
William C. Benton
University of Wisconsin

willb@cs.wisc.edu
http://pages.cs.wisc.edu/~willb/

On course materials
a workshop for L&S TA training

William C. Benton 2

About me

William C. Benton 3

This talk: “why” and “how”

William C. Benton 3

This talk: “why” and “how”
“why,” “what,” and “how”

William C. Benton

Why make course materials?

4

William C. Benton

Forecast

5

• When and how to use slides

• Why and how to make handouts

• How to make your life easier

• Teaching the Facebook generation

William C. Benton

Forecast

5

• When and how to use slides

• Why and how to make handouts

• How to make your life easier

• Teaching the Facebook generation

William C. Benton

What makes for good slides?

6

William C. Benton

What makes for bad slides?

7

• One characteristic of bad slides is that they often have too much
text or serve as an outline for a lazy speaker who has failed to
adequately prepare, meaning that the audience will be reading
instead of listening

• Also feature many sentence fragments

• Because font size is too small, readability suffers, key points not
reinforced, audience asleep

• Fortunately, you can print this out and read it later, gathering much
of benefit of attending talk

• Unfortunately, slides like this make you wonder why you are
bothering to attend the presentation in the first place

William C. Benton

Other kinds of bad slides?

• Sure!

• Many ways

• Too terse perhaps as bad as too
verbose

• Kind of too bad that “verbose” is on a line
by itself up there; is it lonely?

8

William C. Benton

Other kinds of bad slides? (ctd.)

• Does this help my presentation?

• Not really.

• Inconsistent punctuation is sort of fun

• What information do these slides
convey?

• Why aren’t these bullets in my notes?

9

William C. Benton

Trying to hide bad slides (2007)

10

hidden via nonsense left sadly unadorned

William C. Benton

Yikes!

11

William C. Benton

Bad slides are ubiquitous

12

(“credits”: OSHA, USDA, DOL)

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

A better model

13

William C. Benton

What should slides do?

14

William C. Benton

Case study: figures

15

William C. Benton 16

William C. Benton 16

DA-DA-DA

DAAAH!

William C. Benton 16

DA-DA-DA

DAAAH!

DUH-duh-duh

DUUUH!

William C. Benton 16

DA-DA-DA

DAAAH!

DUH-duh-duh

DUUUH!

BASSOONISTS

wake up here

William C. Benton 16

DA-DA-DA

DAAAH!

DUH-duh-duh

DUUUH!

BASSOONISTS

wake up here

William C. Benton

Case study: animated processes

17

public class Foo {
 private Foo f;
 private int k;

 public Foo(int k) {
 this.k = k;
 this.f = this;
 }

 public void sF(Foo f) {
 this.f = f;
 }

 public static void main(String args) {
 Foo f1, f2, f3, f4;
 f1 = new Foo(1);
 f2 = new Foo(2);
 f3 = new Foo(3);
 f4 = new Foo(4);

 f2.sF(f4);

 f4 = f1;
 // BANG
 }
}

f4

f1

f2

f3

Foo

f

k

public class Foo {
 private Foo f;
 private int k;

 public Foo(int k) {
 this.k = k;
 this.f = this;
 }

 public void sF(Foo f) {
 this.f = f;
 }

 public static void main(String args) {
 Foo f1, f2, f3, f4;
 f1 = new Foo(1);
 f2 = new Foo(2);
 f3 = new Foo(3);
 f4 = new Foo(4);

 f2.sF(f4);

 f4 = f1;
 // BANG
 }
}

f4

f1

f2

f3

Foo

f

k

f4

f1

f2

f3

Foo

f

1k

f4

f1

f2

f3

Foo

f

1k

Foo

f

2k

Foo

f

3k

Foo

f

4k

William C. Benton 19

What else are slides good for?

William C. Benton

Forecast

20

• When and how to use slides

• Why and how to make handouts

• How to make your life easier

• Teaching the Facebook generation

William C. Benton

One problem with slides

21

I can't see how you

expect me to learn if

you don't give me the

slides in advance.

William C. Benton 22

(Yes, this actually happened.)

William C. Benton

The dirty little secret...

23

...is that I don’t want to distribute my slides at all!

William C. Benton

The dirty little secret...

23

...is that I don’t want to distribute my slides at all!

William C. Benton

The dirty little secret...

23

...is that I don’t want to distribute my slides at all!

public class Foo {
 private Foo f;
 private int k;

 public Foo(int k) {
 this.k = k;
 this.f = this;
 }

 public void sF(Foo f) {
 this.f = f;
 }

 public static void main(String args) {
 Foo f1, f2, f3, f4;
 f1 = new Foo(1);
 f2 = new Foo(2);
 f3 = new Foo(3);
 f4 = new Foo(4);

 f2.sF(f4);

 f4 = f1;
 // BANG
 }
}

f4

f1

f2

f3

Foo

f

k

f4

f1

f2

f3

Foo

f

1k

f4

f1

f2

f3

Foo

f

1k

f4

f1

f2

f3

Foo

f

1k

f4

f1

f2

f3

Foo

f

1k

Foo

f

2k
f4

f1

f2

f3

Foo

f

1k

Foo

f

2k

Foo

f

3k

f4

f1

f2

f3

Foo

f

1k

Foo

f

2k

Foo

f

3k

Foo

f

4k

f4

f1

f2

f3

Foo

f

1k

Foo

f

2k

Foo

f

3k

Foo

f

4k

f4

f1

f2

f3

Foo

f

1k

Foo

f

2k

Foo

f

3k

Foo

f

4k

William C. Benton

The dirty little secret...

23

...is that I don’t want to distribute my slides at all!

William C. Benton

The quandary

24

William C. Benton

Handouts are the solution

25

William C. Benton

Handouts are the solution

25

William C. Benton

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

William C. Benton

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary
(*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

Handouts are the solution

25

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a
limited range for numbers
means you're going to risk

wrapping around to the
other end of the range.

The way that Java
represents

negative numbers

is called TWO's

COMPLEMENT

IN two's complement,
you negate a number by

complementing each

digit and adding one....

so if we're using 4-bit
numbers, what happens

when we add 1 to 7?

Overflow!

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

GLAD YOU
ASKED!

consider how you'd add
two numbers by hand:

you'd line up each pair of
digits, and then add a pair
at a time, carrying when

necessary

OK, I see that much.
But why do Java

integers wrap around

and become negative?

Shouldn't they become

0 instead?

(yeah, sure,
but I still
don't get

it.)

well, recall that the
range of integer

types in Java includes
negative numbers.

well, let's talk
about how Java

represents negative
numbers in binary;
that should clear

things up!

(like a video game)

We represent negative
numbers in decimal by

prefixing them with a - sign.
However, there's no place
for such a sign in a binary

number!

Can you
give me an
example?

sure!

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
of its type results in integer overflow. When this happens, the
value of the variable "wraps around" to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

This handout will explain why this happens. To do so, we'll first
need to consider how computers represent numbers. (If you find
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2. Humans typically
deal with numbers in decimal, or base-10. Both kinds of numbers have
"places," in which a digit denotes some quantity of a power of the base.
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483: 1 * 103 + 4 * 102 + 8 * 101 + 3 *

100. The binary number has the value 11: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b
is the base.

in this example, we
needed an extra

"place". Remember,
though, that in an n-
bit integer, you only

have n places!

WHAT DOES THIS

BINARY STUFF HAVE

TO DO WITH

OVERFLOW?

GLAD YOU
ASKED!

consider how you'd add

two numbers by hand:

you'd line up each pair of
digits, and then add a pair

at a time, carrying when

necessary (*addition basically works

the same way in binary.)

9999
+ 1

10000
9999
+ 1

0000
(!!!)

copyright notice identifying information for this file

Short but descriptive title
your contact information

copyright notice identifying information for this file

Short but descriptive title
your contact information

copyright notice identifying information for this file

Short but descriptive title
your contact information

copyright notice identifying information for this file

Short but descriptive title
your contact information

copyright notice identifying information for this file

Short but descriptive title
your contact information

copyright notice identifying information for this file

Short but descriptive title
your contact information

See The anatomy of a simple handout for more

William C. Benton

“I’m already overworked.”

27

OK, that handout is
fine. Now can I have

the powerpoints?

William C. Benton 28

William C. Benton

Forecast

29

• When and how to use slides

• Why and how to make handouts

• How to make your life easier

• Teaching the Facebook generation

William C. Benton

Learn the software

30

William C. Benton

Build your own templates

31

William C. Benton

Use “variables”

32

William C. Benton

Your favorite tip here....

33

William C. Benton

Forecast

34

• When and how to use slides

• Why and how to make handouts

• How to make your life easier

• Teaching the Facebook generation

William C. Benton

Technology and experience

35

