
Copyright © 2005-2007 William C. Benton

Chapter 8

1

Copyright © 2005-2007 William C. Benton

Chapter 8 is a sort of catch-all
chapter — we’ll review a few
things and talk about design.

2

Copyright © 2005-2007 William C. Benton

Scope review
• What is scope?

• Where are each of the following in
scope?

• a local variable or parameter name

• an instance field name

• a static field name

• a local declared in a for loop header

3

Copyright © 2005-2007 William C. Benton

What is a side-effect?

4

Copyright © 2005-2007 William C. Benton

How are parameters
passed to methods?

5

Copyright © 2005-2007 William C. Benton 6

(Rest assured that we’ll have
an exercise on these topics

later this week!)

Copyright © 2005-2007 William C. Benton

There are four kinds of
classes: instantiable, tester,

application, and utility.

7

Copyright © 2005-2007 William C. Benton

Instantiable classes model
program-domain entities.

8

(What is a program-domain entity?)

Copyright © 2005-2007 William C. Benton

What are some instantiable
classes we’ve seen so far?

9

Copyright © 2005-2007 William C. Benton

Application classes contain
main methods and rely on

instantiable classes to
implement program tasks.

10

Copyright © 2005-2007 William C. Benton

What are some application
classes we’ve seen so far?

11

Copyright © 2005-2007 William C. Benton

Tester classes contain
methods to systematically

exercise every part of another
class’ interface.

12

Copyright © 2005-2007 William C. Benton

Utility classes cannot be
instantiated; rather, they

contain useful class methods.

13

Copyright © 2005-2007 William C. Benton

What are some utility
classes we’ve seen so far?

14

Copyright © 2005-2007 William C. Benton 15

Instantiable classes model
program-domain entities.

(So: what is a program-domain entity, anyway?)

Copyright © 2005-2007 William C. Benton

A class should correspond to
a single concept.

16

(What is a concept?)

Copyright © 2005-2007 William C. Benton

Some classes correspond to
tangible real-world things: Clicker,

Employee, CashRegister.

17

Copyright © 2005-2007 William C. Benton

Some classes correspond to
abstract concepts.

18

(What are some example abstract concepts?)

Copyright © 2005-2007 William C. Benton

Some classes are actors,
which manipulate instances of

other concepts.

19

(What are some examples?)

Copyright © 2005-2007 William C. Benton

Given a problem description, you
should be able to choose classes
by identifying relevant concepts.

20

Copyright © 2005-2007 William C. Benton

Is there a good, standard way to
talk about these designs?

21

Copyright © 2005-2007 William C. Benton

UML

22

• Simple way to show classes and
relationships between classes

• Describes all fields and methods
declared in a class

• Describes relationships (dependence,
aggregation, subtyping) between
classes and interfaces

click()
reset()

count
Clicker

punchIn()
punchOut()
getSalary()
getHours()

name
clicker
salary

Usher

hireUsher()
fireUsher()

ushers[]
EmployeeDB

java.lang.String

Copyright © 2005-2007 William C. Benton 23

click()
reset()

count
Clicker

punchIn()
punchOut()
getSalary()
getHours()

name
clicker
salary

Usher

hireUsher()
fireUsher()

ushers[]
EmployeeDB

java.lang.String

Copyright © 2005-2007 William C. Benton 23

Not shown:
• + before public fields
• - before private fields
• static fields and methods
should be underlined

click()
reset()

count
Clicker

Copyright © 2005-2007 William C. Benton 24

click()
reset()

count
Clicker

punchIn()
punchOut()
getSalary()
getHours()

name
clicker
salary

Usher

java.lang.String

Copyright © 2005-2007 William C. Benton 25

punchIn()
punchOut()
getSalary()
getHours()

name
clicker
salary

Usher

hireUsher()
fireUsher()

ushers[]
EmployeeDB

Copyright © 2005-2007 William C. Benton 26

Copyright © 2005-2007 William C. Benton 27

Basic UML
(subject to revision)

methods
fields
Class Name

Aggregator

Aggregated

Dependent

Class

Copyright © 2005-2007 William C. Benton

(See Chapter 17.1 for more!)

28

Copyright © 2005-2007 William C. Benton

A cohesive class is one that only
implements a single concept.

29

Copyright © 2005-2007 William C. Benton

Cohesive or not?

30

• Coin class

• CashRegister class that knows about U.S.
currencies (or “all major currencies”)

• Temperature class that includes
getCelsius(), getFahrenheit() methods

• Email client that can install software on
your computer

• Color class that knows about color spaces

Copyright © 2005-2007 William C. Benton

Homework exercise: Find
one example of a real-

world product that is not
cohesive and email it to

the class list.

31

Copyright © 2005-2007 William C. Benton

SideEffectTester:
constructors

32

s

s = new SideEffectTester(3, 7, "foo");

s1

s2

pal

0x

0y

SideEffectTester

Copyright © 2005-2007 William C. Benton 33

s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester

Copyright © 2005-2007 William C. Benton 34

s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester

this.x = x;

this.y = y;

s1

s2

pal

3x

7y

SideEffectTester

Copyright © 2005-2007 William C. Benton 35

s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester

s1 = s;

s2 = s.toUpperCase();

s1

s2

pal

3x

7y

SideEffectTester

"FOO"

s

7y

3xthis

"foo"

Copyright © 2005-2007 William C. Benton 36

Copyright © 2005-2007 William C. Benton

SideEffectTester solution

37

s1

s2

pal

5x

6y

SideEffectTester

s1

s2

pal

9x

8y

SideEffectTester

s1

s2

pal

3x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

after constructors

"fred"

"FRED"

"wilma"

"WILMA"

"barney"

"BARNEY"

"betty"

"BETTY"

Copyright © 2005-2007 William C. Benton 38

after rubbish() calls

s1

s2

pal

5x

6y

SideEffectTester

s1

s2

pal

9x

8y

SideEffectTester

s1

s2

pal

3x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

"fred"

"FRED"

"wilma"

"WILMA"

"betty"

"BETTY"

"barney"

"BARNEY"

Copyright © 2005-2007 William C. Benton 39

after mangle() calls

s1

s2

pal

4x

4y

SideEffectTester

s1

s2

pal

2x

2y

SideEffectTester

s1

s2

pal

4x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

"5"

"FRED"

"3"

"WILMA"

"betty"

"BETTY"

"barney"

"BARNEY"

Copyright © 2005-2007 William C. Benton 40

after kruftulate() calls

s1

s2

pal

4x

4y

SideEffectTester

s1

s2

pal

2x

2y

SideEffectTester

s1

s2

pal

4x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

"FRED"

"WHAMMY"

"WILMA"

"betty"

"BETTY"

"PPS"

"BARNEY"

Copyright © 2005-2007 William C. Benton 41

Copyright © 2005-2007 William C. Benton

Two classes are coupled if they
must know about one another.

42

Copyright © 2005-2007 William C. Benton 43

Alternatively, a class is
coupled to another if it
depends on that class.

Copyright © 2005-2007 William C. Benton 44

Copyright © 2005-2007 William C. Benton 45

Copyright © 2005-2007 William C. Benton 46

Copyright © 2005-2007 William C. Benton 47

Copyright © 2005-2007 William C. Benton 48

Avoid excessive and
bidirectional coupling.

Copyright © 2005-2007 William C. Benton

The vending machine

49

• Design the classes for a vending
machine

• Holds cans of soft drink, keeps track of
inventory

• Accepts fifty cents in currency

• Activates product selector when paid

Copyright © 2005-2007 William C. Benton

How do we evaluate
a design?

50

Copyright © 2005-2007 William C. Benton

The vending machine

51

• Design the classes for a vending
machine

• Holds cans of soft drink, keeps track of
inventory

• Accepts fifty cents in currency

• Activates product selector when paid

Copyright © 2005-2007 William C. Benton

OK, but what about....

• Debit cards?

• Different product types?

• Temperature-controlled discounts?

• Is our design general enough to
handle these cases?

52

Copyright © 2005-2007 William C. Benton

What makes for a
good design?

53

Good designs enable
future improvements.

Copyright © 2005-2007 William C. Benton

Wrap-up

54

• Read Alistair Cockburn’s “coffee
machine problem” article

• http://tinyurl.com/faq7r

• Inspiration for vending machine problem

• Why doesn’t Cockburn like UML?
Is this an inherent limitation of
UML as we’ve used it?

http://tinyurl.com/faq7r
http://tinyurl.com/faq7r

Copyright © 2005-2007 William C. Benton

Any questions?

55

Copyright © 2005-2007 William C. Benton

So, how do we come up with
a good design?

56

...and meet changing
requirements?

...and wind up producing
a program that works?

Copyright © 2005-2007 William C. Benton

The software lifecycle is the
“big picture” of software

development.

57

Copyright © 2005-2007 William C. Benton

The software lifecycle

58

• How do we go from an idea to a
design to a working program?

• How do we think about this
process?

Copyright © 2005-2007 William C. Benton

The “waterfall model” is an old
way of looking at software.

59

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

What are the requirements?

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

What are the requirements?

What classes do I need?

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

What are the requirements?

What classes do I need?

How will I write the code?

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

What are the requirements?

What classes do I need?

How will I write the code?

Does it work?

Analysis

Design

Implementation

Testing

Deployment

Copyright © 2005-2007 William C. Benton 60

What are the requirements?

What classes do I need?

How will I write the code?

Does it work?

Done!

Copyright © 2005-2007 William C. Benton

What’s wrong with this
picture?

61

Copyright © 2005-2007 William C. Benton

(Indeed, the waterfall model was
initially proposed as a straw man.)

62

Copyright © 2005-2007 William C. Benton

The spiral model applies the
waterfall model iteratively,

developing several prototypes.

63

Copyright © 2005-2007 William C. Benton

(Hopefully, these eventually
result in a finished product.)

64

Copyright © 2005-2007 William C. Benton

Design

Implementation

Testing

Deployment

Analysis

Copyright © 2005-2007 William C. Benton

Design

Implementation

Testing

Deployment

Analysis

S

1

Copyright © 2005-2007 William C. Benton

Design

Implementation

Testing

Deployment

Analysis

2

S

1

Copyright © 2005-2007 William C. Benton

Design

Implementation

Testing

Deployment

Analysis

P

2

S

1

Copyright © 2005-2007 William C. Benton

What’s wrong with this
picture?

66

Copyright © 2005-2007 William C. Benton

Any questions?

67

Copyright © 2005-2007 William C. Benton

Extreme programming seeks
to solve the problems of

traditional s/w dev.

68

Copyright © 2005-2007 William C. Benton

“Extreme?”

69

Copyright © 2005-2007 William C. Benton

Ideas

70

• Customers make business decisions.

• Tell “user stories” about how they’d like
to use the program.

• Programmers make technical
decisions.

• Make simple plans; fix these when
inconsistent with state of world.

Copyright © 2005-2007 William C. Benton

XP ideas, cont’d

• Frequent releases

• Test-driven development

• Pair programming

• Refactoring

• See book by Martin Fowler -- v. useful!

71

Copyright © 2005-2007 William C. Benton

XP is not a panacea, but it is
a collection of good ideas
(indeed, some are great).

72

