
Why handouts?
handout for L&S TA training by Will Benton (willb@acm.org)

why-handouts2.graffle: Created on Mon Aug 27 2007; modified on Mon Aug 27 2007; page 1 of 1Copyright © 2005-2007  Will C. Benton

Why make handouts, you might ask, when I could just distribute my 
slides?   Given the number of students who seem to demand 
hardcopy slides each term, this is an excellent question.  I hope 
this handout will answer it to some extent.  

I have included miniatures of three of my handouts from 
computer science courses on this page.  (Notice that not every 
page follows my Anatomy of a simple handout.)  I don't expect that 
you'll be interested in reading the actual content of these 
handouts; rather, I want you to glance at these to get an idea 
about how much information  each can contain.  Each also 
presents a prototype for a different kind of instructional 
handout:  a dialogue, a comic strip, and an annotated figure.

Of course, you could simply make bad slides:  put paragraphs of 
text on each, read every word, and use extremely small type so 
that you can fit more "stuff" on each slide.  (Please don't do 
this!) Instead, you should use the strengths of slides and 
handouts to complement your presentations in different ways.

Now that we've seen some handouts, let's consider slides.  
Beneath this text I have reproduced a typical slide from a US 
OSHA presentation.  How much useful information can a slide 
convey?  Is a slide really a helpful artifact for further study?

Primitive vs. reference types
handout for CS 302 by Will Benton (willb@cs)

Recall that a variable is a named place to store a value, 
and that every variable has a type, or range of values 
that it may hold.  

Some types are called primitive types.  These types are 
built in to the Java language and encompass ranges of 
whole numbers (int, long, short, and byte), 
numbers with fractional parts (float and double), 
individual characters (char), and truth values 
(boolean).  A variable with a primitive type 
contains a value within the range of that 
primitive type.

Some other types are called reference types.  Reference 
types include class types, interface types (discussed in 
chapter 9), and array types (discussed in chapter 7).  
Reference types are so called because a variable with a 
reference type will contain a reference to (or address of) 
an object.  A variable with a reference type will 
contain a reference to a particular kind of object 
or array.  Note that such a variable will not 
contain an actual object or array.

Think about why this difference is important.  Why do 
reference variables hold references to objects instead of 
actual objects?

int a = 5;

int b = a;

/* P1 */

Integer w = new Integer(a);

Integer x = w;

/* P2 */

Clicker c = new Clicker();

Clicker d = new Clicker();

Clicker e = c;

/* P3 */

The dialogue at right refers to the 
following program fragment:

What is the result of the statement a = a + 1; ? It increments the value stored in a by 1.

What would happen if I added the above statement 
to the program at the point marked P1?

a would contain the value 5 before that statement executed 
and 6 afterwards.  Note that the value of b would not change.

w is a reference variable.  Do you know how to tell?What kind of variable is w?

Yes, and the value that w gets is constructed with operator 
new, which always returns a reference.  Is there still another 
way to tell?

Well, I know it is of type Integer, and that's not a 
primitive type.

Yes!  Since Integer is capitalized, I can be pretty 
sure that it is a class name, as long as the 
programmer is following the Java naming 
conventions and not trying to trick me.

That's right!  Of course, you know that Integer is a type 
because of where it appears in the line of code.  You know 
that it isn't a primitive type, since there are only a few of 
those to remember; and you know it's not an array, since we 
haven't learned about them yet.  Therefore, even if the 
programmer is being deliberately tricky, we can be fairly 
certain that Integer is a reference type, and that a variable 
of type Integer holds a reference to an object.

What is the value of w? w contains a reference to an Integer object. 

No, seriously, what is the value of w? Seriously, w contains a reference to an Integer object.  The 
particular Integer object that w contains a reference to 
"wraps" (or represents) the value 5.

Yikes!  How can we notate that? Java programmers will often use memory diagrams to 
talk about objects, references, and variables.

Can you show me an example? Sure.  This diagram shows the value of w after it's initialized:

w Integer

...

I assume that the diagram means that w points to 
an instance of class Integer.  What's up with the 
ellipsis?  Are you hiding details from me?

You assume correctly!  The ellipsis is just there to save space.  
Usually when we make a memory diagram, we'll show the 
instance fields of each individual object.  In this case, we 
don't know what the instance fields of Integer are, but we 
have an idea that the Integer pointed to by w might "wrap"  
the int value 5.

What is the result of the statement 
    Integer x = w; ?

It declares a new variable of type Integer called x.  
Furthermore, it initializes x to contain the same value as that 
stored in w.

primitive-vs-reference.graffle: Created on Sun Jun 25 2006; modified on Fri Jun 22 2007; page 1 of 2

testcompileedit

edit-compile-test-summer2k6.2.graffle: Created on Mon Jun 19 2006; modified on Tue Jun 19 2007

The edit-compile-test cycle
handout for CS 302 by Will Benton (willb@cs)

Java compiler

(translates from human-readable source 
code to machine-readable JVM code)

Text editor

(creates and modifies source 
code files)

Compiled 
program

(.java files)

Compiled 
program

(.java files)

Compiled 
program

(.class files)
Program source 

code

(.java files)

Program source 
code

(.java files)

Program source 
code

(.java files)

Java VM

(executes .class files; "runs 
program")

If there are any compile-time 
errors, the compiler will reject the 
.java file; in this case, you'll have 

to fix the errors.

Fix any run-
time errors.

Working 
program!

No compile-
time errors?

produces

compiled by

executed by

No run-time 
errors?

!e edit-compile-test cycle is the process by which programmers 
iteratively remove errors from their programs.

EDIT:  A programmer writes source code 
(human-readable program text) in an editor.

TEST:  Programmers must ensure that a 
compiled program behaves properly.  Testing 
typically involves exercising different parts of the 
program to find run-time errors.  If testing 
exposes run-time errors, then the programmer 
must edit the program again.   (Note, however, 
that absence of evidence does not constitute 
evidence of absence:  a program that passes all of 
its tests may still exhibit run-time errors.)

COMPILE:  She then uses a compiler to translate 
the human-readable source code into machine-
readable .class files.  If there are compile-time 
errors, the translation will fail, and the 
programmer will have to resume editing to 
correct the errors.

Compiled 
program

(.java files)

Compiled 
program

(.java files)

Compiled 
libraries

(.class files, written 
by other 

programmers)

-9999

0111

+ 0001

1000

710 == 01112

-710 == 10012

-810 == 10002

as you can see, having a 
limited range for numbers 
means you're going to risk 

wrapping around to the 
other end of the range.

The way that Java 
represents 

negative numbers 

is called TWO's 

COMPLEMENT

IN two's complement, 
you negate a number by 

complementing each 

digit and adding one....

so if we're using 4-bit 
numbers, what happens 

when we add 1 to 7?

Overflow!

GLAD YOU 
ASKED!

consider how you'd add 
two numbers by hand:  

you'd line up each pair of 
digits, and then add a pair 
at a time, carrying when 

necessary

GLAD YOU 
ASKED!

consider how you'd add 
two numbers by hand:  

you'd line up each pair of 
digits, and then add a pair 
at a time, carrying when 

necessary

OK, I see that much.  
But why do Java 

integers wrap around 

and become negative?  

Shouldn't they become 

0 instead?

(yeah, sure, 
but I still 
don't get 

it.)

well, recall that the 
range of integer 

types in Java includes 
negative numbers.

well, let's talk 
about how Java 

represents negative 
numbers in binary; 
that should clear 

things up!

(like a video game)

We represent negative 
numbers in decimal by 

prefixing them with a - sign.  
However, there's no place 
for such a sign in a binary 

number!

Can you 
give me an 
example?

sure!

(*Note that this allows an n-
bit number to assume a range 
of values from -2^N to +2^N-1.)

(*Note that this allows an n-
bit number to assume a range 
of values from -2^N to +2^N-1.)

Why integer overflow "wraps around"
handout for CS 302 by Will Benton (willb@cs)

why-integer-overflow-cl.graffle: Created on Fri Feb 16 2007; modified on Sun Feb 18 2007; page 1 of 1Copyright © 2007 Will C. Benton

The whole-number types in Java (e.g. int, long, etc.) have 
limited ranges.  Of course, any type representable in a finite 
computer has a limited range, but you're likely to actually run 
into the limits of the Java primitive types before you have to deal 
with a number that you can't represent on a computer.

Manipulating a variable so that its value would exceed the range 
of its type results in integer overflow.  When this happens, the 
value of the variable "wraps around" to the opposite end of the 
range, just as a classic video game character might wrap around 
to the other side of the screen upon crossing an edge.

This handout will explain why this happens.  To do so, we'll first 
need to consider how computers represent numbers.  (If you find 
this interesting, you'll enjoy a computer organization class!)

Computers represent numbers in binary, or base-2.  Humans typically 
deal with numbers in decimal, or base-10.  Both kinds of numbers have 
"places," in which a digit denotes some quantity of a power of the base.  
Let's examine two different four-digit numbers to see the difference:

3841 decimal

1101 binary

100101102103

20212223

The decimal number has the value 1483:  1 * 103 + 4 * 102 + 8 * 101 + 3 * 

100.  The binary number has the value 11:  1 * 23 + 0 * 22 + 1 * 21 + 1 * 20.

Note that with n bits, you can represent a number up to bn - 1, where b 
is the base.

in this example, we 
needed an extra 

"place".  Remember, 
though, that in an n-
bit integer, you only 

have n places!

WHAT DOES THIS 

BINARY STUFF HAVE 

TO DO WITH 

OVERFLOW?

GLAD YOU 
ASKED!

consider how you'd add 

two numbers by hand:  

you'd line up each pair of 
digits, and then add a pair 

at a time, carrying when 

necessary
(*addition basically works 

the same way in binary.)

9999
+  1

10000
9999
+  1

0000
(!!!)

 source:  http://www.osha.gov/dcsp/ote/library/bloodborne/revised_bbp_standard/slide29.html

In addition to being only sparsely populated with information, 
the slide above has some other troublesome symptoms.  
Superficially, it is unattractive.  (Sadly, most slide so"ware does 
not provide adequate support for layout and design.)  More 
functionally, its text appears to be intended for the benefit of 
the speaker rather than for the benefit of the audience.  #e 
appropriate place for an outline is in the speaker's private notes 
(or, ideally, in his or her memory); putting notes on the screen 
merely invites the audience to read instead of listening.

Slides should not merely be an outline or a standalone list of 
bullet points:  they should serve and complement an existing 
presentation. Given the constraints of the slide medium, it is 
simply not possible for a slide to include as much information 
as a printed page.  #erefore, you should make handouts to 
serve as durable reinforcements of the concepts you cover in a 
lecture or presentation, and design slides to support and 
illustrate your talk as it occurs.


