
-9999
0111

+ 0001

1000

710 == 01112
-710 == 10012
-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *
100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000 9999
+ 1
0000

(!!!)

