Why handouts?

handout for L&S TA training by Will Benton (willb@acm.org)

Why make handouts, you might ask, when I could just distribute my
slides? Given the number of students who seem to demand
hardcopy slides each term, this is an excellent question. I hope
this handout will answer it to some extent.

I have included miniatures of three of my handouts from
computer science courses on this page. (Notice that not every
page follows my Anatomy of a simple handout.) 1 don't expect that
you'll be interested in reading the actual content of these
handouts; rather, I want you to glance at these to get an idea
about how much information each can contain. Each also
presents a prototype for a different kind of instructional
handout: a dialogue, a comic strip, and an annotated figure.

Of course, you could simply make bad slides: put paragraphs of
text on each, read every word, and use extremely small type so
that you can fit more "stuff" on each slide. (Please don't do
this!) Instead, you should use the strengths of slides and
handouts to complement your presentations in different ways.

Primitive vs. reference types What is the result of the statementa = a + 1; 7 | Itincrements the value stored in a by 1
handout for CS 302 by Will Benton (willb@cs) :

What would happen if I added the above statement a would contain the value 5 before that statement executed
Eesallibatialos publaisauaned s soreanalug to the program at the point marked P1? and 6 afterwards. Note that the value of b would not change.
and that every variable has a type, or range of values

that it may hold.

What kind of variable is w? i wisareference variable. Do you know how to tell?

Some types are called primitive types. These types are

e s, Well, I know it is of type Integer, and that'snota | Yes, and the value that w gets is construeted with operator
Sy itractos char) ot valics primitive type. v hich alvays returnsa reference. 1sthere st another

(boolean). A variable with a primitive type
contains a value within the range of that :
primitive type. Yes! Since Integer is capitalized, I can be pretty ‘That's right! Of course, you know that Integer is a type

sure that it i a class name, as long as the | because of where it appears in the line of code. You know
G i sl s, Wi programmer s following the Java raming i thatitisn'ta primitive type, since there are only a few of

d ot trying to trick me. those to remember; and you know it's not an array, since we
e o o 7) haven'tlearned about them yet. Therefore, even if the
Reference types are so called because a variable with a | Drogrammer is being deliberatly trcky, we can be fairly

reference type il cotain reference to (o address o) et hat Integer ioa reference type, and that varable
an object. A variable with a reference type wil i oftype Integer holds a reference to an object.
contain a reference to a particular kind of object
orarray. Note that such a variable will not
contain an actual object or array.

What is the value of w? © W contains a reference to an Integer object.

‘Think about why this difference is important. Why d "
e e s e e R DA No, seriously, what i the value of w | Seriously, u contains a reference to an Integer object. The
actual objects? particular Integer object that w contains a reference to

i "wraps” (or represents) the value

The dialogue at right refers to the
following program fragment:

Yikes! How can we notate that? Java often use iag:
© Halk about abjects, references, and variables
vint a !
vint b = a; :

e | [|
new Integer(a); : L]

‘Can you show me an example? © Sure. This diagram shows the value of w after it's initialized:

tInteger w =
iInteger x = w; i || “Tassume that the diagram means that w pointsto* You assume correctly! The ellipsis is just there to save space.
EEYRY t|| aninstance o class Integer. What's upwiththe i Usually when we make a memory diagram, we'll show the
: U etipsis? Areyou hiding details from me? | instance fields of each individual object. In this case, we
: don'tknow what the instance felds of Integer are, but we
iClicker ¢ = new Clicker(); i have anidea that the Integer pointed to by w might "wrap
: : ! the int value 5.
iClicker d = new Clicker(); H
iClicker e = c; i Whatis the result of the statement ! Ttdeclares a new variable of type Integer called x
L/ p3 %/ : Integer x = | Furthermore, it initializes x to contain the same value as that
: : i storedinw.
i n "
Why integer overflow "wraps around e poes TS

9999
+ 1

10000

handout for CS 302 by Will Benton (willb@cs)

‘The whole-number types in Java (e.g. int, long, etc.) have
limited ranges. Of course, any type representable in a finite
computer has a limited range, but you're likely to actually run
into the limits of the Java primitive types before you have to deal
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range
ofits type results in integer overflow. When this happens, the
value of the variable "wraps around” to the opposite end of the
range, just as a classic video game character might wrap around
to the other side of the screen upon crossing an edge.

‘This handout will explain why this happens. To do so, we'llfirst
need to consider how computers represent numbers. (If you find

this interesting, you'll enjoy a computer class!)
£ voU CAN SEE, HAVING A
Computers rep in binary, or base-=. LIATED BANGE FOR NLMBERS
deal ith numbersin decimal, o base-10. Both Kinds of numbersave | | 223 YOURE 6oie 70 Bisk
"places,” in which a digit denotes some quanity of a power of the base. STHER BN 67 THE B
Let's examine two different four-digit numbers to see the difference: N T0s CompLamE
rou NEaaTE A NuMBER BY
coMPLEMENTING 2ach
i o s A, N
== 0111,
] — Ty == 1001,
(3 B B - 10
CoNoTE THAT TS AL AN -
7 NuBeR 75 ASSUE A easE
. OF VAL PR 22N 76 SENL)
coceseo S5 WERE 1SNE T8
g O imzes, Wit Horrens
H WHEN WE ADD 170 77
“The decimal mumber has the value 1483: 1107 + 4 10° + 8% 101 + 3%
10°. ‘The binary number has the value 11: 123+ 0% 2641721 +1% 2, 0111
Note that with n bits, you can represent a number up to b" - 1, where b @' oiee L2 + 0001 }__
is the base. H
(ke a viDED SanE) 10004 overreow:

‘Copyright © 2007 Wi . Benton

Copyright © 2005-2007 Will C. Benton

The edit-compile-test cycle
handout for CS 302 by Will Benton (willb@cs)

“The edit-compile-test yele is the process by which programmers
iteratively remove errors from their programs.

EDIT: A programmer writes source code
(human-readable program text) in an editor.

COMPILE: She then uses a compiler to translate TEST: Programmers must ensure that a
the human eadable soure code oto machine- | complled program betoves propery. Testing

ble class fils. 1f th typically different parts of the
errors the traslation will fail, and the program to find run-time errors. If testing
programmer will have to resume editing to exposes run-time errors, then the programmer
correct the errors. must edit the program again. (Note, however,

that absence of evidence does not constitute

\entesamd modifessorce evidence of absence: a program that passes all of

“ode les) its tests may still exhibit run-time errors.)

Text editor

Java compiler

Compiled
program

(class files)

Program source

(Java fles)

Javavm

(exacutes clas les;runs.
rogram)

Working
program!

Now that we've seen some handouts, let's consider slides.
Beneath this text I have reproduced a typical slide from a US
OSHA presentation. How much useful information can a slide
convey? Is a slide really a helpful artifact for further study?

Engineering and Work
Practice Controls (con’t)

The employer must:

— Train employees to use new devices and/or
procedures

— Document in ECP

source: http://www.osha.gov/dcsp/ote/library/bloodborne/revised_bbp_standard/slide29.html

In addition to being only sparsely populated with information,
the slide above has some other troublesome symptoms.
Superficially, it is unattractive. (Sadly, most slide software does
not provide adequate support for layout and design.) More
functionally, its text appears to be intended for the benefit of
the speaker rather than for the benefit of the audience. The
appropriate place for an outline is in the speaker's private notes
(or, ideally, in his or her memory); putting notes on the screen
merely invites the audience to read instead of listening.

Slides should not merely be an outline or a standalone list of
bullet points: they should serve and complement an existing
presentation. Given the constraints of the slide medium, it is
simply not possible for a slide to include as much information
as a printed page. Therefore, you should make handouts to
serve as durable reinforcements of the concepts you cover in a
lecture or presentation, and design slides to support and
illustrate your talk as it occurs.

why-handouts2.graffle: Created on Mon Aug 27 2007; modified on Mon Aug 27 2007; page 1 of 1

