

housePages(x)

from(x,h)

S’1

schoolPages(y)

from(y,s)

σbold-font(s)=yes

S’2

houses(x,p,a,h) schools(s)

σp > 500000

σa > 4500

σapproxMatch(h,s)

S’3S’1: houses(x,<p>,<a>,<h>) :- housePages(x),
from(x,p), from(x,a), from(x,h),
numeric(p)=yes, numeric(a)=yes

S’2: schools(s)? :- schoolPages(y),

from(y,s), bold-font(s)=yes

S’3: Q(x,p,a,h) :- houses(x,p,a,h), schools(s),

p>500000, a>4500, approxMatch(h,s)

σapproxMatch(h,s)

schoolPages(y)

from(y,s)

σp > 500000

σa > 4500

ψ(true,{})
ψ(false,{p,a,h})

housePages(x)

from(x,p)

σnumeric(p)=yes

housePages(x)

from(x,a)

σnumeric(a)=yes)

housePages(x)

from(x,h)

σbold-font(s)=yes

(a) (b) (c)

Figure 4: Compiling Alog programs.

tables. Finally, we define the ψ operator that converts sets
of possible relations based on the annotations in the rules.

Recall that the compact table representation is not a com-
plete model. It turns out that compact tables also are not
closed under relational operators, meaning that when ap-
plying a relational operator to compact tables, we cannot
always exactly represent the output with another compact
table.

Therefore, in the rest of this section we develop operators
such that the execution plan produces an “approximate ap-
proximation” [19] for a program P . Specifically, we adopt
a superset semantics for query execution, meaning that the
result of the execution is guaranteed to be a superset of the
possible relations defined by the program. In future work,
we plan to explore other execution semantics (e.g., one that
minimizes the number of incorrect tuples).

4.1 Modifying Relational Operators and
P-Predicates

We now discuss how to modify relational operators (i.e.,
select, join, project) and p-predicates in execution plans to
work over compact tables. Projection is straightforward
since we ignore duplicate detection. Thus, we focus on se-
lections and θ-joins.

Consider evaluating a selection on a compact table. Intu-
itively, to ensure superset semantics we want the results to
contain all compact tuples that may satisfy the selection con-
dition. To illustrate, consider applying a selection condition
p > 500000 to the first compact tuple in the houses table in
Figure 3. Since x1 contains no possible price greater than
500000, we can safely drop this tuple. On the other hand,
we must keep the tuple for page x2 because it contains the
possible price 619000.

In general, we evaluate a selection σf with selection con-
dition f over a compact table T as follows. For each com-
pact tuple t ∈ T with cells (c1, . . . , cn), we evaluate the
selection condition f over every possible tuple (v1, . . . , vn),
where vi ∈ V(ci) for 1 ≤ i ≤ n. If f is satisfied for any

possible tuple, then we add t to T ′. Also, if f is satisfied
for some but not all of the possible tuples, we set t to be
a maybe compact tuple. To reduce the number of possible
tuples we consider, we enumerate possible values for only
those attributes involved in f (e.g., when selecting on the
price p, only enumerate possible values for the price).

We adapt θ-joins over compact tables T1, . . . , Tn in a sim-
ilar fashion except that we evaluate the θ condition on all
compact tuples in the Cartesian product T1× . . .×Tn. How-
ever, implementing certain other types of joins over compact
tables, such as approximate string joins, is significantly more
involved. In the full paper, we describe our solution for ap-
proximate string joins [20].

Finally, to evaluate a p-predicate p over a compact table
T , we take the union of the results of evaluating p over each

compact tuple t ∈ T . To evaluate p over a compact tuple
t, we first convert t into an equivalent set of compact tuples
U that have no expansion cells by repeatedly replacing each
expansion cell c in t with T (Section 3). Then, for each
compact tuple u ∈ U , we enumerate the possible tuples V
that u represents, and invoke p for each v ∈ V . Let p[v]
be the tuples produced by p with input tuple v. We then
convert p[v] into a set of compact tuples by making each cell
a set of assignments (i.e., by changing any cell with span
value s to be {exact(s)}). Finally, we set each tuple in p[v]
to be a maybe compact tuple if u represents more than one
possible tuple (i.e., if |V | > 1).

4.2 Optimizing Alog Rules
Consider the plan fragment σbold-font(s)=yes[from(y, s)]

of the plan from Figure 4.c. Conceptually, the IE predicate
from(y, s) extracts every possible span from an input docu-
ment y. To speed this up, in practice the from predicate in-
stead produces the compact tuple (y, expand({contain(y)}))
to avoid enumerating all possible spans in y. In general
suppose we apply from(y, s) to an input compact tuple (y),
where y is the set of assignments {m1(s1), . . . ,mn(sn)} (rep-
resenting possible values for y). Then, from(y, s) produces
compact tuple (y, s), where s is expand({contain(s1), . . . ,
contain(sn)}).

However, this can still result in slow execution when ap-
plying domain constraints. For example, suppose that in the
plan fragment σbold-font(s)=yes[from(y, s)], the from predi-
cate produces the compact tuple (y, expand(contain(y))). A
naive method to apply the domain constraint bold-font(s) =
yes would be to to enumerate all possible spans in y and keep
only those that are in bold font.

Instead, a more natural and efficient strategy would be to
scan document y once and find all maximal spans {s1, . . . , sn}
in y that are in bold font (e.g., by using a Perl regular expres-
sion). Then, we output the set of assignments {contain(s1),
. . . , contain(sn)}. This way, we avoid enumerating all possi-
ble spans in y.

In general, we optimize selections involving domain con-
straints as follows. First, in iFlex each text feature f is asso-
ciated with two procedures Verify and Refine. Verify(s, f, v)
returns true if f(s) = v, and false otherwise. Refine(s, f, v)
returns all maximal sub-spans s′ of s for which Verify(s′, f, v)
is true. A sub-span s′ is maximal if we cannot extend it ei-
ther to the left or the right to obtain a sub-span s′′ for which
Verify(s′′, f, v) is true.

Then, to evaluate a selection σk where k is a domain con-
straint, we use Verify and Refine as follows. Let T ′ be the
result of evaluating σk over a compact table T , where k is
the constraint f(a) = v. Then T ′ will be a compact table
with the same structure as the input T , except that each
cell for attribute a has been transformed by applying k. In
particular, let c and c′ be two corresponding cells of T and

T ′ for attribute a, and let c = {m1(s1), . . . ,mn(sn)}. Then

c′ = ∪n
i=1 A(k,mi(si))

where A(k,mi(si)) denotes the set of assignments resulting
from applying the constraint k to assignment mi(si). Also,
if c is an expansion cell we set c′ to be an expansion cell.

We now describe how to compute A(k,mi(si)). Recall
that mi(si) encodes a set of values for attribute a. Our goal
is to remove as many values as possible (from mi(si)) that
do not satisfy Verify(a, f, v). To do so, we consider two cases:

Case 1: If mi(si) is an exact assignment, then we can
simply invoke Verify(si, f, v). Thus, A(k,mi(si)) returns the
empty set if Verify(si, f, v) evaluates to false, and returns
mi(si) otherwise.

Case 2: If mi(si) is a contain assignment, then we itera-
tively refine si. To do this we call Refine(si, f, v) to obtain
all maximal sub-spans x in si such that f(x) = v. For each
such region x, Refine produces an assignment contain(x) or
exact(x). To see why, consider the Web page snippet “Price:

35.99. Only two left.” Suppose k1 is “italics(price) = yes”.
Then price is in italics and hence can be any sub-span of
“Price: 35.99”. Consequently, applying Refine to the above
snippet will produce contain(“Price: 35.99”). On the other
hand, consider the snippet “Price: 35.99. Only two left.”
Suppose k1 is “italics(price) = distinct-yes”. Then we know
that price is in italics, but its surrounding text is not. Con-
sequently, it can only be 35.99, and applying Refine to the
above snippet will produce exact(“35.99”).

There is however a minor complication when evaluating
Alog rules involving more than one domain constraint for
an attribute a. Let k1, . . . , kn be the constraints we need to
apply for an attribute a in an execution plan. Suppose refin-
ing an assignment with constraint k1 yields an assignment
m(s), and further refining m(s) with constraint k2 yields an
assignment m′(s′). Then it is possible that span s′ does not
satisfy k1. However, each span that A(k2, mi(si)) finally
outputs must satisfy all constraints k1, . . . , kn. Hence, we
always check all sub-spans created with kj for violation of
k1, k2, . . . , kj−1. It is easy to prove that any order of apply-
ing k1, . . . , kn produces the same final set of assignments.

4.3 Defining the Annotation Operator
As the final step to generate an execution plan for Alog

program P , we define the annotation operator ψ that con-
verts a set of possible relations by applying the annotations
of the rules in P . Suppose r is an Alog rule with annotations
(f,A), and suppose h is a plan fragment we have produced
for a rule r, ignoring the annotations of r. Then, the out-
put of the plan ψ(f,A)(h) is the set of the possible relations
defined by r (taking into account the annotations (f,A)).

Implementing ψ to handle existence annotations is trivial:
we make every compact tuple that ψ outputs to be a maybe
compact tuple. Hence, in the rest of this section we focus
on handling attribute annotations.

Suppose we are evaluating the plan ψ(f,A)(h), and that
plan fragment h produces compact table S. Our default
strategy is to first convert S into an a-table T (see Section
3), evaluate ψ over T , and then convert the result back into
another compact table. Thus, in the rest of this section, we
describe BAnnotate, an implementation of ψ that takes as
input an a-table T and outputs another a-table T ′. Convert-
ing between a-tables and compact tables is straightforward
and thus we do not discuss it further. In the full paper we

name age

{“Alice”, “Bob” } {5}

{“Alice”, “Carol”} {6, 7}

{“Dave”} {8,9}

(a)

name age

{“Alice”} {5,6,7} ?

{“Bob”} {5} ?

{“Carol”} {6,7} ?

{“Dave”} {8,9}

(b)

(“Alice”) {5, 6, 7}

(“Bob”) {5}

(“Carol”) {6, 7}

(“Dave”) {8,9}

(c)

T1 T2

Figure 5: Handling attribute annotations.

discuss optimizing this process to evaluate ψ over compact
tables directly, without converting them to a-tables [20].

The BAnnotate Algorithm: Consider evaluating the
following Alog rule r: person(name, 〈age〉) : − q1, . . . , qn.
This rule r defines a set of possible relations R, each with at-
tributes (name, age). Suppose that we have compiled a plan
fragment h for rule r, ignoring the attribute annotation in
r for age. Then, when evaluating the plan ψ(false,{age})(h),
the BAnnotate algorithm for the ψ operator takes the a-table
produced by h and outputs another a-table that represents
a superset of R.

Suppose that h produces the a-table T1, shown in Fig-
ure 5.a. Intuitively, because of the attribute annotation for
age in rule r, any possible relation in R will have at most
one tuple for each of the four distinct possible name values
(“Alice”, “Bob”, “Carol”, or “Dave”).

Therefore, BAnnotate outputs the a-table T2, shown in
Figure 5.b, which has one a-tuple for each of the possible
distinct name values in T1. In each a-tuple (name, age),
name has one possible distinct name value n, and age is the
set of all age values a that can be associated with n (i.e., the
tuple (n, a) appears in at least one possible relation in R).
The first three a-tuples in T2 (for the three names “Alice”,
“Bob”, and “Carol”) are maybe a-tuples because not all pos-
sible relations have tuples for those three names. However,
the last a-tuple ({“Dave”}, {8, 9}) is not a maybe a-tuple
because every possible relation in R will contain a tuple for
“Dave” (either (“Dave”, 8) or (“Dave”, 9)).

In general, suppose we are evaluating an operator ψ(f,A)

over an input a-table T with attributes (a1, . . . , an). For
simplicity, for now assume that f = false, and that A =
{an} (i.e., we are only considering one attribute annotation
for attribute an). Then, we proceed in two steps.

In the first step, we create an index I over T . Each entry
in I is a pair (n, V) where the key n is a tuple of values
(v1, . . . , vn−1), and V is a set of all possible values of v such
that the tuple (v1, . . . , vn−1, v) appears in at least one pos-
sible relation represented by T . To build this index, for
each a-tuple t ∈ T , we iterate through every possible tuple
(v1, . . . , vn) that t represents, and add vn to the values asso-
ciated with the key (v1, . . . , vn−1) in I (creating a new entry
if necessary). For example, Figure 5.c shows the index we
build for the a-table T1, given an attribute annotation for
age.

In the second step, we use I to construct the output a-
table T ′. First, we set T ′ to be initially empty. Then, for
each entry (n, V) in I , where n is the tuple (v1, . . . , vn−1), we
add a new a-tuple t to T ′, where t = ({v1}, . . . , {vn−1}, V).
Finally, we set t to be a maybe a-tuple if not all possi-
ble relations represented by input a-table T has a tuple for
(v1, . . . , vn−1). That is, t is a maybe a-tuple iff T ′ does not
contain any a-tuple t = ({v1}, . . . , {vn−1}, U) for some non-
empty set of values U . For example, in T2 in Figure 5.b, the
first output a-tuple ({“Alice”}, {5, 6, 7}) is a maybe a-tuple
because the input table T1 has no a-tuple ({“Alice”}, U)

for any set of values U . On the other hand, the a-tuple
({“Dave”}, {8, 9}) in T2 is not a maybe a-tuple because a-
table T1 has an a-tuple ({“Dave”}, U), where U = {8, 9}.

Suppose we are evaluating ψ(f,A) over a-table T with at-
tributes (a1, . . . , an), where A has multiple attribute annota-
tions. Without loss of generality, suppose A = {a1, . . . , ak}.
Then, we perform a process similar to the one above, except
that we construct an index Ii for each attribute ai ∈ A.
Note that each index will have the same set of keys. Then,
for each key n in the indexes we construct an output a-
tuple. Let n = (v1, . . . , vk). Then, we construct the a-tuple
({v1}, . . . , {vk}, Uk+1, . . . , Un), where Ui is the set of values
associated with key n in index Ii for k < i ≤ n.

5. THE NEXT-EFFORT ASSISTANT
The next-effort assistant can suggest ways to refine the

current IE program by asking the developer U questions
such as “is price in bold font?”. If U chooses to answer the
question, iFlex forms a new constraint from the answer and
incorporates the constraint into the IE program. We now
discuss this process in detail.

5.1 Question Selection Strategies
The Space of Questions: We consider questions of the
form “what is the value of feature f for attribute a?”, where
f is a text span feature (see Section 2.2.2). Example features
include (but are not limited to) bold-font, italic-font, hy-

perlinked, preceded-by, followed-by, min-value, and max-value.
For the above question, suppose that U answers v. Then
iFlex adds the predicate f(a) = v to the description rule
that that “implements” the IE predicate that extracts at-
tribute a. Thus, at any point in time the space of possible

questions contain all (feature,attribute) questions whose an-
swers are still unknown. We now discuss two strategies to
select the next best question from this space.

Sequential Strategy: This strategy selects questions based
on a predefined order over the question space. Currently, we
rank the attributes in decreasing “importance”, in a domain-
independent fashion, taking into account factors such as
whether an attribute participates in a join, commonly ap-
pears in a variety of Web pages, etc. Then given the ranked
list a1, . . . , an, we first ask questions related to attribute a1.
Once these are exhausted, we move to a2, and so on.

Simulation Strategy: This strategy selects the question
that is expected to reduce by the largest amount the size of
the current result. Consider a question d regarding feature
f of attribute a. Let V be the set of possible values for f ,
and P be the current Alog program being developed. Also,
let g(P, (a, f, v)) be a new Alog program that is the result of
adding f(a) = v to the rule in P that is extracting a. Then
the expected number of results after asking d is

X

v∈V

Pr[X answers v|asks d] · |exec(g(P, (a, f, v)))|,

where |exec(g(P, (a, f, v)))| is the size of the result that would
be obtained if iFlex executes the modified Alog program. We
compute this quantity by carrying out the execution, effec-
tively simulating the case that U answers v.

Each probability Pr[answers v|d] is set to be (1−α)/|V |,
where α is the probability that U chooses not to answer the
question (e.g., by selecting the option“I do not know”). This
makes the simplifying assumption that U gives each answer
v ∈ V with equal probability. We are currently examin-

Domain Data Tables Table Descriptions Num
Pages

Movies 3 pages
Ebert Roger Ebert's Greatest Movies List 1
IMDB IMDB Top 250 Movies 1
Prasanna Prasanna Top Movies 1

DBLP 85 pages

Garcia-Molina Hector Garcia-Molina Pubs List 1
SIGMOD SIGMOD Papers '75-'05 31
ICDE ICDE Papers '84-'05 22
VLDB VLDB Papers '75-'05 31

Books 749 pages
Amazon Amazon query on 'Database' 249
Barnes Barnes & Noble query on 'Database' 500

Table 1: Real-world domains for our experiments.

ing how to better estimate these probabilities from the data
being queried.

Simulating |g(P, (a, f, v))| for all feature/value pairs can
be costly. Hence, we optimize this process using both subset
evaluation and reuse, as described in Section 5.2.

Notifying the Developer of Convergence: To provide
more effective interaction, the assistant detects and notifies
U when the result for a query appears to have “converged”
to the correct result. To do so, in each iteration it monitors
both the number of tuples in the result set as well as the
number of assignments produced by the extraction process.
If these numbers remain constant for k iterations (currently
set to 3), the assistant notifies U that convergence appears
to have happened. Then, U can either stop or continue in
more iterations until he or she is satisfied. In Section 6.2 we
evaluate the effectiveness of this notification method.

5.1.1 Discussion
We now discuss general issues regarding the assistant.

Ease of Answering Questions: First, the assistant should
ask questions that the developer can answer quickly and ac-
curately. Toward this end, we have carefully designed the
features f1, . . . , fn so that the resulting questions focus on
the appearance (e.g., bold-font), location (e.g., does this at-
tribute lie entirely in the first half of the page?), and se-

mantics (e.g., what is a maximal value for price?) of the at-
tributes. In our experiments we found that developers were
able to answer these questions quickly and accurately (after
some visual inspection; if unsure, the developer answered “I
do not know”).

More Types of Feedback: The assistant can be extended
to handle more types of feedback, beyond question answer-
ing. For example, it can ask the developer to mark up a
sample title. If this title is bold, then the assistant can infer
that for the question “is title bold?”, the answer cannot be
“no” (but can be“yes” or “sometimes”). Hence, when search-
ing for the next best question, the assistant does not have to
simulate the case of the developer’s answering “no” to this
question, thus saving time. Exploiting other types of feed-
back effectively is an important future research direction.

5.2 Multi-iteration Optimization
Recall that during the development process, the devel-

oper iteratively refines and executes IE programs, and that
in each iteration the assistant simulates program execution
to search for promising questions for the developer. Con-
sequently, optimizing program execution across iterations is
critical to reduce development time as well as to maximize
the utility of the assistant. For this goal, we employ two
complementary solutions: reuse and subset evaluation.

The idea behind reuse is simple. When executing plan
p in iteration n, we keep track of all intermediate results

Domain IE Task Description Initial Program

Movies

T1 IMDB top movies with fewer than 25,000 votes T1(title) :- IMDB(x), extractIMDB(x,title,votes), votes < 25000
T2 Ebert top movies made between 1950 and 1970 T2(title) :- Ebert(x), extractEbert(x,title,year), 1950 ≤ year, year < 1970

T3 Movie titles that occur in IMDB, Ebert, and Prasanna’s top movies
T3(title1) :- IMDB(x), Ebert(y), Prasanna(z), extractIMDB(x,title1),

extractEbert(y, title2), extractPrassana(z, title3),
similar(title1,title2), similar(title2,title3)

DBLP

T4 Garcia-Molina journal pubs T4(title) :- Garcia-Molina(x), extractPublications(x, title, journalYear),
journalYear ≠ NULL

T5 VLDB short publications of 5 or fewer pages T5(title) :- VLDB(x), extractVLDB(x, title, firstPage, lastPage),
lastPage < firstPage + 5

T6 SIGMOD/ICDE pubs sharing authors T6(title) :- SIGMOD(x), extractSIGMOD(x,title,authors1),
ICDE(y), extractICDE(y,title,authors2), similar(authors1,authors2)

Books

T7 B&N books with price over $100 T7(title) :- Barnes(x), extractBarnes(x,title,b&n_price), b&n_price > 100

T8 Amazon books whose list price equals the new price and used
price is less than the new price

T8(title) :- Amazon(x), extractAmazon(x,listPrice,newPrice,usedPrice),
listPrice = newPrice, usedPrice < newPrice

T9 Books that are cheaper at Amazon than at Barnes
T9(title1) :- Amazon(x), extractAmazon(x,title1,newPrice),

Barnes(y), extractBarnes(x,title2,b&n_price),
similar(title1,title2), newPrice < b&n_price

Table 2: IE tasks for our experiments.

(e.g., intermediate compact tables). Let Cn be the set of
these results. Then when executing p in iteration (n + 1),
we reuse Cn to avoid re-extracting and re-executing from the
scratch. To do so, we (a) examine the developer’s feedback
in iteration (n+1) to find new attributes that this feedback
“touches”, (b) re-extract values for these attributes using Cn,
then (c) re-execute the parts of plan p that may possibly
have changed, again using Cn. We omit further details for
space reasons.

We employ reuse in conjunction with a new technique,
subset evaluation, for the purpose of selecting questions to
suggest to the developer. The idea is to simply execute
plan p over only a subset of the input documents, thus dra-
matically reducing execution time. Currently, the subset
is created via random sampling (though more sophisticated
creation methods are possible), and its size is set to be 5-
30% of the original set, depending on how large this original
set is. iFlex employs reuse as discussed above for both subset
evaluation and full execution.

6. EMPIRICAL EVALUATION
We now describe experiments to evaluate the effective-

ness of iFlex. We start with experiments on three real-world
domains (Sections 6.1-6.2). Then, we describe experiments
with the data of DBLife, a currently deployed IE application
(Section 6.3).

Domains and IE Tasks: We considered three real-world
domains for our experiments: Movies, DBLP, and Books.
In each domain we first downloaded a set of Web pages (be-
tween 3-749). Next, for each domain we partitioned the
pages into groups, where each group had related content.
Then within each group we divided each page into a set of
records (e.g., a fragment of an Amazon page describing in-
formation about one book) and stored the records as tuples
in a table. Table 1 describes the characteristics of these
tables.

Table 2 describes the nine IE tasks that we perform over
the tables, and their initial Xlog program (before adding
predicate description rules, annotations, and cleanup pro-
cedures). These tasks require extracting a variety of at-
tributes, such as the title and year of movies from IMBD,
Ebert, and Prasanna pages, the title, journal year, and page
numbers of publications from various DBLP pages, and the
title, and prices of books from Barnes and Amazon pages.

Methods: To evaluate iFlex, we compare it with Xlog, the
method in which we write a precise Xlog program (and im-

Task Num Tuples
per Table Manual Xlog iFlex

T1
10 1 28 1
100 1 29 1
250 3 29 1

T2
10 1 31 1
100 1 31 1
242 3 31 1

T3
10 1 58 1
100 14 58 10 (8)

242-517 80 58 16 (12)

T4
10 1 34 1
100 2 34 1
312 5 34 1

T5
100 4 37 1
500 19 37 1
2136 ― 37 3

T6
100 76 55 6
500 ― 56 8

1787-1798 ― 57 23 (8)

T7
100 4 33 1
500 20 33 1
5000 ― 33 8

T8
100 4 42 3
500 19 43 4
2490 ― 43 5

T9
100 137 57 31
500 ― 57 34

2490-5000 ― 97 73 (6)

Table 3: Run time performance over 27 IE tasks.

plement any necessary IE predicate using Perl code). As a
sanity-check baseline, we also consider Manual, the method
in which we manually inspect and collect the answers from
the raw data.

6.1 Overall Performance
Table 3 shows the run time of the Manual, Xlog, and iFlex

methods. The first column lists the nine IE tasks described
earlier. The second column lists for each task three scenar-
ios, where the first two scenarios require performing the IE
tasks on a subset of the tuples (achieved via random sam-
pling of the input pages), and the third scenario involves all
tuples for each table.

For the 27 scenarios, the remaining columns show the run
times of the three different methods. All times (averaged
over 1-3 volunteers) are rounded to the minutes, and are
counted from when the method is shown the Web pages, un-
til when the correct result is produced (for non-iFlex meth-
ods) or when the next-effort assistant of iFlex notifies the
developer that it has converged. In the iFlex column, the
total run time is shown first, and the portion of that time
that was spent writing cleanup code (if required) is shown
in parenthesis.

Domain Task
Num

Tuples per
Table

Num
Correct
Tuples

Num Tuples After Each Iteration (bold/italic entries when in reuse mode) Num
Questions

Asked

Total
Time
(min)

Superset
Size1 2 3 4 5 6 7 8 9 10

Movies
T1 10 0 10 0 2 0.18 100%
T2 100 31 18 18 18 31 4 0.37 100%
T3 242-517 61 32 21 20 7 4 4 4 98 12 3.92 161%

DBLP
T4 10 5 10 5 5 5 6 0.48 100%
T5 500 119 60 60 119 119 119 8 1.32 100%
T6 500 318 199 199 66 66 1 1 1 318 12 7.72 100%

Books
T7 500 52 60 10 10 10 52 6 1.27 100%
T8 2490 537 60 60 12 12 12 12 537 398 10 5.03 100%
T9 100 45 900 865 515 473 471 398 18 18 18 45 16 30.81 100%

Table 4: Effects of soliciting domain knowledge in iFlex.

The results show that, as expected, Manual does not scale
to large data sets. We stopped Manual in several cases
(marked with “–” in the figure), after it became clear that
the method was not scalable. Xlog scales better; it spent
most of the time in writing and debugging the Perl code
corresponding to the various IE predicates. However, iFlex

achieves significantly better performance than Xlog, reduc-
ing run time by 25-98% in all 27 scenarios.

The run-time results without the cleanup time clearly sug-
gest that iFlex can produce meaningful IE results quickly
(much earlier than can be done with the precise-IE method
Xlog).

The run-time results with the cleanup time suggest that
iFlex can also produce precise IE results much faster than can
be achieved with Xlog. This is due to two reasons. First, de-
velopers can declaratively write domain constraints quickly
in iFlex, rather than spend time implementing these con-
straints in procedural languages, as is the case with Xlog.
Second, the next-effort assistant can help the developers re-
fine the IE programs effectively, as we discuss below.

6.2 Effectiveness of the Next-Effort Assistant
Recall that the next-effort assistant poses questions to the

developer (to add constraints), and notifies the developer
when the IE program has converged. We found that by just
answering those questions, iFlex converged to the correct re-
sult in 23 out of 27 scenarios (described earlier). In the
four remaining cases (not shown due to space limitation), it
converged to 170%, 161%, 114%, and 102% of the correct re-
sult set, respectively. The cases of 170% and 161% occurred
when the number of tuples returned was relatively small (22
and 98 tuples), which could be easily corrected with manual
post-processing. The results suggest that the assistant can
effectively help the developer refine a best-effort IE program
and notify him or her of convergence.

In the next step, we evaluated the effectiveness of the
next-effort assistant in iterating with the developer to solicit
feedback. Table 4 shows iFlex’s performance per iteration,
in nine randomly selected IE scenarios. In each iteration
we report (among others) the number of tuples in the re-
sult, and the execution method, i.e., subset evaluation, in-
dicated by number in normal font, or reuse, by number in
bold italic font. For example, task T7 over 500 tuples started
in subset evaluation mode, producing 60 tuples for the first
iteration. After interacting with the developer in only one
iteration, iFlex reduced the result to 10 tuples. After two
more iterations with no further reduction, iFlex converged,
and switched to reuse mode to compute the complete result.
Thus after only 6 questions in 5 iterations, iFlex produced
the correct 52 tuples. The results in Table 4 suggest that
the assistant solicited knowledge effectively, to converge in
only a few iterations (2-10) to highly accurate result sets.

We also compared the sequential and simulation schemes

Domain Task Tuples
/Table

Correct
Tuples

Guidance
Scheme

Num
Iterations

Questions
Asked

Total Time
(min)

Superset
Size

Movies

T1 100 31
Seq 5 6 0.45 100%
Sim 5 6 0.78 100%

T2 100 31
Seq 4 4 0.28 100%
Sim 4 4 0.37 100%

T3 100 13
Seq 5 8 1.12 1762%
Sim 6 10 2.18 170%

DBLP

T4 100 21
Seq 5 6 0.45 100%
Sim 5 6 0.83 100%

T5 500 119
Seq 4 6 0.70 100%
Sim 5 8 1.32 100%

T6 500 318
Seq 4 6 3.95 4243%
Sim 8 12 7.72 100%

Books

T7 500 52
Seq 5 6 0.63 100%
Sim 5 6 1.27 100%

T8 500 155
Seq 5 6 0.82 233%
Sim 7 10 3.72 100%

T9 500 238
Seq 6 8 18.47 43299%
Sim 10 16 33.82 100%

Table 5: Evaluating question selection strategies.

for question selection. For each of the nine IE scenarios in
Table 5, we measured the performance of iFlex using each
scheme. In all cases sequential was faster, because ques-
tion selection was very efficient (i.e., no simulation required).
However, in four out of nine cases the questions asked via
sequential selection were not nearly as useful for zooming in
on the correct results as those asked via simulation. The
extracted results were as much as 433 times larger than the
correct results, suggesting that the better results obtained
via simulation are well worth the additional cost when se-
lecting questions.

6.3 Evaluation on a Real-World System
Finally, we evaluated the practicality of iFlex by employ-

ing iFlex over one day’s snapshot (10007 Web pages, 198
MB) of the crawled data of DBLife, a structured Web por-
tal for the database community that we have been develop-
ing [7]. This data set was significantly more heterogeneous
than those used in the above domains (Movies, DBLP and
Books), and included a wide variety of Web pages such as
personal homepages, conference homepages, and the DB-

World mailing list.
We employed iFlex to write three IE programs (described

in Figure 6) that correspond to similar programs in DBLife.
We found that iFlex was flexible enough to accommodate
relatively complex IE tasks over heterogeneous data such as
those found in DBLife. A key reason for this is that iFlex pro-
vides a rich library of built-in text features that includes not
only “syntactic” features (e.g., numeric, bold-font), but also
“higher-level” features. Examples of such features include
prec-label-contains which indicates whether the preceding la-
bel (i.e., a header of a section in the text) of a span contains
a certain string, and in-list that indicates whether a span is
part of a list. For instance, to complete the program for
the panel task (Figure 6), we implemented the two following
predicate descriptions:
extractPanelist(d, x) : −match(d, p, x), personPattern(p),

prec label contains(x,“panel”) = yes,
prec label max dist(x) = 700

Task Description Query
iFlex
(min)

Panel
Find (x,y) where
person x is a panelist
at conference y

onPanel(x,y) :- docs(d), extractPanelists(d,x),
extractConference(d,y)

54 (5)

Project
Find (x,y) where
person x works on
project y

worksOn(x,y) :- docs(d), extractOwner(d,x),
extractProjects(d,y)

44 (6)

Chair
Find (x,y,z) where
person x is a chair of
type y at conference z

chair(x,y,z) :- docs(d), extractChairs(d,x),
extractConference(d,y),
extractType(x,z)

60 (11)

Table 6: Experiments on DBLife data.

extractConf(d, y) :− from(d, y), inT itle(y) = yes,
starts with(y, “[A-Z][A-Z][A-Z]+”),
ends with(y, “0\d|19\d\d|20\d\d”),

max length(y) = 18

Figure 6 shows that developing IE programs that produce
exact IE results took 44-60 minutes each, using iFlex. In
contrast, developing comparable precise-IE IE programs in
DBLife, using Perl scripts, took 2-3 hours (we do not keep
track of the exact amount of time, as they were developed
several years ago). This result further suggests that iFlex

can help reduce the time it takes to develop IE programs.
For the above three IE tasks, the final IE programs ob-

tained with iFlex took 104, 351, and 107 seconds to run,
respectively. These times were comparable to the execution
times of the corresponding IE programs in DBLife (developed
in Perl and tuned extensively several years ago). While anec-
dotal, this result does suggest that the approximate query
processor proves quite efficient even on large data sets.

7. RELATED WORK
Information extraction has received much attention (e.g.,

[13, 12, 5, 21, 8, 18], see also [1, 11] for recent tutorials), and
many solutions have been proposed to make developing IE
programs easier. These include compositional frameworks
[12, 5] as well as declarative languages [13, 21]. However,
these solutions are difficult to use for best-effort IE because
they provide little or no support for writing approximate IE
programs with well-defined semantics, as iFlex does. Notable
exceptions are [9, 13, 8]. These works propose declarative
languages to write IE programs that may produce approxi-
mate results. These languages however do not have an ex-
plicit possible-worlds semantics, as Alog does.

Recent work has shown how to generate and represent
approximate IE results from probabilistic graphical models
(e.g. CRFs), using a model similar to a-tables [14]. In con-
trast, iFlex produces approximate IE results using a declar-
ative language, and uses compact tables to efficiently rep-
resent highly approximate extracted data that often arises
in best-effort IE. Many other works have studied represent-
ing and processing approximate or uncertain data in general
(e.g., [3, 2, 6, 4, 15]). However, they have not considered the
text-specific challenges we address, such as representing the
large number of possible extracted values a best-effort IE
program may produce.

The next-effort assistant of iFlex is similar in spirit to
soliciting user feedback in a dataspace system, as described
in [16]. Also, the iFlex system builds on an earlier work on
approximate wrapper processing [17]. Finally, the control
project [15] has also studied interactive query processing,
but for data analysis in relational settings, not for IE over
text as in our current work.

8. CONCLUSION AND FUTURE WORK
Despite recent advances, writing IE programs remains a

difficult problem, largely because developers often try to ob-
tain precise IE results. To address this problem, we have
proposed iFlex, an approach that relaxes the precise-IE re-
quirement to enable best-effort IE. We have described how
developers can use iFlex to quickly write an initial approx-
imate IE program P , obtain approximate results quickly,
then refine P to obtain increasingly more precise results. As
a near-term future work we plan to consider more expres-
sive languages and data models for approximate IE. For the
longer term, it would be interesting to consider how iFlex

can be applied to other contexts, such as best-effort data
integration [10] that seeks to provide approximate answers
over a set of data sources. This context can potentially ben-
efit from the ideas of best-effort IE, query processing, and
developer interaction described in iFlex.

9. REFERENCES
[1] E. Agichtein and S. Sarawagi. Scalable information extraction

and integration. In KDD-06.

[2] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and
simple relational processing of uncertain data. In ICDE-08.

[3] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB-06.

[4] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized
stratified sampling for approximate query processing. ACM
Trans. Database Syst., 32(2):9, 2007.

[5] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A framework and graphical development environment
for robust NLP tools and applications. In ACL-2002.

[6] N. Dalvi and D. Suciu. Answering queries from statistics and
probabilistic views. In VLDB-05.

[7] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan.
Building structured Web data portals: a top-down,
compositional, and incremental approach. In VLDB-07.

[8] Y. Ding, D. W. Embley, and S. W. Liddle. Automatic creation
and simplified querying of semantic Web content: An approach
based on information-extraction ontologies. In ASWC-06.

[9] Y. Ding, D. W. Embley, and S. W. Liddle. Enriching OWL
with instance recognition semantics for automated semantic
annotation. In ER Workshops, 2007.

[10] A. Doan. Best-effort data integration (position statement). In
NSF/EPA/ONR/NARA/AHRQ/NCO Workshop on Data
Integration, 2006.

[11] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing
information extraction: State of the art and research directions.
In SIGMOD-06.

[12] D. Ferrucci and A. Lally. UIMA: An architectural approach to
unstructured information processing in the corporate research
environment. Nat. Lang. Eng., 10(3-4):327–348, 2004.

[13] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and
S. Flesca. The Lixto data extraction project: Back and forth
between theory and practice. In PODS-04.

[14] R. Gupta and S. Sarawagi. Creating probabilistic databases
from information extraction models. In VLDB-06.

[15] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman, T. Roth, and P. J. Haas. Interactive data analysis:
The CONTROL project. Computer, 32(8):51–59, 1999.

[16] S. Jeffery, M. Franklin, and A. Halevy. Pay-as-you-go user
feedback for dataspace systems. In SIGMOD-08.

[17] R. McCann. “Efficient data integration: Automation,
collaboration, and relaxation,” Ph.D. dissertation, University of
Illinois, Urbana-Champaign, 2007. [Online]. Available:
http://dblife.cs.wisc.edu/people/mccann/papers/phd thesis.pdf

[18] B. Rosenfeld and R. Feldman. High-performance unsupervised
relation extraction from large corpora. In ICDM-06.

[19] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom.
Working models for uncertain data. In ICDE-06.

[20] W. Shen, P. DeRose, R. McCann, R. Ramakrishnan, and
A. Doan. Towards best-effort information extraction. Technical
report, 2008.

[21] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. In VLDB-07.

