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Chapter 8
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Chapter 8 is a sort of catch-all 
chapter — we’ll review a few 
things and talk about design.

2



Copyright © 2005-2007 William C. Benton

Scope review
• What is scope?

• Where are each of the following in 
scope?

• a local variable or parameter name

• an instance field name

• a static field name

• a local declared in a for loop header
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What is a side-effect?
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How are parameters 
passed to methods?
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(Rest assured that we’ll have 
an exercise on these topics 

later this week!)
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There are four kinds of 
classes:  instantiable, tester, 

application, and utility.
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Instantiable classes model 
program-domain entities.
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(What is a program-domain entity?)
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What are some instantiable 
classes we’ve seen so far?
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Application classes contain 
main methods and rely on 

instantiable classes to 
implement program tasks.
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What are some application 
classes we’ve seen so far?
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Tester classes contain 
methods to systematically 

exercise every part of another 
class’ interface.
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Utility classes cannot be 
instantiated; rather, they 

contain useful class methods.
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What are some utility 
classes we’ve seen so far?
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Instantiable classes model 
program-domain entities.

(So:  what is a program-domain entity, anyway?)
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A class should correspond to 
a single concept.

16

(What is a concept?)
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Some classes correspond to 
tangible real-world things:  Clicker, 

Employee, CashRegister.

17



Copyright © 2005-2007 William C. Benton

Some classes correspond to 
abstract concepts.

18

(What are some example abstract concepts?)
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Some classes are actors, 
which manipulate instances of 

other concepts.
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(What are some examples?)
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Given a problem description, you 
should be able to choose classes 
by identifying relevant concepts.
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Is there a good, standard way to 
talk about these designs?
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UML

22

• Simple way to show classes and 
relationships between classes

• Describes all fields and methods 
declared in a class

• Describes relationships (dependence, 
aggregation, subtyping) between 
classes and interfaces



click()
reset()

count
Clicker

punchIn()
punchOut()
getSalary()
getHours()

name
clicker
salary

Usher

hireUsher()
fireUsher()

ushers[]
EmployeeDB

java.lang.String
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Not shown:
• + before public fields
• - before private fields
• static fields and methods 
should be underlined
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Basic UML
(subject to revision)

methods
fields
Class Name

Aggregator

Aggregated

Dependent

Class
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(See Chapter 17.1 for more!)
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A cohesive class is one that only 
implements a single concept.
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Cohesive or not?

30

• Coin class

• CashRegister class that knows about U.S. 
currencies (or “all major currencies”)

• Temperature class that includes 
getCelsius(), getFahrenheit() methods

• Email client that can install software on 
your computer

• Color class that knows about color spaces
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Homework exercise:  Find 
one example of a real-

world product that is not 
cohesive and email it to 

the class list.
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SideEffectTester:  
constructors

32



s

s = new SideEffectTester(3, 7, "foo");

s1

s2

pal

0x

0y

SideEffectTester
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s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester
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s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester

this.x = x;

this.y = y;

s1

s2

pal

3x

7y

SideEffectTester
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s

s

7y

3xthis

"foo"

s1

s2

pal

0x

0y

SideEffectTester

s1 = s;

s2 = s.toUpperCase();

s1

s2

pal

3x

7y

SideEffectTester

"FOO"

s

7y

3xthis

"foo"
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SideEffectTester solution

37



s1

s2

pal

5x

6y

SideEffectTester

s1

s2

pal

9x

8y

SideEffectTester

s1

s2

pal

3x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

after constructors

"fred"

"FRED"

"wilma"

"WILMA"

"barney"

"BARNEY"

"betty"

"BETTY"
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after rubbish() calls

s1
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5x

6y

SideEffectTester
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SideEffectTester

s1

s2

pal

3x

2y

SideEffectTester
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s2
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after mangle() calls

s1

s2

pal

4x

4y

SideEffectTester

s1

s2

pal

2x

2y

SideEffectTester

s1

s2

pal

4x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

"5"

"FRED"

"3"

"WILMA"

"betty"

"BETTY"

"barney"

"BARNEY"
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after kruftulate() calls

s1

s2

pal

4x

4y

SideEffectTester

s1

s2

pal

2x

2y

SideEffectTester

s1

s2

pal

4x

2y

SideEffectTester

s1

s2

pal

1x

4y

SideEffectTester

s1 s2 s3 s4

"FRED"

"WHAMMY"

"WILMA"

"betty"

"BETTY"

"PPS"

"BARNEY"
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Two classes are coupled if they 
must know about one another.
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Alternatively, a class is 
coupled to another if it 
depends on that class.
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Avoid excessive and 
bidirectional coupling.
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The vending machine

49

• Design the classes for a vending 
machine

• Holds cans of soft drink, keeps track of 
inventory

• Accepts fifty cents in currency

• Activates product selector when paid
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How do we evaluate 
a design?
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The vending machine

51

• Design the classes for a vending 
machine

• Holds cans of soft drink, keeps track of 
inventory

• Accepts fifty cents in currency

• Activates product selector when paid
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OK, but what about....

• Debit cards?

• Different product types?

• Temperature-controlled discounts?

• Is our design general enough to 
handle these cases?
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What makes for a 
good design?

53

Good designs enable 
future improvements.
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Wrap-up

54

• Read Alistair Cockburn’s “coffee 
machine problem” article

• http://tinyurl.com/faq7r

• Inspiration for vending machine problem

• Why doesn’t Cockburn like UML?  
Is this an inherent limitation of 
UML as we’ve used it?

http://tinyurl.com/faq7r
http://tinyurl.com/faq7r
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Any questions?
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So, how do we come up with 
a good design?

56

...and meet changing 
requirements? 

...and wind up producing 
a program that works?
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The software lifecycle is the 
“big picture” of software 

development.
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The software lifecycle
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• How do we go from an idea to a 
design to a working program?

• How do we think about this 
process?
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The “waterfall model” is an old 
way of looking at software.
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Analysis

Design

Implementation

Testing

Deployment
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What are the requirements?
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Deployment
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What are the requirements?

What classes do I need?
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Deployment
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What are the requirements?

What classes do I need?

How will I write the code?
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What are the requirements?

What classes do I need?

How will I write the code?

Does it work?
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What are the requirements?

What classes do I need?

How will I write the code?

Does it work?

Done!
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What’s wrong with this 
picture?
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(Indeed, the waterfall model was 
initially proposed as a straw man.)
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The spiral model applies the 
waterfall model iteratively, 

developing several prototypes.
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(Hopefully, these eventually 
result in a finished product.)
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Design

Implementation

Testing

Deployment

Analysis
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Design

Implementation

Testing

Deployment

Analysis

S
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Design

Implementation

Testing

Deployment

Analysis

2
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Design

Implementation

Testing

Deployment

Analysis

P
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What’s wrong with this 
picture?
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Any questions?
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Extreme programming seeks 
to solve the problems of 

traditional s/w dev.
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“Extreme?”
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Ideas

70

• Customers make business decisions.

• Tell “user stories” about how they’d like 
to use the program.

• Programmers make technical 
decisions.

• Make simple plans; fix these when 
inconsistent with state of world.
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XP ideas, cont’d

• Frequent releases

• Test-driven development

• Pair programming

• Refactoring

• See book by Martin Fowler -- v. useful!
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XP is not a panacea, but it is 
a collection of good ideas
(indeed, some are great).
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