
OPTIMIZATION-BASED MACHINE LEARNING AND DATA MINING

by

Edward W. Wild III

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2008

i

Dedicated to Mom, Dad, Bill, Amanda and Julianna.

ii

ACKNOWLEDGMENTS

I wish to thank my adviser, Olvi Mangasarian, and the other members of the committee:

Michael Ferris, Robert Meyer, Jude Shavlik, Grace Wahba, and Jerry Zhu. Also, I wish to

thank my coauthors: Glenn Fung, Rich Maclin, Lisa Torrey, and Trevor Walker. Hector

Corrada Bravo, Greg Quinn, and Nicholas LeRoy provided assistance with Condor, David

Musicant provided helpful feedback on the material covered in Chapter 2, and Soumya Ray

provided access to datasets used in Chapter 8. I also wish to thank my former office mate,

Michael Thompson, the AI Reading Group, the research groups of Grace Wahba and Sündüz

Keleş, Jim Doherty and the members of the UW Big Band, and everyone else in the UW

community that I have had the fortune to interact with these past six years. Finally, I want

to thank Ray Mooney of the University of Texas for getting me started.

DISCARD THIS PAGE

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

ABSTRACT . xv

1 Introduction . 1

1.1 Notation . 5
1.2 Support vector machines . 7

1.2.1 1-norm support vector machine approximation 8
1.2.2 1-norm support vector machine classification 8
1.2.3 Proximal support vector machine classification 9

2 Knowledge-Based Kernel Approximation 11

2.1 Prior knowledge for a linear kernel approximation 11
2.2 Knowledge-based nonlinear kernel approximation 14
2.3 Numerical experiments . 17

2.3.1 One-dimensional sinc function . 17
2.3.2 Two-dimensional sinc function . 18
2.3.3 Two-dimensional hyperboloid function 21
2.3.4 Predicting lymph node metastasis . 23
2.3.5 Reinforcement learning . 24

3 Nonlinear Knowledge in Kernel Machines 27

3.1 General linear programming formulation . 28
3.2 Knowledge-based kernel approximation . 31
3.3 Knowledge-based kernel classification . 31
3.4 Proximal knowledge-based classification . 32
3.5 Numerical experience . 36

3.5.1 Approximation datasets . 37

iv

Page

3.5.2 Classification datasets . 42
3.6 Comparing linear programming and proximal knowledge-based classification 48

3.6.1 Generating prior knowledge from ordinary classification datasets . . . 51

4 Privacy-Preserving Classification via Random Kernels 55

4.1 Comparison of a random kernel to full and reduced kernels 56
4.2 Privacy-preserving linear classifier for vertically partitioned data 60
4.3 Computational results for vertically partitioned data 63
4.4 Privacy-preserving linear classifier for horizontally partitioned data 71
4.5 Computational results for horizontally partitioned data 74

5 Feature-Selecting k-Median Algorithm . 80

5.1 Feature-selecting k-median (FSKM) theory and algorithm 80
5.2 Computational results . 83

6 Feature Selection for Nonlinear Kernel Support Vector Machines 92

6.1 Reduced Feature Support Vector Machine (RFSVM) Formulation and
Algorithm . 93

6.2 Computational results . 96
6.2.1 UCI datasets . 97
6.2.2 NDCC data . 101

7 Generalized Eigenvalue Proximal Support Vector Machines 104

7.1 The multiplane linear kernel classifier . 104
7.2 The multisurface nonlinear kernel classifier 110
7.3 Numerical testing and comparisons . 112

8 Multiple-Instance Classification . 117

8.1 Problem formulation . 118
8.1.1 Linear kernel classifier . 118
8.1.2 Nonlinear kernel classifier . 120

8.2 Multiple-instance classification algorithm . 120
8.3 Numerical testing . 123

8.3.1 Linear kernel classification results . 125
8.3.2 Computational efficiency . 128
8.3.3 Nonlinear kernel classification . 130

v

Page

9 Exactness Conditions for a Convex Differentiable Exterior Penalty for
Linear Programming . 132

9.1 Sufficient conditions for dual exterior penalty function exactness 132
9.2 Computational algorithms . 135

9.2.1 Generalized Newton algorithm . 135
9.2.2 Direct linear equation (DLE) algorithm 137

9.3 Linear programs with nonnegative variables 140
9.4 Computational results . 142

9.4.1 Square linear programs . 143
9.4.2 Rectangular linear programs . 144

10 Conclusion and Outlook . 147

10.1 Knowledge-based kernel approximation . 147
10.2 Nonlinear knowledge in kernel machines . 148
10.3 Privacy-preserving classification via random kernels 148
10.4 Feature-selecting k-median algorithm . 149
10.5 Feature selection for nonlinear kernel support vector machines 149
10.6 Generalized eigenvalue proximal support vector machines 150
10.7 Multiple-Instance Classification . 150
10.8 Exactness conditions for a convex differentiable exterior penalty for linear

programming . 151
10.9 Outlook . 151

LIST OF REFERENCES . 153

DISCARD THIS PAGE

vi

LIST OF TABLES

Table Page

3.1 Leave-one-out root-mean-squared-error (RMSE) of approximations with and
without knowledge on the present WPBC data. Best result is in bold. 41

3.2 Leave-one-out misclassification rate of classifiers with and without knowledge on
the WPBC (24 mo.) dataset. Best result is in bold. 48

3.3 Accuracy and CPU time in seconds for the linear programming formulation [86]
and the proposed proximal formulation. Each running time result is the total
time needed to set up and solve the optimization problem, either as a linear
program or a linear system of equations, 225 times. The time ratio is the time
for the linear programming formulation divided by the time for the proximal
formulation. 50

4.1 Comparison of error rates for entities not sharing and sharing their datasets using
a 1-norm linear SVM. 66

4.2 Comparison of error rates for entities not sharing and sharing their datasets using
a 1-norm nonlinear Gaussian SVM. 68

4.3 Comparison of error rates for entities not sharing and sharing their datasets using
a 1-norm linear SVM. 77

4.4 Comparison of error rates for entities not sharing and sharing their datasets using
a 1-norm nonlinear Gaussian SVM. 79

7.1 Linear kernel GEPSVM, PSVM [27], and SVM-Light [49] ten-fold testing
correctness and p-values. The p-values are from a t-test comparing each
algorithm to GEPSVM. Best correctness results are in bold. An asterisk (*)
denotes significant difference from GEPSVM based on p-values less than 0.05. . 114

vii

Table Page

7.2 Nonlinear kernel GEPSVM, PSVM [27], and SVM-Light [49] ten-fold testing
correctness and p-values. The p-values were calculated using a t-test comparing
each algorithm to GEPSVM. Best results are in bold. An asterisk (*) denotes
significant difference from GEPSVM based on p-values less than 0.05. 115

7.3 Average time to learn one linear kernel GEPSVM, PSVM [27], and SVM-Light
[49] on the Cylinder Bands dataset [96]. 116

8.1 Description of the datasets used in the experiments. Elephant, Fox, Tiger, and
the TST datasets are used in [1], while Musk-1 and Musk-2 are available from [96].
+ Bags denotes the number of positive bags in each dataset, while + Instances
denotes the total number of instances in all the positive bags. Similarly, - Bags
and - Instances denote corresponding quantities for the negative bags. 124

8.2 Linear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD [128], and SVM1 testing
accuracy and number of features used averaged over ten ten-fold cross validation
experiments. For MICA and SVM1, the standard deviation (SD) of each accuracy
result is given in parenthesis. The datasets are those used by Andrews et al. in
[1]. The number of features used is available on all datasets for MICA and SVM1,
and on the Elephant, Fox, and Tiger datasets for mi-SVM and MI-SVM. Best
accuracy on each dataset is in bold. Note the substantial reduction in features
by MICA and SVM1. 126

8.3 Average running time in seconds of linear kernel MICA, mi-SVM [1], and MI-
SVM [1]. Times were computed for each combination of the ten datasets in Table
8.2 and the fifteen regularization parameter values in {2i|i = −7, . . . , 7}. Best
result is in bold. 128

8.4 Nonlinear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD [128], DD [93] MI-
NN [103], IAPR [16], and MIK [36] ten-fold testing accuracy on the Musk-1 and
Musk-2 datasets. Best accuracy is in bold. 130

9.1 Average running times of our proposed approaches and the CPLEX 9.0 simplex
method. Ten linear programs were randomly generated for each number of
variables and constraints, and the average solution time in seconds is given with
the standard deviation in parentheses for each algorithm. Primal methods were
used for problems with more variables than constraints, and dual methods were
used for problems with more constraints than variables. 146

DISCARD THIS PAGE

viii

LIST OF FIGURES

Figure Page

2.1 The one-dimensional sinc function sinc(x) = sinπx
πx depicted by a dashed curve,

and its Gaussian kernel approximation (a) without prior knowledge and (b) with
prior knowledge depicted by a solid curve based on the 55 points shown by
diamonds. The solid diamonds depict the “support” points used by the nonlinear
Gaussian kernel in generating the approximation of sinc(x). That is, they are
the rows Ai of A for which αi "= 0 in the solution of the nonlinear Gaussian kernel
approximation of (2.7) for f(x): f(x) ≈ K(x′, A′)α + b. The prior knowledge
used in (b) consists of the implication −1

4 ≤ x ≤ 1
4 ⇒ f(x) ≥ sin(π/4)

π/4 , which is

implemented by replacing f(x) by its nonlinear kernel approximation (2.23). The
approximation in (a) without knowledge has an average error of 0.3113 over a grid
of 100 points in the interval [−3, 3], while the approximation in (b) with knowledge
has an average error of 0.0901, which is less than 1

3.4 times the error in (a).
Parameter values used: (a) µ = 7, C = 5; (b) µ = 1, C = 13, µ1 = 5, µ2 = 450. . 19

2.2 The (a) exact product sinc function f(x1, x2) = sinπx1
πx1

sinπx2
πx2

, and its Gaussian
kernel approximation based on 211 exact function values plus two incorrect
function values, (b) without prior knowledge, and (c) with prior knowledge
consisting of (x1, x2) ∈ {[−0.1, 0.1] × [−0.1, 0.1]}} ⇒ f(x1, x2) ≥ (sin(π/10)

π/10)2.

Over a grid of 2500 points in the set {[−3, 3]×[−3, 3]}, the approximation without
prior knowledge in (b) has an average error of 0.0501, while the approximation
in (c) with prior knowledge has an average error of 0.0045, which is less than

1
11.1 times the error in (b). Parameter values used: (b) µ = 0.2, C = 106; (c)
µ = 1, C = 16000, µ1 = 15000, µ2 = 5 · 106. 20

ix

Figure Page

2.3 The (a) exact hyperboloid function f(x1, x2) = x1x2, and its Gaussian kernel
approximation based on 11 exact function values along the line x2 = x1, x1 ∈
{−5,−4, . . . , 4, 5}, (b) without prior knowledge and (c) with prior knowledge
consisting of the implications (2.27) and (2.28). Over a grid of 2500 points in
the set {[−5, 5]× [−5, 5]}, the approximation without prior knowledge in (b) has
average error 4.8351, while the approximation with prior knowledge in (c) has
average error 0.2023, which is less than 1

23.9 times the error of (b). Parameter
values used: (b) µ = 0.361, C = 145110; (c) µ = 0.0052, C = 5356, µ1 =
685, µ2 = 670613. 22

2.4 Reinforcement (reflecting successful action) as a function of games played for
three function approximations. Higher reinforcement is better. “No Advice”
denotes an approximation with no prior knowledge, while KBKR denotes
knowledge-based kernel regression and Pref-KBKR denotes preference KBKR.
Both KBKR and Pref-KBKR incorporate prior knowledge. 26

x

Figure Page

3.1 An example showing that the set Γ1 discretized in (3.15) need not contain the
region {x|g(x)+ = 0} in which the left-hand side of the implication (3.12) is
satisfied. Each of the figures (a), (b) and (c) depict 600 points denoted by “+”
and “o” that are obtained from three bivariate normal distributions. Another
400 points from the same three distributions in the same proportions were used
for training and tuning each of the three classifiers of figures (a), (b) and (c). For
simplicity, we use the linear kernel K(A, B′) = AB′ to obtain three different linear
classifiers to discriminate between the +’s and o’s. A linear classifier without
prior knowledge is shown in (a). Note that some + points from the rarely sampled
distribution are misclassified. Figures (b) and (c) show classifiers using the same
data and the prior knowledge (‖x−

(−3
3

)
‖−1)+ = 0 =⇒ K(x′, B′)u−γ = 1. The

left hand side of this implication is true in the region enclosed by the circle in (b)
and (c) and contains most of the + points from the rarely sampled distribution.
The prior knowledge is imposed over a single grid of 100 evenly spaced points
in the square shown and the parameter σ of (3.15) was set to 1. In (b), the
square contains the set {x|(‖x−

(−3
3

)
‖−1)+ = 0}, but the square of (c) is highly

disjoint from the set {x|(‖x −
(−3

3

)
‖ − 1)+ = 0}. Nevertheless, the classifier of

(c) is nearly indistinguishable from that in (b). Techniques such as [65], which
incorporate prior knowledge by adding points which conform to the knowledge as
“pseudo” points to the training set, will not make use of a discretization such as
that of (c). Our approach is able to handle points in the discretization that are
not in {x|g(x)+ = 0} partly because of the multiplier v in (3.13). At the solution
shown in (c), v′g(x)+ > 1 in the discretized region. For such x, (3.13) implies
that x should have class −1. Thus, v can select which side of the separating
surface (1.11) points with a relatively large g(x)+ should lie on. In (3.15), the
size of v is traded off against the fit to the data, the extent to which (3.13)
is satisfied, and the solution complexity. This extreme example illustrates an
important property of our approach: Proposition 2.1 does not require that Γ1

match the set {x|g(x)+ = 0} closely. 35

3.2 The exact hyperboloid function η(x1, x2) = x1x2. 37

3.3 Approximation of the hyperboloid function η(x1, x2) = x1x2 based on eleven
exact function values along the line x2 = x1, x1 ∈ {−5,−4, . . . , 4, 5}, but without
prior knowledge. 38

3.4 Approximation of the hyperboloid function η(x1, x2) = x1x2 based on the same
eleven function values as Figure 3.3 plus prior knowledge consisting of the
implication (3.17). 38

xi

Figure Page

3.5 A classifier for the checkerboard dataset trained using only the sixteen points
at the center of each square without prior knowledge. The white regions denote
areas where the classifier returns a value greater than zero, and the gray regions
denote areas where the classifier returns a value less than zero. A uniform grid
consisting of 40, 000 points was used to create the plot utilizing the obtained
classifier. 44

3.6 A classifier for the checkerboard dataset trained using the sixteen points at the
center of each square with prior knowledge representing the two leftmost squares
in the bottom row given in (3.19). The white regions denote areas where the
classifier returns a value greater than zero, and the gray regions denote areas
where the classifier returns a value less than zero. A uniform grid consisting of
40, 000 points was used to create the plot utilizing the knowledge-based classifier. 45

3.7 Number of metastasized lymph nodes versus tumor size for the WPBC (24 mo.)
dataset. The solid dots represent patients who experienced a recurrence within
24 months of surgery, while the crosses represent the cancer free patients. The
shaded regions which correspond to the areas in which the left-hand side of
one of the three implications in Equation (3.20) is true simulate an oncological
surgeon’s prior knowledge regarding patients that are likely to have a recurrence.
Prior knowledge was enforced at the points enclosed in squares. 47

3.8 (a) Generation of prior knowledge from a standard dataset. The dataset is first
separated into the datasets A+ which consists of all +1 points, and A− which
consists of all −1 points. Then the mostly +1 dataset M+ is formed by replacing
a small fraction of +1 points in A+ with an equal number of −1 points from A−.
The mostly −1 dataset M− is formed from the points not used in M+. We
use M+ to produce prior knowledge, and M− as ordinary data. Combining the
knowledge from M+ and the data from M− leads to a knowledge-based classifier
which is superior to a classifier formed using either M+ as pure knowledge or
M− as pure data alone. (b) Prior knowledge experiment on the NDCC dataset:
300 points in R50. 52

3.9 Prior knowledge experiment on (a) the WDBC dataset: 569 points in R30, with
212 malignant tumors labeled +1; and (b) the Ionosphere dataset: 351 points in
R34, with 126 bad radar returns labeled +1. 53

xii

Figure Page

4.1 Error rate comparison of 1-norm linear SVMs for random kernel versus full and
reduced kernels. For points below the diagonal, the random kernel has a lower
error rate. The diagonal line in each plot marks equal error rates. One result is
given for each dataset in Table 4.1. 57

4.2 Error rate comparison of 1-norm nonlinear SVM for random kernel versus full
and reduced kernels. For points below the diagonal, the random kernel has a
lower error rate. The diagonal line in each plot marks equal error rates. One
result is given for each dataset in Table 4.2. 58

4.3 Error rate comparison of a 1-norm linear SVM sharing A·jB′
·j data for each entity

versus a 1-norm linear SVM using just the input features A·j of each entity. We
compare to both the average error rate of the entities using just the input features,
and to a classifier which combines the labels of all the entities by majority vote.
Points below the diagonal represent situations in which the error rate for sharing
is lower than the error rate for not sharing. Results are given for each dataset
with features randomly distributed evenly among 5 entities, and with features
randomly distributed so that each entity has about 3 features. Seven datasets
given in Table 4.1 were used to generate four points each. 65

4.4 Error rate comparison of a 1-norm nonlinear SVM sharing K(A·j , B′
·j) data for

each entity versus a 1-norm nonlinear SVM using just the input features A·j of
each entity. We compare to both the average error rate of the entities using
just the input features, and to a classifier which combines the labels of all the
entities by majority vote. Points below the diagonal represent situations in which
the error rate for sharing is lower than the error rate for not sharing. Results
are given for each dataset with features randomly distributed evenly among 5
entities, and with features randomly distributed so that each entity has about 3
features. Seven datasets given in Table 4.2 were used to generate four points each. 67

4.5 Box-and-whisker (median and interquartile) plot showing the improvement in
error rate of linear kernel PPSVM as the number of entities increases from 2 to 30. 69

4.6 Box-and-whisker (median and interquartile) plot showing the improvement in
error rate of Gaussian kernel PPSVM as the number of entities increases from 2
to 30. 70

xiii

Figure Page

4.7 Error rate comparison for the seven datasets of Table 4.3 of a 1-norm linear
SVM sharing AiB′ data for each entity versus a 1-norm linear SVM using only
the examples Ai of each entity. Points below the diagonal represent situations
in which the error rate for sharing is better than the error rate for not sharing.
Results are given for each dataset with examples randomly distributed so that
each entity has about 25 examples. 76

4.8 Error rate comparison for the seven datasets of Table 4.4 of a 1-norm nonlinear
SVM sharing K(Ai, B′) data for each entity versus a 1-norm nonlinear SVM
using only the examples Ai of each entity. Points below the diagonal represent
situations in which the error rate for sharing is better than the error rate for not
sharing. 78

5.1 Error curves for the 3-class Wine dataset with 178 points in 13-dimensional space
are plotted as a function of the number features selected by FSKM. The average
range of ν computed by (5.10) was from 42 to 55. Note that the low variance
between runs on this dataset makes the error bars essentially invisible. 85

5.2 Error curves and variance bars for the 2-class Votes dataset with 435 points in
16-dimensional space are plotted as a function of the number features selected
by FSKM. The average range of ν computed by (5.10) was from 0 to 192. . . . 87

5.3 Error curves and variance bars for the 2-class WDBC dataset with 569 points in
30-dimensional space are plotted as a function of the number features selected
by FSKM. The average range of ν computed by (5.10) was from 188 to 284. . . 88

5.4 Error curves and variance bars for the 2-class Star/Galaxy-Bright dataset with
2462 points in 14-dimensional space are plotted as a function of the number
features selected by FSKM. The average range of ν computed by (5.10) was from
658 to 1185. 90

5.5 Error curves and variance bars for the 2-class Cleveland Heart dataset with 297
points in 13-dimensional space are plotted as a function of the number features
selected by FSKM. The average range of ν computed by (5.10) was from 0 to 113. 91

xiv

Figure Page

6.1 Ten-fold cross validation accuracy versus number of features used on the
Ionosphere and Sonar datasets. Results for each algorithm are averages over
five ten-fold cross validation experiments, each using a different 1

11 of the data
for tuning only, and the remaining 10

11 for ten-fold cross validation. Circles mark
the average number of features used and classification accuracy of RFSVM for
each value of σ. ’+’, ’!’, ’"’, and ’*’ represent the same values for RFE, Relief,
NKSVM1, and SVM1, respectively. 100

6.2 RFSVM1 and NKSVM1 on NDCC data with 20 true features and 80, 180, and
480 irrelevant random features. Each point is the average of the test set accuracy
over two independently generated datasets. 102

7.1 The “cross planes” learned by GEPSVM and the decision boundary learned by
a 1-norm linear SVM together with their correctness on the training dataset. . 109

9.1 Average running times of our proposed approaches and the CPLEX 9.0 barrier
method. Our Newton LP Algorithm 9.2.1 method is represented by ’+’, our
DLE Algorithm 9.2.3 method is represented by ’©’, and CPLEX is represented
by ’*’. Each point is the average of 10 randomly generated square linear programs.145

xv

ABSTRACT

Novel approaches for six important problems in machine learning, and two methods

for solving linear programs, are introduced. Each machine learning problem is addressed

by formulating it as an optimization problem. By using results based on theorems of the

alternative for linear or convex functions, we are able to incorporate prior knowledge into

function approximations or classifiers generated by linear combinations of linear or nonlinear

kernels. We will consider prior knowledge consisting of linear inequalities to be satisfied over

multiple polyhedral regions, nonlinear inequalities to be satisfied over arbitrary regions, and

nonlinear equalities to be satisfied over arbitrary regions. Each kind of prior knowledge leads

to different formulations, each with certain advantages.

In privacy-preserving classification, data is divided into groups belonging to different

entities unwilling to share their privately-held data. By using a completely random matrix,

we are able to construct public classifiers that do not reveal the privately held data, but have

accuracy comparable to that of an ordinary support vector machine classifier based on the

entire data.

To address the problem of feature selection in clustering, we propose a modification of the

objective function of a standard clustering algorithm which allows features to be eliminated.

For feature selection in nonlinear kernel classification, we propose a mixed-integer algorithm

which alternates between optimizing the continuous variables of an ordinary nonlinear

support vector machine and optimizing integer variables which correspond to selecting or

removing features from the classifier.

xvi

We also propose a classifier based on proximity to two planes which are not required to

be parallel. Finally, we tackle the multiple instance classification problem by formulating the

problem as the minimization of a linear function subject to linear and bilinear constraints.

In several of these problems, the solution we propose involves solving linear programs.

We consider sufficient conditions which allow us to determine whether a solution of a linear

program obtained by either of two algorithms is exact. Both of these two algorithms can be

implemented using only a solver for linear systems of equations.

1

Chapter 1

Introduction

We introduce novel approaches that address six important problems in machine learning,

and also consider methods for solving linear programs, an important class of mathematical

programs which arise in several of our solutions.

Our first problem is that of knowledge-based function approximation and classification.

We tackle this problem by incorporating prior knowledge into a function approximation or

classification generated by a linear combination of linear or nonlinear kernels. In addition,

the approximation or classifier needs to satisfy conventional conditions such as given exact

or inexact function values or class labels at certain points. First, we shall introduce prior

knowledge in the form of linear inequalities that a function approximation should satisfy

over multiple polyhedral regions. This approach leads to a linear programming formulation,

which can be solved efficiently. By using nonlinear kernels and mapping the prior polyhedral

knowledge in the input space to one defined by the kernels, the prior knowledge translates

into nonlinear inequalities in the original input space. Through a number of computational

examples, including a real-world breast cancer prognosis dataset and an application to

reinforcement learning, it is shown that prior knowledge can significantly improve function

approximation.

Although nonlinear kernels lead to good computational results for prior knowledge

expressed as linear inequalities over polyhedral regions, the interpretation of the prior

knowledge in the original input space is lost when mapping to the kernel space. To increase

the generality of prior knowledge added to a nonlinear classifier or function approximation,

2

we consider prior knowledge in the form of nonlinear inequalities that need to be satisfied

over arbitrary sets. A sufficient condition for prior knowledge incorporation is given which

requires no assumptions whatsoever on the knowledge. Adding this sufficient condition to a

linear programming formulation for nonlinear kernel classification or approximation leads to

a semi-infinite linear program, that is, a linear program with a finite number of variables but

an infinite number of constraints. Discretizing over these constraints results in a finite linear

program. Computational examples on several datasets, including a real-world breast cancer

prognosis dataset demonstrate that incorporating prior knowledge can significantly improve

function approximation or classification. We will also see that very similar prior knowledge,

involving arbitrary nonlinear equalities over arbitrary regions, can be incorporated as linear

equality constraints. These constraints can be added to a proximal support vector machine,

requiring only the solution of a linear system of equations. Computational examples show

that this formulation has similar accuracy to the linear programming formulation, while

being approximately an order of magnitude faster to solve.

Our second problem is privacy-preserving classification. We propose a privacy-preserving

SVM classifier in which the data matrix A is divided into groups belonging to different

entities. In the first case, each entity owns a different group of the input feature columns of

A, and A is said to be vertically partitioned. In the second case, each entity owns a different

group of individual rows of A, and A is said to be horizontally partitioned. In both cases,

the entities are unwilling to share their portion of A with the other entities. Our classifiers

for both kinds of data are based on the concept of a reduced kernel K(A, B′) where B′ is

the transpose of a completely random matrix B. The classifiers, which are public but do

not reveal the privately-held data, have accuracy comparable to that of an ordinary SVM

classifier based on the entire data.

Our third problem is that of selecting features in clustering unlabeled data. We propose

a modification of the objective function of the standard k-median clustering algorithm. The

modification consists of perturbing the objective function by a term that drives the medians

of each of the k clusters toward the (shifted) global median of zero for the entire dataset. As

3

the perturbation parameter is increased, more and more features are driven automatically

toward the global zero median and are eliminated from the problem. An error curve for

unlabeled data clustering as a function of the number of features used gives reduced-feature

clustering error relative to the “gold standard” of the full-feature clustering. This clustering

error curve parallels a classification error curve based on real data labels. This fact justifies

the utility of the former error curve for unlabeled data as a means of choosing an appropriate

number of reduced features in order to achieve a correctness comparable to that obtained

by the original, full set of features. For example, on the three-class Wine dataset, clustering

with four selected input space features is comparable to within 4% to clustering using the

original thirteen features of the problem.

Our fourth problem is that of selecting features in nonlinear kernel classifiers. We propose

an easily implementable mixed-integer algorithm is that generates a nonlinear kernel support

vector machine (SVM) classifier with reduced input space features. A single parameter

controls the reduction. On one publicly available dataset, the algorithm obtains 92.4%

accuracy with 34.7% of the features compared to 94.1% accuracy with all features. On a

synthetic dataset with 1000 features, 900 of which are irrelevant, our approach improves

the accuracy of a full-feature classifier by over 30%. The proposed algorithm introduces

a diagonal matrix E with ones for features present in the classifier and zeros for removed

features. By alternating between optimizing the continuous variables of an ordinary nonlinear

SVM and the integer variables on the diagonal of E, a decreasing sequence of objective

function values is obtained. This sequence converges to a local solution minimizing the

usual data fit error and solution complexity while also minimizing the number of features

used.

Our fifth problem is that of binary data classification without the parallelism restriction

of data-bounding or proximal planes. We propose here a new approach to support vector

machine (SVM) classification wherein each of two datasets are proximal to one of two distinct

planes that are not parallel to each other. Each plane is generated such that it is closest to

4

one of the two datasets and as far as possible from the other dataset. Each of the two non-

parallel proximal planes is obtained by a single MATLAB [94] command as the eigenvector

corresponding to a smallest eigenvalue of a generalized eigenvalue problem. Classification

by proximity to two distinct nonlinear surfaces generated by a nonlinear kernel also leads

to two simple generalized eigenvalue problems. Effectiveness of the proposed method is

demonstrated by tests on simple examples as well as on a number of public datasets. These

examples show advantages of the proposed approach in both computation time and test set

correctness.

Our sixth problem is that of multiple-instance classification [16, 2, 62] for which a

novel formulation is proposed, using a linear or nonlinear kernel, as the minimization of

a linear function in a finite dimensional (noninteger) real space subject to linear and bilinear

constraints. In multiple-instance classification, the goal is to separate positive and negative

bags, each containing multiple points, such that for each positive bag at least one point in

the bag is on the positive side of the decision surface while for each negative bag all points

in the bag are on the negative side of the decision surface. A linearization algorithm is

proposed that solves a succession of fast linear programs that converges in a few iterations

to a local solution. Computational results on a number of datasets indicate that the proposed

algorithm is competitive with the considerably more complex integer programming and other

formulations.

In several of the problems described above, our solution involves solving linear programs.

We give sufficient conditions for a classical dual exterior penalty function of a linear program

to be independent of its penalty parameter. This ensures that an exact solution to the primal

linear program can be obtained by minimizing the dual exterior penalty function. We use

the sufficient conditions to give a precise value to such a penalty parameter introduced in

[75], and also in a fast iterative algorithm that solves a sequence of linear equations. Both

algorithms can be implemented using only a solver for linear systems of equations, which are

more readily available than linear programming packages. Computational results on linear

5

programs with up to one million variables or constraints compare favorably to CPLEX 9.0

[48] and validate the proposed approach.

1.1 Notation

All vectors will be column vectors unless transposed to a row vector by a prime ′. The

scalar (inner) product of two vectors x and y in the n-dimensional real space Rn will be

denoted by x′y. A vector of ones in a real space of arbitrary dimension will be denoted by

e. Thus for e ∈ Rm and y ∈ Rm the notation e′y will denote the sum of the components of

y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. For x ∈ Rn

and 1 ≤ p <∞, the p-norm and the ∞-norm are defined as follows:

‖x‖p =

(
n∑

j=1

|xj |p
) 1

p

, ‖x‖∞ = max
1≤j≤n

|xj |.

For simplicity, in some specific instances ‖x‖ will stand for the 2-norm of x. The plus

function (x)+ is defined as max{0, x}, while sign(x) denotes a vector with components of

±1 for positive and negative components of x respectively and 0 for zero components of x.

The notation A ∈ Rm×n will signify a real m×n matrix. For such a matrix, A′ will denote

the transpose of A, Ai will denote the i-th row of A and A·j the j-th column of A. The

identity matrix of arbitrary dimension will be denoted by I. For A ∈ Rm×n and B ∈ Rn×k,

a kernel K(A, B) is an arbitrary function that maps Rm×n×Rn×k into Rm×k. In particular,

if x and y are column vectors in Rn then K(x′, y) is a real number, K(x′, A′) is a row vector

in Rm and K(A, A′) is an m×m matrix. The base of the natural logarithm will be denoted

by ε. A frequently used kernel in nonlinear classification is the Gaussian kernel [118, 11, 72]

whose ij-th element, i = 1 . . . , m, j = 1 . . . , k, is given by: (K(A, B))ij = ε−µ‖Ai
′−B·j‖2

,

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant.

A separating plane, with respect to two given point sets A and B in Rn, is a plane that

attempts to separate Rn into two halfspaces such that each open halfspace contains points

mostly of A or B. A bounding plane to the set A is a plane that places A in one of the two

closed halfspaces that the plane generates.

6

For a convex function f : Rn −→ R1 that is nondifferentiable, such as ‖x‖1, a subgradient

∂f(x) ∈ Rn exists [106, Theorem 23.4], also [102], with the property that:

f(y)− f(x) ≥ ∂f(x)′(y − x), ∀x, y ∈ Rn. (1.1)

Thus for ‖x‖1, x ∈ Rn and i = 1, . . . , n, a subgradient ∂‖x‖1 satisfies:

(∂‖x‖1)i =






−1 if xi < 0

∈ [−1, 1] if xi = 0

+1 if xi > 0

(1.2)

The subgradient plays the role of a gradient for differentiable convex functions, except that

it is not unique. Thus a necessary and sufficient condition for x to be a minimizer of f(x)

on an open set is that

∂f(x) = 0. (1.3)

For a concave function f on Rn, the inequality (1.1) is reversed and ∂f(x) is called a

supergradient of f at x and (1.3) becomes a necessary and sufficient condition for x to

be a maximizer of f(x) on an open set.

For a piecewise-quadratic function, such as f(x) = 1
2 ||(Ax − b)+||2 + 1

2x
′Px, where

A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive semidefinite and b ∈ Rm, the ordinary Hessian does

not exist because its gradient, the n×1 vector ∇f(x) = A′(Ax−b)++Px, is not differentiable

but is Lipschitz continuous with a Lipschitz constant of ‖A′‖ ‖A‖ + ‖P‖. However, one

can define its generalized Hessian [43, 22, 74,] which is the n × n symmetric positive

semidefinite matrix:

∂2f(x) = A′diag
(
sign

(
(Ax− b)+

))
A + P,

where diag
(
sign

(
(Ax − b)+

))
denotes an m × m diagonal matrix with diagonal elements

sign
(
(Aix− bi)+

)
, i = 1, . . . , m. The generalized Hessian has many of the properties of the

regular Hessian [43, 22, 74,] in relation to f(x). If the smallest eigenvalue of ∂2f(x) is greater

than some positive constant for all x ∈ Rn, then f(x) is a strongly convex piecewise-quadratic

function on Rn.

7

Approximate equality is denoted by ≈. The symbol ∧ denotes the logical “and” while ∨

denotes the logical “or”. For a countable set S, card(S) denotes the cardinality of S, that

is the number of elements in S. The abbreviation “s.t.” stands for “subject to.”

1.2 Support vector machines

In several of the following chapters, we utilize a support vector machine (SVM) for both

classification and approximation. We consider a dataset in Rn represented by the m rows of

the matrix A ∈ Rm×n, with associated labels represented by the m-dimensional vector d. For

approximation problems, d will be real valued, that is d ∈ Rm. For classification problems,

d will have values +1 or −1 according to the class of each example, that is d ∈ {−1, +1}m.

The learned function f from Rn to R is defined as follows:

f(x) = K(x′, B′)u− γ (1.4)

where B ∈ Rk×n is an arbitrary basis matrix and K(x′, B′) : R1×n × Rn×k −→ R1×k is an

arbitrary kernel function. In an approximation setting, we will use f(x) directly to obtain

a predicted value at x ∈ Rn, while in a classification setting we will use the value of the

sign of f(x) to obtain the predicted class of x. In general, the matrix B is set equal to A

[72]. However, in reduced support vector machines [55, 47] B = Ā, where Ā is a submatrix

of A whose rows are a small subset of the rows of A. In fact, B can be an arbitrary matrix

in Rk×n [81, 92, 90]. The variables u ∈ Rk and γ ∈ R are parameters determined by the

following optimization problem:

min
u,γ

νL(u, γ, A, d) + J(u, γ), (1.5)

where L is an arbitrary loss function, J is a penalty on the model complexity, and ν is

a positive parameter that controls the weight in the optimization problem of data fitting

versus complexity reduction. In approximation problems, the loss function L will measure

the difference between the actual values of the given data d and the predicted values given

by f . For classification problems, the loss function L will be related to misclassification rate.

8

We will choose J to be either the 1-norm of u to promote solution sparsity [8, 129], or the

2-norm of
(

u
γ

)
to ensure that the objective is strongly convex. Below, we explicitly state

three formulations obtained from (1.5) that we will encounter frequently.

1.2.1 1-norm support vector machine approximation

In the approximation setting, we wish to approximate a function, f , given exact or

approximate function values of a dataset of points represented by the rows of the matrix

A ∈ Rm×n. Thus, for each point Ai we are given an exact or inexact value of f , denoted

by a real number di, i = 1, . . . , m. We therefore desire the parameters (u, γ) of (1.4) to be

determined such that:

K(A, B′)u− eγ − d ≈ 0. (1.6)

An appropriate choice of L to enforce the above condition is:

L(u, γ, A, d) = ‖K(A, B′)u− eγ − d‖1. (1.7)

This loss function is the sum of the absolute values of the differences between the predicted

values f(Ai) and the given values di, i = 1, . . . , m. In order to incorporate this loss function

into the optimization problem (1.5) we introduce a vector s ∈ Rm defined by:

−s ≤ K(A, B′)u− eγ − d ≤ s. (1.8)

We can then incorporate the loss defined by (1.7) into (1.5), along with setting J(u, γ) = ‖u‖1
as follows:

min
u,γ,s

ν‖s‖1 + ‖u‖1

s.t. −s ≤ K(A, B′)u− eγ − d ≤ s.
(1.9)

Note that at the solution of (1.9), ‖s‖1 = ‖K(A, B′)u− eγ − d‖1. Note further that (1.9) is

a linear program.

1.2.2 1-norm support vector machine classification

The classification problem consists of classifying the points represented by the rows of

the matrix A ∈ Rm×n into the two classes +1 and −1 according to their labels given as

9

d ∈ {−1, +1}m. Thus, for each point Ai we are given its label di ∈ {−1, +1}, i = 1, . . . , m,

and we seek to find a function f of the form in (1.4) that satisfies, to the extent possible,

the separation condition:

D(K(A, B′)u− eγ) ≥ 0, (1.10)

where D ∈ Rm×m is the diagonal matrix with diagonal d, that is, Dii = di, i = 1, . . . , m.

Note that this condition is satisfied if and only if di and f(Ai) both have the same sign. The

separating surface of the classifier is given by:

f(x) = K(x′, B′)u− γ = 0. (1.11)

Support vector machines attempt to impose a stronger condition, D(K(A, B′)u − eγ) ≥ e,

using the hinge loss:

L(u, γ, A, d) = ‖(e−D(K(A, B′)u− eγ))+‖1. (1.12)

Note that the hinge loss involves the plus function, (x)+ = max{x, 0}, introduced in Section

1.1. This loss function can be added to the optimization problem (1.5) by introducing a

nonnegative slack variable s ∈ Rm as follows:

D(K(A, B′)u− eγ) + s ≥ e, s ≥ 0. (1.13)

The loss (1.12) is incorporated into the optimization problem (1.5), along with J(u, γ) = ‖u‖1
as follows:

min
u,γ,s

ν‖s‖1 + ‖u‖1

s.t. D(K(A, B′)u− eγ) + s ≥ 0,

s ≥ 0.

(1.14)

We note that at the solution, ‖s‖1 = ‖(e−D(K(A, B′)u− eγ))+‖1. Note further that (1.14)

is a linear programming problem.

1.2.3 Proximal support vector machine classification

We now formulate the classification problem (1.10) using a proximal support vector

machine approach [27, 114, 20]. The error in a proximal formulation is measured by closeness

10

to the two following proximal surfaces that are parallel to the classifier (1.11) in the u-space:

K(x′, B′)u− γ = +1

K(x′, B′)u− γ = −1
(1.15)

In contrast to an ordinary support vector machine, the two parallel surfaces in (1.15) are

chosen so that the first surface is close to the training points in class +1 and the second

surface is close to points in class −1, and the two surfaces are as far apart as possible. Thus,

we measure the error in satisfying (1.10) by how close the points in class +1 and class −1 are

to the first and second surface of (1.15), respectively. This error can be succinctly written

as:

L(u, γ, A, d) = ‖D(K(A, B′)u− eγ)− e‖2 (1.16)

Note that this loss function measures the sum of the squared differences of each point from

the appropriate proximal surface. Adding this loss function to (1.5), along with setting

J(u, γ) =
(

u
γ

)
gives:

min
(u,γ)

ν

2
‖D(K(A, B′)u− eγ)− e‖2 +

1

2
‖u‖2 +

1

2
γ2. (1.17)

This strongly convex unconstrained quadratic optimization problem can be uniquely solved

by setting its gradient, a system of linear equations in (u, γ), equal to zero.

Before proceeding, we note that in some cases the approaches we discuss in the following

chapters can be reasonably applied to formulations of (1.5) with other L and J than those we

specify, such as the standard 2-norm support vector machine [109, 12] and logistic regression

[120]. However, this would have the effect of replacing a linear program or system of linear

equations with a more complicated quadratic program or convex program.

11

Chapter 2

Knowledge-Based Kernel Approximation

Support vector machines (SVMs) have been used extensively for function approximation

[17, 111, 21, 78]. However, in some cases the given data alone may not be sufficient to

generate a good approximation. Prior knowledge has been incorporated into SVM classifiers

in [108, 34, 32]. In this chapter, prior knowledge is added to the SVM function approximation

in the form of linear inequalities to be satisfied by the function on polyhedral regions of the

input space as was implemented by Mangasarian et al. in [79].

2.1 Prior knowledge for a linear kernel approximation

We begin with a linear kernel model and show how to introduce prior knowledge into such

an approximation. We consider an unknown function f from Rn to R for which approximate

or exact function values are given on a dataset of m points in Rn denoted by the matrix

A ∈ Rm×n. Thus, corresponding to each point Ai we are given an exact or inexact value of

f , denoted by a real number yi, i = 1, . . . , m. We wish to approximate f by some linear or

nonlinear function of the matrix A with unknown linear parameters. We first consider the

simple linear approximation:

f(x) ≈ w′x + b, (2.1)

for some unknown weight vector w ∈ Rn and constant b ∈ R which is determined by

minimizing some error criterion that leads to:

Aw + be− y ≈ 0. (2.2)

12

If we consider w to be a linear combination of the rows of A, i.e. w = A′α, α ∈ Rm, which

is similar to the dual representation in a linear support vector machine for the weight w

[72, 109], we then have:

AA′α + be− y ≈ 0. (2.3)

This immediately suggests the much more general idea of replacing the linear kernel AA′

by some arbitrary nonlinear kernel K(A, A′) : Rm×n × Rn×m −→ Rm×m that leads to the

following approximation, which is nonlinear in A but linear in α:

K(A, A′)α + be− y ≈ 0. (2.4)

We will measure the error in (2.4) componentwise by a vector s ∈ Rm defined by:

−s ≤ K(A, A′)α + be− y ≤ s. (2.5)

We now drive this error down by minimizing the 1-norm of the error s together with the

1-norm of α for complexity reduction or stabilization. This leads to the following constrained

optimization problem with positive parameter C that determines the relative weight of exact

data fitting to complexity reduction:

min
(α,b,s)

‖α‖1 + C‖s‖1

s.t. −s ≤ K(A, A′)α + be− y ≤ s,
(2.6)

which can be represented as the following linear program:

min
(α,b,s,a)

e′a + Ce′s

s.t. −s ≤ K(A, A′)α + be− y ≤ s,

−a ≤ α ≤ a.

(2.7)

We note that the 1-norm formulation employed here leads to a linear programming

formulation without regard to whether the kernel K(A, A′) is positive semidefinite or not.

This would not be the case if we used a kernel-induced norm on α that would lead to a

quadratic program. This quadratic program would be more difficult to solve than our linear

13

program especially when it is nonconvex, which would be an NP-hard problem [97], as is the

case when the kernel employed is not positive semidefinite.

We now introduce prior knowledge for a linear kernel as follows. Suppose that it is

known that the function f represented by (2.1) satisfies the following condition. For all

points x ∈ Rn, not necessarily in the training set but lying in the nonempty polyhedral set

determined by the linear inequalities:

Bx ≤ d, (2.8)

for some B ∈ Rk×n, the function f , and hence its linear approximation w′x + b, must

dominate a given linear function h′x + β, for some user-provided (h, β) ∈ Rn+1. That is, for

a fixed (w, b) we have the implication:

Bx ≤ d =⇒ w′x + b ≥ h′x + β, (2.9)

or equivalently in terms of α, where w = A′α:

Bx ≤ d =⇒ α′Ax + b ≥ h′x + β. (2.10)

Thus, the implication (2.10) needs to be added to the constraints of the linear program

(2.7). To do that we make use of the following equivalence relationship that converts the

implication (2.10) to a set of linear constraints that can be appended to the linear program

(2.7). A similar technique was used in [34, Proposition 2.1] to incorporate prior knowledge

into linear classifiers.

Proposition 2.1.1 Prior Knowledge Equivalence. Let the set {x | Bx ≤ d} be

nonempty. Then for a fixed (α, b, h, β), the implication (2.10) is equivalent to the following

system of linear inequalities having a solution u ∈ Rk:

B′u + A′α− h = 0, −d′u + b− β ≥ 0, u ≥ 0. (2.11)

Proof The implication (2.10) is equivalent to the following system having no solution

(x, ζ) ∈ Rn+1:

Bx− dζ ≤ 0, (α′A− h′)x + (b− β)ζ < 0, −ζ < 0. (2.12)

14

By the Motzkin theorem of the alternative [69, Theorem 2.4.2] we have that (2.12) is

equivalent to the following system of inequalities having a solution (u, η, τ):

B′u + (A′α− h)η = 0, −d′u + (b− β)η − τ = 0, u ≥ 0, 0 "= (η, τ) ≥ 0. (2.13)

If η = 0 in (2.13), then we contradict the nonemptiness of the knowledge set {x | Bx ≤ d}.

Because, for x ∈ {x | Bx ≤ d} and (u, τ) that solve (2.13) with η = 0, we obtain the

contradiction:

0 ≥ u′(Bx− d) = x′B′u− d′u = −d′u = τ > 0. (2.14)

Hence η > 0 in (2.13). Dividing (2.13) by η and redefining (u, α, τ) as (u
η ,

α
η , τ

η) we obtain

(2.11). "
Adding the constraints (2.11) to the linear programming formulation (2.7) with a linear

kernel K(A, A′) = AA′, we obtain our desired linear program that incorporates the prior

knowledge implication (2.10) into our approximation problem:

min
(α,b,s,a,u≥0)

e′a + Ce′s

s.t. −s ≤ AA′α + be− y ≤ s,

−a ≤ α ≤ a,

A′α + B′u = h,

−d′u ≥ β − b.

(2.15)

Note that in this linear programming formulation with a linear kernel approximation,

both the approximation w′x + b = α′Ax + b to the unknown function f as well as the prior

knowledge are linear in the input data A of the problem. This is somewhat restrictive,

and therefore we turn now to the incorporation of prior knowledge into a nonlinear kernel

approximation.

2.2 Knowledge-based nonlinear kernel approximation

In this chapter we will incorporate prior knowledge by using a nonlinear kernel in both the

linear programming formulation (2.7) as well as in the prior knowledge implication (2.10).

15

We begin with the latter, the linear prior knowledge implication (2.10). If we again consider

x as a linear combination of the rows of A, that is:

x = A′t, (2.16)

then the implication (2.10) becomes:

BA′t ≤ d =⇒ α′AA′t + b ≥ h′A′t + β, (2.17)

for a given fixed (α, b). The assumption (2.16) is not restrictive for the many problems where

a sufficiently large number of training data points are available so that any vector in input

space can be represented as a linear combination of the training data points.

If we now “kernelize” the various matrix products in the above implication, we have the

implication:

K(B, A′)t ≤ d =⇒ α′K(A, A′)t + b ≥ h′A′t + β. (2.18)

We note that the two kernels appearing in (2.18) need not be the same and neither needs to

satisfy Mercer’s positive semidefiniteness condition. In particular, the first kernel of (2.18)

could be a linear kernel which renders the left side of the implication of (2.18) the same

as that of (2.17). We note that for a nonlinear kernel, implication (2.18) is nonlinear in

the input space data, but is linear in the implication variable t. We have thus mapped the

polyhedral implication (2.9) into a nonlinear one (2.18) in the input space data. Assuming for

simplicity that the kernel K is symmetric, that is K(B, A′)′ = K(A, B′), it follows directly

by Proposition 2.1.1 that the following equivalence relation holds for implication (2.18).

Proposition 2.2.1 Nonlinear Kernel Prior Knowledge Equivalence. Let the set

{t | K(B, A′)t ≤ d} be nonempty. Then for a given (α, b, h, β), the implication (2.18) is

equivalent to the following system of linear inequalities having a solution u ∈ Rk:

K(A, B′)u + K(A, A′)α− Ah = 0, −d′u + b− β ≥ 0, u ≥ 0. (2.19)

We now append the constraints (2.19), which are equivalent to the nonlinear kernel

implication (2.18), to the linear programming formulation (2.7). This gives the following

16

linear program for approximating a given function with prior knowledge using a nonlinear

kernel:

min
(α,b,s,a,u≥0)

e′a + Ce′s

s.t. −s ≤ K(A, A′)α + be− y ≤ s,

−a ≤ α ≤ a,

K(A, B′)u + K(A, A′)α = Ah,

−d′u ≥ β − b.

(2.20)

Since we are not certain that the prior knowledge implication (2.18) is satisfiable, and since

we wish to balance the influence of prior knowledge with that of fitting conventional data

points, we need to introduce error variables z and ζ associated with the last two constraints

of the linear program (2.20). These error variables are then driven down by a modified

objective function as follows:

min
(α,b,s,a,z,(u,ζ)≥0)

e′a + Ce′s + µ1e
′z + µ2ζ

s.t. −s ≤ K(A, A′)α + be− y ≤ s,

−a ≤ α ≤ a,

−z ≤ K(A, B′)u + K(A, A′)α−Ah ≤ z,

−d′u + ζ ≥ β − b,

(2.21)

where (µ1, µ2) are some positive parameters. This is our final linear program for a single

prior knowledge implication. If we have more than one such implication, then the last two

sets of constraints are repeated for each implication. For the sake of simplicity we omit

these details. The values of the parameters C, µ1, and µ2 are chosen so as to balance fitting

conventional numerical data versus the given prior knowledge. One way to choose these

parameters is to set aside a “tuning set” of data points and then choose the parameters so

as to give a best fit of the tuning set. We also note that all three kernels appearing in (2.21)

could possibly be distinct kernels from each other and none needs to be positive semidefinite.

In fact, the kernel K(A, B′) could be the linear kernel AB′ which was actually tried in some

of our numerical experiments without a noticeable change from using a Gaussian kernel.

We now turn to our numerical experiments.

17

2.3 Numerical experiments

In order to illustrate the power of the formulation proposed in this chapter, we tested our

algorithm on three synthetic examples and two real-world examples with and without prior

knowledge. Two of the synthetic examples are based on the “sinc” function which has been

extensively used for kernel approximation testing [119, 3], while the third synthetic example is

a two-dimensional hyperboloid. All our results indicate significant improvement due to prior

knowledge. The parameters for the synthetic examples were selected using a combination

of exhaustive search and a simple variation on the Nelder-Mead simplex algorithm [99] that

uses only reflection, with average error as the criterion. The chosen parameter values are

given in the captions of relevant figures.

2.3.1 One-dimensional sinc function

We consider the one-dimensional sinc function:

f(x) = sinc(x) =
sinπx

πx
(2.22)

Given data for the sinc function includes approximate function values for 52 points on the

intervals −3 ≤ x ≤ −1.4303 and 1.4303 ≤ x ≤ 3. The endpoints ±1.4303 are approximate

local minima of the sinc function. The given approximate function values for sinc(x) are

normally perturbed around the true values, with mean 0 and standard deviation 0.5. In

addition, there are also three given values at x = 0. One of these values is 1, which is the

actual limit of the sinc function at 0. The other values at x = 0 are 0 and −1 which are

intended to be misleading to the approximation.

Figure 2.1(a) depicts sinc(x) by a dashed curve and its approximation without prior

knowledge by a solid curve based on the 55 points shown by diamonds. The nine solid

diamonds depict “support” points, that is rows Ai of A for which αi "= 0 in the solution of

the nonlinear Gaussian kernel approximation of (2.7) for f(x):

f(x) ≈ K(x′, A′)α + b. (2.23)

18

The approximation in Figure 2.1(a) has an average error of 0.3113. This error is computed

by averaging over a grid of 100 equally spaced points in the interval [−3, 3].

Figure 2.1(b) depicts sinc(x) by a dashed curve and its much better approximation with

prior knowledge by a solid curve based on the 55 points shown, which are the same as those

of Figure 2.1(a). The seven solid diamond points are “support” points, that is rows Ai of

A for which αi "= 0 in the solution of the nonlinear Gaussian kernel approximation (2.23) of

(2.21) for f(x). The approximation in Figure 2.1(b) has an average error of 0.0901 computed

over a grid of 100 equally spaced points on [−3, 3]. The prior knowledge used to approximate

the one-dimensional sinc function is −1
4 ≤ x ≤ 1

4 ⇒ f(x) ≥ sin(π/4)
π/4 . The value sin(π/4)

π/4 is the

minimum of sinc(x) on the knowledge interval [−1
4 ,

1
4]. This prior knowledge is implemented

by replacing f(x) by its nonlinear kernel approximation (2.23) and then using the implication

(2.18) as follows:

K(I, A′)t ≤ 1

4
∧ K(−I, A′)t ≤ 1

4
=⇒ α′K(A, A′)t + b ≥ sin(π/4)

π/4
. (2.24)

2.3.2 Two-dimensional sinc function

Our second example is the two-dimensional sinc(x) function for x ∈ R2:

f(x1, x2) = sinc(x1)sinc(x2) =
sinπx1

πx1

sinπx2

πx2
. (2.25)

The given data for the two-dimensional sinc function includes 210 points in the region

{(x1, x2)|(−3 ≤ x1 ≤ −1.4303 ∨ 1.4303 ≤ x1 ≤ 3) ∧ (−3 ≤ x2 ≤ −1 ∨ 1 ≤ x2 ≤ 3)}.

This region excludes the largest bump in the function centered at (x1, x2) = (0, 0). The

given values are exact function values. There are also three values given at (x1, x2) = (0, 0),

similar to the previous example with the one dimensional sinc. The first value is the actual

limit of the function at (0, 0), which is 1. The other two values are 0 and −1. These last

two values are intended to mislead the approximation.

Figure 2.2(a) depicts the two-dimensional sinc function of (2.25). Figure 2.2(b) depicts

an approximation of sinc(x1)sinc(x2) without prior knowledge by a surface based on the

19

!3 !2 !1 0 1 2 3
!1.5

!1

!0.5

0

0.5

1

(a)
!3 !2 !1 0 1 2 3

!1.5

!1

!0.5

0

0.5

1

(b)

Figure 2.1 The one-dimensional sinc function sinc(x) = sinπx
πx depicted by a dashed curve,

and its Gaussian kernel approximation (a) without prior knowledge and (b) with prior
knowledge depicted by a solid curve based on the 55 points shown by diamonds. The solid
diamonds depict the “support” points used by the nonlinear Gaussian kernel in generating
the approximation of sinc(x). That is, they are the rows Ai of A for which αi "= 0 in the

solution of the nonlinear Gaussian kernel approximation of (2.7) for f(x):
f(x) ≈ K(x′, A′)α + b. The prior knowledge used in (b) consists of the implication

−1
4 ≤ x ≤ 1

4 ⇒ f(x) ≥ sin(π/4)
π/4 , which is implemented by replacing f(x) by its nonlinear

kernel approximation (2.23). The approximation in (a) without knowledge has an average
error of 0.3113 over a grid of 100 points in the interval [−3, 3], while the approximation in
(b) with knowledge has an average error of 0.0901, which is less than 1

3.4 times the error in
(a). Parameter values used: (a) µ = 7, C = 5; (b) µ = 1, C = 13, µ1 = 5, µ2 = 450.

20

!3
!2

!1
0

1
2

3

!3
!2

!1
0

1
2

3
!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

(a)
!3

!2
!1

0
1

2
3

!3
!2

!1
0

1
2

3
!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

(b)
!3

!2
!1

0
1

2
3

!3
!2

!1
0

1
2

3
!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

(c)

Figure 2.2 The (a) exact product sinc function f(x1, x2) = sinπx1
πx1

sinπx2
πx2

, and its Gaussian
kernel approximation based on 211 exact function values plus two incorrect function values,

(b) without prior knowledge, and (c) with prior knowledge consisting of
(x1, x2) ∈ {[−0.1, 0.1]× [−0.1, 0.1]}} ⇒ f(x1, x2) ≥ (sin(π/10)

π/10)2. Over a grid of 2500 points

in the set {[−3, 3]× [−3, 3]}, the approximation without prior knowledge in (b) has an
average error of 0.0501, while the approximation in (c) with prior knowledge has an

average error of 0.0045, which is less than 1
11.1 times the error in (b). Parameter values

used: (b) µ = 0.2, C = 106; (c) µ = 1, C = 16000, µ1 = 15000, µ2 = 5 · 106.

213 points described above. The approximation in Figure 2.2(b) has an average error of

0.0501. This value is computed by averaging over a grid of 2500 equally spaced points in

{[−3, 3]× [−3, 3]}.

Figure 2.2(c) depicts a much better approximation of sinc(x1)sinc(x2) with prior

knowledge by a surface based on the same 213 points. The approximation in Figure 2.2(c) has

an average error of 0.0045. This value is computed by averaging over 2500 equally spaced

points in {[−3, 3] × [−3, 3]}. The prior knowledge consists of the implication (x1, x2) ∈

{[−0.1, 0.1] × [−0.1, 0.1]} ⇒ f(x1, x2) ≥ (sin(π/10)
π/10)2. The value (sin(π/10)

π/10)2 is equal to the

minimum value of sinc(x1)sinc(x2) on the knowledge set {[−0.1, 0.1] × [−0.1, 0.1]}. This

prior knowledge is implemented by replacing f(x1, x2) by its nonlinear kernel approximation

(2.23) and then using the implication (2.18).

21

2.3.3 Two-dimensional hyperboloid function

Our third example is the two-dimensional hyperboloid function:

f(x1, x2) = x1x2. (2.26)

For the two-dimensional hyperboloid function, the given data consists of 11 points along

the line x2 = x1, x1 ∈ {−5,−4, . . . , 4, 5}. The given values at these points are the actual

function values.

Figure 2.3(a) depicts the two-dimensional hyperboloid function of (2.26). Figure 2.3(b)

depicts an approximation of the hyperboloid function, without prior knowledge, by a surface

based on the 11 points described above. The approximation in Figure 2.3(b) has an average

error of 4.8351 computed over a grid of 2500 equally spaced points in {[−5, 5]× [−5, 5]}.

Figure 2.3(c) depicts a much better approximation of the hyperboloid function by

a nonlinear surface based on the same 11 points above plus prior knowledge. The

approximation in Figure 2.3(c) has an average error of 0.2023 computed over a grid of 2500

equally spaced points in {[−5, 5] × [−5, 5]}. The prior knowledge consists of the following

two implications:

(x1, x2) ∈ {(x1, x2)|−
1

3
x1 ≤ x2 ≤ −

2

3
x1} ⇒ f(x1, x2) ≤ 10x1 (2.27)

and

(x1, x2) ∈ {(x1, x2)|−
2

3
x1 ≤ x2 ≤ −

1

3
x1} ⇒ f(x1, x2) ≤ 10x2. (2.28)

These implications are implemented by replacing f(x1, x2) by its nonlinear kernel

approximation (2.23) and then using the implication (2.18). The regions on which the

knowledge is given are cones on which x1x2 is negative. Since the two implications are

analogous, we explain (2.27) only. This implication is justified on the basis that x1x2 ≤ 10x1

over the knowledge cone {(x1, x2)|−1
3x1 ≤ x2 ≤ −2

3x1} for sufficiently large x2, that is

x2 ≥ 10. This is intended to capture coarsely the global shape of f(x1, x2) and succeeds in

generating a more accurate overall approximation of the function.

22

!5
0

5

!5

0

5
!25

!20

!15

!10

!5

0

5

10

15

20

25

(a)
!5

0
5

!5

0

5
!25

!20

!15

!10

!5

0

5

10

15

20

25

(b)
!5

0
5

!5
0

5
!25

!20

!15

!10

!5

0

5

10

15

20

25

(c)

Figure 2.3 The (a) exact hyperboloid function f(x1, x2) = x1x2, and its Gaussian kernel
approximation based on 11 exact function values along the line

x2 = x1, x1 ∈ {−5,−4, . . . , 4, 5}, (b) without prior knowledge and (c) with prior knowledge
consisting of the implications (2.27) and (2.28). Over a grid of 2500 points in the set

{[−5, 5]× [−5, 5]}, the approximation without prior knowledge in (b) has average error
4.8351, while the approximation with prior knowledge in (c) has average error 0.2023,

which is less than 1
23.9 times the error of (b). Parameter values used: (b)

µ = 0.361, C = 145110; (c) µ = 0.0052, C = 5356, µ1 = 685, µ2 = 670613.

23

2.3.4 Predicting lymph node metastasis

For our first example involving a real-world dataset we describe a potentially useful

application of knowledge-based approximation to breast cancer prognosis [80, 123, 57]. An

important prognostic indicator for breast cancer recurrence is the number of metastasized

lymph nodes under a patient’s armpit, which could be as many as 30. To determine this

number, a patient must undergo optional surgery in addition to the removal of the breast

tumor. If the predicted number of metastasized lymph nodes is sufficiently small, then the

oncological surgeon may decide not to perform the additional surgery. Thus, it is useful

to approximate the number of metastasized lymph nodes as a function of thirty available

cytological features and one histological feature. The cytological features are obtained from a

fine needle aspirate during the diagnostic procedure while the histological feature is obtained

during surgery. Our proposed knowledge-based approximation can be used to improve the

determination of such a function, f : R31 −→ R, that predicts the number of metastasized

lymph nodes. For example, in certain polyhedral regions of R31, past training data indicate

the existence of a substantial number of metastasized lymph nodes, whereas certain other

regions indicate the unlikely presence of any metastasis. This knowledge can be applied

to obtain a hopefully more accurate lymph node function f than that based on numerical

function approximation alone.

We have performed preliminary experiments with the Wisconsin Prognostic Breast

Cancer (WPBC) data available from [96]. In our experiments we reduced R31 to R4 and

predicted the number of metastasized lymph nodes based on three cytological features: mean

cell texture, worst cell smoothness, and worst cell area, as well as the histological feature

tumor size. The tumor size is an obvious histological feature to include, while the three

other cytological features were the same as those selected for breast cancer diagnosis in [73].

Thus, we are approximating a function f : R4 −→ R. Note that the online version of the

WPBC data contains four entries with no lymph node information which were removed for

our experiments. After removing these entries, we were left with 194 examples in our dataset.

24

To simulate the procedure of an expert obtaining prior knowledge from past data we used

the following procedure. First we took a random 20% of the dataset to analyze as “past

data.” Inspecting this past data, we choose the following background knowledge:

x1 ≥ 22.4 ∧ x2 ≥ 0.1 ∧ x3 ≥ 1458.9 ∧ x4 ≥ 3.1 =⇒ f(x1, x2, x3, x4) ≥ 1, (2.29)

where x1, x2, x3, and x4 denote mean texture, worst smoothness, worst area, and tumor size

respectively. This prior knowledge is based on a typical oncological surgeon’s advice that

larger values of the variables are likely to result in more metastasized lymph nodes. The

constants in (2.29) were chosen by taking the average values of x1, . . . , x4 for the entries in

the past data with at least one metastasized lymph node.

We used ten-fold cross validation to compare the average absolute error between an

approximation without prior knowledge and an approximation with the prior knowledge of

Equation (2.29) on the 80% of the data that was not used as “past data” to generate the

constants in (2.29). Parameters in (2.21) using a Gaussian kernel were chosen using the

Nelder-Mead algorithm on a tuning set taken from the training data for each fold. The

average absolute error of the function approximation with no prior knowledge was 3.75

while the average absolute error with prior knowledge was 3.35, a 10.5% reduction. The

mean function value of the data used in the ten-fold cross validation experiments is 3.30,

so neither approximation is accurate. However, these results indicate that adding prior

knowledge does indeed improve the function approximation substantially. Hopefully more

sophisticated prior knowledge, based on a more detailed analysis of the data and consultation

with domain experts, will further reduce the error.

2.3.5 Reinforcement learning

Our second example using a real-world dataset is an application to a reinforcement

learning task [113], where the goal is to predict the value of taking an action at a given

state. We model this task by learning a function for each possible action. The domain of

these functions is the set of states. In particular, we use the BreakAway subtask of the soccer

game developed in [64]. In BreakAway the objective is to cooperate with teammates to score

25

a goal within ten seconds, without allowing the opposing team to take control of the ball or

allowing the ball to go out of bounds. The state description includes measurements such as

the distance to each of the opposing players, the distance to the soccer ball, the distances to

the edges of the field, etc. Actions include shooting the ball at the goal, holding the ball, and

attempting a pass to a teammate. It has been demonstrated that providing prior knowledge

can improve the choice of actions significantly [52, 63]. One example of advice (that is, prior

knowledge) that has been successfully used in this domain is the simple advice that “if at

least fifteen meters from the goal and a teammate is closer to the goal and at least three

meters from the goalie, then it is a good idea to pass to that teammate.” In our approach we

approximate the value function of passing, vp, as a function of states. Advice can be stated

as the following implication, assuming one teammate:

d1 ≥ 15 ∧ d2 ≤ d1 ∧ d3 ≥ 3 =⇒ vp ≥ c, (2.30)

where d1 denotes the distance to the goal, d2 the distance of the teammate to the goal, d3

the distance of the teammate to the goalie, vp the predicted value of passing, and c is some

constant.

Figure 2.4 shows a comparison of three function approximations to the BreakAway task.

One approximation, labeled “No Advice,” used no prior knowledge while KBKR and Pref-

KBKR both incorporated prior knowledge using the approach described in this chapter. In

KBKR only one value function may appear on the right-hand side of the implication (e. g.,

vp ≥ c), while in Pref-KBKR two value functions may appear on the right-hand side (e. g.,

vp ≥ vs, where vs denotes the predicted value of shooting). Thus, in Pref-KBKR preference

for one action over another can be expressed as prior knowledge. For example, a preference

for passing instead of shooting in some states can be expressed in Pref-KBKR, but not

KBKR. The approximations that incorporated prior knowledge performed better than the

formulation with no prior knowledge. Details of the data and prior knowledge used for the

function approximations can be found in [64].

26

Figure 2.4 Reinforcement (reflecting successful action) as a function of games played for
three function approximations. Higher reinforcement is better. “No Advice” denotes an
approximation with no prior knowledge, while KBKR denotes knowledge-based kernel
regression and Pref-KBKR denotes preference KBKR. Both KBKR and Pref-KBKR

incorporate prior knowledge.

27

Chapter 3

Nonlinear Knowledge in Kernel Machines

Prior knowledge has been used effectively in improving classification both for linear [34]

and nonlinear [33] kernel classifiers as well as for nonlinear kernel approximation as described

in Chapter 2. In all these applications prior knowledge was converted to linear inequalities

that were imposed on a linear program. The linear program generated a linear or nonlinear

classifier, or a linear or nonlinear function approximation, all of which were more accurate

than the corresponding results that did not utilize prior knowledge. However, whenever a

nonlinear kernel was utilized in these applications, as in Proposition 2.2.1, kernelization of the

prior knowledge was not a transparent procedure that could be easily related to the original

sets over which prior knowledge was given. In contrast, prior knowledge over arbitrary

general sets has been recently incorporated without kernelization of the prior knowledge sets

into nonlinear kernel approximation [89] and nonlinear kernel classification [86]. Here, we

present a unified formulation of both approaches introduced in [87], which are made possible

through the use of a fundamental theorem of the alternative for convex functions that we

describe in Section 3.1. An interesting, novel approach to knowledge-based support vector

machines that modifies the hypothesis space rather than the optimization problem is given

in [53]. In another recent approach, prior knowledge is incorporated by adding additional

points labeled based on the prior knowledge to the dataset [65].

We also consider adding nonlinear prior knowledge as linear equalities to proximal

nonlinear classification, as implemented in [91]. Proximal nonlinear classifiers [27, 31, 29]

28

require only the solution of a system of linear equations. Solvers for such systems are both

computationally cheaper and more available than linear programming solvers.

3.1 General linear programming formulation

We wish to impart knowledge to a function learned on a dataset in Rn represented

by the m rows of the matrix A ∈ Rm×n with associated labels represented by the m-

dimensional vector d. For approximation problems, d will be real valued, that is d ∈ Rm.

For classification problems, d will have values +1 or −1 according to the class of each

example, that is d ∈ {−1, +1}m. The learned function f from Rn to R is defined

in (1.4) as f(x) = K(x′, B′)u − γ, where B ∈ Rk×n is an arbitrary basis matrix and

K(x′, B′) : R1×n ×Rn×k −→ R1×k is an arbitrary kernel function. The variables u ∈ Rk

and γ ∈ R are parameters determined by the following optimization problem, which is the

same as (1.5) with J(u, γ) = ‖u‖1:

min
u,γ

νL(u, γ, A, d) + ‖u‖1, (3.1)

where L is an arbitrary loss function, and ν is a positive parameter that controls the weight

in the optimization problem of data fitting versus complexity reduction.

We now impose prior knowledge on the construction of our learned function f(x) =

K(x′, B′)u− γ through the following implication:

g(x) ≤ 0 =⇒ K(x′, B′)u− γ ≥ φ(x), ∀x ∈ Γ. (3.2)

Here, g(x) : Γ ⊂ Rn −→ Rp is a p-dimensional function defined on a subset Γ of Rn that

determines the region in the input space where prior knowledge requires that K(x′, B′)u− γ

be larger than some known function φ(x) : Γ ⊂ Rn −→ R. In Chapter 2, and in previous

work [79, 35, 33], prior knowledge implications such as (3.2) could not be handled directly

as we shall do here by using Proposition 3.1.1 below. Instead, the inequality g(x) ≤ 0 was

kernelized. This led to an inequality, such as (2.18), that could not be easily related to the

original constraint g(x) ≤ 0. In addition, in [79, 35, 33] could only handle linear g(x) and

29

φ(x). The implication (3.2) can be written in the following equivalent logical form:

g(x) ≤ 0, K(x′, B′)u− γ − φ(x) < 0,

has no solution x ∈ Γ.
(3.3)

It is precisely implication (3.2) that we shall convert to a system which is linear in the

parameters of f , (u, γ), by means of the following theorem of the alternative for convex

functions. The alternatives here are that either the negation of (3.3) holds, or (3.4) below

holds, but never both.

Proposition 3.1.1 Prior Knowledge as System of Linear Inequalities For a fixed

u ∈ Rk, γ ∈ R, consider the following statements:

(i) The implication (3.2) or equivalently (3.3) holds.

(ii) There exists v ∈ Rp, v ≥ 0 such that:

K(x′, B′)u− γ − φ(x) + v′g(x) ≥ 0, ∀x ∈ Γ. (3.4)

Then (ii)=⇒(i), with no additional assumptions. If, in addition, g(x) and K(x′, B′)

are convex on Γ, φ(x) is concave on Γ, Γ is a convex subset of Rn, u ≥ 0 and that

g(x) < 0 for some x ∈ Γ, then (i)=⇒(ii).

Proof (i)=⇒(ii): This follows from [67, Corollary 4.2.2], the fact that the functions g(x)

and K(x′, B′)u− γ − φ(x) of (3.3) are convex on Γ and that g(x) < 0 for some x ∈ Γ.

(i)⇐=(ii): If (i) did not hold then there exists an x ∈ Γ such that g(x) ≤ 0, K(x′, B′)u−

γ − φ(x) < 0, which would result in the contradiction:

0 > K(x′, B′)u− γ − φ(x) + v′g(x) ≥ 0. (3.5)

"
We note immediately that in the proposed application of converting prior knowledge

to linear inequalities in the parameters (u, γ) all we need is the implication (i)⇐=(ii),

which requires no assumptions whatsoever on the functions g(x), K(x′, B′), φ(x) or on

30

the parameter u. We further note that the implication (3.2) can represent fairly complex

knowledge such as K(x′, B′)u− γ being equal to any desired function whenever g(x) ≤ 0.

We note that Proposition 3.1.1 can also be invoked on the following prior knowledge

implication, which is similar to (3.2):

h(x) ≤ 0 =⇒ K(x′, B′)u− γ ≤ −ψ(x), ∀x ∈ Λ. (3.6)

We now incorporate the prior knowledge contained in implications (3.2) and (3.6) into the

optimization problem (3.1) as follows:

min
u,γ,z1,...,z!,q1,...,qt

νL(u, γ, A, d) + ‖u‖1 + σ(
'∑

i=1
zi +

t∑
j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,

zi ≥ 0, i = 1, . . . , .,

v ≥ 0,

−K(xj ′, B′)u + γ − ψ(xj) + r′h(xj) + qj ≥ 0,

qj ≥ 0, j = 1, . . . , t,

r ≥ 0.

(3.7)

We note that we have discretized the variable x ∈ Γ and x ∈ Λ in the constraints above to the

finite meshes of points {x1, x2, . . . , x'} and {x1, x2, . . . , xt} in order to convert a semi-infinite

program [37] with an infinite number of constraints into a finite mathematical program.

We have also added nonnegative slack variables z1, z2, . . . , z' and q1, q2, . . . , qt to allow small

deviations in the prior knowledge. The sum of these nonnegative slack variables for the prior

knowledge inequalities is minimized with weight σ > 0 in the objective function in order to

drive them to zero to the extent possible. Thus, the magnitude of the parameter σ enforces

prior knowledge while the magnitude of ν enforces data fitting.

Using the Motzkin theorem of the alternative [69, Theorem 2.4.2], the discretized version

of the knowledge constraint can be shown, under mild assumptions, to be equivalent to an

average imposition of the knowledge (3.2) at the discretized points {x1, . . . , x'}:

∃(t1, . . . , t') ≥ 0 : t1
′
g(x1)+. . .+t'

′
g(x') ≤ 0 =⇒

'∑

i=0

(
K(xi′, B′)u−γ

)
ti ≥

'∑

i=0

φ(xi)ti. (3.8)

31

We turn now to specific formulations for knowledge-based kernel approximation and

knowledge-based kernel classification.

3.2 Knowledge-based kernel approximation

In the approximation setting, we wish to approximate a function, f , given exact or

approximate function values of a dataset of points represented by the rows of the matrix

A ∈ Rm×n. Thus, for each point Ai we are given an exact or inexact value of f , denoted

by a real number di, i = 1, . . . , m. We therefore desire the parameters (u, γ) of (1.4),

f(x) = K(x′, B′)u−γ, to be determined such that (1.6), K(A, B′)u−eγ ≈ 0, is satisfied. As

discussed in Section 1.2.1, an appropriate loss function to achieve this is (1.7). Incorporating

this loss function into the optimization problem (3.7) gives:

min
u,γ,z1,...,z!,q1,...,qt,s

ν‖s‖1 + ‖u‖1 + σ(
'∑

i=1
zi +

t∑
j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,

zi ≥ 0, i = 1, . . . , .,

v ≥ 0,

−K(xj ′, B′)u + γ − ψ(xj) + r′h(xj) + qj ≥ 0,

qj ≥ 0, j = 1, . . . , t,

r ≥ 0,

−s ≤ K(A, B′)u− eγ − d ≤ s.

(3.9)

Note that at the solution of (3.9), ‖s‖1 = ‖K(A, B′)u− eγ − d‖1. Note further that (3.9) is

the same as [89, Equation 10], except that here we have explicitly included implication (3.6)

in addition to (3.2).

3.3 Knowledge-based kernel classification

The classification problem consists of classifying the points represented by the rows of

the matrix A ∈ Rm×n into the two classes +1 and −1 according to their labels given as

d ∈ {−1, +1}m. Thus, for each point Ai we are given its label di ∈ {−1, +1}, i = 1, . . . , m

32

and we seek to find a function f of the form in (1.4), f(x) = K(x′, B′)u−γ, that satisfies, to

the extent possible, the separation condition (1.10), D(K(A, B′)u − eγ) ≥ 0. As discussed

in Section 1.2.2, an appropriate loss function to achieve this condition is the hinge loss given

in (1.12). Incorporating this loss function into the optimization problem (3.7) gives:

min
u,γ,z1,...,z!,q1,...,qt,s

ν‖s‖1 + ‖u‖1 + σ(
'∑

i=1
zi +

t∑
j=1

qj)

s.t. K(xi′, B′)u− γ − φ(xi) + v′g(xi) + zi ≥ 0,

zi ≥ 0, i = 1, . . . , .,

v ≥ 0,

−K(xj ′, B′)u + γ − ψ(xj) + r′h(xj) + qj ≥ 0,

qj ≥ 0, j = 1, . . . , t,

r ≥ 0,

D(K(A, B′)u− eγ) + s ≥ 0,

s ≥ 0.

(3.10)

We note that at the solution, ‖s‖1 = ‖(e−D(K(A, B′)u− eγ))+‖1. Note further that (3.10)

is the same as the optimization problem in [86] with φ(x) = ψ(x) = α, ∀x.

3.4 Proximal knowledge-based classification

In contrast to the linear programming SVM formulation used above, proximal SVM

classifiers [27, 31, 29] require only the solution of a system of linear equations. Here, we

give a formulation for adding prior knowledge in a way that preserves this computational

advantage. We note that each prior knowledge implication given in (3.2) leads to a system

of linear inequalities when added to an optimization problem through the discretization

of the sufficient condition given by Proposition 3.1.1. Therefore, we here give a method

for converting prior knowledge into a system of linear equalities, which can be added to a

nonlinear proximal classifier and still require only the solution of a linear system of equations.

We now impose prior knowledge on the construction of our classifier function K(x′, B′)u−

γ to ensure that a certain set of points lies on the +1 side of the classifier (1.4). We achieve

33

this through the following implication:

g(x) ≤ 0 =⇒ K(x′, B′)u− γ = 1, ∀x ∈ Γ1. (3.11)

Here, g(x) : Γ1 ⊂ Rn −→ Rr is an r-dimensional function defined on a subset Γ1 of Rn that

determines the region {x|g(x) ≤ 0}. The prior knowledge requires that for any x in this

region, the classifier function K(x′, B′)u − γ return a value +1. Such points would thus be

classified in class +1. Prior knowledge about the class −1 can be added through a similar

implication.

It is interesting to compare the implication (3.11) to the similar implication (3.2) treated

in Section 3.1. This implication has the same interpretation as (3.11), but uses an inequality

constraint to impose the condition that any x for which g(x) ≤ 0 is classified in class +1.

While implication (3.2) can be added as a set of linear inequality constraints to the linear

programming formulation of an SVM, here we shall preserve the computational advantages

of the proximal SVM by adding implication (3.11) as a set of linear equality constraints as

follows.

The implication (3.11) can be written in the following equivalent form:

g(x)+ = 0 =⇒ K(x′, B′)u− γ = 1, ∀x ∈ Γ1, (3.12)

where g(x)+ = max{g(x), 0}. The use of g(x)+ = 0 in (3.12) in place of g(x) ≤ 0 is a key

observation which allows us to convert the implication to a linear equality via Proposition

3.4.1 with a multiplier that is not required to be nonnegative. We can then add this

linear equality to a proximal nonlinear classifier without adding nonnegativity constraints.

Motivated by Proposition 3.1.1, Proposition 3.4.1 ensures implication (3.12) is satisfied once

a certain linear equality is satisfied.

Proposition 3.4.1 Prior Knowledge as a Linear Equality The implication (3.12), or

equivalently the implication (3.11), is satisfied if ∃v ∈ Rr such the following linear equality

in v is satisfied:

K(x′, B′)u− γ − 1 + v′g(x)+ = 0, ∀x ∈ Γ1. (3.13)

34

Proof If the implication (3.12) does not hold then for some x ∈ Γ1 such that g(x)+ = 0 it

follows that K(x′, B′)u − γ "= 1. However this leads to the following contradiction for that

x:

0 = K(x′, B′)u− γ − 1 + v′g(x)+ = K(x′, B′)u− γ − 1 "= 0, (3.14)

where the first equality follows from (3.13), the second equality from g(x)+ = 0 and the

inequality follows from K(x′, B′)u− γ "= 1. "
We now use Proposition 3.4.1 to formulate proximal knowledge-based nonlinear kernel

classification. Prior knowledge in the form of the implication (3.12) may be incorporated

into the proximal support vector machine (1.17) by means of the linear equality (3.13), with

weight σ/2, to be satisfied in a least square sense at . discrete points xi, i = 1, . . . , . in the

set Γ1 as follows:

min
(u,γ,v)

ν
2‖D(K(A, B′)u− eγ)− e‖2+

σ
2

'∑
i=1

(K(xi′, B′)u− γ − 1+

v′g(xi)+)2+

1
2‖u‖

2 + 1
2γ

2 + 1
2‖v‖

2.

(3.15)

In the above equation, we have also added an additional regularization term, ‖v‖2. This

term ensures that the optimization problem is strongly convex, and trades off the size of v

with the fit to the data, the extent to which (3.13) is satisfied, and the solution complexity.

Figure 3.1 and its caption describe an example of the effect of v.

Remark 3.4.2 One important consequence of Proposition 3.4.1 is that the multiplier v

causes the linear equality (3.13) to be sufficient for the implication (3.12) to hold even if

Γ1 does not closely match {x|g(x)+ = 0}. In terms of (3.15), the discretization points

xi, i = 1, . . . , . need not be in the set {x|g(x)+ = 0}. This sets our approach apart from those

such as [65] where knowledge is imparted through discrete points in Γ1 = {x|g(x)+ = 0}. In

the extreme example shown in Figure 3.1, our formulation (3.15) gives similar results whether

Γ1 is disjoint from {x|g(x)+ = 0} or not. In Section 3.6.1 we do not ensure that every point

in the discretization satisfies the left-hand side of the prior knowledge implication.

35

(a) (b) (c)

Figure 3.1 An example showing that the set Γ1 discretized in (3.15) need not contain the
region {x|g(x)+ = 0} in which the left-hand side of the implication (3.12) is satisfied. Each
of the figures (a), (b) and (c) depict 600 points denoted by “+” and “o” that are obtained

from three bivariate normal distributions. Another 400 points from the same three
distributions in the same proportions were used for training and tuning each of the three

classifiers of figures (a), (b) and (c). For simplicity, we use the linear kernel
K(A, B′) = AB′ to obtain three different linear classifiers to discriminate between the +’s

and o’s. A linear classifier without prior knowledge is shown in (a). Note that some +
points from the rarely sampled distribution are misclassified. Figures (b) and (c) show

classifiers using the same data and the prior knowledge
(‖x−

(−3
3

)
‖ − 1)+ = 0 =⇒ K(x′, B′)u− γ = 1. The left hand side of this implication is true

in the region enclosed by the circle in (b) and (c) and contains most of the + points from
the rarely sampled distribution. The prior knowledge is imposed over a single grid of 100
evenly spaced points in the square shown and the parameter σ of (3.15) was set to 1. In
(b), the square contains the set {x|(‖x−

(−3
3

)
‖ − 1)+ = 0}, but the square of (c) is highly

disjoint from the set {x|(‖x−
(−3

3

)
‖ − 1)+ = 0}. Nevertheless, the classifier of (c) is nearly

indistinguishable from that in (b). Techniques such as [65], which incorporate prior
knowledge by adding points which conform to the knowledge as “pseudo” points to the

training set, will not make use of a discretization such as that of (c). Our approach is able
to handle points in the discretization that are not in {x|g(x)+ = 0} partly because of the
multiplier v in (3.13). At the solution shown in (c), v′g(x)+ > 1 in the discretized region.

For such x, (3.13) implies that x should have class −1. Thus, v can select which side of the
separating surface (1.11) points with a relatively large g(x)+ should lie on. In (3.15), the

size of v is traded off against the fit to the data, the extent to which (3.13) is satisfied, and
the solution complexity. This extreme example illustrates an important property of our
approach: Proposition 2.1 does not require that Γ1 match the set {x|g(x)+ = 0} closely.

36

Since the objective function of (3.15) is strongly convex with a symmetric positive definite

Hessian matrix, it has a unique solution obtained by setting its gradient equal to zero. This

gives a system of k + 1 + r nonsingular linear equations in as many unknowns (u, γ, v).

We note that additional prior knowledge about the class −1 can be added to (3.15) in an

analogous way. Finally, the prior knowledge can easily be imposed at many points by using

the incremental technique of [29] since the size of the system of linear equations does not

depend on .. We note that in the linear programming approach of [86], both the number

of constraints and the number of variables in the linear program grow linearly with .. The

fact that the size of the system of equations does not depend on . allows our approach to

potentially handle knowledge which is imposed at a huge number of points, which would be

difficult to solve using the linear programming formulation.

3.5 Numerical experience

The effectiveness of our proposed linear programming formulation has been illustrated

on three approximation tasks [89] and two classification tasks [86]. We describe these

experiments and their results here. It is important to point out that the present formulation

is very different in nature from that presented in [33] and [79]. Our primary concern

here is to incorporate prior knowledge in an explicit and transparent manner without

having to kernelize it as was done in [33] and [79]. In particular, we are able to directly

incorporate general implications involving nonlinear inequalities in a linear program by

utilizing Proposition 3.1.1. Synthetic examples were used to show how our approach uses

nonlinear prior knowledge to obtain approximations or classifiers that are much better

than those obtained without prior knowledge. Although the given prior knowledge for the

synthetic example is strong, the example illustrates the simplicity and effectiveness of our

approach to incorporate prior knowledge into nonlinear support vector classification and

approximation. The Wisconsin Prognostic Breast Cancer (WPBC) dataset was used to

demonstrate situations in which prior knowledge and data are combined to obtain a better

approximation or classifier than by using only prior knowledge or data alone.

37

!5
0

5

!5

0

5
!25

!20

!15

!10

!5

0

5

10

15

20

25

Figure 3.2 The exact hyperboloid function η(x1, x2) = x1x2.

3.5.1 Approximation datasets

The effectiveness of our proposed approximation formulation (3.9) has been illustrated

on a synthetic dataset and the Wisconsin Prognostic Breast Cancer (WPBC) database,

available from [96].

3.5.1.1 Two-dimensional hyperboloid function

The first approximation example is the two-dimensional hyperboloid function:

η(x1, x2) = x1x2. (3.16)

This function was studied in [79]. The given data consists of eleven points along the line

x1 = x2, x1 ∈ {−5,−4, . . . , 4, 5}. The given values at these points are the actual function

values.

Figure 3.2 depicts the two-dimensional hyperboloid function of (3.16). Figure 3.3 depicts

the approximation of the hyperboloid function by a surface based on the eleven points

described above without prior knowledge. Figures 3.2 and 3.3 are taken from [79].

Figure 3.4 depicts a much better approximation than that of Figure 3.3 of the hyperboloid

function by a nonlinear surface based on the same eleven points above plus prior knowledge.

The prior knowledge consisted of the implication:

x1x2 ≤ 1 =⇒ f(x1, x2) ≤ x1x2, (3.17)

38

!5
0

5

!5

0

5
!25

!20

!15

!10

!5

0

5

10

15

20

25

Figure 3.3 Approximation of the hyperboloid function η(x1, x2) = x1x2 based on eleven
exact function values along the line x2 = x1, x1 ∈ {−5,−4, . . . , 4, 5}, but without prior

knowledge.

!5 0 5
!5

0
5

!25

!20

!15

!10

!5

0

5

10

15

20

25

Figure 3.4 Approximation of the hyperboloid function η(x1, x2) = x1x2 based on the same
eleven function values as Figure 3.3 plus prior knowledge consisting of the implication

(3.17).

39

which, because of the nonlinearity of x1x2, cannot be handled by [79]. Note that even

though the prior knowledge implication (3.17) provides only partial information regarding

the hyperboloid (3.16) being approximated, applying it is sufficient to improve our kernel

approximation substantially as depicted in Figure 3.4. The prior knowledge implication

(3.17) was applied in its equivalent inequality (3.4) form, at discrete points as stated in the

inequality constraints of (3.9). In this example, the knowledge was applied at eleven points

along the line x1 = −x2, x1 ∈ {−5,−4, . . . , 4, 5}.

It is instructive to compare (3.17) with the prior knowledge used in Chapter 2 to obtain

a visually similar improvement. In that case, the prior knowledge given in (2.27), (2.28) was

used:

(x1, x2) ∈ {(x1, x2)|−1
3x1 ≤ x2 ≤ −2

3x1} ⇒

f(x1, x2) ≤ 10x1

and

(x1, x2) ∈ {(x1, x2)|−2
3x1 ≤ x2 ≤ −1

3x1} ⇒

f(x1, x2) ≤ 10x2.

These implications were incorporated into a linear program with no discretization required

using Proposition 2.2.1. However, these implications are not correct everywhere, but are

merely intended to coarsely model the global shape of η(x1, x2). This inexactness arises

because of the limitation that knowledge be linear in the input space, and because the use

of the nonlinear kernel to map knowledge in the input space to higher dimensions is difficult

to interpret. In contrast, the prior knowledge of implication (3.17) is always correct and

exactly captures the shape of the function. Thus, this example illustrates that there is a

significant gain in usability due to the fact that the knowledge may be nonlinear in input

space features.

3.5.1.2 Predicting lymph node metastasis

To demonstrate the effectiveness of our approximation formulation (3.9) on a real-world

dataset, a potentially useful application of knowledge-based approximation to breast cancer

prognosis [80, 123, 58] was considered. An important prognostic indicator for breast cancer

40

recurrence is the number of metastasized lymph nodes under a patient’s armpit which could

be as many as 30. To obtain this number, a patient must optionally undergo a potentially

debilitating surgery in addition to the removal of the breast tumor. Thus, it is useful to

approximate the number of metastasized lymph nodes using available information. The

Wisconsin Prognostic Breast Cancer (WPBC) data, in which the primary task is to determine

time to recurrence [96], contains information on the number of metastasized lymph nodes

for 194 breast cancer patients, as well as thirty cytological features obtained by a fine needle

aspirate and one histological feature, tumor size, obtained during surgery. Mangasarian et al.

demonstrated in [79] that a function that approximated the number of metastasized lymph

nodes using four of these features could be improved using prior knowledge. The formulation

developed here has been used to approximate the number of metastasized lymph nodes using

only the tumor size.

In order to simulate the situation where an expert provides prior knowledge regarding

the number of metastasized lymph nodes based on tumor size, the following procedure was

used. First, 20% of the data was randomly selected as “past data.” This past data was used

to develop prior knowledge, while the remaining 80% of the data, the “present data,” was

used for evaluation. The goal is to simulate the situation in which an expert can provide

prior knowledge, but no more data is available. To generate such prior knowledge, kernel

approximation was used to find a function φ(x) = K(x′, B′)u − γ, where B is the matrix

containing the past data and K is the Gaussian kernel defined in Section 1.1. This function

was then used as the basis for our prior knowledge. Since this function was not believed

to be accurate for areas where there was little data in the past data set, this knowledge

was imposed only on the region p(x) ≥ 0.1, where p(x) was the density function for the

tumor sizes in B estimated with the ksdensity routine, available in the MATLAB statistics

toolbox [94]. The following prior knowledge implication was considered:

p(x) ≥ 0.1 =⇒ f(x) ≥ φ(x)− 0.01. (3.18)

That is, the number of metastasized lymph nodes was greater than the predicted value on

the past data, with a tolerance of 0.01. This implication incorporates a typical oncological

41

Approximation RMSE

Without knowledge 5.92

With knowledge 5.04

Improvement due to knowledge 14.8%

Table 3.1 Leave-one-out root-mean-squared-error (RMSE) of approximations with and
without knowledge on the present WPBC data. Best result is in bold.

surgeon’s advice that the number of metastasized lymph nodes increases with tumor size. In

order to accurately simulate the desired conditions, this knowledge was formed by observing

only the past data. No aspect of the prior knowledge was changed after testing began on

the present data.

Table 3.1 illustrates the improvement resulting from the use of prior knowledge. The first

two entries compare the leave-one-out error of function approximations without and with

prior knowledge. When training functions on each training set, ten points of the training

set were selected as a tuning set. This set was used to choose the value of C from the

set {2i|i = −7, . . . , 7}. The kernel parameter was set to 2−7, which gave a smooth curve

on the past data set. This value was fixed before testing on the present data. For the

approximation with knowledge, the parameter ν was set to 106, which ensured that the

prior knowledge would be taken into account by the approximation. Implication (3.18) was

imposed as prior knowledge, and the discretization for the prior knowledge was 400 equally

spaced points on the interval [1, 5]. This interval approximately covered the region on which

p(x) ≥ 0.1. We note that the use of prior knowledge led to a 14.8% improvement. In our

experience, such an improvement is difficult to obtain in medical tasks, and indicates that

the approximation with prior knowledge is more potentially useful than the approximation

without prior knowledge.

In order to further illustrate the effectiveness of using prior knowledge, two other

experiments were performed. First, the root-mean-squared-error (RMSE) of the function

42

φ was calculated on the present data, which was not used to create φ. The resulting RMSE

was 6.12, which indicates that this function does not, by itself, do a good job predicting

the present data. The leave-one-out error on the present data of an approximation that

included the present data and the past data, but without prior knowledge was also calculated.

This approach led to less than one percent improvement over the approximation without

knowledge shown in Table 3.1, which indicates that the prior knowledge in the form of the

implication (3.18) contains more useful information than the raw past data alone. These

results indicate that the inclusion of the prior knowledge with the present data is responsible

for the 14.8% improvement.

3.5.2 Classification datasets

The effectiveness of our proposed classification formulation (3.10) has been illustrated

on two publicly available datasets: The Checkerboard dataset [44], and the Wisconsin

Prognostic Breast Cancer (WPBC) dataset [96].

3.5.2.1 Checkerboard problem

The first classification example was based on the frequently utilized checkerboard dataset

[44, 50, 77, 55, 33]. This synthetic dataset contains two-dimensional points in [−1, 1]×[−1, 1]

labeled so that they form a checkerboard. For this example, a dataset consisting of only the

sixteen points at the center of each square in the checkerboard was used to generate a

classifier without knowledge. The rows of both matrices A and B of (3.10) were set equal

to the coordinates of the sixteen points, which are the standard values. Figure 3.5 shows a

classifier trained on these sixteen points without any additional prior knowledge.

Figure 3.6 shows a much more accurate classifier trained on the same sixteen points as

used in Figure 3.5, plus prior knowledge representing only the leftmost two squares in the

bottom row of the checkerboard. This knowledge was imposed via the following implications:

−1 ≤ x1 ≤ −0.5 ∧ −1 ≤ x2 ≤ −0.5 =⇒ f(x1, x2) ≥ 0,

−0.5 ≤ x1 ≤ 0 ∧−1 ≤ x2 ≤ −0.5 =⇒ f(x1, x2) ≤ 0.
(3.19)

43

The implication on the first line was imposed at 100 uniformly spaced points in [−1,−0.5]×

[−1,−0.5], and the implication on the second line were imposed at 100 uniformly spaced

points in [−0.5, 0]× [−1,−0.5]. No prior knowledge was given for the remaining squares of

the checkerboard. We note that this knowledge is very similar to that used in [33], although

our classifier is more accurate here. This example demonstrates that knowledge of the form

used in [33] can be easily applied with our proposed approach without kernelizing the prior

knowledge.

3.5.2.2 Predicting breast cancer survival time

We conclude our experimental results with a potentially useful application of the

Wisconsin Prognostic Breast Cancer (WPBC) dataset [96, 56]. This dataset contains thirty

cytological features obtained from a fine needle aspirate and two histological features, tumor

size and the number of metastasized lymph nodes, obtained during surgery for breast cancer

patients. The dataset also contains the amount of time before each patient experienced a

recurrence of the cancer, if any. Here, the task of predicting whether a patient will remain

cancer free for at least 24 months is considered. Past experience with this dataset has shown

that an accurate classifier for this task is difficult to obtain. In this dataset, 81.9% of patients

are cancer free after 24 months. To our knowledge, the best result on this dataset prior to

[86] is 86.3% correctness obtained by Bennett in [4]. It is possible that incorporating expert

information about this task is necessary to obtain higher accuracy on this dataset. In [86]

it was demonstrated that with sufficient prior knowledge, our approach can achieve 91.0%

correctness.

To obtain prior knowledge for this dataset, the number of metastasized lymph nodes was

plotted against the tumor size, along with the class label, for each patient. An oncological

surgeon’s advice was then simulated by selecting regions containing patients who experienced

a recurrence within 24 months. In a typical machine learning task, not all of the class labels

would be available. However, the purpose here is to demonstrate that if an expert is able to

provide useful prior knowledge, our approach can effectively apply that knowledge to learn

44

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.5 A classifier for the checkerboard dataset trained using only the sixteen points at
the center of each square without prior knowledge. The white regions denote areas where

the classifier returns a value greater than zero, and the gray regions denote areas where the
classifier returns a value less than zero. A uniform grid consisting of 40, 000 points was

used to create the plot utilizing the obtained classifier.

45

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.6 A classifier for the checkerboard dataset trained using the sixteen points at the
center of each square with prior knowledge representing the two leftmost squares in the

bottom row given in (3.19). The white regions denote areas where the classifier returns a
value greater than zero, and the gray regions denote areas where the classifier returns a

value less than zero. A uniform grid consisting of 40, 000 points was used to create the plot
utilizing the knowledge-based classifier.

46

a more accurate classifier. We leave studies on this dataset in which an expert provides

knowledge without all of the labels available to future work. In such studies, the expert

would be given information regarding the class of only data points in a training set that is

a subset of all the data, and then give advice on the class of points in the entire dataset.

The prior knowledge constructed for this dataset is depicted in Figure 3.7 and consists of

the following three implications:

∥∥(
(5.5)x1

x2

)
−

(
(5.5)7

9

)∥∥ +
∥∥(

(5.5)x1

x2

)
−

(
(5.5)4.5

27

)∥∥− 23.0509 ≤ 0 =⇒ f(x) ≥ 1



−x2 + 5.7143x1 − 5.75

x2 − 2.8571x1 − 4.25

−x2 + 6.75




≤ 0 =⇒ f(x) ≥ 1

1
2(x1 − 3.35)2 + (x2 − 4)2 − 1 ≤ 0 =⇒ f(x) ≥ 1.

(3.20)

The class +1 represents patients who experienced a recurrence in less than 24 months. Here,

x1 is the tumor size, and x2 is the number of metastasized lymph nodes. Each implication is

enforced at the points in the dataset for which the left-hand side of the implication is true.

These regions are shown in Figure 3.7. The first implication corresponds to the region closest

to the upper right-hand corner. The triangular region corresponds to the second implication,

and the small elliptical region closest to the x1 axis corresponds to the third implication.

Although these implications seem complicated, it would not be difficult to construct a more

intuitive interface similar to standard graphics programs to allow a user to create arbitrary

regions. Applying these regions with our approach would be straightforward.

In order to evaluate our proposed approach, the misclassification rates of two classifiers

on this dataset were compared. One classifier is learned without prior knowledge, while the

second classifier is learned using the prior knowledge given in (3.20). For both cases the rows

of the matrices A and B of (3.10) were set to the usual values, that is to the coordinates of

the points of the training set. The misclassification rates are computed using leave-one-out

cross validation. For each fold, the parameter ν and the kernel parameter µ were chosen

from the set {2i|i ∈ {−7, . . . , 7}} by using ten-fold cross validation on the training set of

the fold. In the classifier with prior knowledge, the parameter σ was set to 106, which

47

Tumor Size

N
um

be
r o

f M
et

as
ta

si
ze

d
Ly

m
ph

 N
od

es

Prior Knowledge Used for WPBC (24 mo.) Dataset
Lymph Node Metastasis vs. Tumor Size

0 2 4 6 8 10
0

5

10

15

20

25

30

Figure 3.7 Number of metastasized lymph nodes versus tumor size for the WPBC (24 mo.)
dataset. The solid dots represent patients who experienced a recurrence within 24 months
of surgery, while the crosses represent the cancer free patients. The shaded regions which

correspond to the areas in which the left-hand side of one of the three implications in
Equation (3.20) is true simulate an oncological surgeon’s prior knowledge regarding

patients that are likely to have a recurrence. Prior knowledge was enforced at the points
enclosed in squares.

48

Classifier Misclassification Rate

Without knowledge 0.1806

With knowledge 0.0903

Improvement due to knowledge 50.0%

Table 3.2 Leave-one-out misclassification rate of classifiers with and without knowledge on
the WPBC (24 mo.) dataset. Best result is in bold.

corresponds to very strict adherence to the prior knowledge. The results are summarized in

Table 3.2. The reduction in misclassification rate indicates that our classification approach

can use appropriate prior knowledge to obtain a classifier on this difficult dataset with 50%

improvement.

3.6 Comparing linear programming and proximal knowledge-
based classification

Here, we compare the knowledge-based nonlinear proximal classification formulation

(3.15) to the linear programming formulation (3.10) on three publicly available datasets: the

Checkerboard dataset [44], the Spiral dataset [122], and the Wisconsin Prognostic Breast

Cancer (WPBC) dataset [96]. Our results show that our proximal formulation can obtain

solutions with accuracy similar to the linear programming formulation, while being much

faster to solve.

The frequently used Checkerboard [44, 33] and Spiral [122, 27] datasets are synthetic

datasets for which prior knowledge can be easily constructed [86, 33]. The checkerboard

dataset consists of points with labels “black” and “white” arranged in the shape of a

checkerboard, while the spiral dataset consists of points from two concentric spirals. Table

3.3 shows both the accuracy and CPU time needed to run the experiments of [86] using

both the linear programming formulation originally used in [86] and our proposed proximal

formulation. On both datasets, 225 optimization problems were solved. In the checkerboard

49

experiment, the matrix B has 16 rows, and the prior knowledge is imposed at 200 points. In

the spiral dataset, the matrix B has 194 rows, and the knowledge is imposed at 194 points.

For the checkerboard experiment, the knowledge consists only of the two leftmost squares of

the bottom row, while for the spiral dataset, the knowledge was constructed by inspecting the

source code used to generate the spiral. The experiments were performed using MATLAB

7.2 [94] under CentOS Linux 4.4 on an Intel Pentium IV 3 GHz processor with 1 gigabyte of

RAM. The running times were calculated by the MATLAB profiler, and represent the total

time during the experiment consumed in setting up and solving the optimization problem.

Linear programs were solved using CPLEX 9.0 [48], and the linear systems of equations were

solved using the chol routine of MATLAB. For the spiral dataset, flush-to-zero mode was

enabled to speed the multiplication of numbers with very small magnitude. This change

had a significant impact on the running time of our proximal formulation, and negligible

impact on the linear programming formulation. Note that the proximal formulation has

similar accuracy to the linear programming formulation, while being approximately an order

of magnitude faster to solve. We further note that considering only the time taken to solve

the linear program or linear system of equations gives a similar result, thus we do not believe

that the difference in computation time can be attributed to the setup procedure.

We have also tested our proposed proximal formulation on the WPBC dataset, using

the setup and prior knowledge described above in Section 3.5.2.2. The proximal formulation

achieved the same results as the linear programming formulation, given in Table 3.2. Even

though they generate slightly different separating surfaces, both the linear programming

and proximal formulations misclassify the same number of examples on this dataset. The

reduction in misclassification rate indicates that our proximal approach can achieve the same

50% improvement in classification accuracy using prior knowledge as the linear programming

formulation.

50

Table 3.3 Accuracy and CPU time in seconds for the linear programming formulation [86]
and the proposed proximal formulation. Each running time result is the total time needed
to set up and solve the optimization problem, either as a linear program or a linear system
of equations, 225 times. The time ratio is the time for the linear programming formulation

divided by the time for the proximal formulation.

Dataset Linear Programming SVM [86] Proximal SVM Time

Accuracy Accuracy

CPU Time in Seconds CPU Time in Seconds Ratio

Checkerboard without 89.2% 94.2%

Knowledge 2.3 0.2 11.5

Checkerboard with 100% 98.0%

Knowledge 26.4 3.2 8.3

Spiral without 79.9% 80.4%

Knowledge 21.3 4.3 5.0

Spiral with 100% 100%

Knowledge 300.2 19.0 15.8

51

3.6.1 Generating prior knowledge from ordinary classification
datasets

In order to further demonstrate the effectiveness of our proposed formulation, we generate

prior knowledge from a subset of an ordinary classification dataset. In these experiments, we

will ensure that the prior knowledge is generated without knowing the true distribution of

the data, or inspecting the full data set. By using ordinary datasets, we are also able to easily

demonstrate our proposed formulation on datasets with more than two features. In order for

prior knowledge to improve classification accuracy when combined with ordinary data, the

prior knowledge and the data must contain different information about the “true” dataset.

Thus, we simulate a situation where a knowledge-based classifier using both prior knowledge

and data will be superior to a classifier that uses either the data or prior knowledge alone. In

our scenario, the set M+ will consist mostly of points from the class +1 and will be used only

to generate prior knowledge, while the set M− will consist mostly of points from the class

−1 and will be used only as ordinary data. We varied the percentage of negative points in

M+. As this percentage approaches fifty percent one expects that M+ and M− will contain

the same information, and the gain due to incorporating prior knowledge will be minimal.

Construction of the sets M+ and M− is illustrated in Figure 3.8 (a). The motivation for

this scenario is a situation in which prior knowledge is available about data in the set M+,

while only the set M− is available as ordinary data. Thus, the learning algorithm will need

to incorporate both prior knowledge about M+ and the conventional data in M− in order

to generalize well to new points.

One can imagine many methods of automatically generating prior knowledge from M+,

such as [13]. However, we used the simple approach of learning a proximal support vector

machine on the points in M+. The knowledge we used was the following:

(−φ(x))+ = 0 =⇒ K(x′, B′)u− γ = 1, ∀x ∈ Γ1, (3.21)

where φ(x) is the classifier function (1.4) learned on the set M+. This knowledge simply

states that if the proximal support vector machine represented by φ(x) labels the point

52

Knowledge

Knowledge-Based
Classifier

Data

All Data

A+

A+

A−

A−

M+

M−

(a) (b)

Figure 3.8 (a) Generation of prior knowledge from a standard dataset. The dataset is first
separated into the datasets A+ which consists of all +1 points, and A− which consists of
all −1 points. Then the mostly +1 dataset M+ is formed by replacing a small fraction of

+1 points in A+ with an equal number of −1 points from A−. The mostly −1 dataset M−

is formed from the points not used in M+. We use M+ to produce prior knowledge, and
M− as ordinary data. Combining the knowledge from M+ and the data from M− leads to

a knowledge-based classifier which is superior to a classifier formed using either M+ as
pure knowledge or M− as pure data alone. (b) Prior knowledge experiment on the NDCC

dataset: 300 points in R50.

as +1, then the point should be labeled +1 by the classifier which combines both data

and knowledge. We impose the prior knowledge of (3.21) at a random sample from a

multivariate normal distribution fit to the points in M+. We chose the multivariate normal

distribution for simplicity, but one can easily imagine using a more sophisticated distribution.

Investigation of different methods of generating prior knowledge is left to future research.

Since φ(x) is learned with few negative examples, it will likely not be accurate over the entire

dataset. In fact, in our experiments φ(x) alone always had similar accuracy on the test set

to the classifier built using only the data in M−. Intuitively, since φ(x) is a kernel classifier,

the knowledge we imposed states that points which are “close” to the +1 points in M+ used

to construct φ(x) should be labeled +1. However, enforcement of this knowledge is balanced

against fitting the ordinary data points in M−. Thus, the combination of data and prior

knowledge is necessary to obtain high accuracy.

Figure 3.8 (b) shows the result of applying the above procedure to Thompson’s Normally

Distributed Clusters on Cubes (NDCC) dataset [115]. This dataset generates points

53

(a) (b)

Figure 3.9 Prior knowledge experiment on (a) the WDBC dataset: 569 points in R30, with
212 malignant tumors labeled +1; and (b) the Ionosphere dataset: 351 points in R34, with

126 bad radar returns labeled +1.

according to multivariate normal distributions centered at the vertices of two concentric

1-norm cubes. Points are mostly labeled according to the cube they were generated from,

with some specified fraction of noisy labels. We generated a dataset of 20000 points in R50,

with ten percent label noise. We used 300 points as a training set, 2000 separate points

to choose parameters from the set {2i|i = −7, . . . , 7}, and the remaining 17700 points to

evaluate the classifiers. In Figure 3.8 (b), we compare an approach using only the data in the

set M− and no prior knowledge to an approach based on the same data plus prior knowledge

obtained from the points in M+, with σ equal to ν. The knowledge was imposed on |M+|

randomly sampled points as described above, where |M+| is the cardinality of M+. In our

experience on this dataset, reducing the number of sampled points to less than half |M+|

had very little impact on accuracy. Determining the appropriate number of points to sample

for a given dataset is left to future work. The approach using prior knowledge is able to

approach ten percent misclassification error even when relatively few points in M− have

label +1.

Figure 3.9 shows the result of applying the above procedure to the publicly available

Wisconsin Diagnostic Breast Cancer (WDBC) and Ionosphere datasets [96]. In the WDBC

dataset, the task is to classify tumors as either malignant or benign based on the 30 features

given. To simulate the scenario in which most information about malignant tumors is

54

available only through prior knowledge, while information about benign tumors is more

readily gathered, we label malignant tumors +1. In the Ionosphere dataset, the task is to

classify radar returns as either good or bad based on the 34 features given. We chose to

label bad radar returns +1. To asses the generalization performance of our approach, we

computed ten-fold cross validation misclassification rates. We chose all parameters from the

set {2i|i = −7, . . . , 7} using ten-fold cross validation on the training set. When using prior

knowledge, we set σ equal to ν. In carrying out the cross validation experiment, M+ and M−

were formed from the training set for each fold. In Figure 3.9, three different approaches are

compared. In the first approach, represented by squares, the classifier is learned using only

the data in M− with no prior knowledge. This classifier performs poorly until a sufficient

number of +1 points are present in M−. The second approach, represented by circles, learns

a classifier using the data in M− plus the prior knowledge from M+ described by (3.21).

The knowledge was imposed at |M+| randomly generated points as described above. Note

that the use of prior knowledge results in considerable improvement, especially when there

are few points in M+ with class −1. For reference, we include an approach represented by

triangles which uses no prior knowledge, but all the data. Note that this classifier has the

same misclassification rate regardless of the fraction of negative points in M+. Including

this approach illustrates that our approach is able to use the prior knowledge generated from

M+ to recover most of the information in M+. Recall that we are simulating a situation in

which M+ is only available as prior knowledge.

55

Chapter 4

Privacy-Preserving Classification via Random Kernels

Recently there has been wide interest in privacy-preserving support vector machine

(SVM) classifiers. Basically the problem revolves around generating a classifier based on

data, parts of which are held by private entities who for various reasons are unwilling to

make them public. When each entity holds its own group of input feature values for all

individuals while other entities hold other groups of feature values for the same individuals,

the data is referred to as vertically partitioned. This is so because feature values are

represented by columns of a data matrix while individuals are represented by rows of the data

matrix. Privacy-preserving associations for vertically partitioned data were first proposed in

[117]. When each entity holds all the feature values for its own group of individuals while

other entities hold similar data for other groups of individuals, the data is referred to as

horizontally partitioned. In [124, 125], horizontally partitioned privacy-preserving SVMs and

induction tree classifiers were obtained for data where different entities hold the same input

features for different groups of individuals. In [60] multiplicative data perturbation was

utilized for privacy-preserving data mining. Other privacy preserving classifying techniques

include cryptographically private SVMs [107], wavelet-based distortion [61] and rotation

perturbation [10]. A privacy-preserving decision tree for multiple entities is described in

[112].

We consider highly efficient privacy-preserving SVM (PPSVM) classifiers for either

horizontally or vertically partitioned data, first implemented in [92] and [90], based on the

use of a completely random matrix. That is, for a given data matrix A ∈ Rm×n, instead

56

of the usual kernel function K(A, A′) : Rm×n × Rn×m −→ Rm×m, we use a reduced kernel

[55, 54] K(A, B′) : Rm×n × Rn×m̄ −→ Rm×m̄, where B is a completely random matrix,

instead of a submatrix of the rows of A. This idea will allow us to describe algorithms

for vertically and horizontally partitioned data which protect the privacy of each partition

while generating an SVM classifier which has tenfold correctness comparable to that of an

ordinary SVM classifier. Before describing these algorithms, we show computational results

which demonstrate that a random kernel K(A, B′) achieves comparable accuracy to the usual

kernel K(A, A′) or the reduced kernel K(A, Ā′).

4.1 Comparison of a random kernel to full and reduced kernels

To justify the use of a random kernel in our proposed PPSVM algorithms, we compare

the performance of a 1-norm SVM using a random kernel with both an ordinary 1-norm SVM

using a full kernel matrix and a 1-norm SVM using a reduced kernel matrix (RSVM) [55].

Figure 4.1 shows scatterplots comparing the error rates of a random kernel with an ordinary

full kernel, and with a reduced kernel, using linear kernels. Note that points close to the

45 degree line represent datasets for which the classifiers being compared have similar error

rates. All of the error rates were obtained using datasets used are those in Table 4.1. Figure

4.2 shows similar results using the Gaussian kernel. All of the error rates were obtained using

the datasets in Table 4.1. For both linear and nonlinear kernels, Ā consisted of ten percent

of the rows of A randomly selected, while B was a completely random matrix with the same

size as Ā. Each entry of B was selected from a normal distribution with mean zero and

standard deviation one. All datasets were normalized so that each feature had mean zero

and standard deviation one. For the linear classifiers, the regularization parameter ν was

selected from {10i|i = −7, . . . , 7} for each dataset using a ten percent of the training data as

a tuning set. To save time for the nonlinear classifiers, we used the tuning strategy described

in [46]. In this Nested Uniform Design approach, rather than evaluating a classifier at each

point of a grid in the parameter space, the classifier is evaluated only at a set of points

which is designed to “cover” the original grid to the extent possible. The point from this

57

AB′ vs. AĀ′

Reduced kernel AĀ′ error

R
an

d
om

ke
rn

el
A

B
′
er

ro
r

0.40.20

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

AB′ vs. AA′

Full kernel AA′ error

R
an

d
om

ke
rn

el
A

B
′
er

ro
r

0.40.20

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

Figure 4.1 Error rate comparison of 1-norm linear SVMs for random kernel versus full and
reduced kernels. For points below the diagonal, the random kernel has a lower error rate.

The diagonal line in each plot marks equal error rates. One result is given for each dataset
in Table 4.1.

58

K(A, B′) vs. K(A, Ā′)

Reduced kernel K(A, Ā′) error

R
an

d
om

ke
rn

el
K

(A
,B

′)
er

ro
r

0.30.20.10

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

K(A, B′) vs. K(A, A′)

Full kernel K(A, A′) error

R
an

d
om

ke
rn

el
K

(A
,B

′)
er

ro
r

0.30.20.10

0.30

0.25

0.20

0.15

0.10

0.05

0

Figure 4.2 Error rate comparison of 1-norm nonlinear SVM for random kernel versus full
and reduced kernels. For points below the diagonal, the random kernel has a lower error
rate. The diagonal line in each plot marks equal error rates. One result is given for each

dataset in Table 4.2.

59

smaller set on which the classifier does best is then made the center of a grid which covers a

smaller range of parameter space, and the process is repeated. Huang et al. [46] demonstrate

empirically that this approach finds classifiers with similar misclassification error as a brute-

force search through the entire grid. We set the initial range of log10 ν to [−7, 7], and the

initial range of log10 µ as described in [46]. We used a Uniform Design with thirty runs from

http://www.math.hkbu.edu.hk/UniformDesign for both nestings, and used five-fold cross

validation on the training set to evaluate each (ν, µ) pair. We note that the misclassification

error using a random kernel, as in the following proposed PPSVM approaches, is comparable

to that of 1-norm SVM and RSVM using both linear and Gaussian kernels.

Before describing our PPSVM algorithms, it is helpful to consider the linear kernel

classifier that the algorithms will learn for a given data matrix A. This classifier will be

a separating plane in Rn:

x′w − γ = x′B′u− γ = 0, (4.1)

which classifies a given point x according to the sign of x′w − γ. Here, w = B′u, w ∈ Rn

is the normal to the plane x′w − γ = 0, γ ∈ R determines the distance of the plane from

the origin in Rn and B is a random matrix in Rk×n. The change of variables w = B′u is

employed in order to kernelize the data and is motivated by the fact that when B = A and

hence w = A′u, the variable u is the dual variable for a 2-norm SVM [72]. One justification

for the above results can be given for the case when m̄ ≥ n and the rank of the m×n matrix

B is n. For such a case, when B is replaced by A in (4.1), this results in a regular linear SVM

formulation with a solution, say v ∈ Rm. In this case , the reduced SVM formulation (4.1)

can match the regular SVM term AA′v by the term AB′u, since B′u = A′v has a solution u

for any v because B′ has rank n.

We now turn to our PPSVM algorithm for vertically partitioned data.

60

4.2 Privacy-preserving linear classifier for vertically partitioned
data

The dataset that we wish to obtain a classifier for consists of m points in Rn represented

by the m rows of the matrix A ∈ Rm×n. The matrix A is divided into p vertical blocks of

n1, n2, . . . and np columns with n1 +n2 + . . .+np = n. Each block of columns is “owned” by

an entity that is unwilling to make it public or share it with the other entities. Furthermore,

each row of A is labeled as belonging to the class +1 or −1 by a corresponding diagonal

matrix D ∈ Rm×m of ±1’s. We shall now partition the random matrix B into p column

blocks with each column block belonging to one of the p entities held privately by it and

never made public. Thus, we have:

B = [B·1 B·2 . . . B·p]. (4.2)

We are ready to state our algorithm which will provide a classifier for the data without

revealing privately held data blocks [A·1 A·2 . . . A·p]. The accuracy of this algorithm

will be comparable to that of an SVM using a publicly available A instead of merely

K(A·1, B·1
′), K(A·2, B·2

′), . . . , K(A·p, B·p
′), as is the case here. We note that we require the

nonlinear kernel to be separable in the following sense:

K([E F], [G H]′) = K(E, G′)⊕K(F, H ′), (4.3)

where E ∈ Rm×n1 , F ∈ Rm×n2 , G ∈ Rk×n1 and H ∈ Rk×n2. It is easy to verify that

this definition of separability is satisfied by a linear kernel using matrix addition, and by a

Gaussian kernel using the Hadamard component-wise product [45].

Algorithm 4.2.1 PPSVM Algorithm for Vertically Partitioned Data

(I) All p entities agree on the same labels for each data point, that Dii = ±1, i = 1, . . . , p

and on the magnitude of m̄, the number of rows of the random matrix B. (If an

agreement on D is not possible, we can use semisupervised learning to handle such

data points [5, 28].)

61

(II) Each entity generates its own privately held random matrix B·j ∈ Rm̄×nj , j = 1, . . . , p,

where nj is the number of input features held by entity j.

(III) Each entity j makes public its nonlinear kernel K(A·j , B·j
′). This does not reveal A·j

but allows the public computation of the full nonlinear kernel:

K(A, B′) = K(A·1, B·1
′)6K(A·2, B·2

′)6 . . .6K(A·p, B·p
′), (4.4)

where the symbol · denotes the element-wise, or Hadamard, product.

(IV) A publicly calculated linear classifier K(x′, B)u−γ = 0 is computed by some standard

method such as 1-norm SVM [72, 8]:

min
(u,γ,y)

ν‖y‖1 + ‖u‖1

s.t. D(K(A, B′)u− eγ) + y ≥ e,

y ≥ 0.

(4.5)

(V) For each new x ∈ Rn, each entity makes public K(xj
′, B·j

′) from which a public

nonlinear classifier is computed as follows:

K(x′, B′)u− γ = (K(x1
′, B·1

′)6K(x2
′, B·2

′)6 . . .6K(xp
′, B·p

′))u− γ = 0, (4.6)

which classifies the given x according to the sign of K(x′, B′)u− γ.

Remark 4.2.2 Note that in the above algorithm no entity j reveals its dataset A·j nor

its components of a new data point xj . This is so because it is impossible to compute

the mnj numbers constituting A·j ∈ Rm×nj given only the mm̄ numbers constituting

K(A·j, B·j
′) ∈ Rm×m̄ and not even knowing B·j ∈ Rm̄×nj . Similarly it is impossible to

compute xj ∈ Rnj from K(xj
′, B·j

′) ∈ R without even knowing B·j. Hence, all entities

share the publicly computed nonlinear classifier (4.11) using K(A, B′) and K(x′, B′) without

revealing either the individual datasets or new point components.

Before turning to our computational results, it is important to note that Algorithm 4.2.1

can be used easily with other kernel classification algorithms instead of the 1-norm SVM,

62

including the ordinary 2-norm SVM [109], the proximal SVM [27], and logistic regression

[120].

It is instructive to compare our proposed privacy preserving SVM (PPSVM) given in

Algorithm 4.2.1 to other recent work on privacy preserving classification for vertically-

partitioned data which also makes use of random matrices. Du et al. [18] propose a method

by which two parties can compute a privacy-preserving linear kernel classifier by securely

computing the matrix A′A with the use of random matrices. Yu et al. [126] use random

matrices to securely compute the full kernel matrix, K(A, A′). Our approach is motivated

by the observation that the accuracy of an SVM using a random kernel, K(A, B′), where

B is a completely random matrix, is comparable to the accuracy of an SVM using the full

kernel K(A, A′). We provide experimental support for this observation in Section 4.3. By

using K(A, B′) instead of K(A, A′) we are able to obtain an accurate classifier with only

very simple, asynchronous communication required among the entities. That is, each entity

j needs only to broadcast K(A·j, B′
·j) to and receive the corresponding message from each

of the other entities. In [18, 126], synchronized communication steps are needed to securely

compute A′A or K(A, A′). For example, in [126], each entity must wait for a message to

be passed through each of the other p − 1 entities sequentially to compute K(A, A′). The

primary benefit of our approach is simplicity. For example, it is conceptually easy to add

or remove entities at any time with our approach. All that is required to add an entity at

any point is for the new entity j to make K(A·j, B′
·j) available to the other entities, and

receive the existing kernel. If an entity needs to be removed, then the remaining entities can

recompute the kernel matrix without that entity’s contribution. This flexibility is possible

because entity j sends K(A·j , B′
·j) directly to all the other entities. Another potential benefit

is that it seems reasonable to implement our approach in practice without specialized software

to coordinate the communication steps even with large numbers of entities. Furthermore,

our approach can be implemented in “parallel” with each entity receiving p − 1 datasets

of size m × m̄. In contrast, the process in [126] is inherently “serial” because the m × m̄

63

perturbed dataset of each entity j must be processed sequentially by the other p− 1 entities

and returned to entity j before that entity can utilize it in its classifier.

We have found that the parallelism in our approach allows entities to compute the kernel

matrix faster than the approach of [126] in some circumstances. To test this result, we

implemented both approaches to compute the kernel matrix for one entity and tested them

on machines in the Computer Systems Lab at the University of Wisconsin-Madison. Each

entity was run on a randomly selected computer, with no computer running more than one

entity. We ran each algorithm with between three and ten entities, using matrices with 1000,

10000, and 100000 elements. Each algorithm was run ten times for each level of entities and

matrix size, using ten different randomly selected sets of machines. On average, our approach

was more than twice as fast as the approach in [126]. In some cases, particularly with smaller

matrices, our approach was over 5 times as fast, while for larger matrices our approach tended

to be between 0.5 and 1.5 times as fast as [126], and most often our approach was faster.

4.3 Computational results for vertically partitioned data

We illustrate the effectiveness of our proposed privacy preserving SVM (PPSVM) for

vertically partitioned data by demonstrating that our approach can obtain classifiers with

lower misclassification error than classifiers obtained using only the input features of each

entity alone. In all of our results, Ā consisted of ten percent of the rows of A randomly

selected, while B was a completely random matrix of the same size as Ā. Each entry of B

was selected from a normal distribution with mean zero and standard deviation one. All

datasets were normalized so that each feature had mean zero and standard deviation one.

Note that this normalization is carried out for each feature independently, and does not

require cooperation among the entities.

We investigate the benefit of using our PPSVM approach instead of using only the input

features available to each entity using seven datasets from the UCI repository [96]. To

simulate a situation in which each entity has only a subset of the features for each data

point, we randomly distribute the features among the entities such that each entity receives

64

about the same number of features. We chose arbitrarily to perform experiments using

five entities for each dataset, and also to perform experiments using whatever number of

entities was needed so that each entity received about three features. We also investigate

our approach as the number of entities increases on the Ionosphere dataset described below

and in Figures 4.5 and 4.6.

Figure 4.3 shows results comparing the ten-fold cross validation misclassification error

of our linear kernel PPSVM with the average misclassification error of the 1-norm SVM

classifiers learned using only the unshared input features available to each entity. Figure 4.3

also compares our linear kernel PPSVM with the misclassification error of the majority vote

of the 1-norm SVM classifiers learned using only the input features available to each entity.

We use circles to show how our approach compares to the average error of the entities and

triangles to show how our approach compares to the majority vote of the entities. Points

below the 45 degree line represent experiments in which our PPSVM has lower error rate

than the average error rate of the classifiers learned with only each entity’s subset of the

features. This indicates that the entities can expect improved performance using PPSVM

instead of going it alone. Note that each dataset is represented by four points: one circle

and one triangle for the experiment using five entities, and one circle and one triangle for

the experiment using a sufficient number of entities so that each entity receives about three

features. The results shown in Figure 4.3 are detailed in Table 4.1. We note that PPSVM

obtains classifiers with lower error than the average of the classifiers using only each entity’s

features in eleven of fourteen experiments, and lower error than the majority vote of classifiers

using only each entity’s features in thirteen of fourteen experiments. The parameter ν was

selected from {10i|i = −7, . . . , 7} for each dataset using a random ten percent of each training

set as a tuning set.

Figure 4.4 shows results for similar experiments using Gaussian kernels, with details in

Table 4.2. We used the same datasets as for the experiments described above. To save time,

we used the tuning strategy from [46], as described in Section 4.1.

65

Majority Vote of Entities
Average Error of Entities

Error without Sharing Data

E
rr

or
S
h
ar

in
g

D
at

a
vi

a
P

P
S
V

M

0.450.350.250.150.05 0.49

0.35

0.3

0.25

0.2

0.15

0.1

0.37

0.04

Figure 4.3 Error rate comparison of a 1-norm linear SVM sharing A·jB′
·j data for each

entity versus a 1-norm linear SVM using just the input features A·j of each entity. We
compare to both the average error rate of the entities using just the input features, and to
a classifier which combines the labels of all the entities by majority vote. Points below the
diagonal represent situations in which the error rate for sharing is lower than the error rate

for not sharing. Results are given for each dataset with features randomly distributed
evenly among 5 entities, and with features randomly distributed so that each entity has

about 3 features. Seven datasets given in Table 4.1 were used to generate four points each.

66

Dataset No. of Entities No Sharing Majority Vote Sharing

Examples × Input Features

Cleveland Heart 5 0.1379 0.2725 0.1620

297 × 13 4 0.1552 0.1720 0.1416

Ionosphere 5 0.2286 0.1767 0.1510

351 × 34 11 0.2779 0.3076 0.1367

WDBC 5 0.0786 0.0457 0.0369

569 × 30 10 0.1696 0.0581 0.0423

Arrhythmia 5 0.2400 0.2411 0.3272

452 × 279 93 0.3823 0.4578 0.2922

Pima Indians 5 0.3158 0.3491 0.2368

768 × 8 2 0.2105 0.3100 0.2303

Bupa Liver 5 0.4706 0.4204 0.3622

345 × 6 2 0.4853 0.4204 0.3681

German Credit 5 0.2500 0.3000 0.2440

1000 × 24 8 0.2500 0.3000 0.2440

Table 4.1 Comparison of error rates for entities not sharing and sharing their datasets
using a 1-norm linear SVM.

67

Majority Vote of Entities
Average Error of Entities

Error without Sharing Data

E
rr

or
S
h
ar

in
g

D
at

a
vi

a
P

P
S
V

M

0.450.350.250.150.05 0.49

0.25

0.2

0.15

0.1

0.29

0.04

Figure 4.4 Error rate comparison of a 1-norm nonlinear SVM sharing K(A·j, B′
·j) data for

each entity versus a 1-norm nonlinear SVM using just the input features A·j of each entity.
We compare to both the average error rate of the entities using just the input features, and
to a classifier which combines the labels of all the entities by majority vote. Points below
the diagonal represent situations in which the error rate for sharing is lower than the error
rate for not sharing. Results are given for each dataset with features randomly distributed
evenly among 5 entities, and with features randomly distributed so that each entity has

about 3 features. Seven datasets given in Table 4.2 were used to generate four points each.

68

Dataset No. of Entities No Sharing Majority Vote Sharing

Examples × Input Features

Cleveland Heart 5 0.1310 0.2625 0.1920

297 × 13 4 0.1293 0.1822 0.1780

Ionosphere 5 0.1029 0.0541 0.0856

351 × 34 11 0.1481 0.0769 0.0970

WDBC 5 0.0643 0.0510 0.0352

569 × 30 10 0.1518 0.0511 0.0352

Arrhythmia 5 0.2933 0.2232 0.2898

452 × 279 93 0.3795 0.4135 0.2544

Pima Indians 5 0.3184 0.3088 0.2355

768 × 8 2 0.2566 0.3127 0.2264

Bupa Liver 5 0.4941 0.4204 0.2730

345 × 6 2 0.4559 0.3795 0.2934

German Credit 5 0.2460 0.2930 0.2410

1000 × 24 8 0.2475 0.3000 0.2480

Table 4.2 Comparison of error rates for entities not sharing and sharing their datasets
using a 1-norm nonlinear Gaussian SVM.

69

351 Examples and 34 Features
Linear 1-Norm SVM for the Ionosphere Dataset with

Difference in Error Rates Between Not Sharing and Sharing for a

Number of entities

D
iff

er
en

ce
in

er
ro

r
ra

te

35302520151050

0.4

0.3

0.2

0.1

0

-0.1

-0.2

Figure 4.5 Box-and-whisker (median and interquartile) plot showing the improvement in
error rate of linear kernel PPSVM as the number of entities increases from 2 to 30.

70

351 Examples and 34 Features
Nonlinear 1-Norm SVM for the Ionosphere Dataset with

Difference in Error Rates Between Not Sharing and Sharing for a

Number of entities

D
iff

er
en

ce
in

er
ro

r
ra

te

35302520151050

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

-0.05
-0.1

-0.15
-0.2

Figure 4.6 Box-and-whisker (median and interquartile) plot showing the improvement in
error rate of Gaussian kernel PPSVM as the number of entities increases from 2 to 30.

71

We further explore the behavior of our approach as the number of entities changes on

the Ionosphere dataset. Figure 4.5 shows the difference in misclassification error rates as

the number of entities varies according to {2, 4, . . . , 30}. For each number of entities, a box-

and-whisker plot is given which shows the median (represented by a dot), interquartile range

(the space between the dot and the vertical lines), and data range (the vertical lines) with

outliers removed for each fold of ten-fold cross validation for all the entities. Note that as the

number of entities increases, our PPSVM approach tends to have better median error rates,

and that more of the observations favor PPSVM as more of the data lies above the y = 0

axis. The results shown in Figure 4.5 indicate that as each entity has fewer features, greater

improvement due to using PPSVM would be expected, and also that some improvement is

more likely to be observed. Figure 4.6 shows similar results using a Gaussian kernel. Each

experiment was tuned according to the procedures for linear and nonlinear kernels described

above.

We now consider privacy-preserving classification for horizontally partitioned data.

4.4 Privacy-preserving linear classifier for horizontally partitioned
data

The dataset that we wish to obtain a classifier for consists of m points in Rn represented

by the m rows of the matrix A ∈ Rm×n. Each row contains values for n features associated

with a specific individual, while each column contains m values of a specific feature associated

with m different individuals. The matrix A is divided into q blocks of m1, m2, . . .mq rows

with m1 +m2 + . . .+mq = m, and each block of rows “owned” by an entity that is unwilling

to make it public or share it with others. Furthermore, each row of A is labeled as belonging

to the class +1 or −1 by a corresponding diagonal matrix D ∈ Rm×m of ±1’s. The linear

kernel classifier to be generated based on this data will be a separating plane in Rn: We shall

partition our data matrix A into q row blocks A1, A2, . . . , Aq with each row block belonging

to one of the q entities and held privately by it and never made public. However, what

is made public by each entity i is the matrix product K(Ai, B′) which allows the public

72

calculation of the kernel K(A, B′) ∈ Rm×m̄ as follows:





K(A1, B′)

K(A2, B′)
...

K(Aq, B′)




(4.7)

We are now ready to state our algorithm which will provide a classifier for the data

without revealing the private blocks of the privately held data blocks A1, A2, . . . , Ap. The

accuracy of this algorithm will be comparable to that of an SVM using a publicly available

kernel K(A, A′) instead of merely the blocks K(A1, B′), K(A2, B′), . . . , K(Ap, B′) of (4.7) as

is the case here. We note that we rely on the associative property of a nonlinear kernel:

K







E

F



 , G′



 =



K(E, G′)

K(F, G′)



 , (4.8)

where E ∈ Rm1×n, F ∈ Rm2×n, G ∈ Rk×n. It is straightforward to verify that (4.8) is

satisfied by both a linear and a Gaussian kernel.

Algorithm 4.4.1 PPSVM Algorithm for Horizontally Partitioned Data

(I) All q entities agree on the same random matrix B ∈ Rm̄×n with m̄ < n for security

reasons as justified in the explanation immediately following this algorithm.

(II) All entities make public the class matrix D'' = ±1, . = 1, . . . , m, for the data matrices

Ai, i = 1, . . . , m that they all hold.

(III) Each entity i makes public its nonlinear kernel K(Ai, B′). This does not reveal Ai but

allows the public computation of the full nonlinear kernel:

K(A, B′) = K









A1

A2

...

Aq




, B′




=





K(A1, B′)

K(A2, B′)
...

K(Aq, B′)




(4.9)

73

(IV) A publicly calculated nonlinear classifier K(x′, B)u − γ = 0 is computed by some

standard method such as a 1-norm SVM [72, 8]:

min
(u,γ,y)

ν‖y‖1 + ‖u‖1

s.t. D(K(A, B′)u− eγ) + y ≥ e,

y ≥ 0.

(4.10)

(V) For each new x ∈ Rn obtained by an entity, that entity privately computes K(x′, B′)

from which a nonlinear classifier is computed as follows:

K(x′, B′)u− γ = 0 (4.11)

Remark 4.4.2 Note that in the above algorithm no entity i reveals its dataset Ai. This is so

because it is impossible to compute unique min numbers constituting the matrix Ai ∈ Rmi×n

given only the mim̄ numbers constituting the revealed kernel matrix K(Ai, B′) ∈ Rmi×m̄

with m̄ < n. However, all entities share the publicly computed nonlinear classifier (4.11)

without revealing their individual datasets Ai, i = 1, . . . , q, or any new x that they obtain.

Thus, for example, if we wish to compute the r-th row Air of entity i’s data matrix Ai from

the given matrix Pi = K(Ai, B′) ∈ Rmi×m̄, we need to solve the m̄ nonlinear equations

K(B, Air
′) = Pir

′ for the n components of Air ∈ Rn. Because n > m̄, this would in general

generate a nonlinear surface in Rn containing an infinite number of solutions which makes

it impossible to determine Air uniquely. We make this statement more precise for a linear

kernel K(A, B′) = AB′ by first showing that at least an exponential number of matrices Ai

satisfy AiB′ = Pi for a given B and Pi when m̄ < n. We then show that the infinite number

of matrices that lie in the affine hull of these matrices also satisfy AiB′ = Pi. This obviously

precludes the possibility of determining the dataset Ai held by entity i given only AiB′.

Proposition 4.4.3 Given the matrix product Pi
′ = AiB′ ∈ Rmi×m̄ where Ai ∈ Rmi×n is

unknown and B is a known matrix in Rm̄×n with m̄ < n, there are an infinite number of

solutions, including: 

n

m̄




mi

=

(
n!

(n− m̄)!m̄!

)mi

, (4.12)

74

possible solutions Ai ∈ Rmi×n to the equation BAi
′ = Pi. Furthermore, the infinite number

of matrices in the affine hull of these
(

n
m̄

)mi matrices also satisfy BAi
′ = Pi.

Proof Consider the problem of solving for row r of Ai, that is Air ∈ Rn, r ∈ {1, . . . , mi},

from the r-th equation of BAi
′ = Pi:

BAir
′ = Pir. (4.13)

Since m̄ < n, and B is a random matrix, it follows by [23] that each of the



n

m̄



 random

m̄ × m̄ square submatrices of B are of full rank and hence nonsingular. Consequently,

Equation (4.13) has



n

m̄



 solutions for each row r of Ai, that is Air, r ∈ {1, . . . , mi}. Hence

there are



n

m̄




mi

=
(

n!
(n−m̄)!m̄!

)mi

solutions for the mi rows of Ai.

To prove the last statement of the proposition, we note that if each of k matrices

A1
i , . . . , A

k
i solve BAi

′ = Pi for a given B and Pi, then so does Ai =
j=k∑

j=1

λjAj
i for

j=k∑

j=1

λj = 1.

Hence any matrix in the affine hull of A1
i , . . . , A

k
i , {H | H =

j=k∑

j=1

λjAj
i ,

j=k∑

j=1

λj = 1} also

satisfies (4.13). "
For the specific case of m̄ = n− 1, which is used for our numerical results, we have that:



n

m̄




mi

=

(
n!

(n− m̄)!m̄!

)mi

= (n)mi . (4.14)

This translates to (30)20 for the typical case of n = 30, m̄ = 29 and mi = 20.

We turn now to our computational results for horizontally partitioned data.

4.5 Computational results for horizontally partitioned data

We illustrate the effectiveness of our proposed privacy preserving SVM (PPSVM)

by demonstrating that entities using our approach can obtain classifiers with lower

misclassification error than classifiers obtained using only the examples of each entity alone.

75

All experiments were run using both a linear kernel and the commonly used Gaussian kernel

described in Section 1.1. In all of our results, Ā consisted of ten percent of the rows of

A randomly selected, while B was a completely random matrix with the same number of

columns as A. The number of rows of B was set to the minimum of n− 1 and the number

of rows of Ā, where n is the number of features in the dataset. Thus, we ensure that the

conditions discussed in the previous sections hold in order to guarantee the private data Ai

cannot be recovered from K(Ai, B′). Each entry of B was selected independently from a

uniform distribution on the interval [0, 1]. All datasets were normalized so that each feature

was between zero and one. This normalization can be carried out if the entities disclose only

the maximum and minimum of each feature in their datasets. When computing ten-fold

cross validation, we first divided the data into folds and set up the training and testing sets

in the usual way. Then each entity’s dataset was formed from the training set of each fold.

The accuracies of all classifiers were computed on the testing set.

We investigate the benefit of using our PPSVM approach instead of using only the

examples available to each entity using seven datasets from the UCI repository [96]. To

simulate a situation in which each entity has only a subset of the available examples, we

randomly distribute the examples among the entities such that each entity receives about

the same number of examples. We chose arbitrarily to perform experiments using however

many entities were needed so that each entity received about 25 examples. To save time, we

computed results only for three entities, though when sharing we assumed the entire dataset

was shared.

Figure 4.7 shows results comparing the ten-fold cross validation misclassification error

of our linear kernel PPSVM with the average misclassification error of the 1-norm SVM

classifiers learned using only the examples available to each of three entities. Points below

the 45 degree line represent experiments in which our PPSVM has lower error rate than the

average error rate of the classifiers learned with only each entity’s subset of the examples.

This indicates that the entities can expect improved performance using PPSVM instead

of going it alone. The results shown in Figure 4.7 are detailed in Table 4.3. We note

76

Sharing vs. No Sharing

No Sharing Error

S
h
ar

in
g

E
rr

or

0.430.340.230.09

0.43

0.28
0.23
0.17
0.11

0.03

Figure 4.7 Error rate comparison for the seven datasets of Table 4.3 of a 1-norm linear
SVM sharing AiB′ data for each entity versus a 1-norm linear SVM using only the

examples Ai of each entity. Points below the diagonal represent situations in which the
error rate for sharing is better than the error rate for not sharing. Results are given for each

dataset with examples randomly distributed so that each entity has about 25 examples.

77

Dataset No Sharing Error Sharing Error

Examples × Input Features

Cleveland Heart 0.2349 0.1652

297 × 13

Ionosphere 0.2298 0.1054

351 × 34

WDBC 0.0879 0.0281

569 × 30

Arrhythmia 0.4116 0.2788

452 × 279

Pima Indians 0.3443 0.2303

768 × 8

Bupa Liver 0.4259 0.4263

345 × 6

German Credit 0.3233 0.2380

1000 × 24

Table 4.3 Comparison of error rates for entities not sharing and sharing their datasets
using a 1-norm linear SVM.

78

Sharing vs. No Sharing

No Sharing Error

S
h
ar

in
g

E
rr

or

0.480.390.320.240.170.09

0.38

0.29
0.25

0.16

0.08
0.03

Figure 4.8 Error rate comparison for the seven datasets of Table 4.4 of a 1-norm nonlinear
SVM sharing K(Ai, B′) data for each entity versus a 1-norm nonlinear SVM using only the

examples Ai of each entity. Points below the diagonal represent situations in which the
error rate for sharing is better than the error rate for not sharing.

that PPSVM obtains classifiers with lower error than the average of the classifiers using

only each entity’s examples in six of the seven experiments. The parameter ν was selected

from {10i|i = −7, . . . , 7} for each dataset was selected using ten-fold cross validation on

the training set when data was shared, and leave-one-out cross validation on the training

set when data was not shared. We used leave-one-out cross validation when data was not

shared because each entity only had about 25 examples in its training set.

Figure 4.8 shows similar results for experiments using Gaussian kernels, with details in

Table 4.4. We used the same datasets as for the experiments described above. To save time,

we used the tuning strategy from [46], as described in Section 4.1, with the exception that the

initial range of log10 µ was set independently for each entity using only that entity’s examples.

We chose to use leave-one-out cross validation to evaluate each (ν, µ) pair when not sharing

data because only about 25 examples were available to each entity in that situation.

79

Dataset No Sharing Error Sharing Error

Examples × Input Features

Cleveland Heart 0.2418 0.1567

297 × 13

Ionosphere 0.1747 0.0790

351 × 34

WDBC 0.0861 0.0316

569 × 30

Arrhythmia 0.3919 0.2873

452 × 279

Pima Indians 0.3203 0.2599

768 × 8

Bupa Liver 0.4752 0.3832

345 × 6

German Credit 0.3653 0.2473

1000 × 24

Table 4.4 Comparison of error rates for entities not sharing and sharing their datasets
using a 1-norm nonlinear Gaussian SVM.

80

Chapter 5

Feature-Selecting k-Median Algorithm

The k-median clustering algorithm for unlabeled data can be considered as a constrained

optimization problem. This problem has a concave objective function, and an algorithm for

finding a local solution in a finite number of steps is given by Bradley et al. [9]. For problems

with large numbers of features, such as those arising in text or gene expression data, there

may be many redundant features. In this chapter, a simple but fundamental modification to

the algorithm in [9] is used to select features while maintaining a clustering similar to that

using the entire set of features [82].

5.1 Feature-selecting k-median (FSKM) theory and algorithm

The k-median clustering algorithm [9] consists of two basic steps. Given k initial or

intermediate cluster centers, the first step consists of assigning each point to the closest

cluster center using the 1-norm distance. The second step consists of generating k new

cluster centers, each being the median of each cluster. It is the second step that we shall

modify, in order to remove possibly irrelevant input space features from the problem, as

follows. Since the median of a cluster is the point (or set of points) that minimizes the sum

of the 1-norm distances to all the points in the cluster, we shall perturb this minimization

problem by adding to its objective function a weighted term with weight ν consisting of

the 1-norm distance to global median of zero for the entire dataset. As the weight ν gets

sufficiently large, all the features will become zero and are eliminated from the problem.

Conversely, if ν = 0, then we have the ordinary k-median algorithm. We derive now the

81

optimality condition for minimizing the nondifferentiable objective function for the perturbed

objective function for this step of the modified k-median algorithm.

Let the given dataset, consisting of m points in Rn, be represented by the matrix

A ∈ Rm×n. We shall assume without loss of generality that a median of the m rows of A

is 0 ∈ Rn. Assume further, that k clusters have been generated by the k-median algorithm

and are represented by the k submatrices of A:

A' ∈ Rm(')×n, A'
i = Ai∈J('), . = 1, . . . , k, (5.1)

where J(.) ⊂ {1, . . . , m}, . = 1, . . . , k, is a partition of {1, . . . , m}. The k perturbed

optimization problems that need to be solved at this second step of the modified k-median

algorithm consist of the following k unconstrained minimization problems. Find k cluster

centers c' ∈ Rn, . = 1, . . . , k, with one or more components being zero, depending on the

size of ν. Each c' ∈ Rn, . = 1, . . . , k is a solution of:

min
c∈Rn

∑

i∈J(')

‖Ai − c‖1 + ν‖c‖1, . = 1, . . . , k. (5.2)

Since each of these problems is separable in the components cj , j = 1, . . . , n of c, we can

consider the following 1-dimensional minimization problem for each component cj , which we

denote for simplicity by c ∈ R1, and for ai := Aij , i ∈ J(.) for a fixed j ∈ {1, . . . , n} as

follows:

min
c∈R1

∑

i∈J(')

|c− ai| + ν|c|, . = 1, . . . , k. (5.3)

Here AJ(') denotes the subset of the rows of A that are in cluster .. Setting the subgradient

(see Equations (1.1)-(1.3)) of the objective function of (5.3) equal to zero gives the following

necessary and sufficient optimality condition for a fixed j ∈ {1, . . . , n} and for a fixed cluster

82

. ∈ {1, . . . , k}:
card{i|c > ai∈J(')} − card{i|c < ai∈J(')}

+[−1, 1] · card{i|c = ai∈J(')}

+ν ·






−1 if c < 0

[−1, 1] if c = 0

+1 if c > 0





= 0.

(5.4)

Henceforth, [−1, 1] denotes some point in the closed interval {x| − 1 ≤ x ≤ 1}. Thus, for

a cluster center c to be zero, for a fixed j ∈ {1, . . . , n}, ai := Aij , and for a fixed cluster

. ∈ {1, . . . , k}, we need to have:

card{i|0 > ai∈J(')} − card{i|0 < ai∈J(')}

+[−1, 1]card{i|0 = ai∈J(')} + [−1, 1] · ν = 0.
(5.5)

Simplifying this expression by replacing the first [−1, 1] by the zero subgradient and solving

for ν, we have that:

ν =
card{i|0 < ai∈J(')} − card{i|0 > ai∈J(')}

[−1, 1]
, (5.6)

which is satisfied if we set:

ν ≥ |card{i|0 < ai∈J(')} − card{i|0 > ai∈J(')}|. (5.7)

Hence we can state the following result based on the above analysis.

Proposition 5.1.1 Cluster Center with Selected Features A solution c to the

perturbed cluster center optimization problem (5.2) has zero components cj = 0 for each

j ∈ {1, . . . , n}, such that:

ν ≥ |card{i|0 < Ai∈J('),j} − card{i|0 > Ai∈J('),j}|. (5.8)

It follows that if we set ν large enough one or more input space features are killed. Hence

we can gradually increase ν from zero and systematically kill at least one feature at a time.

This property suggests the following algorithm.

83

Algorithm 5.1.2 FSKM: Feature-Selecting k-Median Algorithm

1. Shift the dataset A ∈ Rm×n such that 0 ∈ Rn is its median.

(i) Use the k-median the algorithm to cluster into k clusters.

(ii) For each input space component j ∈ {1, . . . , n} and for each cluster AJ('), . ∈ {1, . . . , k}

compute:

ν'
j = |card{i|0 < Ai∈J('),j} − card{i|0 > Ai∈J('),j}|. (5.9)

(iii) Delete feature(s) j̄ by deleting column(s) A·j̄ for which:

νj̄ = min
1≤j≤n

max
1≤'≤k

ν'
j . (5.10)

(iv) Stop if A has no columns remaining, else let A = Ā ∈ Rm×n̄, n = n̄, where Ā is the

matrix with reduced columns.

(v) Go to (i).

We note that Step (iii) in the FSKM Algorithm above determines precisely which

input space feature(s) will be deleted next, based on successively increasing values of the

perturbation parameter ν. Thus, formula (5.10) of Step (iii) sets apart our algorithm from a

lengthy greedy n-choose-1 approach that systematically deletes one feature at a time. Such

a greedy approach chooses to delete the feature which minimizes the clustering error for

the remaining features. This procedure is repeated n times until one feature is left. Hence,

instead of n applications of the k-median algorithm needed by FSKM, a greedy approach

would need n(n+1)
2 applications of the k-median algorithm.

We turn now to our computational results to show the effectiveness of the FSKM

Algorithm.

5.2 Computational results

To illustrate the performance of our algorithm, we tested it on five publicly available

datasets, four from the UCI Machine Learning Repository [96] and one available at [100].

84

We ran Algorithm 5.1.2 30 times on each dataset, and we report average results. If

Algorithm 5.1.2 produced multiple candidate features for elimination in Step (iii), then

only one randomly chosen feature from this set was eliminated. The k-median algorithm

was initialized with centers chosen by the following procedure which is similar to that of [9].

For each feature, 4k bins of equal size were created. The data was sorted into these bins,

and the k initial centers were chosen by taking the midpoint of the k most populous bins

for each feature. Consider using this procedure for k = 2. One initial center will have each

coordinate be the midpoint of the most populous bin for the corresponding feature, while the

other initial center will have each coordinate be the midpoint of the second most populous

bin for the corresponding feature. The decision to use 4k bins was made arbitrarily and not

adjusted while developing the algorithm or performing the experiments.

Figure 5.1 gives results for the Wine dataset [96]. The two curves shown are the

classification error and the clustering error. The classification error curve, marked by squares,

is computed by labeling members of each cluster with the majority label of the cluster, where

the labels are the actual class labels from the dataset. These class labels are used only in

generating the classification error curve and not in obtaining the clusters. The error is the

number of incorrectly classified examples divided by the number of examples in the dataset.

The entire dataset is used both for the clustering and evaluation of the error. No data is left

out. The clustering error curve, marked by circles, is computed by accepting the clusters

produced by k-median on the full-featured dataset as the gold standard labeling, and then

using the following procedure for computing the error without using any class labels, as would

be the case for unlabeled data clustering. For each reduced dataset, members of each cluster

are marked with the majority gold standard label of that cluster. The gold standard labels

are used only in generating the clustering error curve and not in obtaining the clusters. Note

that the clustering error on the full-featured dataset is always zero by definition. Error bars

show one sample standard deviation above and below each point. Total time to generate the

error curves which entails running the k-median algorithm 390 times and plotting the error

85

0 2 4 6 8 10 12 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Wine

Number of features

Tr
ai

ni
ng

 s
et

 e
rro

r a
ve

ra
ge

d
ov

er
 3

0
ru

ns

Classification Error
Clustering Error

Figure 5.1 Error curves for the 3-class Wine dataset with 178 points in 13-dimensional
space are plotted as a function of the number features selected by FSKM. The average

range of ν computed by (5.10) was from 42 to 55. Note that the low variance between runs
on this dataset makes the error bars essentially invisible.

86

curves, all within MATLAB [94], took 205.1 seconds on a 650MHz, 256MB RAM desktop

machine running Red Hat Linux, Version 9.0.

The curves in Figure 5.1 show that the clustering error curve increases slightly as the

input space dimensionality is reduced from 13 features to 4 features, and then increases very

sharply as the data dimensionality is further reduced from 4 features down to 2 features.

The classification error curve decreases slightly as the data dimensionality is reduced from

13 to 4 features, and then increases similarly to the clustering error curve as the number of

features is reduced from 4 to 2. As the number of features is reduced from 2 to 1, both curves

decrease. The number of features can be reduced to 4 from 13 while keeping the clustering

error less than 4% and decreasing the classification error by 0.56 percentage points.

One key observation to make about Figure 5.1 and subsequent figures is the following.

Since the real-world application of FSKM is to unlabeled data, we can only generate a

clustering error curve similar to that of Figure 5.1. This curve will help us decide on the

magnitude of error we wish to tolerate, which determines how many and which features to

keep. The validity of such a procedure is based on the parallelism between the clustering

error curve based on unlabeled data, and the classification error curve based on the labels

of the datasets in the current experiments.

The results of our algorithm on the Votes dataset [96] are in Figure 5.2. The procedure

for generating the curves is exactly the same as described above for the Wine dataset. Note

that both the classification and clustering error increase slightly as the number of features

is reduced from 16 to 12. Then the classification error increases briefly and then tends to

decrease while the clustering error tends to increase slightly as the number of features is

reduced from 12 to 3. Finally, both the classification and the clustering error increase more

sharply as the number of features is reduced from 3 to 1. After reducing the number of

features down to 3, the clustering error is less than 10%, and the classification error has only

increased by 1.84 percentage points.

Results for the WDBC dataset [96] are in Figure 5.3. For this dataset, the classification

error does not increase as much as the clustering error as the number of features is reduced

87

0 5 10 150

0.05

0.1

0.15

0.2

0.25
Votes

Number of features

Tr
ai

ni
ng

 s
et

 e
rro

r a
ve

ra
ge

d
ov

er
 3

0
ru

ns

Classification Error
Clustering Error

Figure 5.2 Error curves and variance bars for the 2-class Votes dataset with 435 points in
16-dimensional space are plotted as a function of the number features selected by FSKM.

The average range of ν computed by (5.10) was from 0 to 192.

88

0 5 10 15 20 25 30 350

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
WDBC

Number of features

Tr
ai

ni
ng

 s
et

 e
rro

r a
ve

ra
ge

d
ov

er
 3

0
ru

ns

Classification Error
Clustering Error

Figure 5.3 Error curves and variance bars for the 2-class WDBC dataset with 569 points
in 30-dimensional space are plotted as a function of the number features selected by

FSKM. The average range of ν computed by (5.10) was from 188 to 284.

89

from 30 to 14. At that point, the two curves mirror one another closely as the number of

features is reduced further. Note that reducing the number of features from 30 to 27 causes

no change in clustering or classification error. Reducing the number of features to 7 keeps

the clustering error less than 10%, while increasing the classification error by 3.69 percentage

points.

Figure 5.4 shows the results for the Star/Galaxy-Bright dataset [100]. For this dataset,

the classification and clustering error curves behave differently. However, note that the

clustering error curve tends to increase only slightly as the number of features decreases.

This behavior is what we want. Overall, the classification error curve decreases noticeably

until 6 features remain and then begins to increase, indicating that some of the features

may be obstructing the classification task. The problem can be reduced to 4 features and

still keep the clustering error under 10% while decreasing the classification error by 1.42

percentage points from the initial error using 14 features.

Results for the Cleveland Heart dataset [96] are in Figure 5.5. Note that although

the increase in clustering error when reducing from 13 features to 9 features is very large,

subsequent increases are not so severe. In addition, the classification error curve behaves

similarly to the clustering error curve in the sense that both curves have the greatest increase

going from 13 features to 9 features. Using FSKM to remove 5 features causes the clustering

error to be less than 17%, and increases classification error by 7.74 percentage points.

90

0 2 4 6 8 10 12 140

0.05

0.1

0.15

0.2

0.25
Star/Galaxy!Bright

Number of features

Tr
ai

ni
ng

 s
et

 e
rro

r a
ve

ra
ge

d
ov

er
 3

0
ru

ns

Classification Error
Clustering Error

Figure 5.4 Error curves and variance bars for the 2-class Star/Galaxy-Bright dataset with
2462 points in 14-dimensional space are plotted as a function of the number features
selected by FSKM. The average range of ν computed by (5.10) was from 658 to 1185.

91

0 2 4 6 8 10 12 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cleveland!Heart

Number of features

Tr
ai

ni
ng

 s
et

 e
rro

r a
ve

ra
ge

d
ov

er
 3

0
ru

ns

Classification Error
Clustering Error

Figure 5.5 Error curves and variance bars for the 2-class Cleveland Heart dataset with 297
points in 13-dimensional space are plotted as a function of the number features selected by

FSKM. The average range of ν computed by (5.10) was from 0 to 113.

92

Chapter 6

Feature Selection for Nonlinear Kernel Support Vector
Machines

Feature selection is a fairly straightforward procedure for linear support vector machine

(SVM) classifiers. For example, a 1-norm support vector machine linear classifier obtained by

either linear programming or concave minimization will easily reduce features [8]. However,

when similar techniques are applied to nonlinear SVM classifiers, the resulting reduction

is not in the number of input space features but in the number of kernel functions needed

to generate the nonlinear classifier [30]. This may be interpreted as a reduction in the

dimensionality of the higher dimensional transformed space, but does not result in any

reduction of input space features. It is precisely this reduction that we are after in this

chapter, namely, a reduced number of input space features that we need to input into a

nonlinear SVM classifier. We shall achieve this by replacing the usual nonlinear kernel

K(A, A′), where A is the m × n data matrix, by K(AE, EA′) where E is an n × n

diagonal matrix of ones and zeros. The proposed algorithm alternates between computing

the continuous variables (u, γ) of the nonlinear kernel classifier K(x′E, EA′)u − γ = 0, by

using linear programming, and the integer diagonal matrix E of ones and zeros by successive

minimization sweeps through its components. The algorithm generates a decreasing sequence

of objective function values that converge to a local solution that minimizes the usual data

fit and the number of kernel functions used while also minimizing the number of features

used [85]. A possibly related result, justifying the use of reduced features, is that of

random projection on a subspace of features for Gaussian mixtures which states that data

93

from a mixture of k Gaussians can be projected into O(log k) dimensions while retaining

approximate separability of the clusters [14].

There has been considerable recent interest in feature selection for SVMs. Weston et al.

propose reducing features based on minimizing generalization bounds via a gradient approach

[121]. In [26], Frölich and Zell introduce an incremental approach based on ranking features

by their effect on the margin. An approach based on a Bayesian interpretation of SVMs is

presented by Gold et al. [38], and an approach based on smoothing spline ANOVA kernels

is proposed by Zhang [127]. In [41], Guyon et al. use a wrapper method designed for SVMs.

Another possibility is to use a filter method such as Relief [105] in conjunction with an SVM.

None of these approaches utilize the straightforward and easily implementable mixed-integer

programming formulation proposed here.

6.1 Reduced Feature Support Vector Machine (RFSVM)
Formulation and Algorithm

We consider a given set of m points in the n-dimensional input feature space Rn

represented by the matrix A ∈ Rm×n. Each point represented by Ai, i = 1, . . . , m, belongs

to class +1 or class -1 depending on whether Dii is 1 or -1, where D ∈ Rm×m is a given

diagonal matrix of plus or minus ones. We shall attempt to discriminate between the classes

+1 and -1 by a nonlinear classifier induced by a completely arbitrary kernel K(A, A′) and

parameters u ∈ Rm and γ ∈ R, by using (1.14). Recall that minimizing ‖u‖1 leads to a

minimal number of kernel functions used in the classifier (1.4) by zeroing components of the

variable u [30]. However, our primary concern here is to use as few components of the input

space vector x as possible in the nonlinear classifier (1.4). We proceed to do that now as

follows.

We introduce a diagonal matrix E ∈ Rn×n with ones or zeros on its diagonal. The zeros

correspond to suppressed input space features and the ones correspond to features utilized

by the nonlinear classifier (1.4) which we modify as follows:

K(x′E, EA′)u− γ = 0. (6.1)

94

In turn, the linear program (1.14) becomes the following mixed-integer nonlinear program:

min
u,γ,y,s,E

νe′y + e′s + σe′Ee

s.t. D(K(AE, EA′)u− eγ) + y ≥ e,

−s ≤ u ≤ s,

y ≥ 0,

E = diag(1 or 0),

(6.2)

where σ is a positive parameter that weights the feature suppression term e′Ee =
n∑

i=1

Eii.

Mixed-integer programs are basically NP-hard. However, we can easily obtain a local solution

by fixing E and solving the resulting linear program (6.2) for (u, γ, y, s), then fixing (u, γ, y, s)

and sweeping through the components of E altering them successively only if such alteration

decreases the objective function. Repeating this process leads to the following algorithm

which, in addition to suppressing input space features, suppresses components of the variable

u because of the 1-norm term in the objective function and hence utilizes a minimal number

of kernel function components K(AE, (EA′)·j), j = 1, . . . , m.

We state our algorithm now. More implementation details are given in Section 6.2.

Algorithm 6.1.1 Reduced Feature SVM (RFSVM) Algorithm

(1) Pick a random E = diag(1 or 0) with cardinality of E inversely proportional to σ.

Pick a fixed integer k, typically very large, for the number of sweeps through E, and

a stopping tolerance tol, typically 1e− 6.

(2) Solve the linear program (6.2) for a fixed E and denote its solution by (u, γ, y, s).

(3) For . = 1, . . . , kn and j = 1 + (.− 1)mod n:

(a) Replace Ejj by 1 if it is 0 and by 0 if it is 1.

(b) Compute:

f(E) = νe′(e−D(K(AE, EA′)u− eγ))+ + σe′Ee,

95

before and after changing Ejj.

(c) Keep the new Ejj only if f(E) decreases by more than tol. Else undo the change

in Ejj. Go to (a) if j < n.

(d) Go to (4) if the total decrease in f(E) is less than or equal to tol in the last n

steps.

(4) Solve the linear program (6.2) for a fixed E and denote its solution by (u, γ, y, s). Stop

if objective function decrease of (6.2) is less than tol.

(5) Go to (3).

Remark 6.1.2 We note that f(E) in the RFSVM algorithm is equivalent to νe′y + σe′Ee

when y takes on its optimal value generated by the first and the next-to-the-last sets of

constraints of (6.2). Note that f(E) still depends on E even for the case when σ = 0.

We establish now convergence of the RFSVM algorithm for tol = 0, however

computationally we use tol = 1e− 6.

Proposition 6.1.3 RFSVM Convergence

For tol = 0, the nonnegative nonincreasing values of the sequence of objective function values

{νe′yr + e′sr + σe′Ere}r=∞
r=1 , where the superscript r denotes iteration number of step (4) of

Algorithm 6.1.1, converge to (νe′ȳ + e′s̄ + σe′Ēe) where (ū, γ̄, ȳ, s̄, Ē) is any accumulation

point of the sequence of iterates {ur, γr, yr, sr, Er} generated by Algorithm 6.1.1. The point

(ū, γ̄, ȳ, s̄, Ē) has the following local minimum property:

(νe′ȳ + e′s̄ + σe′Ēe) = min
u,γ,y,s

νe′y + e′s + σe′Ēe

s.t. D(K(AĒ, ĒA′)u− eγ) + y ≥ e

−s ≤ u ≤ s

y ≥ 0,

(6.3)

and for p = 1, . . . , n:

f(Ē) ≤ f(E), for Epp = 1− Ēpp, Ejj = Ējj, j "= p. (6.4)

96

Proof That the sequence {νe′yr + e′sr + σe′Ere}r=∞
r=1 converges follows from the fact that

it is nonincreasing and bounded below by zero. That (6.3) is satisfied follows from the fact

that each point of the sequence {ur, γr, yr, sr, Er} satisfies (6.3) with (ū, γ̄, ȳ, s̄, Ē) replaced

by {ur, γr, yr, sr, Er} on account of step (4) of Algorithm 6.1.1. That (6.4) is satisfied follows

from the fact that each point of the sequence {Er} satisfies (6.4) with (Ē) replaced by {Er}

on account of step (3) of Algorithm 6.1.1. Hence every accumulation point (ū, γ̄, ȳ, s̄, Ē) of

{ur, γr, yr, sr, Er} satisfies (6.3) and (6.4). "
It is important to note that by repeating steps (3) and (4) of Algorithm 6.1.1, a feature

dropped in one sweep through the integer variables may be added back in another cycle, and

conversely. Thus, our algorithm is not merely a näıve greedy approach because the choices

of one iteration may be reversed in later iterations, and we have observed this phenomenon

in our experiments. However, cycling is avoided by choosing tol > 0, which ensures that the

sequence of objective values generated by Algorithm 6.1.1 is strictly decreasing. It is also

important to note that when changing the integer variables in step (3), only the objective

function needs to be recomputed, which is much faster than solving the linear program in

step (4). In fact, as we shall discuss in Section 6.2, we have found that the cycle through

the integer variables in step (3) tends to be repeated more often than the linear program of

step (4). We turn now to computational testing of our approach.

6.2 Computational results

We illustrate the effectiveness of our Reduced Feature SVM (RFSVM) on two datasets

from the UCI Machine Learning Repository [96] and on synthetic data generated using

Michael Thompson’s NDCC generator [115]. The UCI datasets are used to compare the

feature selection and classification accuracy of RFSVM to the following two algorithms:

recursive feature elimination (RFE), a wrapper method designed for SVMs [41], and Relief,

a filter method [105]. A feature-reducing linear kernel 1-norm SVM (SVM1) [8], and a

nonlinear kernel 1-norm SVM (NKSVM1) [72] with no feature selection are used as baselines.

97

The synthetic NDCC data is used to illustrate the effectiveness of RFSVM on problems with

large numbers of features, including a problem with 1000 features, 900 of which are irrelevant.

6.2.1 UCI datasets

We use the UCI datasets to compare RFSVM to two other algorithms. RFE and Relief

are used to illustrate how RFSVM maintains classification accuracy for different degrees of

feature selection. SVM1 and NKSVM1 are used to establish baselines for feature selection

and classification accuracy. For the sake of efficiency, we use the experimental methodology

described below to compare the algorithms. We first briefly describe RFE and Relief.

6.2.1.1 RFE

Recursive Feature Elimination (RFE) is a wrapper method designed for SVMs [41]. First

an SVM (u, γ) is learned using all features, then features are ranked based on how much

the margin u′K(A, A′)u changes when each feature is removed separately. Features which

have a small effect on the margin are considered less relevant. A given percentage of the

least relevant features are removed, and the entire procedure is repeated with the remaining

features. In our experiments, we remove one feature at a time until the reported number

of features is reached. Note that our RFSVM procedure uses the objective value f(E) to

determine whether to include or remove each feature, and removes or keeps features if the

objective function decreases by more than a threshold, without first ranking the features.

Furthermore, once a feature is removed by RFE it is never again considered for inclusion in

the final classifier, while any feature removed during a sweep through the integer variables

E in our Algorithm 6.1.1 may be included by a later sweep.

6.2.1.2 Relief

Relief is a filter method for selecting features [105]. Features are ranked by computing

weights as follows. For a randomly chosen training example, find the nearest example with

the same class (the nearest hit), and the nearest example in the other class (the nearest miss).

98

Then update the weight of each feature by subtracting the absolute value of the difference

in feature values between the example and the nearest hit, and adding the absolute value of

the difference between the example and the nearest miss. This procedure is then repeated

several times, with a different random example each time. Features with high weight are

considered more relevant. Relief may be used with any binary classification algorithm, but

in the following we use it exclusively with a 1-norm Gaussian kernel SVM.

6.2.1.3 Methodology

To save time, we tuned each algorithm by using 1
11 of each dataset as a tuning set, and

performed ten-fold cross validation on the remaining 10
11 . The tuning set was used to choose

the parameters ν and µ on the first fold, and the chosen parameters were then used for

the remaining nine folds. In order to avoid bias due to the choice of the tuning set, we

repeated the above procedure five times using a different, randomly selected, tuning set each

time. This procedure allows us to efficiently investigate the behavior of the feature selection

algorithms RFSVM, RFE, and Relief on the datasets. Since the algorithms exhibit similar

behavior on the datasets, we believe that our results support the conclusion that RFSVM is

effective for learning nonlinear classifiers with reduced input space features.

For all the algorithms, we chose ν and the Gaussian kernel parameter µ from the set

{2i|i ∈ {−7, . . . , 7}}. For each dataset, we evaluated the accuracy and number of features

selected at σ ∈ {0, 1, 2, 4, 8, 16, 32, 64}. The diagonal of E was randomly initialized so that

max{n
σ , 1} features were present in the first linear program, where n is the number of input

space features for each dataset. As σ increases, the penalty on the number of features begins

to dominate the objective. We only show values of σ for which we obtained reliable results.

For RFE, we removed 1 feature per iteration. For Relief, we used 1000 iterations to determine

the feature weights.

99

6.2.1.4 Results and discussion

Figure 6.1 gives curves showing the accuracy of RFSVM versus the number of input space

features used on the Ionosphere and Sonar datasets. Each point on the curve is obtained by

averaging five ten-fold cross validation experiments for a fixed σ. The square points denote

the accuracy of NKSVM1, an ordinary nonlinear classifier which uses all the input space

features. The points marked by triangles represent the accuracy and feature reduction of

SVM1, a linear classifier which is known to reduce features [8]. Results for RFE are denoted

by ’+’, and results for Relief are denoted by ’!’ while results of our RFSVM algorithm are

denoted by circles. Note that RFSVM is potentially able to obtain a higher accuracy than

the linear classifier using approximately the same number of features on the Ionosphere and

Sonar datasets. Note also that even for σ = 0, RFSVM was able to reduce features based

only on decrease in the objective term e′y. RFSVM is comparable in both classification

accuracy and feature selection to RFE and Relief.

To illustrate the efficiency of our approach, we report the CPU time taken on the

Ionosphere dataset. On this dataset, the RFSVM algorithm required an average of 6

cycles through the integer variables on the diagonal of the matrix E, and the solution of 3

linear programs. The averages are taken over the classifiers learned for each fold once the

parameters were selected. Using the MATLAB profiler, we found that the CPU time taken

for one complete experiment on the Ionosphere dataset was 60.8 minutes. The experiment

required 1960 runs of the RFSVM algorithm. Of this time, approximately 75% was used

in evaluating the objective function, and 15% was used in solving linear programs. Our

experience with the RFSVM algorithm is that the bottleneck is often the objective function

evaluations rather than the linear programs, which suggests that significant speedups could

be obtained by using more restrictive settings of the number of sweeps k and the tolerance

tol for decreasing f(E). These measurements were taken using MATLAB 7.2 [94] under

CentOS Linux 4.3 running on an Intel 3.0 GHz Pentium 4. The linear programs were solved

using CPLEX 9.0 [48] and the Gaussian kernels were computed using a compiled function

written in C.

100

 0.76
 0.78

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96

 0 5 10 15 20 25 30 35 40

8 4 2 1 0

Av
er

ag
e

Te
n-

Fo
ld

 C
ro

ss
 V

al
id

at
io

n
Ac

cu
ra

cy

Number of Input Space Features Used

Ionosphere Dataset: 351 points in R34

!

16

SVM1

NKSVM1RFSVM

RFE

Relief

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 10 20 30 40 50 60 70

8 4 2 1 0

Av
er

ag
e

Te
n-

Fo
ld

 C
ro

ss
 V

al
id

at
io

n
Ac

cu
ra

cy

Number of Input Space Features Used

Sonar Dataset: 208 points in R60

!64
32

16

SVM1

NKSVM1
RFSVM

RFE

Relief

Figure 6.1 Ten-fold cross validation accuracy versus number of features used on the
Ionosphere and Sonar datasets. Results for each algorithm are averages over five ten-fold
cross validation experiments, each using a different 1

11 of the data for tuning only, and the
remaining 10

11 for ten-fold cross validation. Circles mark the average number of features
used and classification accuracy of RFSVM for each value of σ. ’+’, ’!’, ’"’, and ’*’

represent the same values for RFE, Relief, NKSVM1, and SVM1, respectively.

101

6.2.2 NDCC data

The NDCC dataset generator creates datasets by placing normal distributions at the

vertices of concentric 1-norm cubes [115]. The resulting datasets are not linearly separable,

thus making them attractive testbeds for nonlinear classifiers. We create datasets to

test feature selection by adding random normal features to an NDCC dataset and then

normalizing all features to have mean 0 and standard deviation 1. The order of the features

is shuffled. Each dataset has 200 training points, 200 tuning points, and 1000 testing points.

Accuracy of RFSVM and NKSVM1 on the dataset is measured by choosing ν and µ from

the set {2i|i ∈ {−7, . . . , 7}} using the tuning set, and then evaluating the chosen classifier on

the 1000 testing points. To save time, we arbitrarily set σ in RFSVM to 1 before performing

any experiments.

Figure 6.2 shows a comparison of RFSVM and NKSVM1 on NDCC data with 20 true

features as the number of irrelevant features increases. Note that the accuracy of NKSVM1

decreases more than the accuracy of RFSVM as more irrelevant features are added. When

480 irrelevant features are added, the accuracy of RFSVM is 74%, 45% higher than NKSVM1.

We also investigated the performance of RFSVM on NDCC data with 1000 features,

900 of which were irrelevant. To improve the running time of RFSVM on problems with

such large numbers of features, we implemented optimizations which took advantage of the

form of the Gaussian kernel. We also used the Condor distributed computing system [59],

which allowed us to evaluate Algorithm 6.1.1 for several tuning parameters simultaneously.

Over 10 datasets, the average classification accuracy of RFSVM was 70%, while the average

classification accuracy of NKSVM1 was 53%. Thus, the feature selection provided by

RFSVM leads to a 32% improvement over a classifier with no feature selection. We expect

that even better accuracy could be obtained by tuning σ, and heuristics to choose σ are an

important topic of future research.

When using Condor, we used the freely available CLP linear programming solver [24] to

solve the linear programs and the MATLAB compiler version 4.5 to produce a stand-alone

executable which ran Algorithm 6.1.1 for given values of ν and µ. On the same machine

102

0.51

0.67

0.74

0.83

 100 200 500

Av
er

ag
e

Ac
cu

ra
cy

 o
n

10
00

 T
es

t P
oi

nt
s

Total Number of Features Given to RFSVM and NKSVM1
 Including the 20 True Features

NDCC Dataset: 200 Training Points with 20 True Features
 and Varying Number of Random Features

0.79
0.78

RFSVM

NKSVM1

Figure 6.2 RFSVM1 and NKSVM1 on NDCC data with 20 true features and 80, 180, and
480 irrelevant random features. Each point is the average of the test set accuracy over two

independently generated datasets.

103

described above, the average time to run this executable for the parameters chosen by the

tuning procedure was 115 seconds. Further speedups may be possible for some kernels,

including the Gaussian kernel, by using approximations such as [110].

104

Chapter 7

Generalized Eigenvalue Proximal Support Vector
Machines

In standard SVM classification [72, 109] the classifier is given by a plane midway between

two parallel bounding planes that bound two disjoint halfspaces. Each halfspace contains

points mostly of one class, and the bounding planes are as far apart as possible. Proximal

support vector classification [27, 114, 20] is another approach in which two parallel planes

are generated such that each plane is closest to one of the two datasets and the two planes

are as far apart as possible. The classifying plane is again midway between the two planes.

This chapter describes a method which uses the generalized eigenvalue problem to drop

the parallelism condition on the proximal planes, leading to an extremely simple problem

formulation with a very effective and fast algorithm [83].

7.1 The multiplane linear kernel classifier

We consider the problem of classifying m points in the n-dimensional real space Rn,

represented by the m1×n matrix A belonging to class 1 and the m2×n matrix B belonging

to class 2, with m1 + m2 = m. For this problem, a standard support vector machine with

a linear classifier [72, 109] is given by a plane midway between two parallel bounding planes

that bound two disjoint halfspaces each containing points mostly of class 1 or 2. In another

somewhat less standard approach, the proximal support vector classification [27, 114, 20],

two parallel planes are generated such that each plane is closest to one of two datasets to be

105

classified and such that the two planes are as far apart as possible. The classifying plane is

again midway between the parallel proximal planes, and is given by (1.17).

In this chapter we drop the parallelism condition on the proximal planes and require that

each plane be as close as possible to one of the datasets and as far as possible from the other

one. Thus we are seeking two planes in Rn:

x′w1 − γ1 = 0, x′w2 − γ2 = 0, (7.1)

where the first plane is closest to the points of class 1 and furthest from the points in class 2,

while the second plane is closest to the points in class 2 and furthest from the points in class

1. To obtain the first plane of (7.1) we minimize the sum of the squares of 2-norm distances

between each of the points of class 1 to the plane divided by the squares of 2-norm distances

between each of the points of class 2 to the plane. This leads to the following optimization

problem:

min
(w,γ))=0

‖Aw − eγ‖2/‖[w
γ]‖2

‖Bw − eγ‖2/‖[w
γ]‖2

, (7.2)

where ‖ · ‖ denotes the 2-norm and it is implicitly assumed that (w, γ) "= 0 =⇒ Bw − eγ "=

0. This assumption will be made explicit below. We note that the numerator of the

minimization problem (7.2) is the sum of squares of 2-norm distances in the (w, γ)-space

of points in class 1 to the plane x′w − γ = 0, while the denominator of (7.2) is the sum of

squares of 2-norm distances in the (w, γ)-space of points in class 2 to the same plane [71].

Simplifying (7.2) gives:

min
(w,γ))=0

‖Aw − eγ‖2

‖Bw − eγ‖2
. (7.3)

We now introduce a Tikhonov regularization term [116] that is often used to regularize

least squares and mathematical programming problems [76, 68, 20, 114] that reduces the

norm of the problem variables (w, γ) that determine the proximal planes (7.1). Thus for a

nonnegative parameter δ we regularize our problem (7.3) as follows:

min
(w,γ))=0

‖Aw − eγ‖2 + δ‖[w
γ]‖2

‖Bw − eγ‖2 . (7.4)

106

A possible geometric interpretation of the formulation (7.4) is that the first equation of (7.1)

is obtained as a closest plane to the dataset represented by A with distances to points of A

normalized by the sum of the distances to the points of B.

By making the definitions:

G := [A − e]′[A − e] + δI, H := [B − e]′[B − e], z :=



w

γ



 , (7.5)

the optimization problem (7.3) becomes:

min
z)=0

r(z) :=
z′Gz

z′Hz
, (7.6)

where G and H are symmetric matrices in R(n+1)×(n+1). The objective function of (7.6) is

known as the Rayleigh quotient [101, p. 357] and has some very useful properties which we

now cite.

Proposition 7.1.1 [101, Theorem 15.9.2](Rayleigh Quotient Properties) Let G and H

be arbitrary symmetric matrices in R(n+1)×(n+1). When H is positive definite the Rayleigh

quotient of (7.6) enjoys the following properties:

(i) (Boundedness) The Rayleigh quotient ranges over the interval [λ1, λn+1] as z ranges

over the unit sphere, where λ1 and λn+1 are the minimum and maximum eigenvalues

of the generalized eigenvalue problem:

Gz = λHz, z "= 0. (7.7)

(ii) (Stationarity)

∇r(z) = 2
(Gz − r(z)Hz)

z′Hz
= 0. (7.8)

Thus r(z) is stationary at, and only at, the eigenvectors of the generalized eigenvalue

problem (7.7).

We note the following consequence of this proposition. Under the rather unrestrictive

assumption that the columns of the matrix [B − e] are linearly independent, the global

107

minimum of problem (7.6) is achieved at an eigenvector of the generalized eigenvalue problem

(7.7) corresponding to a smallest eigenvalue λ1. If we denote this eigenvector by z1 then

[w1′ γ1]′ = z1 determines the plane w1′x− γ1 = 0 of (7.1) which is closest to all the points

of the dataset 1 and furthest away from the points of dataset 2.

By an entirely similar argument we define an analogous minimization problem to (7.4)

for determining (w2, γ2) for the plane x′w2− γ2 = 0 of (7.1) which is closest to the points of

set 2 and furthest from set 1 as follows.

min
(w,γ))=0

‖Bw − eγ‖2 + δ‖[w
γ]‖2

‖Aw − eγ‖2 . (7.9)

By defining:

L := [B − e]′[B − e] + δI, M := [A − e]′[A − e], (7.10)

and z as in (7.5), the optimization problem (7.9) becomes:

min
z)=0

s(z) :=
z′Lz

z′Mz
, (7.11)

where L and M are again symmetric matrices in R(n+1)×(n+1). The minimum of (7.11)

is achieved at an eigenvector corresponding to a smallest eigenvalue of the generalized

eigenvalue problem:

Lz = λMz, z "= 0. (7.12)

We can now state the following proposition.

Proposition 7.1.2 (Proximal Multiplane Classification) Let A ∈ Rm1×n represent the

dataset of class 1, and B ∈ Rm2×n represent the dataset of class 2. Define G, H , L, M and

z as in (7.5) and (7.10). Assume that [A − e] and [B − e] have linearly independent

columns. Then, the proximal planes (7.1) are obtained by the two MATLAB [94] commands:

eig(G,H) and eig(L,M), each of which generates n + 1 eigenvalues and eigenvectors of the

generalized eigenvalue problems (7.7) and (7.12). The proximal planes (7.1) are obtained

by: 

w1

γ1



 = z1,



w2

γ2



 = z2, (7.13)

108

where z1 is an eigenvector of the generalized eigenvalue problem (7.7) corresponding to a

smallest eigenvalue, and z2 is an eigenvector of the generalized eigenvalue problem (7.12)

corresponding to a smallest eigenvalue.

We note that the linear independence condition is not restrictive for a great many

classification problems for which m1 >> n and m2 >> n. We also note that it is merely

a sufficient but not a necessary condition for the above proposition to hold. Thus, in the

XOR example given below, the linear independence condition is not satisfied. However we

are able to obtain a perfect 2-plane classifier using Proposition 7.1.2 above.

Example 7.1.3 (Zero-Error XOR Classifier) Given the matrices:

A =



0 0

1 1



 , B =



1 0

0 1



 , (7.14)

we define G, H of (7.5) and L, M of (7.10) as follows.

G = M =





1 1 −1

1 1 −1

−1 −1 2



 , H = L =





1 0 −1

0 1 −1

−1 −1 2



 , (7.15)

Then, the generalized eigenvalue problems (7.7) and (7.12) have the following respective

minimum eigenvalues and corresponding eigenvectors:

λ1 = 0, z1′ = [1 −1 0],

λ2 = 0, z2′ = [1 1 1].
(7.16)

These give two lines (planes) in R2, each of which containing the two data points from one

set only:

x1 − x2 = 0, x1 + x2 = 1. (7.17)

We note that a standard 1-norm linear SVM generates a single line classifier for the XOR

example that misclassifies one point [6]. Thus proximal separability does not imply linear

109

separability, nor is the converse true. However it is also possible for two sets to be both

proximally and linearly separable.

We give another simple example to visually illustrate the effectiveness of our generalized

eigenvalue proximal SVM (GEPSVM). We call this example “Cross Planes” because the

data is obtained by perturbing points originally lying on two intersecting planes (lines).

Example 7.1.4 (Cross Planes Classifier) The data consists of points that are close to

one of two intersecting “cross planes” in R2. Figure 7.1 illustrates the dataset and the

planes found by GEPSVM. We note that training set correctness for GEPSVM is 100% and

for PSVM is 80%. We note that this example, which is a perturbed generalization of the

XOR example, can serve as a difficult test case for typical linear classifiers just as the XOR

example does. The reason PSVM did so poorly in comparison to GEPSVM on this example

is because its proximal planes have to be parallel, meaning that PSVM generates a single

linear classifier plane midway between the two proximal planes. By looking at the data

points in Figure 7.1 it is obvious that the single plane of PSVM cannot do as well as the

nonparallel planes of GEPSVM.

GEPSVM: 100% correct Linear PSVM: 80% correct

Figure 7.1 The “cross planes” learned by GEPSVM and the decision boundary learned by
a 1-norm linear SVM together with their correctness on the training dataset.

We turn now to multisurface nonlinear classification.

110

7.2 The multisurface nonlinear kernel classifier

To extend our results to nonlinear multisurface classifiers we consider the following kernel-

generated proximal surfaces instead of the planes (7.1):

K(x′, C ′)u1 − γ1 = 0, K(x′, C ′)u2 − γ2 = 0, (7.18)

where

C :=



A

B



 , (7.19)

and K is an arbitrary kernel as defined in the Introduction. We note that the planes of (7.1)

are a special case of (7.18) if we use a linear kernel K(x′, C) = x′C and define w1 = C ′u1 and

w2 = C ′u2. By using the same arguments as those of Section 7.1, our minimization problem

for generating a kernel-based nonlinear surface that is closest to one data set and furthest

from the other leads to the minimization problem that generalizes (7.4) to the following:

min
(u,γ))=0

‖K(A, C ′)u− eγ‖2 + δ‖[u
γ]‖2

‖K(B, C ′)u− eγ‖2 . (7.20)

By making the definitions:

G := [K(A, C ′) − e]′[K(A, C ′) − e] + δI,

H := [K(B, C ′) − e]′[K(B, C ′) − e],
(7.21)

where G and H are now matrices in R(m+1)×(m+1), the optimization problem (7.20) becomes:

min
z)=0

r(z) :=
z′Gz

z′Hz
, where z :=



u

γ



 , (7.22)

which is exactly the same as problem (7.6), but with different definitions for G and H .

By reversing the roles of K(A, C ′) and K(B, C ′) in (7.20) we obtain the following

minimization problem for the proximal surface K(x′, C ′)u2 − γ2 = 0 of (7.18):

min
(u,γ))=0

‖K(B, C ′)u− eγ‖2 + δ‖[u
γ]‖2

‖K(A, C ′)u− eγ‖2 . (7.23)

111

By defining:

L := [K(B, C ′) − e]′[K(B, C ′) − e] + δI,

M := [K(A, C ′) − e]′[K(A, C ′) − e],
(7.24)

where L and M are again matrices in R(m+1)×(m+1), the optimization problem (7.23) becomes:

min
z)=0

s(z) :=
z′Lz

z′Mz
, where z :=



u

γ



 , (7.25)

which is exactly the same as problem (7.11), but with different definitions for L and M .

An analogous proposition to Proposition 7.1.2 can now be given for solving (7.22) and

(7.25).

Proposition 7.2.1 (Proximal Nonlinear Multisurface Classification) Let A ∈ Rm1×n

represent the dataset of class 1, and B ∈ Rm2×n represent the dataset of class 2. Define G, H ,

L, M and z as in (7.21)-(7.22) and (7.24). Assume that [K(B, C ′) −e] and [K(A, C ′) −e]

have linearly independent columns. Then, the proximal surfaces (7.18) are obtained by the

two MATLAB [94] commands: eig(G,H) and eig(L,M), each of which generates the m + 1

eigenvalues and eigenvectors of the respective generalized eigenvalue problems:

Gz = λHz, z "= 0, (7.26)

and

Lz = λMz, z "= 0, (7.27)

The proximal surfaces (7.18) are obtained by:



u1

γ1



 = z1,



u2

γ2



 = z2, (7.28)

where z1 is an eigenvector of the generalized eigenvalue problem (7.26) corresponding to a

smallest eigenvalue, and z2 is an eigenvector of the generalized eigenvalue problem (7.27)

corresponding to a smallest eigenvalue.

112

We note immediately that if either m1 or m2 are large, the techniques of the reduced

support vector machine classification [55] can be easily applied to reduce the dimensionality

m + 1 = m1 + m2 + 1 of the generalized eigenvalue problem (7.26) to m̄ + 1 by replacing the

kernels K(A, C ′), K(B, C ′) by the reduced kernels K(A, C̄ ′), K(B, C̄ ′) respectively, where

C̄ is matrix formed by taking a small random sample of the rows of C.

We turn to our numerical tests and comparisons now.

7.3 Numerical testing and comparisons

To demonstrate the performance of our approach, we report results on publicly available

datasets from the UCI Repository [96] and from [100], as well as two synthetic datasets. One

synthetic dataset is David Musicant’s NDC [98], and the other is a simple extension of our

“Cross Planes” example above to R7. Table 7.1 shows a linear kernel comparison of GEPSVM

versus PSVM [27] and SVM-Light [49]. For a linear kernel, all three algorithms have a single

parameter: δ for GEPSVM, ν for PSVM, and C for SVM-Light. This parameter was selected

from the values {10i|i = −7,−6, . . . , 7} by using 10% of each training fold as a tuning set. For

GEPSVM only, this tuning set was not returned to the training fold to learn the final classifier

once the parameter was selected. This choice was made by observing the performance of all

three classifiers on datasets not shown here. GEPSVM tended to perform better without

retraining on the entire training fold, while the other two algorithms benefited from the

additional data. In addition to reporting the average accuracies across the ten folds, we

performed paired t-tests [95] comparing PSVM to GEPSVM and SVM-Light to GEPSVM.

The p-value for each test is the probability of the observed or a greater difference between

two test set correctness values occurring, under the assumption of the null hypothesis that

there is no difference between the test set correctness distributions. Thus, the smaller the

p-value, the less likely that the observed difference resulted from identical test set correctness

distributions. A typical threshold for p-values is 0.05. For example, the p-value of the test

comparing GEPSVM and PSVM on the Galaxy Bright dataset was 0.031226, which is less

than 0.05, leading us to conclude that GEPSVM and PSVM have different accuracies on

113

this dataset. We note that on the NDC and real-world datasets, the performance difference

between GEPSVM and the other algorithms is statistically insignificant, with the exception

of Galaxy Bright, where GEPSVM is significantly better than PSVM. This indicates that

allowing the proximal planes to be nonparallel allows the classifier to better represent this

dataset when needed.

Table 7.2 Compares GEPSVM, PSVM, and SVM-Light using a Gaussian kernel. The

kernel parameter µ was chosen from the values {10i|i = −4,−3,−2,−1} for all three

algorithms. The parameter ν for PSVM and C for SVM-Light was selected from the set

{10i|i = −4,−3, . . . , 2}, while the parameter δ for GEPSVM was selected from the set

{10i|i = −2,−1, . . . , 4}. Parameter selection was done by comparing the accuracy of each

combination of parameters on a tuning set consisting of a random 10% of each training set.

As in the linear kernel comparison above, this tuning set was not returned to the training fold

to retrain the classifier before evaluating on the test fold for GEPSVM, but was for PSVM

and SVM-Light. We note that GEPSVM has performance that is comparable to PSVM and

SVM-Light on the real-world datasets, and the difference between GEPSVM and the other

algorithms is not statistically significant on these datasets. As expected, nonlinear GEPSVM

greatly outperformed nonlinear PSVM and SVM-Light on the Cross Planes dataset.

Table 7.3 contains a typical sample of the computation times of the three methods

compared in Table 7.1. We report the average of times to learn the linear kernel classifier

for each fold with the parameter selected by the tuning procedure described above on the

Cylinder Bands dataset [96]. These times were obtained on a machine running Matlab 7 on

Red Hat Linux 9.0 with a Pentium III 650 MHz processor and 256 megabytes of memory.

Complexity of the generalized eigenvalue problem is of order n3 [39, Section 7.7] which is

similar to that of solving the system of linear equations resulting from PSVM, although the

constant multiplying O(n3) for the generalized eigenvalue problem is larger. For an interior

point method used for solving a 2-norm SVM quadratic program, the complexity is of order

n3.5 based on a linear complementarity problem formulation of the quadratic program [51].

These facts help explain the computation times of Table 7.3, where PSVM is over one order

114

Data Set GEPSVM PSVM SVM-Light

m× n Correctness Correctness Correctness

p-value p-value

Cross Planes 98.0% 55.3%* 45.7%*

300× 7 5.24671e-07 1.4941e-08

NDC 86.7% 88.3% 89.0%

300× 7 0.244333 0.241866

Cleveland Heart 81.8% 85.2% 83.6%

297× 13 0.112809 0.485725

Cylinder Bands 71.3% 71.7% 76.1%

540× 35 0.930192 0.229676

Pima Indians 73.6% 75.9% 75.7%

768× 8 0.274187 0.380633

Galaxy Bright 98.6% 97.3%* 98.3%

2462× 14 0.031226 0.506412

Mushroom 81.1% 80.9% 81.5%

8124× 22 0.722754 0.356003

Table 7.1 Linear kernel GEPSVM, PSVM [27], and SVM-Light [49] ten-fold testing
correctness and p-values. The p-values are from a t-test comparing each algorithm to

GEPSVM. Best correctness results are in bold. An asterisk (*) denotes significant
difference from GEPSVM based on p-values less than 0.05.

115

Data Set GEPSVM PSVM SVM-Light

m× n Correctness Correctness Correctness

p-value p-value

Cross Planes 99.0% 73.7%* 79.3%*

300× 7 0.00025868 8.74044e-06

WPBC (60 mo.) 62.7% 64.5% 63.6%

110× 32 0.735302 0.840228

BUPA Liver 63.8% 67.9% 69.9%

345× 6 0.190774 0.119676

Votes 94.2% 94.7% 95.6%

435× 16 0.443332 0.115748

Haberman’s Survival 75.4% 75.8% 71.7%

306× 3 0.845761 0.0571092

Table 7.2 Nonlinear kernel GEPSVM, PSVM [27], and SVM-Light [49] ten-fold testing
correctness and p-values. The p-values were calculated using a t-test comparing each
algorithm to GEPSVM. Best results are in bold. An asterisk (*) denotes significant

difference from GEPSVM based on p-values less than 0.05.

116

GEPSVM PSVM SVM-Light

Time (seconds) Time (seconds) Time (seconds)

0.96 0.08 75.4

Table 7.3 Average time to learn one linear kernel GEPSVM, PSVM [27], and SVM-Light
[49] on the Cylinder Bands dataset [96].

of magnitude faster than GEPSVM, which is nearly two orders of magnitude faster than

SVM-Light.

As final remarks we note that for our multiplane linear kernel classifiers of Section 7.1,

very large datasets can be handled by GEPSVM provided the input space dimension n

is moderate in size, say of the order of few hundreds. This is so because the generalized

eigenvalue problem (7.7) is in the space Rn+1. Thus, even for two randomly generated

matrices G and H of the order of 1000× 1000, MATLAB was able to solve the generalized

eigenvalue problem (7.7) in less than 75 seconds on a Pentium 4 1.7Ghz machine. For our

multisurface nonlinear kernel classifiers of Section 7.2, the reduced kernel techniques of [55]

can be used to handle such datasets as discussed at the end of Section 7.2.

117

Chapter 8

Multiple-Instance Classification

The multiple-instance classification problem was introduced in [16, 2, 62]. In this chapter,

we consider the problem to consist of classifying positive and negative bags of points in

the n-dimensional real space Rn on the following basis. Each bag contains a number of

points and a classifier correctly classifies all the bags if for each positive bag at least one

point in the bag is classified as positive, and for each negative bag all the points in the

bag are classified as negative. Various formulations of the multiple-instance classification

problem have been proposed, including integer programming [1], expectation maximization

[128], kernel formulations [36], and lazy learning [128]. Ray and Craven [104] provide an

empirical comparison of several multiple-instance classification algorithms and their non-

multiple-instance counterparts.

This chapter introduces a novel mathematical programming formulation of the multiple-

instance classification problem that leads to an efficient successive linearization algorithm.

This algorithm, first implemented in [84], typically converges in a few steps to a local solution

of the problem, which for a linear classifier utilizes as little as one percent of problem features.

Our formulation uses a linear or nonlinear kernel support vector machine (SVM) classifier

[109, 12] and is based on the following simple ideas. For a linear classifier, a positive bag

is classified correctly if and only if some convex combination of points in the bag lies on

the positive side of a separating plane. For a nonlinear kernel classifier, a similar statement

applies to the higher dimensional space induced by the kernel. This leads to a constrained

optimization problem where the objective function and constraints are linear except for a set

118

of bilinear constraints corresponding to the positive bags. A local solution to this formulation

is obtained by solving a sequence of linear programs that terminate in a few iterations.

Andrews et al. [1] have previously investigated extending support vector machines to the

multiple-instance classification problem using mixed-integer programming. They use integer

variables either to select the class of points in positive bags or to identify one point in each

positive bag as a “witness” point that must be placed on the positive side of the decision

boundary. Each of these representations leads to a natural heuristic for approximately

solving the resulting mixed-integer program. In contrast, we introduce continuous variables

to represent the convex combination of each positive bag which must be placed on the positive

side of the separating plane. This representation leads to an optimization problem with both

linear and bilinear constraints, and we give an algorithm which converges to a local solution

of this problem. Andrews et al. extend the quadratic programming SVM, while we begin

with the linear programming SVM [72]. The use of the linear programming SVM allows us to

solve a sequence of linear programs as opposed to quadratic programs. We include results in

Section 8.3 which demonstrate that linear programs are much more computationally efficient

than quadratic programs. Further, our results show that the use of the 1-norm in the linear

programming SVM as opposed to the square of the 2-norm in the quadratic programming

SVM leads to feature reduction in our linear kernel multiple-instance classifiers.

8.1 Problem formulation

8.1.1 Linear kernel classifier

Let the positive bags be represented by the k matrices Bi ∈ Rmi×n, i = 1, . . . , k, where

row ., Bi
' ∈ Rn, of the matrix Bi represents point . of bag i with . = 1, . . . , mi. Similarly,

we shall represent the negative bags by the m − k matrices Ci ∈ Rmi×n, i = k + 1, . . . , m,

where row ., Ci
' ∈ Rn, of the matrix Ci represents point . of bag i with . = 1, . . . , mi. We

shall first use a linear classifier given by the separating plane:

x′w = γ, (8.1)

119

where w ∈ Rn is the normal to a plane that attempts to separate the positive and negative

bags, while γ determines the location of the plane relative to the origin in Rn. The separation

will be achieved by attempting to place all the points in the negative bags in the halfspace

{x′w ≤ γ − 1} and at the same time placing some convex combination of points of each

positive bag in the halfspace {x′w ≥ γ + 1} while maximizing the margin (distance) 2
‖w‖1

between the bounding planes x′w = γ ± 1 using the ∞-norm to measure the margin, as

described in [71]. We use the vectors vi ≥ 0, e′vi = 1, i = 1, . . . , k, to denote the convex

combination of the i-th positive bag which we will attempt to place in the positive halfspace.

This leads to the following mathematical program with some positive parameter ν that

weights data fitting versus generalization:

min
w,γ,y,v1,...,vk

νe′y + ‖w‖1

s.t. vi′Biw − γ + yi ≥ 1, i = 1, . . . , k,

−Ci
'w + γ + yi

' ≥ 1, i = k + 1, . . . , m, . = 1, . . . , mi,

e′vi = 1, vi ≥ 0, i = 1, . . . , k,

y ≥ 0.

(8.2)

Here, the vector y with components yi, i = 1, . . . , k and yi
', i = k + 1, . . . , m, . = 1, . . . , mi

represents nonnegative slack variables that are driven towards zero by the objective function

term νe′y. The objective function term ‖w‖1 represents twice the reciprocal of the soft

margin between the bounding planes x′w = γ ± 1. Other than the first set of k constraints

which are bilinear, the optimization problem has a linear objective function and constraints.

We note that the term ‖w‖1 is easily converted to a linear term e′s with the added constraint

s ≥ w ≥ −s. We shall propose and establish convergence to a local solution of our

formulation (8.2) of the multiple-instance problem via a successive linearization algorithm

in the next section after we have formulated the nonlinear kernel problem.

120

8.1.2 Nonlinear kernel classifier

We now describe how to generate a nonlinear classifier via a nonlinear kernel formulation.

We replace the separating plane (8.1) by the nonlinear separating surface:

K(x′, H ′)u = γ, (8.3)

where u ∈ Rm is a dual variable and the m× n matrix H is defined as:

H ′ = [B1′ . . . Bk ′ Ck+1′ . . . Cm′] (8.4)

and K(x′, H ′) is an arbitrary kernel map from Rn×Rn×m into Rm. We note that the linear

classifier (8.1) is recovered from (8.3) if we use the linear kernel K(x′, H ′) = x′H ′ and define

w = H ′u. With this nonlinear kernel formulation, the mathematical program for generating

the nonlinear classifier becomes the following, upon kernelizing (8.2):

min
u,γ,y,v1,...,vk

νe′y + ‖u‖1

s.t. vi′K(Bi, H ′)u− γ + yi ≥ 1, i = 1, . . . , k,

−K(Ci
', H

′)u + γ + yi
' ≥ 1, i = k + 1, . . . , m, . = 1, . . . , mi,

e′vi = 1, vi ≥ 1, i = 1, . . . , k,

y ≥ 0.

(8.5)

We note again that the only nonlinearity is in the first k bilinear constraints. Also, note

that the use of the 1-norm, ‖u‖1, leads to model simplification by suppressing components

of u. In contrast, the weighted 1-norm of u, ‖K(H, H ′)
1
2 u‖1, does not ensure such

simplification, particularly if the kernel K is not positive definite. A necessary and sufficient

condition for strict nonlinear kernel separation is that y < e, which is true if and only if

vi′K(Bi, H ′)u − γ > 0 for i = 1, . . . , k and K(Ci
', H

′)u − γ < 0 for i = k + 1, . . . , m,

. = 1, . . . , mi.

8.2 Multiple-instance classification algorithm

Since only the first constraints in our multiple-instance formulation are nonlinear, and in

fact are bilinear, an obvious method of solution suggests itself as follows. Alternately hold

121

one set of variables that constitute the bilinear terms constant while varying the other set.

This leads to the successive solution of linear programs that underly our algorithm which we

specify now.

Algorithm 8.2.1 MICA: Multiple-Instance Classification Algorithm with a Nonlinear

Kernel

(0) For fixed ν > 0, initialize vi0 = e
mi , i = 1, . . . , k. Set counter r = 0.

Note: This initial choice of v10, . . . , vk0 results in using the mean for each positive bag

in (i) below.

(i) For fixed v1r, . . . , vkr, where vir is iterate r for vi, solve the following linear program

for (ur, γr, yr):

min
u,γ,y

νe′y + ‖u‖1, (8.6a)

s.t. vir ′K(Bi, H ′)u− γ + yi ≥ 1, i = 1, . . . , k, (8.6b)

−K(Ci
', H

′)u + γ + yi
' ≥ 1, i = k + 1, . . . , m, . = 1, . . . , mi, (8.6c)

y ≥ 0. (8.6d)

(ii) For ur fixed at the value obtained in (i), solve the following linear program for

(γ, y, v1(r+1), . . . , vk(r+1)):

min
γ,y,v1,...,vk

e′y, (8.7a)

s.t. vi′K(Bi, H ′)ur − γ + yi ≥ 1, i = 1, . . . , k, (8.7b)

−K(Ci
', H

′)ur + γ + yi
' ≥ 1, i = k + 1, . . . , m, . = 1, . . . , mi, (8.7c)

e′vi = 1, vi ≥ 0, i = 1, . . . , k, (8.7d)

y ≥ 0. (8.7e)

(iii) Stop if ‖(v1(r+1) − v1r, . . . , vk(r+1) − vkr)‖2 is less than some desired tolerance. Else

replace (v1r, . . . , vkr) by (v1(r+1), . . . , vk(r+1)), r by r + 1 and go to (i).

122

Since the objective function of our original multiple-instance formulation (8.5) is bounded

below by zero and is nonincreasing in the iterations (i) and (ii) of the MICA Algorithm 8.2.1,

it must converge. We can state the following convergence result.

Proposition 8.2.2 Convergence to a Local Minimum Value. The nonnegative

nonincreasing values of the sequence of objective function values {νe′yr+‖ur‖1}r=∞
r=1 converges

to (νe′ȳ + ‖ū‖1) where (ū, γ̄, ȳ, v̄1, . . . , v̄k) is any accumulation point of the sequence of

iterates {(ur, γr, yr, v1r, . . . , vkr)} generated by the MICA Algorithm 8.2.1. The point

(ū, γ̄, ȳ, v̄1, . . . , v̄k) has the following local minimum property:

νe′ȳ + ‖ū‖1 = min
u,γ,y

νe′y + ‖u‖1, (8.8a)

s.t. (v̄i)′K(Bi, H ′)u− γ + yi ≥ 1, i = 1, . . . , k, (8.8b)

−K(Ci
', H

′)u + γ + yi
' ≥ 1, i = k + 1, . . . , m,

. = 1, . . . , mi,
(8.8c)

y ≥ 0. (8.8d)

Proof That the sequence {νe′yr + ‖ur‖1} converges follows from the fact that it is

nonincreasing and bounded below by zero. That (8.8) is satisfied follows from the fact each

point of the sequence {(ur, γr, yr, v1r, . . . , vkr)} satisfies (8.8) with (ū, ȳ, v̄1, . . . , v̄k) replaced

by (ur, yr, v1r, . . . , vkr) on account of step (i) of the MICA Algorithm 8.2.1. Hence, any

accumulation point (ū, γ̄, ȳ, v̄1, . . . , v̄k) of {(ur, γr, yr, v1r, . . . , vkr)} satisfies (8.8). "
In practice the MICA Algorithm 8.2.1 terminates very quickly, typically before ten

iterations.

Before we turn to our numerical results, it is important to point out some significant

differences between our MICA Algorithm 8.2.1 and the mi-SVM and MI-SVM mixed integer

programming formulations introduced by Andrews et al. in [1]. A key difference is that

MICA employs the 1-norm, rather than the 2-norm used by mi-SVM and MI-SVM. The

1-norm SVM formulation is known to lead to sparse solutions [8, 129], which corresponds

to using few input features when a linear classifier is used. Our experimental results will

123

demonstrate this behavior. The 1-norm also allows MICA to be solved by a succession of

linear programs, rather than more complex quadratic programs. We include results which

show that state of the art optimization software solves linear programs much faster than it

solves quadratic programs. Linear programs are also simpler than quadratic programs in the

sense that every linear program is a quadratic program, but not conversely. Also, MICA uses

an arbitrary convex combination of points in the positive bags to represent each such bag.

This representation is done by means of a continuous nonnegative variable vi for each positive

bag. This is fundamentally different from both mi-SVM which uses integer variables to assign

labels to each point in each positive bag, and from MI-SVM which chooses a single “witness”

point to represent each positive bag. Furthermore, while MI-SVM chooses the witness point

to be the point furthest from the decision boundary, MICA does not necessarily choose a

convex combination furthest from the decision boundary. Note that the objective function of

(8.7) is the hinge loss (i. e. the plus function: maximum {0, ·}, where the dot stands for the

terms appearing to the left of yi and yi
' minus 1 in Equation (8.7)). Each yi, i = 1, . . . , k, will

attain a minimum of zero at the solution for any vi which satisfies vi′K(Bi, H ′)ur ≥ γ + 1,

that is at least one element of bag i is on the correct side of the bounding surface. Conversely,

vi will act similarly to the selection of a “witness” point in MI-SVM only in the case that

every element in the bag Bi is on the wrong side of the bounding surface at the solution

of (8.7), that is K(Bi, H ′)ur < eγ + e. Furthermore, note that γ is also updated in (8.7),

but not in the corresponding step of MI-SVM. Finally, MICA and mi-SVM use one slack

variable per negative instance, while MI-SVM uses one slack variable per negative bag. Our

formulation leads to a simple algorithm that always converges to a local solution.

8.3 Numerical testing

To demonstrate the capabilities of our formulation, we report results on twelve datasets,

two from the UCI machine learning repository [96], and ten from [1]. Detailed information

about these datasets is summarized in Table 8.1. We use the datasets from [1] to evaluate our

linear classification algorithm. Three of these datasets are from an image annotation task

124

Table 8.1 Description of the datasets used in the experiments. Elephant, Fox, Tiger, and
the TST datasets are used in [1], while Musk-1 and Musk-2 are available from [96]. + Bags
denotes the number of positive bags in each dataset, while + Instances denotes the total

number of instances in all the positive bags. Similarly, - Bags and - Instances denote
corresponding quantities for the negative bags.

Data Set + Bags + Instances - Bags - Instances Features

Elephant 100 762 100 629 143

Fox 100 647 100 673 143

Tiger 100 544 100 676 143

TST1 200 1580 200 1644 6668

TST2 200 1715 200 1629 6842

TST3 200 1626 200 1620 6568

TST4 200 1754 200 1637 6626

TST7 200 1746 200 1621 7037

TST9 200 1684 200 1616 6982

TST10 200 1818 200 1635 7073

Musk-1 47 207 45 269 166

Musk-2 39 1017 63 5581 166

125

in which the goal is to determine whether or not a given animal is present in an image. The

other seven datasets are from the OHSUMED data and the task is to learn binary concepts

associated with the Medical Subject Headings of MEDLINE documents. The two datasets

from the UCI repository [96] are the Musk datasets, which are commonly used in multiple-

instance classification. We report results on these datasets for our nonlinear classification

algorithm.

8.3.1 Linear kernel classification results

We compare our linear classification algorithm to the linear versions of mi-SVM and

MI-SVM [1]. Both mi-SVM and MI-SVM use mixed-integer programming to learn a linear

classifier, and as such are natural candidates for comparison with MICA. Since Andrews et

al. also report results on Zhang and Goldman’s expectation-maximization approach EM-DD

[128] on these datasets [1], we include those results here as well. Finally, Ray and Craven

[104] demonstrate that in some domains, algorithms that make no use of multiple-instance

information may outperform their multiple-instance counterparts. Thus, we include a linear

programming formulation of an SVM (SVM1) [8, 72] in our comparisons as the natural

non-multiple-instance counterpart to MICA.

Table 8.2 reports results comparing MICA to mi-SVM, MI-SVM, EM-DD, and SVM1.

Accuracy results for mi-SVM, MI-SVM and EM-DD were taken from [1]. Accuracy for each

algorithm was measured by averaging ten ten-fold cross validation runs. The regularization

parameters for MICA and SVM1 were selected from the set {2i|i = −7, . . . , 7} by ten-fold

cross validation on each training fold for the image annotation datasets, and by using a

random ten percent of each training fold as a tuning set on the OHSUMED datasets. The

final classifier for each fold was trained using all the data in the training fold. MICA was

stopped if the difference between the v variables was less than 10−4 or if r > 80. SVM1

was trained by assuming all instances in each positive bag had a positive label, but for

tuning and testing the classification rule was the same as for MICA. Standard deviations

for MICA and SVM1 were calculated by treating each of the 100 cross validation runs as

126

Table 8.2 Linear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD [128], and SVM1 testing
accuracy and number of features used averaged over ten ten-fold cross validation

experiments. For MICA and SVM1, the standard deviation (SD) of each accuracy result is
given in parenthesis. The datasets are those used by Andrews et al. in [1]. The number of
features used is available on all datasets for MICA and SVM1, and on the Elephant, Fox,
and Tiger datasets for mi-SVM and MI-SVM. Best accuracy on each dataset is in bold.

Note the substantial reduction in features by MICA and SVM1.

Data Set MICA mi-SVM MI-SVM EM-DD SVM1

% Correct (SD) % Correct % Correct % Correct % Correct (SD)

#Features # Features # Features # Features # Features

Elephant 80.5% (8.5) 82.2% 81.4% 78.3% 78.5% (9.6)

143 59.0 143.0 143.0 18.2

Fox 58.7% (11.3) 58.2% 57.8% 56.1% 56.7% (9.4)

143 78.0 143.0 143.0 73.6

Tiger 82.6% (7.9) 78.4% 84.0% 72.1% 77.3% (8.5)

143 50.8 143.0 143.0 46.0

TST1 94.5% (3.3) 93.6% 93.9% 85.8% 94.2% (4.1)

6668 50.5 41.1

TST2 85.0% (6.2) 78.2% 84.5% 84.0% 77.5% (6.4)

6842 97.2 68.4

TST3 86.0% (5.8) 87.0% 82.2% 69.0% 87.3% (5.0)

6568 123.7 39.4

TST4 87.7% (5.4) 82.8% 82.4% 80.5% 81.0% (7.4)

6626 59.9 69.0

TST7 78.9% (6.9) 81.3% 78.0% 75.4% 79.2% (6.4)

7037 145.3 37.3

TST9 61.4% (8.8) 67.5% 60.2% 65.5% 65.8% (7.8)

6982 302.1 119.6

TST10 82.3% (5.8) 79.6% 79.5% 78.5% 83.6% (6.5)

7073 132.2 37.6

127

an independent sample, as suggested by Bouckaert [7]. We provide the standard deviations

to aid visualization of our results, and will use the nonparametric test described below to

precisely compare the classification accuracy of all five algorithms on the ten datasets. We

note that MICA had the best accuracy on four datasets, while mi-SVM had the best accuracy

on three datasets. SVM1 had the best accuracy on two datasets, and MI-SVM had the best

accuracy on one dataset. EM-DD did not have the best accuracy on any dataset.

In order to evaluate the difference between the algorithms more precisely, we used the

Friedman test [25] on the results reported in Table 8.2. The Friedman test is a nonparametric

test that compares the average ranks of the algorithms, where the algorithm with the highest

accuracy on a dataset is given a rank of 1 on that dataset, and the algorithm with the worst

accuracy is given a rank of 5. For example, on the Elephant dataset, mi-SVM has rank 1,

MICA has rank 3, and EM-DD has rank 5. The average rank for MICA was 2.1, for mi-SVM

2.3, for SVM1 2.9, for MI-SVM 3.1, and for EM-DD 4.6. The Friedman test indicated that

these results were significantly different at the five percent level, so we went on to perform a

Bonferroni-Dunn post-hoc test [19] to compare MICA with the other algorithms. We found

that the only algorithm with statistically significant difference from MICA was EM-DD.

Demšar [15] gives an introduction to these tests, and demonstrates their applicability to the

comparison of machine learning algorithms. These results indicate that MICA, which is the

only algorithm that incorporates both multiple-instance information and substantial feature

reduction, has accuracy comparable to the other linear classifiers and better than EM-DD

on these datasets.

Table 8.2 also reports the number of features used by MICA and SVM1 on all datasets,

and by the mixed-integer programming formulations on the image annotation datasets

(Elephant, Fox, and Tiger). The feature selection results for mi-SVM and MI-SVM were

computed by running a single ten-fold cross validation experiment on each dataset. The

regularization parameter was chosen from the set {2i|i = −7, . . . , 7} by a tuning set consisting

of a random ten percent of each training fold, and the final classifier was trained on all the

data in the training fold for each fold. Our implementations achieved accuracies within a

128

Table 8.3 Average running time in seconds of linear kernel MICA, mi-SVM [1], and
MI-SVM [1]. Times were computed for each combination of the ten datasets in Table 8.2

and the fifteen regularization parameter values in {2i|i = −7, . . . , 7}. Best result is in bold.

Algorithm MICA mi-SVM MI-SVM

Average Elapsed Time in Seconds 44.9 339.7 90.4

few percentage points of the reported accuracies in [1]. We do not believe that changing the

tuning procedure or running more experiments would change the number of features used,

since our results are in line with previous comparisons between 1-norm and 2-norm penalties

for SVMs [8, 129]. We note that although there were 230 features reported in the three image

annotation datasets, 87 are zero in every instance for each dataset. Thus, neither MI-SVM

nor mi-SVM reduce features on these datasets. While we did not test mi-SVM and MI-SVM

on the OHSUMED data, the above results and cited work indicate that they will not reduce

features as drastically as MICA or SVM1. We note that in some cases MICA used less than

one percent of the features, and never used more than five percent on the OHSUMED data

or more than 55% of the 143 non-zero features on the image annotation data.

8.3.2 Computational efficiency

To demonstrate the efficiency of our proposed formulation, we describe its behavior on

the Elephant dataset. The average time to learn a classifier once the parameter ν was

chosen was 25.2 seconds, and the average number of MICA iterations required was 5.8. Note

that each iteration involves solving two linear programs. These results were obtained on a

Pentium III 650 MHz desktop machine with 256MB RAM running Tao Linux, Version 1.

The algorithm was implemented in MATLAB [94] and the linear programs were solved using

the dual simplex method of the CPLEX linear programming solver [48].

To further investigate the benefits of linear programming, we compared two SVM

formulations on the TST4 dataset. One formulation was the linear programming formulation

SVM1 used in Table 8.2, and the other was a quadratic programming formulation SVM2

129

which was identical to SVM1 except for using the square of the 2-norm instead of the 1-

norm as the penalty on the weight vector w. Timing and feature selection information for

these algorithms were obtained on a machine which had a Pentium IV 3 GHz processor with

1GB RAM running CentOS Linux 4.4. Both algorithms were implemented in MATLAB

and the linear and quadratic programs were solved using CPLEX 9.0. Over a single ten-fold

cross validation experiment, the average time to solve the linear program for SVM1 after the

parameters were selected by the tuning procedure was 2.2 seconds, while the average time to

solve the corresponding quadratic program for SVM2 was 28.6 seconds, a factor of 13 slower

than the time to solve the linear program for SVM1. Furthermore, SVM2 used on average

6241 of the 6626 features in the TST4 dataset, while SVM1 used an average of 69 features

as indicated in Table 8.2. These results support the claim that the use of the 1-norm in the

term ‖u‖1 in MICA results in faster running times and sparser solutions than would the use

of the square of the 2-norm ‖u‖2.

To compare the running time of MICA with mi-SVM and MI-SVM, we used our

implementations of mi-SVM and MI-SVM in MATLAB mentioned above. We tested each

algorithm on the ten datasets listed in Table 8.2 using the entire dataset as the training

set, and for every value of the regularization parameter in the set {2i|i = −7, . . . , 7}. Thus,

each of the three algorithms was run 150 times. Table 8.3 gives the average running time

for each algorithm, which was obtained on the same computer mentioned above. We note

that comparing the logarithm of the running times using a randomized block design with the

dataset and value of the regularization parameter as blocks we found a significant difference

between the running times of MICA and mi-SVM and MICA and MI-SVM, both with p-

values much less than 10−4. We used the logarithm transform in order to stabilize the

variance. This result indicates that the differences between MICA and mi-SVM and MICA

and MI-SVM are not due to random effects of the environment. Although we report elapsed

time, we found the same effect when considering CPU time or the CPU time spent in CPLEX

by each of the three algorithms. Furthermore, we measured the number of iterations each

130

Table 8.4 Nonlinear kernel MICA, mi-SVM [1], MI-SVM [1], EM-DD [128], DD [93]
MI-NN [103], IAPR [16], and MIK [36] ten-fold testing accuracy on the Musk-1 and

Musk-2 datasets. Best accuracy is in bold.

Data Set MICA mi-SVM MI-SVM EM-DD DD MI-NN IAPR MIK

Musk-1 84.4% 87.4% 77.9% 84.8% 88.0% 88.9% 92.4% 91.6%

Musk-2 90.5% 83.6% 84.3% 84.9% 84.0% 82.5% 89.2% 88.0%

algorithm took. On average, MICA took 7.5 iterations, mi-SVM took 9.8 iterations, and MI-

SVM took 5.1 iterations. MICA spent an average of 28% of its CPU time in CPLEX, while

mi-SVM spent an average of 81% and MI-SVM spent an average of 47%. MICA had the

lowest total time in 88% of the 150 combinations of datasets and regularization parameter

values, and the lowest CPLEX CPU time in 90% of the combinations. From these results,

we conclude that MICA’s advantage in running time over mi-SVM and MI-SVM is primarily

due to the use of linear programming over quadratic programming.

8.3.3 Nonlinear kernel classification

Although our numerical testing is focused on linear classification, Table 8.4 gives ten-fold

cross validation accuracy results for MICA using a Gaussian kernel and previously published

results of several other algorithms on the Musk-1 and Musk-2 datasets which are available

from the UCI repository [96]. The results for EM-DD are taken from [1]. The MIK entry

reports the best leave-ten-out result among the multi-instance kernel methods of Gartner et

al. [36]. The IAPR entry reports the results obtained by Dietterich et al. using the Iterated

Discrimination Axis-Parallel Rectangle algorithm [16]. The parameters ν and µ of MICA

were both chosen from the set {2i|i = −7, . . . , 7} using a subset of the training set as a

tuning set for each fold. MICA was stopped if the difference between the v variables was

less than 10−4 or if r > 80. The full kernel matrix of the Musk-2 dataset did not fit into

memory as required by CPLEX, so to speed computation and reduce the risk of overfitting, a

reduced kernel was used on both datasets. As established in [55], reduced kernels consisting

of only 10% of the dataset resulted in effective nonlinear support vector machine classifiers.

131

Hence, we used a randomly selected reduced kernel that consisted of 10% of the rows of

H . Although we do not perform statistical tests on the nonlinear datasets, the results in

Table 8.4 indicate that the nonlinear kernel formulation of MICA is able to attain accuracy

comparable to that of previously published multiple-instance algorithms on these datasets.

132

Chapter 9

Exactness Conditions for a Convex Differentiable
Exterior Penalty for Linear Programming

In [75], a classical exterior penalty formulation for the dual of a linear program was shown

to yield an exact solution to the primal linear program provided that the penalty parameter

was sufficiently large, but finite. However, no precise value for the penalty parameter was

given that would guarantee an exact primal solution. In this chapter, we give sufficient

conditions on the penalty parameter so that the corresponding computed primal variable

is an exact solution. In Section 9.1 we derive our sufficient conditions for the penalty

parameter to be large enough to generate an exact primal solution. Section 9.2 briefly

details a generalized Newton algorithm as well as a new and fast iterative algorithm that

solves a sequence of linear equations. Both methods, first implemented in [88], will be used

to obtain our numerical results.

9.1 Sufficient conditions for dual exterior penalty function
exactness

We shall consider the solvable linear program (LP):

min
y∈R!

d′y s.t. By ≥ b, (9.1)

where d ∈ R', B ∈ Rm×', b ∈ Rm, and its dual:

max
u∈Rm

b′u s.t. B′u = d, u ≥ 0. (9.2)

133

The classical asymptotic exterior penalty problem for the dual linear program is:

min
u∈Rm

ε(−b′u) +
1

2
(‖B′u− d‖2 + ‖(−u)+‖2). (9.3)

Dividing Equation (9.3) by ε2 and letting:

u

ε
→ u, α =

1

ε
, (9.4)

Equation (9.3) becomes:

min
u∈Rm

f(u) = −b′u +
1

2
(‖B′u− αd‖2 + ‖(−u)+‖2). (9.5)

Applying Proposition 1 of [75] to the dual exterior penalty problem (9.5) we get:

Proposition 9.1.1 Exact Primal Solution Computation Let the primal LP (9.1) be

solvable. Then the dual exterior penalty problem (9.5) is solvable for all α > 0. For any

α ≥ ᾱ for some finite ᾱ > 0, any solution u of (9.5) generates an exact solution to primal

LP (9.1) as follows:

y = B′u− αd. (9.6)

In addition, this y minimizes:

‖y‖2 + ‖By − b‖2, (9.7)

over the solution set of the primal LP (9.1).

What we are after here are sufficient conditions to ensure that α ≥ ᾱ, which we proceed

to obtain now by first establishing the following lemma based on the convexity of the penalty

function (9.5).

Lemma 9.1.2 Optimality Condition for Solving the Exterior Penalty (9.5) A

necessary and sufficient condition for u to be a solution of the exterior penalty function

(9.5) is that:

∇f(u) = −b + B(B′u− αd) + Pu = 0, (9.8)

where P ∈ Rm×m is a diagonal matrix of ones and zeros defined as follows:

P = diag
(
sign

(
(−u)+

))
. (9.9)

134

Proof Setting the gradient of the convex differentiable exterior penalty function (9.5) equal

to zero gives:

−b + B(B′u− αd)− (−u)+ = 0, (9.10)

which, upon making use of the definition (9.9) of P , gives (9.8). "
Note that the matrix P in the condition (9.8) depends on u and hence cannot be used

directly to solve for u. However, P will be used to derive the conditions needed to ensure

that α ≥ ᾱ, as we shall proceed to do now. We note first that by Proposition 9.1.1, Equation

(9.8) is solvable for any α > 0 whenever the linear program (9.1) is solvable. Hence, for such

a case an explicit solution to (9.8) is given as follows:

u = (BB′ + P)\(αBd + b), (9.11)

where the MATLAB [94] backslash notation u = H\h denotes a solution to a solvable system

of linear equations Hu = h. If we now substitute for u in (9.6) we obtain the following

expression for the solution y of the primal linear program (9.1) when α ≥ ᾱ:

y = B′
(
(BB′ + P)\b

)
+ α

(
B′((BB′ + P)\(Bd)

)
− d

)
. (9.12)

We note immediately that y depends on α through the explicit term α in the above Equation

(9.12), as well as through the dependence of P on u in its definition (9.9), and the dependence

of u on α through (9.11). Hence, in order for y to be independent of α, as would be the case

when α ≥ ᾱ, we have the following result which follows directly from the expression (9.12)

for y.

Proposition 9.1.3 Sufficient Conditions for Independence on α The optimal solution

y given by (9.12) for a solvable primal linear program (9.1) is independent of α if:

The diagonal matrix P is independent of α (9.13)

and

B′((BB′ + P)\(Bd)
)
− d = 0. (9.14)

135

We note immediately that condition (9.14) is easy to verify once the exterior penalty problem

(9.3) is solved. However, although condition (9.13) is difficult to verify without varying α, it

turns out that in all our computational results presented in this Section 9.4, condition (9.14)

is satisfied whenever an exact solution to the linear program (9.1) is obtained. Hence, for all

intents and purposes, (9.13) can be ignored. Similarly, even though we have not established

the necessity of conditions (9.13) and (9.14), the necessity of (9.14) appears to hold in our

computational results.

We now describe our computational algorithms.

9.2 Computational algorithms

In this section we present two algorithms for solving the linear program (9.1) by solving

the dual exterior penalty problem (9.5). Both algorithms utilize the sufficient condition

(9.14) for independence on the penalty parameter α as a stopping criterion.

9.2.1 Generalized Newton algorithm

Our first algorithm will make use of the generalized Newton algorithm, utilized in

[75] for 1-norm support vector machine classification problems, to solve our unconstrained

minimization problem (9.5) with an appropriate value of the penalty parameter α by utilizing

the new sufficient condition (9.14) for exactness. For that purpose we define f(u) as the

objective function of (9.5), that is:

f(u) = −b′u +
1

2
(‖B′u− αd‖2 + ‖(−u)+‖2). (9.15)

The gradient and generalized Hessian as defined in the Introduction are given as follows.

∇f(u) = −b + B(B′u− αd)− (−u)+. (9.16)

∂2f(u) = BB′ + diag
(
sign

(
(−u)+

))
. (9.17)

136

We now incorporate our new sufficient condition (9.14) into the generalized Newton

algorithm [75, Algorithm 3] for solving the unconstrained minimization problem (9.5). In

particular the sufficient condition (9.14) will be used as a stopping criterion in Step (II) of

the following Algorithm 9.2.1, as well as in Algorithm 9.2.3 further on.

Algorithm 9.2.1 Generalized Newton Algorithm for (9.5) Let f(u), ∇f(u) and

∂2f(u) be defined by (9.15),(9.16) and (9.17). Set the parameter values α, δ, tol and imax

(typically α = 100, δ = 1e−6, tol=1e−3 and imax=5000). Start with a random u0 ∈ Rm.

For i = 0, 1, . . .:

(I) ui+1 = ui − λi(∂2f(ui) + δI)−1∇f(ui) = ui + λiti,

where the Armijo stepsize λi = max{1, 1
2 ,

1
4 , . . .} is such that:

f(ui)− f(ui + λit
i) ≥ −λi

4
∇f(ui)′ti, (9.18)

and ti is the modified Newton direction:

ti = −(∂2f(ui) + δI)−1∇f(ui). (9.19)

In other words, start with λi = 1 and keep multiplying λi by 1
2 until (9.18) is satisfied.

(II) Stop if ‖∇f(ui)‖ ≤ tol & norm
(
B′((BB′ + P i)\(Bd)

)
− d

)
≤ tol where P i =

diag
(
sign

(
(−ui)+

))
.

(III) If i = imax then α→ 10α, imax→ 2 · imax

(IV) i→ i + 1 and go to (I)

The iterates ui of the above algorithm either terminate or converge as follows [75, Proposition

4].

Proposition 9.2.2 Generalized Newton Algorithm 9.2.1 Convergence Let tol = 0

and assume that (9.14) implies that α ≥ ᾱ. Then either Algorithm 9.2.1 terminates at an

i such that ui solves the exterior penalty problem (9.5) and consequently yi = B′ui − αd

solves the primal linear program (9.1), or any accumulation point ū of the sequence {ui}

137

generated by Algorithm 9.2.1 solves the exterior penalty problem (9.5) and the corresponding

ȳ = B′ū− αd solves the primal linear program (9.1).

Proof If Algorithm 9.2.3 terminates at some i, then, by the stopping criterion (II),

∇f(ui) = 0, and B′((BB′ + P i)\(Bd)
)
− d = 0. Hence, P i+1 = P i, condition (9.14) is

satisfied for P i, and ui solves (9.8). Consequently, ui solves the dual penalty minimization

problem (9.5), and since, by assumption, condition (9.14) implies that α ≥ ᾱ, it follows that

yi = B′ui − αd solves the primal linear program (9.1). "
For the case when {i} does not terminate, since the corresponding sequence of diagonal

matrices of ones and zeros {P i} has a finite number of possible configurations, at least

one such configuration must occur infinitely often and, by [75, Proposition 4], for any

accumulation point ū of {ui} there exists a subsequence {uij , P ij} with constant P ij that

converges to (ū, P̄) such that ∇f(ū) = 0 and B′((BB′ + P̄)\(Bd)
)
− d = 0. Consequently, ū

solves the minimization problem (9.15) and since, by assumption, (9.14) implies that α ≥ ᾱ,

it follows that ȳ = B′ū− αd solves the primal linear program (9.1). "
We now give a considerably simpler algorithm based on the successive direct solution of

a linear equation obtained from the sufficient condition (9.8).

9.2.2 Direct linear equation (DLE) algorithm

Our direct linear equation algorithm consists of successively solving the necessary and

sufficient optimality condition (9.8) for updated values of the diagonal matrix P . The

sufficient condition (9.14) for independence on α is satisfied in our computational examples.

Algorithm 9.2.3 DLE: Direct Linear Equation Algorithm for (9.8) Set the

parameter values α, δ, tol, tol1 and imax (typically α = 100, δ = 1e−8, tol=1e−16,

tol1=1e−3 and imax=500). Start with a random u0 ∈ Rm. For i = 0, 1, . . .:

(I) Set P i to:

P i = diag
(
sign

(
(−ui)+

))
. (9.20)

138

(II) Solve for ui+1 as follows:

ui+1 = (BB′ + P i)\(b + αBd). (9.21)

(III) ui+1 →
(
ui + λi(ui+1 − ui)

)
, where the Armijo stepsize λi = max{1, 1

2 ,
1
4 , . . .} is such

that:

f(ui)− f
(
ui + λi(u

i+1 − ui)
)
≥ −λi

4
∇f(ui)′(ui+1 − ui). (9.22)

(IV) Stop if ‖ui+1 − ui‖ ≤ tol & norm
(
B′((BB′ + P i)\(Bd)

)
− d

)
≤ tol1.

(V) If i = imax then α→ 10α, imax→ 2 · imax.

(VI) i→ i + 1 and go to (I).

We state now the following convergence result for the DLE Algorithm 9.2.3. The result

is based on the fact that the direction (ui+1 − ui) is a descent direction for the dual penalty

function (9.15), and satisfies the convergence conditions required by [70, Theorem 2.1] .

Proposition 9.2.4 DLE Algorithm 9.2.3 Convergence Let tol = tol1 = 0 and assume

that (9.14) implies α ≥ ᾱ. Then either Algorithm 9.2.3 terminates at an i such that ui

solves (9.5) and consequently yi = B′ui − αd solves the primal linear program (9.1), or any

accumulation point ū of the sequence {ui} generated by Algorithm 9.2.3 solves the exterior

penalty problem (9.5) and the corresponding ȳ = B′ū−αd solves the primal linear program

(9.1), provided the matrices of the sequence {(BB′ + P i)} are nonsingular.

Proof If Algorithm 9.2.3 terminates at some i, then ui+1 = ui and B′((BB′+P i)\(Bd)
)
−d =

0. Hence P i+1 = P i, ui = (BB′ + P i)\(b + αBd), and (9.14) holds for u = ui and P = P i.

Thus the pair (ui, P i) solves (9.8). Consequently, ui solves the dual penalty minimization

problem (9.5), and since, by assumption, condition (9.14) implies that α ≥ ᾱ, it follows that

yi = B′ui − αd solves the primal linear program (9.1). "
For the case when {i} does not terminate, for each accumulation point ū of {ui}, there

exists a subsequence {uij , P ij} of {ui, P i} for which {P ij} is constant and equal to P̄ , and

{uij , P ij} converges to (ū, P̄). This is because {P i} is a sequence of diagonal matrices of

139

ones and zeros with a finite number of values. We will now show that ∇f(ū) = 0 and

consequently ū minimizes the dual exterior penalty function (9.15).

From (9.8) we have that:

∇f(ui) = (BB′ + P i)ui − (αBd + b). (9.23)

By the assumption that (BB′ + P i) is nonsingular, it follows from (9.21), before the Armijo

stepsize is taken, that:

ui+1 = (BB′ + P i)−1(αBd + b). (9.24)

Define now the direction ti as:

ti := ui+1 − ui = (BB′ + P i)−1(αBd + b)− ui. (9.25)

Consequently, after some algebra we have that:

−∇f(ui)′ti = ui′(BB′ + P i)ui− 2ui′(αBd + b) + (αBd + b)′(BB′ + P i)−1(αBd + b). (9.26)

We will now show that the right hand side of (9.26) is a forcing function of ∇f(ui), that

is, it is nonnegative and if it approaches zero then ‖∇f(ui)‖ approaches zero. Define the

quantities a and M as:

a = (αBd + b), M = (BB′ + P i). (9.27)

Then, Equation (9.26) reduces to:

−∇f(ui)′ti = ui′Mui − 2ui′a + a′M−1a. (9.28)

Define now

h = M− 1
2 a, g = M

1
2 ui. (9.29)

Hence

−∇f(ui)′ti = g′g − 2g′M− 1
2 M

1
2 h + h′h = ‖g − h‖2

= ‖M 1
2 ui −M− 1

2 a‖2

= ‖M− 1
2 (Mui − a)‖2

= ‖M− 1
2

(
(BB′ + P i)ui − (αBd + b)

)
‖2

= ‖(BB′ + P i)−
1
2∇f(ui)‖2.

(9.30)

140

The last term of (9.30) is a forcing function of ∇f(ui). Hence, by [70, Theorem 2.1] it

follows that for each accumulation point ū, ∇f(ū) = 0, and for a subsequence {uij , P ij}

with constant P ij that converges to (ū, P̄), the pair (ū, P̄) solves (9.8) and B′((BB′ +

P̄)\(Bd)
)
− d = 0. Consequently, ū solves the minimization problem (9.5) and since (9.14)

implies that α ≥ ᾱ, it follows that ȳ = B′ū− αd solves the primal linear program (9.1). "
Before presenting our computational results we state results corresponding to those of

Section 9.1 for linear programs with explicit nonnegative variable constraints. We do this

because it will allow us to find an exact solution for the linear program (9.2), that is the

dual of (9.1), which will allow us to efficiently obtain solutions of (9.1) when m >> ..

9.3 Linear programs with nonnegative variables

In solving the linear program (9.1) for the case when m >> ., the algorithms of Section

9.2 are quite inefficient because these algorithms involve the inversion of very large m-by-m

matrices that contain BB′ in (9.19) or (9.21). To avoid this difficulty we shall instead first

solve the dual linear program (9.2) exactly by solving an exterior penalty problem for the

primal linear program (9.1). As shown below, this involves the inversion of much smaller .-

by-. matrices. Once an exact dual solution u is obtained an exact primal solution is obtained

by solving the following unconstrained minimization problem:

min
y∈R!

1

2
‖B1y − b1‖2 +

1

2
‖(−B2y + b2)+‖2 +

1

2
(d′y − b′u)2, (9.31)

where the superscripts 1 and 2 denote components of the primal constraints By ≥ b

corresponding to optimal dual variable components u1 > 0 and u2 = 0 respectively. It

is easy to check that solving (9.31) involves the inversion of much smaller .-by-. matrices,

as will be the case for the computations below.

In order to develop the above approach, we begin with the solvable dual linear program

(9.2) with nonnegative variables (hence the title of this section) and consider the classical

exterior penalty function for the corresponding primal problem (9.1):

141

min
y∈R!

εd′y +
1

2
‖(−By + b)+‖2. (9.32)

Dividing by ε2 and letting:
y

ε
→ y and

1

ε
→ α, (9.33)

the penalty problem (9.32) becomes:

min
y∈R!

d′y +
1

2
‖(−By + αb)+‖2. (9.34)

Applying Proposition 1 of [75] to the primal exterior penalty problem (9.34), we get:

Proposition 9.3.1 Exact Dual Solution Computation Let the dual LP (9.2) be

solvable. Then the primal exterior penalty problem (9.34) is solvable for all α > 0. For

any α ≥ ᾱ for some finite ᾱ > 0, any solution y of (9.34) generates an exact solution to dual

LP (9.2) as follows:

u = (−By + αb)+. (9.35)

In addition, this u minimizes:

‖u‖2, (9.36)

over the solution set of the dual LP (9.2).

Without giving proofs of results similar to those of Section 9.1, we now state results

corresponding to Lemma 9.1.2 and Proposition 9.1.3.

Lemma 9.3.2 Optimality Condition for Solving the Primal Exterior Penalty

(9.34) A necessary and sufficient condition for u to be a solution of the exterior penalty

function (9.34) is that:

d− B′Q(−By + αb) = 0, (9.37)

where Q ∈ R'×' is a diagonal matrix of ones and zeros defined as follows:

Q = diag
(
sign

(
(−By + αb)+

))
. (9.38)

142

We note that Equation (9.37) is solvable for any α > 0 whenever the linear program (9.1) is

solvable. Hence, for such a case an explicit solution to (9.37) is given as follows:

y = (B′QB)\(αB′Qb− d). (9.39)

If we now substitute for y in (9.35) we obtain the following expression for an exact solution

u of the dual linear program (9.2) when α ≥ ᾱ:

u =

(
B

(
(B′QB)\d

)
− α

(
B

(
(B′QB)\(B′Qb)

)
− b

))

+

(9.40)

We note that u depends on α through the explicit term α in the above Equation (9.40), as

well as through the dependence of Q on y in the definition (9.38), and the dependence of

y on α in (9.39). Hence, in order for u to be independent of α, as would be the case when

α ≥ ᾱ, we have the following result which follows directly from the expression (9.40) for u

being a constant function of α: for a constant Q, the subgradient [106] of the expression for

u (9.40) with respect to α vanishes as stated in (9.42) below.

Proposition 9.3.3 Sufficient Conditions for Independence on α The optimal solution

u given by (9.40) for a solvable dual linear program (9.2) is independent of α if:

The diagonal matrix Q is independent of α (9.41)

and

diag
(
sign(u)

)(
B

(
(B′QB)\(B′Qb)

)
−b

)
= 0, (9.42)

where u is defined in (9.40).

We turn now to our computational results based on Algorithms 9.2.1 and 9.2.3.

9.4 Computational results

To illustrate the effectiveness of our approach, we report results on randomly generated

linear programs. In these linear programs we selected the number of variables, constraints,

nonzero coefficients, and generated optimal values for the primal and dual variables. We

143

compare our Newton LP approach (Algorithm 9.2.1) and direct linear equation (DLE)

approach (Algorithm 9.2.3) with CPLEX 9.0 [48], a state-of-the-art linear programming

package.

All methods were run in a random order on each linear program. The reported results

were obtained on an Intel Pentium 4 processor with 1 gigabyte of RAM running CentOS

Linux 4.5 and MATLAB 7.3. For the DLE method, we set δ = 1e−8, tol = 1e−16,

tol1 = 1e−3, imax = 500, and α = 100. For the Newton LP method, we set δ = 1e−6,

tol = 1e−3, imax = 5000, and α = 100. For problems with more constraints than variables,

we used imax = 500 for the Newton LP method. If the sufficient condition was not less than

tol after the Newton method terminated, we tried again with 10α. This case occurred only

a few times over all the experiments we report. We used only stepless methods. Although

these parameters effect the solution time and accuracy, we did not experiment much with

different settings and chose these particular values because they gave acceptable results on

our experiments. Default parameters were used for CPLEX.

The sufficient conditions (9.14) and (9.42) play an important role in our algorithms

in choosing the size of the penalty parameter α and as a stopping criterion. In fact, in

all our tests the penalty parameter α was chosen sufficiently large so that it satisfied the

appropriate sufficient condition (9.14) or (9.42). In every experiment we report, the relative

difference between the returned and the true objective value, maximum constraint violation,

and sufficient condition was less then 1e−3, and in most experiments these values were of

the order of 1e−7 or smaller.

9.4.1 Square linear programs

Figure 9.1 shows results for our proposed Newton LP Algorithm 9.2.1 and DLE Algorithm

9.2.3 formulations, as well as CPLEX 9.0. Each point on the graph represents the average

elapsed seconds over 10 square linear programs randomly generated with density 0.1. The

standard deviations are too small to show on the plot, and our proposed approaches are both

clearly faster than CPLEX for problems with more than 2000 variables and constraints. In

144

general, CPLEX returned more accurate solutions than our approaches. We used the barrier

method for CPLEX, which was faster than both the primal and dual simplex algorithms for

these problems. Note that both of our approaches are more than twice as fast as CPLEX

for problems with 5000 variables and 5000 constraints.

9.4.2 Rectangular linear programs

Table 9.1 shows results for our proposed Newton LP Algorithm 9.2.1 and DLE Algorithm

9.2.3 methods, as well as CPLEX 9.0. We applied Algorithms 9.2.1 and 9.2.3 directly for

problems with more variables than constraints, and used the technique described in Section

9.3 for problems with more constraints than variables. We used the primal simplex method

of CPLEX for problems with more variables than constraints, and the dual simplex method

of CPLEX for problems with more constraints than variables. The results in Table 9.1 show

that our approach can solve problems with up to a million variables or constraints, although

not as quickly as the commercially available CPLEX solvers in all cases.

We note that our proposed DLE Algorithm 9.2.3 method, which is implemented in 54

lines of MATLAB code, gives times which are faster than CPLEX for problems with more

variables than constraints. In general, our proposed Newton method is slower on these

problems, but is still able to give solutions in about half a minute. For problems with

more constraints than variables, CPLEX is noticeably faster. Nevertheless, our proposed

approaches are able to give accurate solutions to problems with as many as one million

constraints and one hundred variables within a few minutes.

145

 2
 48
 92

 155

 250

 370

 524

 717

 1000 1500 2000 2500 3000 3500 4000 4500 5000

Av
er

ag
e

so
lu

tio
n

tim
e

in
 s

ec
on

ds

Number of variables (= number of constraints)
 in the primal linear program

Running Time Versus Linear Program Size

DLE
Newton LP

CPLEX Barrier

Figure 9.1 Average running times of our proposed approaches and the CPLEX 9.0 barrier
method. Our Newton LP Algorithm 9.2.1 method is represented by ’+’, our DLE

Algorithm 9.2.3 method is represented by ’©’, and CPLEX is represented by ’*’. Each
point is the average of 10 randomly generated square linear programs.

146

Table 9.1 Average running times of our proposed approaches and the CPLEX 9.0 simplex
method. Ten linear programs were randomly generated for each number of variables and
constraints, and the average solution time in seconds is given with the standard deviation

in parentheses for each algorithm. Primal methods were used for problems with more
variables than constraints, and dual methods were used for problems with more constraints

than variables.

Constraints Variables CPLEX Newton LP DLE

100 1,000 0.0246 (0.0006) 0.0438 (0.0003) 0.0251 (0.0001)

100 10,000 0.0522 (0.0001) 0.2024 (0.0004) 0.0682 (0.0001)

100 100,000 0.837 (0.003) 3.219 (0.012) 0.905 (0.004)

100 1,000,000 17.9 (0.6) 29.1 (0.2) 9.3 (0.2)

1,000 100 0.0969 (0.0025) 0.1391 (0.0027) 0.1032 (0.0004)

10,000 100 0.267 (0.001) 0.970 (0.012) 0.469 (0.003)

100,000 100 2.96 (0.05) 13.02 (0.12) 5.50 (0.04)

1,000,000 100 44.8 (0.3) 173.5 (2.2) 70.9 (0.4)

147

Chapter 10

Conclusion and Outlook

We have proposed optimization-based approaches to six important machine learning

problems. These approaches result in new techniques that can be used to solve these classes

of problems effectively and efficiently. We have also given conditions which allow us to give a

precise termination condition for two fast algorithms for linear programming. In this chapter,

we give some concluding remarks for each of the new techniques and some avenues of future

research.

10.1 Knowledge-based kernel approximation

We presented a knowledge-based formulation of a nonlinear kernel SVM approximation.

The approximation is obtained using a linear programming formulation with any nonlinear

symmetric kernel and with no positive semidefiniteness (Mercer) condition assumed. The

issues associated with sampling the knowledge sets in order to generate function values (that

is, a matrix A and a corresponding vector y to be used in conventional approximation

formulations) in situations where there are no conventional data points constitute an

interesting topic for future research. Additional future work includes refinement of prior

knowledge, such as continuing the work in [66], and applications to medical problems,

computer vision, microarray gene classification, and efficacy of drug treatment, all of which

have prior knowledge available.

148

10.2 Nonlinear knowledge in kernel machines

We have proposed a unified, computationally effective framework for handling general

nonlinear prior knowledge in kernel approximation and kernel classification problems. We

have reduced such prior knowledge to easily implemented linear inequality constraints in a

linear programming formulation, and as linear equality constraints in a proximal formulation.

We have demonstrated the effectiveness of our approach on two synthetic problems, on two

important real-world problems arising in breast cancer prognosis, and on problems in which

prior knowledge was generated from ordinary datasets. Possible future extensions are to

consider different ways of solving the semi-infinite programs [37, 42], refinements to the

prior knowledge as in [66], and even more general prior knowledge, such as that where the

right hand side of the implications (3.2) and (3.6) are replaced by very general nonlinear

inequalities involving the kernel function (1.4). Another important avenue of future work is

to construct an interface which allows users to easily specify arbitrary regions to be used as

prior knowledge.

10.3 Privacy-preserving classification via random kernels

We have proposed privacy-preserving SVM classifiers for vertically and for horizontally

partitioned data based on random matrices. Each entity possesses either a different set of

input features or a different set of individual rows used collectively to generate the SVM

classifier. The proposed approaches use all the privately held data in a form that does

not reveal what that data is. Computational comparisons indicate that the accuracy of

our proposed approaches is comparable to full and reduced data classifiers. Furthermore, a

marked improvement of accuracy is obtained by the privacy-preserving SVM compared to

classifiers generated by each entity using its own data alone. Hence, by making use of a

random kernel, the proposed approaches succeed in generating an accurate classifier based

on privately held data without revealing any of that data.

149

10.4 Feature-selecting k-median algorithm

The feature-selecting k-median algorithm (FSKM) is a fast and efficient method for

selecting features of unlabeled datasets that gives clusters that are similar to clusters obtained

in the full dimensional space of the original data. In addition, features selected by FSKM

may be useful for labeled feature selection. For example, the six features selected by FSKM

for the Star/Galaxy-Bright dataset gave a classification error of 3.78% compared with 9.83%

error with the full 14 features. Using the features chosen by FSKM could eliminate the costly

search for the best 6 out of 14 features. Exhaustively searching for those 6 features would

require
(
14
6

)
= 3003 k-median runs as opposed to our 9 k-median runs.

It is hoped that future research into the theory used here to justify the feature selection

procedure of FSKM will have further application to other algorithms of machine learning

and data mining.

10.5 Feature selection for nonlinear kernel support vector
machines

We have presented a new approach to feature selection for nonlinear SVM classifiers for a

completely arbitrary kernel. Our approach is formulated as an easily implementable mixed-

integer program and solved efficiently by alternating between a linear program to compute

the continuous parameter values of the classifier and successive sweeps through the objective

function to update the integer variables representing the presence or absence of each feature.

This procedure converges to a local minimum that minimizes both the usual SVM objective

and the number of input space features used. Our results on two publicly available datasets

and synthetic NDCC data show that our approach efficiently learns accurate nonlinear

classifiers with reduced numbers of features. Extension of RFSVM to regression problems,

further evaluation of RFSVM on datasets with very large numbers of features, use of different

strategies to update the integer variables, and procedures for automatically choosing a value

of σ for a desired percentage of feature reduction are important avenues of future research.

150

10.6 Generalized eigenvalue proximal support vector machines

We have proposed a novel approach to classification problems that relaxes the universal

requirement that bounding or proximal planes generated by SVMs be parallel in the

input space for linear kernel classifiers or in the higher dimensional feature space for

nonlinear kernel classifiers. Each of our proposed nonparallel proximal planes are easily

obtained using a single MATLAB command that solves the classical generalized eigenvalue

problem. Classification accuracy results are comparable to those of classical support vector

classification algorithms, and in some cases they are better. Also, in our experience the

generalized eigenvalue problem can be solved more quickly than the optimization algorithm

needed for SVM-Light [49]. The simple program formulation, computational efficiency, and

accuracy of the generalized eigenvalue proximal support vector machine (GEPSVM) on

real-world data indicate that it is an effective algorithm for classification. More recently,

Guarracino et al. have studied a technique similar to GEPSVM but using a different

regularization term so that only the solution of one generalized eigenvalue problem is required

[40]. Analysis of the statistical properties of GEPSVM and extensions to multicategory

classification are promising areas of future research.

10.7 Multiple-Instance Classification

We have introduced a mathematical programming formulation of the multiple-instance

problem that has a linear objective with linear and bilinear constraints. Our mathematical

program can be solved with a succession of fast linear programs that, in our experience,

converges in a few iterations to a local solution. Results on previously published datasets

indicate that our approach is very effective at finding linear classifiers. It can also be easily

extended to finding nonlinear classifiers with potential high accuracy through the use of

kernels. Improvements in the mathematical programming formulation and evaluation on

more datasets are promising avenues of future research.

151

10.8 Exactness conditions for a convex differentiable exterior
penalty for linear programming

We have presented sufficient conditions for a classical dual exterior penalty function

of a linear program to provide an exact solution to a primal linear program. These

conditions allow us to give a precise termination condition to a Newton algorithm for linear

programming introduced in [75], and also to a new direct method based on solving the

necessary and sufficient optimality condition (9.8). Experimental results indicate that both

approaches are able to efficiently obtain accurate solutions on randomly generated linear

programs with different numbers of constraints and variables. For some linear programs,

our approaches implemented in MATLAB were as much as twice as fast as the commercial

linear programming package CPLEX 9.0.

It is possible that our approaches could be extended to handle problems which are too big

to fit in memory, so long as either the number of constraints or the number of variables is not

too big, and the matrix multiplications are done externally. Other opportunities for future

work include applying both approaches to real-world linear programs, exploring the use of

direct methods for other optimization problems, and further improving the performance of

our approaches.

10.9 Outlook

Mathematical programming is a very useful framework that can be used to solve

important problems in machine learning and data mining. We have investigated techniques

that deal with prior knowledge, privacy preservation, feature selection, multisurface

classifiers, and multiple instance learning. We have also shown empirical results that

demonstrate their utility. We have also described two methods for solving linear programs,

which have proven to arise in the solution of several of the above problems. In addition to the

approaches described above, interesting areas of future research include investigations into

the statistical properties of the given algorithms, and the use of mathematical programming

152

techniques to generate novel formulations and solution techniques for these and other

problems in machine learning and data mining.

153

LIST OF REFERENCES

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-
instance learning. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 561–568. MIT Press,
Cambridge, MA, October 2003.

[2] P. Auer. On learning from multi-instance examples: Empirical evaluation of a
theoretical approach. In Proceedings 14th International Conference on Machine
Learning, pages 21–29. Morgan Kaufmann, 1997.

[3] G. Baudat and F. Anouar. Kernel-based methods and function approximation. In
International Joint Conference on Neural Networks, pages 1244–1249, Washington,
D.C., 2001.

[4] K. P. Bennett. Decision tree construction via linear programming. In M. Evans,
editor, Proceedings 4th Midwest Artificial Intelligence and Cognitive Science Society
Conference, pages 97–101, Utica, Illinois, 1992.

[5] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In M. S.
Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information
Processing Systems -10-, pages 368–374, Cambridge, MA, 1998. MIT Press.

[6] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of
two linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

[7] R. R. Bouckaert. Choosing between two learning algorithms based on calibrated tests.
In Proceedings 20th International Conference on Machine Learning, pages 51–58, 2003.

[8] P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization
and support vector machines. In J. Shavlik, editor, Proceedings 15th International
Conference on Machine Learning, pages 82–90, San Francisco, California, 1998.
Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

154

[9] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave
minimization. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems -9-, pages 368–374, Cambridge, MA, 1997.
MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.

[10] K. Chen and L. Liu. Privacy preserving data classification with rotation perturbation.
In Proceedings of the Fifth International Conference of Data Mining (ICDM’05), pages
589–592. IEEE, 2005.

[11] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods.
John Wiley & Sons, New York, 1998.

[12] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–279,
1995.

[13] M. Craven and J. Shavlik. Learning symbolic rules using artificial neural networks.
In Proceedings 10th International Conference on Machine Learning, pages 73–80,
Amherst, MA, 1993. Morgan Kaufmann.

[14] S. Dasgupta. Learning mixtures of Gaussians. In IEEE Symposium on Foundations
of Computer Science (FOCS) 1999, pages 634–644, 1999.

[15] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006.

[16] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple-instance
problem with axis-parallel rectangles. Artificial Intelligence, 89:31–71, 1998.

[17] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector
regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances
in Neural Information Processing Systems -9-, pages 155–161, Cambridge, MA, 1997.
MIT Press.

[18] W. Du, Y. Han, and S. Chen. Privacy-preserving multivariate statisti-
cal analysis: Linear regression and classification. In Proceedings of the
Fourth SIAM International Conference on Data Mining, pages 222–233, 2004.
http://citeseer.ist.psu.edu/du04privacypreserving.html.

[19] O. J. Dunn. Multiple comparisons among means. Journal of the American Statistical
Association, 56:52–64, 1961.

[20] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. Advances in Computational Mathematics, 13:1–50, 2000.

155

[21] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 171–203, Cambridge, MA, 2000. MIT
Press.

[22] F. Facchinei. Minimization of SC1 functions and the Maratos effect. Operations
Research Letters, 17:131–137, 1995.

[23] X. Feng and Z. Zhang. The rank of a random matrix. Applied Mathematics and
Computation, 185:689–694, 2007.

[24] J. Forrest, D. de la Nuez, and R. Lougee-Heimer. CLP User Guide, 2004.
http://www.coin-or.org/Clp/userguide/index.html.

[25] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32:675–701, 1937.

[26] H. Fröhlich and A. Zell. Feature subset selection for support vector machines by
incremental regularized risk minimization. In International Joint Conference on Neural
Networks (IJCNN), volume 3, pages 2041–2046, 2004.

[27] G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In
F. Provost and R. Srikant, editors, Proceedings KDD-2001: Knowledge Discovery
and Data Mining, August 26-29, 2001, San Francisco, CA, pages 77–86, New York,
2001. Association for Computing Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/01-02.ps.

[28] G. Fung and O. L. Mangasarian. Semi-supervised support vector machines for
unlabeled data classification. Optimization Methods and Software, 15:29–44, 2001.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-05.ps.

[29] G. Fung and O. L. Mangasarian. Incremental support vector machine classification.
In H. Mannila R. Grossman and R. Motwani, editors, Proceedings Second SIAM
International Conference on Data Mining, Arlington, Virginia, April 11-13,2002, pages
247–260, Philadelphia, 2002. SIAM. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-
08.ps.

[30] G. Fung and O. L. Mangasarian. A feature selection Newton method for support vector
machine classification. Computational Optimization and Applications, 28(2):185–202,
July 2004. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps.

[31] G. Fung and O. L. Mangasarian. Multicategory proximal support vector machine
classifiers. Machine Learning, 59:77–97, 2005. University of Wisconsin Data Mining
Institute Technical Report 01-06, July 2001, ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/01-06.ps.

156

[32] G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based nonlinear
kernel classifiers. Technical Report 03-02, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, March 2003.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/03-02.ps. Conference on Learning Theory
(COLT 03) and Workshop on Kernel Machines, Washington D.C., August 24-27, 2003.
Proceedings edited by M. Warmuth and B. Schölkopf, Springer Verlag, Berlin, 2003,
102-113.

[33] G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based nonlinear kernel
classifiers. In M. Warmuth and B. Schölkopf, editors, Conference on Learning Theory
(COLT 03) and Workshop on Kernel Machines, pages 102–113, Berlin, 2003. Springer–
Verlag. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/03-02.ps.

[34] G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based support vector machine
classifiers. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 521–528. MIT Press,
Cambridge, MA, October 2003. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-09.ps.

[35] G. Fung, O. L. Mangasarian, and A. Smola. Minimal kernel classifiers.
Journal of Machine Learning Research, pages 303–321, 2002. University
of Wisconsin Data Mining Institute Technical Report 00-08, November 200,
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-08.ps.

[36] Thomas Gartner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-
instance kernels. In Claude Sammut and Achim Hoffmann, editors, Proceedings 19th
International Conference on Machine Learning, pages 179–186. Morgan Kaufmann,
July 2002.

[37] M. A. Goberna and M. A. López. Linear Semi-Infinite Optimization. John Wiley,
New York, 1998.

[38] C. Gold, A. Holub, and P. Sollich. Bayesian approach to feature selection and
parameter tuning for support vector machine classifiers. Neural Networks, 18(5-6):693–
701, 2005.

[39] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, Maryland, 3rd edition, 1996.

[40] M.R. Guarracino, C. Cifarelli, O. Seref, and P. Pardalos. A classification method based
on generalized eigenvalue problems. Optimization Methods and Software, 22(1):73–81,
2007.

[41] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46(1-3):389–422, 2002.

157

[42] R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods, and
applications. SIAM Review, 35(3):380–429, 1993.

[43] J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized Hessian matrix and
second-order optimality conditions for problems with CL1 data. Applied Mathematics
and Optimization, 11:43–56, 1984.

[44] T. K. Ho and E. M. Kleinberg. Checkerboard dataset, 1996.
http://www.cs.wisc.edu/math-prog/mpml.html.

[45] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, England, 1985.

[46] C.-H. Huang, Y.-J. Lee, D.K.J. Lin, and S.-Y. Huang. Model selection for support
vector machines via uniform design. In Machine Learning and Robust Data Mining
of Computational Statistics and Data Analysis, Amsterdam, 2007. Elsevier Publishing
Company. http://dmlab1.csie.ntust.edu.tw/downloads/papers/UD4SVM013006.pdf.

[47] S.Y. Huang and Y.-J. Lee. Theoretical study on reduced support vector machines.
Technical report, National Taiwan University of Science and Technology, Taipei,
Taiwan, 2004. yuh-jye@mail.ntust.edu.tw.

[48] ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User’s Manual, 2003.
http://www.ilog.com/products/cplex/.

[49] T. Joachims. Making large-scale support vector machine learning practical. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods
- Support Vector Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

[50] L. Kaufman. Solving the quadratic programming problem arising in support vector
classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods - Support Vector Learning, pages 147–167. MIT Press, 1999.

[51] M. Kojima, S. Mizuno, T. Noma, and A. Yoshise. A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems. Springer-Verlag, Berlin, 1991.

[52] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement learner
with natural language advice: Initial results in robocup soccer. In Proceedings of the
AAAI Workshop on Supervisory Control of Learning and Adaptive Systems, San Jose,
CA, 2004.

[53] Q. V. Le, A. J. Smola, and T. Gärtner. Simpler knowledge-based support vector ma-
chines. In Proceedings 23rd International Conference on Machine Learning, Pittsburgh,
PA, 2006, 2006. http://www.icml2006.org/icml2006/technical/accepted.html.

158

[54] Y.-J. Lee and S.Y. Huang. Reduced support vector machines: A statistical theory.
IEEE Transactions on Neural Networks, 18:1–13, 2007.

[55] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In
Proceedings First SIAM International Conference on Data Mining, Chicago, April 5-
7, 2001, CD-ROM, 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.pdf.

[56] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Breast cancer survival and
chemotherapy: a support vector machine analysis. In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 55, pages 1–10. American
Mathematical Society, 2000. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-10.ps.

[57] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Survival-time classification
of breast cancer patients. Technical Report 01-03, Data Mining Institute,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,
March 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-03.ps. Computational
Optimization and Applications 25, 2003, 151-166.

[58] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Survival-time classification of
breast cancer patients. Computational Optimization and Applications, 25:151–166,
2003. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-03.ps.

[59] M. Litzkow and M. Livny. Experience with the condor distributed batch system.
In Proceedings IEEE Workshop on Experimental Distributed Systems, pages 97–101,
Hunstville, AL, October 1990. IEEE Compter Society Press.

[60] K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions on
Knowledge and Data Engineering, 18:92–106, 2006.

[61] L. Liu, J. Wang, Z. Lin, and J. Zhang. Wavelet-based data distortion for
privacy-preserving collaborative analysis. Technical Report 482-07, Department
of Computer Science, University of Kentucky, Lexington, KY 40506, 2007.
http://www.cs.uky.edu/ jzhang/pub/MINING/lianliu1.pdf.

[62] P. M. Long and L. Tan. PAC learning axis aligned rectangles with respect to product
distributions from multiple instance examples. Machine Learning, 30(1):7–22, 1998.

[63] R. Maclin and J. Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, 22, 1996.

[64] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about preferred
actions to reinforcement learners via knowledge-based kernel regression. In Proceedings
20th National Conference on Artificial Intelligence, pages 819–824, 2005.

159

[65] R. Maclin, J. Shavlik, T. Walker, and L. Torrey. A simple and effective method for
incorporating advice into kernel methods. In Proceedings 21st National Conference on
Artificial In telligence, 2006.

[66] R. Maclin, E. Wild, J. Shavlik, L. Torrey, and T. Walker. Refining rules incorporated
into knowledge-based support vector learners via successive linear programming. In
Proceedings of the Twenty-Second Conference on Artificial Intelligence, Vancouver,
British Columbia, July 2007.

[67] O. L. Mangasarian. Nonlinear Programming. McGraw–Hill, New York, 1969. Reprint:
SIAM Classic in Applied Mathematics 10, 1994, Philadelphia.

[68] O. L. Mangasarian. Least norm solution of non–monotone complementarity problems.
In Functional Analysis, Optimization and Mathematical Economics, pages 217–221.
Oxford University Press, New York, 1990.

[69] O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994.

[70] O. L. Mangasarian. Parallel gradient distribution in unconstrained optimiza-
tion. SIAM Journal on Control and Optimization, 33(6):1916–1925, 1995.
ftp://ftp.cs.wisc.edu/tech-reports/reports/1993/tr1145.ps.

[71] O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Letters,
24:15–23, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.

[72] O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
135–146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-
reports/98-14.ps.

[73] O. L. Mangasarian. Data mining via support vector machines, July 23-27, 2001.
http://ftp.cs.wisc.edu/math-prog/talks/ifip3tt.ppt.

[74] O. L. Mangasarian. A finite Newton method for classification problems. Optimization
Methods and Software, 17:913–929, 2002. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/01-11.ps.

[75] O. L. Mangasarian. Exact 1-Norm support vector machines via unconstrained convex
differentiable minimization. Technical Report 05-03, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, August 2005.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-03.ps. Journal of Machine Learning
Research 7, 2006, 1517-1530.

[76] O. L. Mangasarian and R. R. Meyer. Nonlinear perturbation of linear programs. SIAM
Journal on Control and Optimization, 17(6):745–752, November 1979.

160

[77] O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines. Journal
of Machine Learning Research, 1:161–177, 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/00-06.ps.

[78] O. L. Mangasarian and D. R. Musicant. Large scale kernel regression via linear pro-
gramming. Machine Learning, 46:255–269, 2002. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/99-02.ps.

[79] O. L. Mangasarian, J. W. Shavlik, and E. W. Wild. Knowledge-based kernel
approximation. Journal of Machine Learning Research, 5:1127–1141, 2004.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/03-05.ps.

[80] O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagnosis and
prognosis via linear programming. Operations Research, 43(4):570–577, July-August
1995.

[81] O. L. Mangasarian and M. E. Thompson. Massive data classification via unconstrained
support vector machines. Journal of Optimization Theory and Applications, 131:315–
325, 2006. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-01.pdf.

[82] O. L. Mangasarian and E. W. Wild. Feature selection in k-median clustering.
Technical Report 04-01, Data Mining Institute, Computer Sciences Department,
University of Wisconsin, Madison, Wisconsin, January 2004. SIAM International
Conference on Data Mining, Workshop on Clustering High Dimensional Data
and Its Applications, April 24, 2004, La Buena Vista, FL, Proceedings Pages
23-28. http://www.siam.org/meetings/sdm04. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/04-01.pdf.

[83] O. L. Mangasarian and E. W. Wild. Multisurface proximal support vector classification
via generalized eigenvalues. Technical Report 04-03, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, June 2004.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/04-03.pdf, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(1), 2006, 69-74.

[84] O. L. Mangasarian and E. W. Wild. Multiple instance classification via
successive linear programming. Technical Report 05-02, Data Mining Institute,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, May
2005. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-02.pdf. Journal of Optimization
Theory and Applications 137(1), 2008.

161

[85] O. L. Mangasarian and E. W. Wild. Feature selection for nonlinear kernel
support vector machines. Technical Report 06-03, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, July 2006.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-03.pdf. IEEE Seventh International
Conference on Data Mining (ICDM’07) October 28, 2007, Omaha, NE, Workshop
Proceedings 231-236.

[86] O. L. Mangasarian and E. W. Wild. Nonlinear knowledge-based classification. Techni-
cal Report 06-04, Data Mining Institute, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, August 2006. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/06-04.pdf, IEEE Transactions on Knowledge and Data Engineering, submit-
ted.

[87] O. L. Mangasarian and E. W. Wild. Nonlinear knowledge in kernel
machines. Technical Report 06-06, Data Mining Institute, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, November 2006.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-06.pdf, CRM Proceedings & Lecture
Notes, 45, 2008.

[88] O. L. Mangasarian and E. W. Wild. Exactness conditions for a convex differentiable
exterior penalty for linear programming. Technical Report 07-01, Data Mining
Institute, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, July 2007. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/07-01.pdf.

[89] O. L. Mangasarian and E. W. Wild. Nonlinear knowledge in kernel
approximation. IEEE Transactions on Neural Networks, 18:300–306, 2007.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-05.pdf.

[90] O. L. Mangasarian and E. W. Wild. Privacy-preserving classification of horizontally
partitioned data via random kernels. Technical Report 07-03, Data Mining Institute,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,
November 2007.

[91] O. L. Mangasarian, E. W. Wild, and G. M. Fung. Proximal knowledge-
based classification. Technical Report 06-05, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, November 2006.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-05.pdf.

[92] O. L. Mangasarian, E. W. Wild, and G. M. Fung. Privacy-preserving classification
of vertically partitioned data via random kernels. Technical Report 07-02, Data
Mining Institute, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin, September 2007.

162

[93] O. Maron and A. L. Ratan. Multiple-instance learning for natural scene classification.
In 15th International Conference on Machine Learning, San Francisco, CA, 1998.
Morgan Kaufmann.

[94] MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2006.
http://www.mathworks.com.

[95] T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.

[96] P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.
www.ics.uci.edu/∼mlearn/MLRepository.html.

[97] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39:117–129, 1987.

[98] D. R. Musicant. NDC: Normally distributed clustered datasets, 1998.
http://www.cs.wisc.edu/dmi/svm/ndc/.

[99] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7:308–313, 1965.

[100] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zumach. Automated
star/galaxy discrimination with neural networks. Astronomical Journal, 103(1):318–
331, 1992.

[101] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, 1998.

[102] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications
Division, New York, 1987.

[103] J. Ramon and L. De Raedt. Multi-instance neural networks. In Proceedings ICML-
2000, Workshop on Attribute-Value and Relational Learning, 2000.

[104] S. Ray and M. Craven. Supervised versus multiple instance learning: An empirical
comparison. In Proceedings 22nd International Conference on Machine Learning,
volume 119, pages 697–704, Bonn, Germany, 2005.

[105] M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF
and RReliefF. Machine Learning, 53(1-2):23–69, 2003.

[106] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New
Jersey, 1970.

[107] H. Lipmaa S. Laur and T. Mielikäinen. Cryptographically private support vector
machines. In D. Gunopulos L. Ungar, M. Craven and T. Eliassi-Rad, editors,
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2006, Philadelphia, August 20–23, 2006. ACM, pages 618–624, 2006.
http://eprints.pascal-network.org/archive/00002133/01/cpsvm.pdf.

163

[108] B. Schölkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support
vector kernels. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in Neural
Information Processing Systems 10, pages 640 – 646, Cambridge, MA, 1998. MIT
Press.

[109] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[110] Y. Shen, A. Y. Ng, and M. Seeger. Fast gaussian process regression using kd-trees. In
NIPS 18, 2006. http://ai.stanford.edu/∼ang/papers/nips05-fastgaussianprocess.pdf.

[111] A. Smola and B. Schölkopf. On a kernel-based method for pattern recognition,
regression, approximation and operator inversion. Algorithmica, 22:211–231, 1998.

[112] E. Suthampan and S. Maneewongvatana. Privacy preserving decision tree in multi
party environment. In LNCS: Lecture Notes in Computer Scince, volume 3689/2005,
pages 727–732, Berlin/Heidelberg, 2005. Springer.

[113] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[114] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle.
Least Squares Support Vector Machines. World Scientific Publishing Co., Singapore,
2002.

[115] M. E. Thompson. NDCC: Normally distributed clustered datasets on cubes, 2006.
www.cs.wisc.edu/dmi/svm/ndcc/.

[116] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill–Posed Problems. John Wiley &
Sons, New York, 1977.

[117] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta,
Canada, pages 639–644. Association for Computing Machinery, 2002.

[118] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, second
edition, 2000.

[119] V. N. Vapnik, S. E. Golowich, and A. Smola. Support vector method for function
approximation, regression estimation and signal processing. In Neural Information
Processing Systems Volume 9, pages 281–287, Cambridge, MA, 1997. MIT Press.

[120] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the
randomized GACV. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods - Support Vector Learning, pages 69–88, Cambridge, MA,
1999. MIT Press. ftp://ftp.stat.wisc.edu/pub/wahba/index.html.

164

[121] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for SVMs. In NIPS, pages 668–674, 2000.

[122] A. Wieland. Twin spiral dataset. http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/
project/ai-repository/ai/areas/neural/bench/cmu/0.html.

[123] W. H. Wolberg, W. N. Street, D. N. Heisey, and O. L. Mangasarian. Computerized
breast cancer diagnosis and prognosis from fine-needle aspirates. Archives of Surgery,
130:511–516, 1995.

[124] M.-J. Xiao, L.-S. Huang, H. Shen, and Y.-L. Luo. Privacy preserving id3 algorithm
over horizontally partitioned data. In Sixth International Conference on Parallel and
Distributed Computing Applications and Technologies (PDCAT’05), pages 239–243.
IEEE Computer Society, 2005.

[125] H. Yu, X. Jiang, and J. Vaidya. Privacy-preserving SVM using nonlinear kernels on
horizontally partitioned data. In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 603–610, New York, NY, USA, 2006. ACM Press.

[126] H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving svm classification on vertically
partitioned data. In Proceedings of PAKDD ’06, volume 3918 of Lecture Notes in
Computer Science, pages 647 – 656. Springer-Verlag, January 2006.

[127] H. H. Zhang. Variable selection for support vector machines via smoothing spline
ANOVA. Statistica Sinica, 16(2):659–674, 2006.

[128] Q. Zhang and S. A. Goldman. EM-DD: an improved miltiple-instance learning
technique. In Neural Information Processing Systems 2001, pages 1073–1080,
Cambridge, MA, 2002. MIT Press.

[129] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-Norm support vector machines.
In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, editors, Advances in
Neural Information Processing Systems 16–NIPS2003, pages 49–56. MIT Press, 2004.

