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Abstract. We present a lightweight type-and-effect system for Java
programs that features two major innovations over extant object-oriented
effects systems: initialization effects, which are writes to an object’s state
while it is being constructed, and quiescing fields, which are fields that
are never written after an object is constructed. We also present a novel
taxonomy of degrees of method purity in object-oriented programs, which
characterizes methods whose effects are confined to their receiver object.
Finally, we find significant amounts of mostly-functional behavior in
realistic Java programs: in the benchmarks we analyzed, between 48–53%
of declared fields were identifiable as quiescing and between 24–78% of
dynamic field reads were from quiescing fields.
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1 Introduction

Effect systems extend classical type systems with information about the com-
putational effects exhibited by expressions, statements, and methods. Just as
type signatures characterize the range of values an expression may assume, effect
signatures can provide concise, useful summaries of the potential effects of a
particular method invocation. Because of this capability, effect systems currently
enjoy widespread application in several problem domains, including program
analysis, semantics-preserving program transformation, software understanding,
verification, and compile-time memory management.

In this paper, we present two innovations that can increase the expressivity
and precision of effect signatures. Initialization effects are writes that occur to
the state of an object while it is being constructed but before it is available
to the rest of the program; quiescing fields are instance variables of an object
whose values remain constant after its constructor returns. We present these in
the context of a fairly simple effects system for Java, but these novel features
are based on concepts orthogonal to the underlying effects system and could be
adapted to more expressive systems.

We also present a notion of function purity that exploits the engineering
properties of object-oriented programs: namely, that mutable state is typically
accessed through the interface of the object that contains it. We describe instance
? Current affiliation: Red Hat, Inc. and University of Wisconsin–Madison
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methods that are pure with respect to all mutable state outside of their receiver
object as externally pure; we refer to methods that may read (but not write)
external mutable state as externally read-only.

Perhaps most surprisingly, we show that realistic Java programs exhibit a
substantial degree of mostly-functional behavior. “Mostly-functional,” as coined
by Knight [1], describes a programming discipline in which the presence and
extent of computational effects are limited as much as possible. In the context
of Java, this includes both accesses to quiescing fields — which are read-only
after the object is available to the rest of the program — and the prevalence of
externally-pure and externally read-only methods, whose updates to mutable
state are only visible via an object’s interface.

These results have several consequences for program analysis, verification,
and understanding. Annotations on (externally-) pure or read-only methods aid
interprocedural dependence analysis, serve as part of a method’s specification,
and provide documentation to human programmers. Furthermore, some such
methods may be amenable to aggressive code scheduling optimizations, including
asynchronous execution on multicore processors.

1.1 Overview

In the remainder of this paper, we will introduce object-oriented effects systems
(Section 3) and present the simple effects system and inference rules for Java
that will form the basis for our subsequent developments (Section 3.2). After this
preliminary discussion, we shall introduce our major contributions:

1. The concept of initialization effects, which are writes that occur to a field of
an object while it is being constructed, and rules to infer these (Section 4);

2. The concept of quiescing fields, which are never written after their containing
object is constructed, and a rule to infer such fields (Section 5); and

3. A novel taxonomy of degrees of method purity, which extend conventional
definitions of function purity to account for methods whose effects are confined
to their receiver object (Section 6).

We conclude by placing our work in the context of related research efforts
(Section 7) and suggesting future investigations.

2 Evaluation Infrastructure

We evaluated the applicability and feasibility of our extensions to effect systems by
identifying the static and dynamic prevalence of quiescent fields in Java programs
selected from the DaCapo benchmark suite [2] and by characterizing the purity
of the methods in these programs. The characteristics of the benchmarks we used
as inputs for our analyses are given in Figure 1; note that these counts include
reachable library classes.

We analyzed these programs with version 0.92 of the GNU Classpath library,
using the Soot compiler framework [3] and the dimple+ version of our dimple
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static analysis tool [4], running on version 5.1.3 of the Yap Prolog system [5]. We
timed our analyses by running them on one core of a 2 ghz Opteron workstation
with 16 gb of ram. Finally, we evaluated the dynamic prevalence of quiescing
fields by instrumenting the Jikes rvm to record effects on instance fields.

Program Statements Classes Fields Methods

antlr 1390456 3729 14082 32709
bloat 1413919 3827 14524 33609
eclipse 1384719 3895 15161 33408
hsqldb 1593586 4190 17566 38504
jython 1452433 4058 14737 35604
luindex 1350107 3903 14511 32759
pmd 1509108 4265 15489 36393

Fig. 1. Characteristics of the benchmark programs and transitively reachable library
code, including total statement counts, number of analyzed classes, and numbers of
declared fields and methods

3 Effects and Objects

Type-and-effect systems [6] extend classical type systems so that they characterize
not only the values that expressions may assume but also the computational
effects (reads or writes to shared state) exhibited by evaluating expressions or
executing statements and the (abstract) regions of the store in which these effects
might occur. Lucassen and Gifford’s original work on effects systems focused on
finding expressions with noninterfering effects in ML-family languages for parallel
scheduling, but effects systems have since found a wide range of applications,
some of which we review in Section 7.

3.1 Background

Greenhouse and Boyland [7] developed an effects system for object-oriented
languages like Java. Their effects system describes read and write effects that
may occur in a hierarchy of regions:

1. The global region All contains all mutable state for an entire program,
2. All contains static regions that model the state of static fields and instance

regions that contain part or all of the state of individual objects (an object
may have several instance regions), and

3. individual instance regions contain regions corresponding to the state of
individual instance fields.

The state of an object may contain the entire state of another object as part of
its internal representation. For example, a dictionary object may contain a search
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tree object that is only accessible from the instance methods of the dictionary
object. To address this possibility, Greenhouse and Boyland also provide an
unshared annotation on reference-valued fields. This annotation indicates that
any object referred to by an unshared field may only be referred to by that field
and thus may be considered logically part of the state of its containing object.

Greenhouse and Boyland present an intraprocedural algorithm to check user-
provided effects signatures of methods and to check user-provided unshared
annotations on object fields, but they do not present an algorithm for recon-
structing effect, region, and sharing information for unannotated programs.

3.2 A Lightweight Object-Oriented Effects System

We now present a straightforward effects system and inference algorithm for
Java programs. This system is based on that of Greenhouse and Boyland and
is deliberately simple in order to clarify subsequent presentation of our novel
techniques. While this system is not intended to be particularly sophisticated,
our contributions are easily adaptable to more expressive effects systems.

Relation Description

formal(l, i,m) Holds when local l respresents the formal parameter at position i
(either this or a natural number) in method m.

actual(s, l, i) Holds when statement s invokes some method with local l as the
actual parameter at position i.

assign(ll, lr) Holds when the assignment ll = lr occurs in the program.
load(s, l, lh, κ.ν) Holds when a heap load statement s reads the value of the κ.ν

field from the object referred to by lh and copies it to l.
store(s, lh, κ.ν, l) Holds when a heap store statement s replaces the value of the κ.ν

field in the object referred to by lh with the value of l.
pt(l, O) Holds when O is the set of abstract objects possibly aliased by l.
s ∈ m Holds when statement s is part of method body m.
s→ m Holds when statement s contains a call that may select m, that is,

if there is an edge from s to m in the call graph.

Fig. 2. Intermediate representation for simple object-oriented effects inference

We assume that the Java bytecodes of an input program and its libraries have
been preprocessed to generate a conservative approximation of the call graph,
a conservative may-alias relation, and the intermediate representation given in
Figure 2. In Figure 2, metavariables beginning with s range over statements; S
over sets of statements, l over local variables; τ over types; κ over class names;
and ν over field names. (We also follow the convention that metavariables with
distinct subscripts are assumed to refer to distinct object-level entities.) Note
that, as in Java bytecodes, all field names are qualified with the name of their
declaring class. Following Greenhouse and Boyland, we treat array loads and
stores as accesses to a special field called []. We treat static field loads and
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stores as accesses to instance fields of a distinguished local lω; since we record
the declaring class and field name of all field accesses, this sacrifices no precision.

The effects annotation on some statement, ϕ(s), consists of read and write
sets of abstract locations. Abstract locations denote sets of concrete locations in
which an effect may occur and consist of a pair 〈ρ, κ.ν〉, where ρ is an abstract
region in which an effect may occur and κ.ν describes a field reference qualified
by the declaring class of the field. (Because Java is a typed language, a given
heap location may be referred to by exactly one kind of field reference.)

Abstract regions consist of (possibly-empty) sets of abstract object identifiers
(as given by the may-alias relation pt), the distinguished abstract region >, which
includes all possible abstract object identifiers, or special region variables ρthis
or ρ0···n denoting the regions reachable from formal parameters; these variables
are used to expand method summaries at call sites. In this simple system, we
summarize the effects of methods on objects referred to by their parameters but
lose precision for objects reachable from the fields of method parameters.

Effect annotations, as pairs of sets, form a semilattice. The join of two effect
annotations consists of the read set of abstract locations formed by unifying
the read sets from each annotation and the write set formed by unifying the
write sets from each annotation. Unifying two sets of abstract locations A1 and
A2, as in a read or write set, proceeds as follows.

Divide each set Ai into the two disjoint sets Vi and Ci so that Vi is the set of
all abstract locations from Ai whose regions are region variables, so that Ci is
the set of all abstract locations from Ai whose regions are sets of abstract object
identifiers or >, and so that Vi ∪ Ci = Ai. V1 t V2 is defined simply as the union
of the two sets. C1 t C2 consists of the union of the following:

1. The set of locations whose field identifiers appear in C1 or C2, but not both:

{〈ρ, κ.ν〉 : (〈ρ, κ.ν〉 ∈ C1∧¬∃〈ρ′, κ.ν〉 ∈ C2)∨(〈ρ, κ.ν〉 ∈ C2∧¬∃〈ρ′, κ.ν〉 ∈ C1)}

2. The set of locations formed by unifying the regions of each abstract location
whose field identifier appears in C1 and C2:

{〈ρ ∪ ρ′, κ.ν〉 : 〈ρ, κ.ν〉 ∈ C1 ∧ 〈ρ′, κ.ν〉 ∈ C2}

We can then define A1 t A2 as V1 ∪ V2 ∪ (C1 t C2).
We present the effects inference rules in Figure 3. The relation rpt relates a

local variable to its associated region: a region variable for formal parameters, the
global region > for globals, and the set of abstract objects aliased by the local in
other cases. The rules read and write, which establish lower bounds on the
effect annotations for load and store statements, are straightforward. summary
gives the annotation summary for a method body; it is this summary that is
instantiated at call sites.

The function pmap transforms effects annotations by substituting regions (or
region variables) for region variables in a method summary at the point of a call
to that method. pmap replaces every region variable with the region variable or
explicit region associated with the local of the corresponding actual parameter,
as given by the rpt relation.
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r-formal
formal(l, i,m)

rpt(l, ρi)

r-global

rpt(lω,>)

r-other
l 6= lω ¬formal(l, i,m) pt(l, ρ)

rpt(l, ρ)

read
load(s, l, lh, κ.ν) rpt(lh, ρ)
ϕ(s) w read : {〈ρ, κ.ν〉}〉

write
store(s, lh, κ.ν, l) rpt(lh, ρ)
ϕ(s) w write : {〈ρ, κ.ν〉}〉

summary
s0, · · · , sn ∈ m

ϕ(m) w ϕ(s0) t · · · t ϕ(sn)

call
s→ m′

ϕ(s) w pmap(s, ϕ(m′))

Fig. 3. Lightweight effects inference rules

4 Initializers and Initialization Effects

Type-and-effect systems identify read and write effects that code may exhibit
upon shared state. (Some, but not all, type-and-effect systems also identify
additional effects, such as allocation, exception raising, or taking references.)
If the goal of effect systems is to identify potentially interfering computational
effects, this taxonomy is rather impoverished: it does not identify initializations,
which are a special kind of write that will not interfere with any other effects.

4.1 Background and Definitions

We will introduce the notion of initializations with a simple example, but first
we provide some background on some properties of Java programs and objects.

Java objects are created via the new operator, which performs three tasks
before returning a reference to the newly-allocated object: memory allocation,
zero-filling object fields, and constructor method invocation. Constructors may
invoke other constructors declared in the same class (via the this() syntax) or in
superclasses (implicitly or explicitly via the super() syntax), but there is no way
to invoke a constructor on an object after the dynamic lifetime of its constructor
invocation completes. There is also no way to create and use an object without
invoking its constructor. (This is the case in Java source because new, which is
the only way to create an object, includes both object allocation and constructor
invocation. These tasks correspond to distinct Java bytecode instructions – new
and invokespecial – but the Java Virtual Machine will signal an error if code
attempts to access an object that has been allocated but not constructed.) As a
consequence, each object will be constructed exactly once before it is accessible
to the code that created it.

Consider the String class in the Java standard library. String is an immutable
class; once an instance of String has been created, its contents cannot be modified.
A constructor for the String class, in setting up the state of an individual instance,
will exhibit write effects on that object’s fields. However, these write effects
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will never interfere with other effects, since the only write effects on a String
will occur during its constructor and the code that creates a String will not be
able to read its state until after the constructor completes.

Immutable classes present an extreme example, but write effects on an object
— even a mutable one — by its constructor will not interfere with other effects on
that object that occur after the constructor completes. Classical type-and-effect
systems do not discriminate between writes that occur to an object during its
constructor and writes that occur after an object creation has completed. Such a
system may spuriously identify write effects occurring on an object during its
creation as interfering with write effects occurring on that object (or on other
objects) that have already been created.

We will present a way to discriminate between write effects to objects that
have been created and initializations, which are writes that occur to an object
while it is being constructed. However, we will first introduce the notion of an
initializer method and present a algorithm for identifying which methods are
initializers for given objects.

4.2 Initializer Methods

Informally, an initializer method (or simply an initializer) on some object o is a
method that executes on o during the dynamic lifetime of its constructor. Since
we would like to use the notion of initializer methods to identify write effects
that are guaranteed to occur on an object while it is being constructed, we are
not interested in any method that merely may initialize part of an object’s state;
rather, we are interested in methods that may only execute on an object during
the dynamic lifetime of its constructor.

If we can assume a closed world, we can identify such methods with a simple
extension to a conservative static approximation of the program’s call graph. We
define the receiver-sensitive call graph (rscg) as a set M of nodes corresponding
to method bodies, a distinguished start node mmain ∈M , and a set C of labeled
call-site edges. An edge is of the form m →ρ m

′, indicating that m contains a
call site that may transfer control to the beginning of m′ with a receiver of ρ,
which is either this, indicating that m′ is an instance method that is invoked on
the same object as m, or >, indicating that m′ may be invoked on some other
method or is not an instance method.

We can thus define a conservative overapproximation of the initializer methods
in a program inductively as follows:

1. m is an initializer on o if m is a constructor that may be executed on o (that
is, a constructor declared in the class of o or in one of its superclasses).

2. m is an initializer on o if every edge to m in the rscg is this-labeled and
originates from an initializer on o.

In the remainder of this paper we will assume a closed world. We note,
however, that this technique is still applicable in an open-world situation — that
is, in which the entire program and libraries are not available to be analyzed. It
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is still possible to identify initializers in an open world as long as the rscg is
constructed in such a way as to include conservative, sound assumptions about
open parts of the program. For example, private methods could still soundly
be identified as initializers even in an open world, since they can only be invoked
from within their declaring class.

4.3 Initialization effects

An initialization effect is a write to an object’s state that occurs during the
dynamic lifetime of its constructor. Since we have already defined an initializer
on some object o as a method that is only transitively invoked through zero or
more this-edges in the rscg from a constructor on o, we can identify initialization
effects rather straightforwardly: An initialization effect is a write effect that
occurs from within an initializer and on some field of its receiver. We denote
sets of initialization effects as an init set in an effects annotation and present
updated inference rules for initializer methods and for write and init effects in
Figure 4. (The write rule from Figure 4 supercedes that from Figure 3.)

imeth-immed
m is a constructor

imeth(m)

imeth-trans
(∀m′, ρ)m′ →ρ m |= imeth(m′) ∧ ρ = ρthis

imeth(m)

write
store(s, lh, κ.ν, l) rpt(lh, ρ)

s ∈ m ¬(ρ = ρthis ∧ imeth(m)))
ϕ(s) w write : {〈ρ, κ.ν〉}〉

init
store(s, lh, κ.ν, l) s ∈ m
imeth(m) rpt(lh, ρthis)
ϕ(s) w init : {〈ρthis, κ.ν〉}〉

Fig. 4. Inference rules for initialization methods and initializer effects

If we can assume that an object will not be used until after the dynamic
lifetime of its constructor, then we can guarantee that a method exhibiting
init effects in some region ρ will not interfere with methods exhibiting other
effects in ρ. This assumption, that uses of an object o by code outside of its
constructor will come strictly after the dynamic lifetime of its constructor, is
sound only if a reference to o cannot leak to code (say, in another thread) that
could effect o before it is fully created. Such leaks are rare (and unidiomatic), so
the unsound assumption is perhaps justifiable as a practical matter. For the sake
of completeness, though, we briefly sketch a sound treatment of self-leaks:

A value-flow analysis could be used to indicate those constructors that might
leak a reference to the constructed object. (In fact, some effect systems track
reference leaking explicitly.) The classes containing such constructors could then
be considered to not have initializers; as a consequence, write effects occurring
during the dynamic lifetime of a constructor on an object of such a class would
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be conservatively (and soundly) regarded as potentially interfering with write
effects that occur strictly after the completion of an object’s constructor.

Initialization effects are a useful addition to the expressivity of object-oriented
effects systems. Since the initializations of a field during an object’s creation
will not interfere with any reads conducted after the dynamic lifetime of the
object’s constructor, initialization effects allow effect systems to statically identify
a greater range of static effects as noninterfering. As we shall see, inferring
initialization effects also enables us to identify quiescing fields.

5 Quiescing Fields

Some storage is mutable for its entire lifetime, but the lifetimes of many locations
can be divided into two phases: an initialization phase, in which the contents of a
location are mutable, and a read-only phase, in which the contents of a location
will not change. We call such fields quiescing fields when the phase transition
happens at a statically identifiable and semantically useful place. In this section,
we introduce the concept of quiescing fields, explain how we can identify them,
and describe why they are useful; compare quiescing fields to Java’s final fields;
and identify the static and dynamic prevalence of quiescing fields in the Java
programs from the DaCapo benchmark suite.

5.1 Quiescing Fields Defined and Identified

We define a quiescing field as an instance field (i.e. an object member) that is
mutable while the object it contains is being constructed but that is immutable
for the entire period of program execution strictly after the dynamic lifetime
of its containing object’s constructor. As a consequence, a quiescing field will
have the same value for the entire period that the object containing the field is
accessible to the code that created it (and to the rest of the program, modulo
the no-leaks assumption of the previous section).

Because a quiescing field is guaranteed not to change after the object that
contains it is fully constructed, quiescing fields represent a useful kind of run-time
constant. If quiescing fields are prevalent in a program, identifying them can
greatly simplify analyses and transformations that require accurate interprocedu-
ral data dependence information.

Given sound effects annotations including initialization effects, it is quite
straightforward to identify quiescing fields: κ.ν is quiescing if and only if no effect
annotation in the whole program contains an abstract location implicating κ.ν
(e.g. 〈ρ, κ.ν〉) in its write set. (If κ.ν is not implicated in the init or write sets
of any effects annotation, then it is never written after allocation and is trivially
a quiescing field.)

Because we need only examine every effect in the whole program once in
order to determine which fields are implicated in write effects — and we need
not even unify method summaries at call sites in order to do so — quiescing field
inference scales linearly with the number of statements in the program.
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5.2 Final Fields and Quiescing Fields

The Java language [8] provides the final keyword and the semantic guarantee
that instance variables declared as final will be assigned to exactly once for any
given containing object. The final keyword thus provides both documentation
for programmers and a constraint for use by analyses and transformations.

However, because the guarantee of finality is enforced by a rather coarse flow
analysis (identifying “definite assignment,” that is, that each final field is on the
left-hand side of exactly one assignment along every possible path through each
constructor of the object containing it), final is of limited applicability. To give
one example, since all assignments to final fields must occur in the body of
a constructor, it is impossible to share initialization code common to several
constructors in a private instance method.

While it is often possible to restructure the code in a class so that a quiescing
field meets the criteria for final, such a rewrite may be inconvenient. Furthermore,
rewriting code so that a quiescing field is final may well obscure the clear
meaning of the program for a human reader. Since many programmers will not
immediately realize the benefits of having as many fields as possible declared
final, manual code transformations to expose more fields as final are likely to
be regarded as insufficiently profitable.

On the contrary, quiescing fields may be written arbitrarily many times
during the dynamic lifetime of an object’s constructor, not strictly in the static
body of the constructor and exactly once along each path of each constructor.
Quiescing fields may be read and written freely during the dynamic lifetime of
their containing object’s constructor, so long as they are not written to after
their containing object is fully constructed. Finally, no programmer annotations
are necessary to identify quiescing fields, since we present a straightforward and
efficient technique for automatically inferring quiescing fields.

5.3 Static and Dynamic Prevalence of Quiescing Fields

We evaluated our definition of quiescing fields on seven of the programs from the
DaCapo benchmark suite [2].

We identified the static prevalence of final and quiescing fields by determining
what percentage of all fields implicated in any effect were declared final and what
percentage were inferred to be quiescing. (Since final fields are, by definition,
quiescing, counts of quiescing fields include counts of final fields.) We also
instrumented the Jikes RVM in order to get a trace of all instance field reads
from a benchmark execution. From this trace, we derived the percentages of
dynamic instance field reads that access final and quiescing fields; again, the
count of quiescing field reads includes final field reads.

Figure 5 gives our complete results; in summary, we found that between 18.7%
and 22.3% of fields implicated in any static effects annotation were declared
final; between 48% and 53% of fields implicated in any static effects annotation
were identifiable as quiescing. Between 0.78% and 77.7% of dynamic reads were
from final fields, and between 24.13% and 78.53% of fields were from quiescing
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fields. The authors of the bloat, eclipse, and luindex benchmarks seem to have
declared a high percentage of frequently-read quiescing fields as final; in the
other benchmarks, the disparity between the number of dynamic reads of final
and quiescing fields is much greater.

Static Dynamic
Input Time % FF % QF % FF % QF

antlr 3.11 19.89 49.25 3.65 24.13
bloat 3.16 22.30 53.01 64.05 70.05
eclipse 3.23 21.50 51.56 77.69 78.53
hsqldb 3.73 18.67 47.97 20.12 58.75
jython 3.61 18.74 52.99 19.17 50.30
luindex 3.06 20.82 51.06 43.87 47.43
pmd 3.35 19.48 48.47 0.78 24.93

Fig. 5. Static and dynamic prevalence of final and quiescing fields in select DaCapo
benchmarks. Time represents analysis time in seconds; static numbers show the per-
centage of fields implicated in at least one static effect that are final (FF) and quiescing
(QF); dynamic numbers indicate the percentage of dynamic reads in a benchmark
execution that are of final (FF) and quiescing (QF) fields.

6 Degrees of Purity
Methods may be pure. The classic definition identifies a method that exhibits no
effects on mutable state as pure. However, this definition fails to admit idempotent
methods that create and modify objects in order to complete their work.

A less restrictive definition, due to Leavens et al. [9, 10] and applied for static
analysis by Sălcianu and Rinard [11], characterizes a method as pure if and only
if it does not modify any state that exists immediately before method entry. This
definition of purity captures a notion of method purity as the absence of potential
interference with other code: a method may have effects on mutable state that
does not exist before it executes. Other definitions of purity are also possible;
the concepts we present in this section are generally orthogonal to a base notion
of purity and can be straightforwardly adapted to different definitions.

In accepting a definition of purity, we also decide which effects constitute
“impure” behavior. Perhaps all side effects are “impure,” as in the classical
definition. Alternatively, following Leavens et al., we could ignore certain read
or write effects on objects that did not exist at a method’s entry. We can then
identify some methods as read-only – these are methods that may have “impure”
read effects (but not “impure” write effects) on mutable state. (Note that all
pure methods are also read-only methods.)

If we are to characterize the purity of methods in typical object-oriented
programs, we may wish to characterize instance methods by the effects that they
have on mutable state that exists outside of the receiver object.
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An externally-pure method is one whose “impure” read or write effects on
mutable state occur only to the receiver object (that is, in the ρthis region). Put
another way, an externally-pure method is pure, for some definition of “pure,”
with respect to all state outside of the instance it is operating upon. All pure
methods are also externally-pure.

An externally-read-only method is one whose “impure” write effects on
durable state occur only to the receiver object or to state that did not exist
immediately before method entry. Such a method is read-only with respect to all
state outside of the instance it is operating upon. All externally-pure methods
are also externally-read-only.

We can combine these notions of purity with initialization effects and quiescing
fields by masking init effects (which represent writes to the state of newly-
allocated objects) and masking read effects on quiescing fields. If we do so,
we can identify a vast preponderance of instance methods as externally-pure or
externally-read-only, as in Figure 6.

Externally
Input Time % Pure % RO

antlr 4.47 79.19 81.16
bloat 4.63 77.05 78.40
eclipse 4.63 79.21 80.73
hsqldb 5.44 76.87 78.26
jython 5.25 77.02 78.31
luindex 4.39 80.30 81.89
pmd 4.88 79.05 80.50

Fig. 6. Percentage of all instance methods that are externally- pure or read-only.

7 Related Work

Work related to our contributions in this paper falls into two broad categories:
work on effects systems and work on inferring fields or memory locations that
are immutable for at least some part of their lifetime.

7.1 Effects Systems

Lucassen and Gifford’s foundational paper on polymorphic effect systems [6]
focused on identifying scheduling constraints for execution of implicitly-parallel
programs, but later work has established applications of effects systems in region-
based memory management [12], and in automatically providing annotations for
a model checker or specification language [11]. We note that our contributions,
by improving the precision of effects analyses, can also improve the precision of
analyses and transformations that depend on effects annotations.
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The natural compatibility of effects and objects has led to a great deal
of excellent work; as we discussed in Section 3, Greenhouse and Boyland [7]
devised an idiomatic, object-oriented treatment of regions and effects, but did
not provide an inference algorithm. Bierman and Parkinson [13] extended the
work of Greenhouse and Boyland with a semantic treatment of effects and an
effects inference algorithm for a subset of Java; their work left region annotations
as a responsibility for the programmer. (Effect and region reconstruction for
functional languages [14] is a better-studied problem.) Most recently, Cherem and
Rugina [15] presented a parameterized framework for compact effect signatures,
which allows clients of effect annotations to trade precision for annotation size.

Given a notion of effects, it is possible to talk about the purity of functions.
Barnett et al. [16] present several definitions of purity in the context of object-
language methods that may appear in checkable specifications: observational
purity (which admits memoization), strong purity (the classic definition), and
weak purity (in which methods may modify newly-allocated state). Sălcianu
and Rinard [11] present an analysis to identify weakly-pure methods. Barnett
et al. [17] extend the Sălcianu-Rinard analysis to support iterators and the
additional features, such as pass-by-reference, of the .NET runtime.

Because it masks init effects, our analysis can be used to identify the subset
of weakly-pure methods that only exhibit init effects on newly-allocated objects;
other analyses [11, 17] can identify a broader range of weakly pure methods.
Consider, for example, a method that constructs a StringBuffer and then
invokes its append method several times before returning a String constructed
from the buffer; this is weakly pure, but would not be identified as such by our
analysis because it exhibits write effects as well as init effects. In addition, our
purity analysis does not specifically treat iterators.

In general, the work described in this paper is intended to enhance the
expressivity and precision of effect systems and purity analyses. It would certainly
be possible to extend the system we present with more expressive features, like
the information flow effects of Cherem and Rugina or the weak purity of Sălcianu
and Rinard. (In particular, treating iterators demands care and a more expressive
system.) In addition, one could use the results of a field uniqueness analysis
(like that of Ma and Foster [18]) or object inlining transformation in order to
automatically generate unshared annotations on object fields. Conversely, we
believe that initialization effects, quiescing fields, and external purity can be
introduced to an extant effect system as crosscutting concerns.

7.2 Inferring Eventual Immutablity

Several analyses (notably Porat et al. [19]) identify Java fields that are immutable,
even if the fields are not declared as final. Most directly related to our concept
of quiescing fields, however, is the stationary fields analysis of Unkel and Lam
[20], which we shall focus on in the remainder of this review. Unkel and Lam use
a flow- and context-sensitive pointer analysis to identify fields for whom every
dynamic read must come after every dynamic write.
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While both stationary fields and quiescing fields are capable of identifying
eventually-immutable fields that are not declared final, and both identify about
half of all fields in some set of realistic Java programs as eventually-immutable,
there are several interesting differences between our approaches. Our approach is
substantially more lightweight: we use a flow- and context- insensitive analysis that
completes in seconds; their approach uses a flow- and context-sensitive analysis
that takes between 7 and 106 minutes to analyze a realistic Java program.
However, their approach identifies stationary fields and can also track their
referents with greater precision; we merely identify quiescing fields. Therefore,
both analyses can be used to improve the precision of side-effect and related
analyses; theirs is better-suited to improving the precision of alias analyses.

We note that the definitions of quiescing and stationary fields are subtly
incompatible: while it seems most likely that the intersection of the sets of
quiescing and stationary fields for any given program would be large, there are
quiescing fields that are not stationary fields (e.g. those that might be read in the
constructor before a write), and there are stationary fields that are not quiescing
fields (e.g. those that are written after the dynamic lifetime of a constructor,
but before any use of an object). We believe that investigating the relationships
between these kinds of fields — and between the analyses and transformations
enabled by identifying each — represents a fruitful avenue for future work.

8 Conclusion

This paper has presented three major contributions that enhance the expressivity
and precision of effects systems, purity analyses, and related analyses and trans-
formations: the concepts of initialization effects, quiescing fields, and external
method purity, as well as analyses to infer these automatically. In so doing, we
have identified great amounts of mostly-functional behavior in the real-world
Java programs from the DaCapo benchmark suite. Most notably, our techniques
are novel, lightweight, and readily composable with extant systems and analyses.
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