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Abstract—As traditional and mission-critical relational
database workloads migrate to the cloud in the form of Database-
as-a-Service (DaaS), there is an increasing motivation to provide
performance goals in Service Level Objectives (SLOs). Providing
such performance goals is challenging for DaaS providers as they
must balance the performance that they can deliver to tenants
and the data center’s operating costs. In general, aggressively
aggregating tenants on each server reduces the operating costs
but degrades performance for the tenants, and vice versa. In this
paper, we present a framework that takes as input the tenant
workloads, their performance SLOs, and the server hardware
that is available to the DaaS provider, and outputs a cost-
effective recipe that specifies how much hardware to provision
and how to schedule the tenants on each hardware resource. We
evaluate our method and show that it produces effective solutions
that can reduce the costs for the DaaS provider while meeting
performance goals.

I. INTRODUCTION

Traditional relational database workloads are quickly mov-
ing to the cloud in the form of Database-as-a-Service (DaaS).
Such cloud deployments are projected to surpass the “on-
premises” market by 2014 [32]. As this move to the cloud
accelerates, increasing numbers of mission-critical workloads
will also move to the cloud, and in turn will demand that the
cloud service provider furnish some assurances on meeting
certain quality-of-service metrics. Some of these metrics, such
as uptime/availability, have been widely adopted by DaaS
providers as Service Level Objective (SLOs) [3], [38]. (SLOs
are specific objectives that are specified in the encompassing
Service Level Agreement – SLA) Unfortunately, performance-
based SLOs have still not been widely adopted in DaaS SLAs.
Performance-based SLOs have been proposed in other (non-
DaaS) cloud settings [21], and in the near future it is likely
that DaaS users will demand these SLOs (especially if they
are running mission-critical database applications that require
a certain level of performance). DaaS providers may also
provide performance-based SLOs as a way to differentiate
their services from their competitors.

DaaS providers want to promise high performance to their
tenants, but this goal can often conflict with the goal of
minimizing the overall operating costs. Data centers that house
database services can have high fixed monthly costs that
impact the DaaS providers’ bottom line [14], [20]. For a DaaS
provider, servicing the same tenants with fewer servers de-
creases the amortized monthly costs [36]. Hence, consolidation
via multi-tenancy (where multiple database tenants are run on

the same physical server) is a straight-forward way to increase
the cost-effectiveness of the DaaS deployment.

In a traditional single tenant database setting, two key
factors that determine performance are: a) The workload
characteristics; and b) The server hardware on which the
database management system (DBMS) is being run. In a
multi-tenant setting, the degree of multi-tenancy becomes
an additional factor that impacts performance, both for the
overall system and the performance that is experienced by
each individual tenant. In general, increasing the degree of
multi-tenancy decreases per-tenant performance, but reduces
the overall operating cost for the DaaS provider.

The important question then for a DaaS provider is how
to balance multi-tenancy with performance-based SLOs. The
focus of this paper is on posing this question and presenting
an initial answer. We fully acknowledge that there are many
open questions that need to be answered beyond our work
here, which points to a rich direction of future work.

In this paper, we propose a general DaaS provisioning and
scheduling framework that optimizes for operating costs while
adhering to desired performance-based SLOs. Developing a
framework to optimize DBMS clusters for performance-based
SLOs is challenging because of a number of specific issues,
namely: (a) The DaaS provider may have a number of different
hardware SKUs (Stock Keeping Units) to choose from, and
needs to know how many machines of each SKU to provision
for a given set of tenants – thus the provider needs a hardware
provisioning policy; and (b) The DaaS provider also needs to
know an efficient mapping of the tenants to the provisioned
SKUs that meets the SLOs for each tenant while minimizing
the overall cost of provisioning the SKUs – thus the DaaS
provider needs a tenant scheduling policy. Note that the
tenants on the same server may have different performance
requirements, and the tenants may interfere with each other,
making the mapping of tenants to the SKUs challenging.

Let us consider a concrete example to illustrate these
issues. Assume that a DaaS provider has many tenants that
have workloads that are like TPC-C scale factor 10. The
performance metric that is of interest here is transactions
per second (tps). Assume that the DaaS provider has 10,000
tenants split into two classes: ‘H’ and ‘L’. The tenants in the
H class are associated with a high performance SLO of 100
tps, whereas the tenants in the L class are associated with a
lower performance SLO of 10 tps (and presumably a lower
price). Assume that 20% of the tenants (2000 tenants) belong



to the class H and the remaining (8000 tenants) belong to the
class L. For this example, imagine that there is only one SKU,
and assume that all the tenants have the same query workload
characteristics (i.e., all tenants have the same query workload,
and issue queries to the server with the same frequency).

To find a hardware provisioning policy and the associated
tenant scheduling policy, we first need to understand how the
performance of the tenants in class H (and class L) changes
for a workload that consists of a mix of these tenants. In
other words, we need to characterize the performance that
each tenant sees for varying mixes of tenants from the two
classes, when these tenants are scheduled on the same server.
We capture this performance trait in a SKU performance
characterizing model.

To produce the SKU performance characterizing model, we
first benchmark the server SKU for a homogeneous mix of
tenants. This benchmark shows that we can accommodate
around 25 tenants of class H (100 tps). Scheduling more than
25 tenants results in the tps dropping below 100 tps, and hence
breaks the performance SLO. Similarly, we find that this SKU
can accommodate up to 100 tenants of class L (10 tps). Points
A and B in Figure 1 correspond to the findings from this
homogeneous benchmark. (Below we describe what Figure 1
shows in more detail.)

The homogeneous benchmark above defines the boundaries
of how many tenants of each class we can pack on a given
server. Next, we need to characterize the space to allow for an
arbitrary mix of tenants. We note that while it is possible that
an optimal hardware provisioning policy and associated tenant
scheduling policy could only have SKUs with homogeneous
tenants (i.e., no SKU has a mix of tenants from the two
classes), it is also possible that the optimal policy has a mix
of tenants from the two classes on some or all the SKUs. This
may be the case if different tenant workloads have different
resource utilizations (memory vs. disk vs. CPU) on a SKU.
Thus, the SKU performance characterizing model must also
consider heterogeneous mixes of tenants.

To complete the SKU performance characterizing model,
we need to benchmark the server for varying mixes of tenants
from the two performance classes, and measure the throughput
that each tenant in each class sees. Figure 1 shows the SKU
performance characterizing model for an actual SSD-based
server SKU using experimental results for the 100 tps and
the 10 tps TPC-C tenant classes. (See Section II for details.)

In Figure 1, the performance of the class H tenants is shown
in Figure 1(a), while the performance that the class L tenants
experience is shown in Figure 1(b).

First, consider a homogeneous tenant scheduling policy that
uses only the points A (25 100tps tenants), and B (100 10tps
tenants). In this case, the DaaS provider needs to provision
160 SSD-based servers for the 10,000 tenants (80 for the H
class tenants, and 80 for the L class tenants).

But, could we do better than using a homogeneous ten-
ant scheduling policy? To answer this question, we need to
systematically explore the entire space of tenant workload
mixes, and the associated hardware provisioning (to compute
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(b) Performance (tps) for class L tenants
Fig. 1. Average performance seen by tenants in class H (100tps) and class
L (10tps) on TPC-C scale factor 10 database, as the tenant mix is varied. In
both figures, circles annotated with the same letter correspond to the same
operating point.

the operating cost). Essentially, we need to explore the entire
space shown in Figure 1. Note that some of the points in
this space are not feasible “solutions”, as they violate the
performance SLOs. For example, at the operating point F in
Figure 1(a), the H class tenants see a performance level that
is below 100 tps, since the point F is in the yellow zone that
corresponds to 10-100 tps. In Figure 1(b), at point F, the L
class tenants do not reach a satisfactory performance either.

On the other hand, in Figure 1, the operating points C, D,
and E are all feasible, but they result in different hardware
provisioning policies, which in turn impacts the overall op-
erating costs. In this case, the operating point E is the most
cost-effective of these three operating points, because it only
requires 143 SKUs (14 H tenants and 56 L tenants per SKU).
In contrast, the operating point D (10 H and 40 L tenants per
SKU) and the operating point C (5 H and 20 L tenants per
SKU) require 200 and 400 SKUs respectively. Notice that the
policy from point E results in 17 fewer servers required than
the homogeneous policy from point A and B.

The problem illustrated above becomes even more com-
plicated if the DaaS provider has a mix of SKUs to choose
from. In this case, assume that the DaaS provider has another
SKU that is cheaper, but has lower overall performance on this
workload. In this case, the DaaS provider needs to consider
the cost ratio between the two different SKUs and the relative
performance differences, and provision hardware that reduces
the overall operating cost. Note that the lowest cost feasible
operating point could involve deploying a mix of the two (or,
in general, more) SKUs, as shown by various examples in
Section III. Thus, the overall optimization problem involves
finding a mix of SKUs to deploy for a given set of tenants
belonging to different performance-based SLO classes, along
with a tenant scheduling policy for each deployed SKU. In
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Fig. 2. A workflow diagram for using our framework.

this paper we present and evaluate a solution to this problem.
This paper makes the following contributions:
• To the best of our knowledge, this is the first paper to

formulate and explore the problem of how to provision
servers in a DaaS environment with the goal of providing
performance-based SLOs.

• We develop an optimization framework to address the
problem above. This framework outputs an SLO com-
pliant tenant scheduling strategy and a cost-minimizing
hardware provisioning strategy that together serve as the
recipe for deploying resources and operating the DaaS
for the input workload.

• We evaluate our method and demonstrate the effective-
ness of our approach.

The remainder of this paper is organized as follows: We
present our framework in Section II, and present empirical
results in Section III. Related work is discussed in Section IV,
and Section V contains our concluding remarks and points to
some directions for future work.

II. PERFORMANCE SLO FRAMEWORK

In this section, we describe our optimization framework,
which has three steps as shown in Figure 2. Recall that the
goal of this framework is to provide hardware provisioning
and tenant scheduling policies that minimize the costs to DaaS
providers while satisfying the performance-related specifica-
tions in tenant SLOs.

In the first step in Figure 2 (described in Section II-A),
we benchmark the performance of each server SKU in a
homogeneous multi-tenant environment. At the end of this
step, we understand the tenant performance for each tenant
class on each hardware SKU, producing Output 1 in Figure 2.
From this first step, for a specific performance level, we can
determine the maximum number of tenants of a given class
that can be scheduled on a specific server SKU, such that the
performance SLOs can be satisfied for each tenant. Essentially,
in this step we find points like A and B in Figure 1 for every
tenant class for every hardware SKU.

The next step, marked as Step 2 in Figure 2, uses Output 1 to
compute the boundaries of the space of mixed class workloads
that should be considered. Then, for each hardware SKU this
space is characterized by running actual benchmarks. In other
words, Step 2 computes Figure 1 for every hardware SKU
as Output 2. Now, we understand the impact of scheduling a
workload with tenants that have different SLO requirements
on the same server box. This step is discussed in more detail
in Section II-B.

The last step in Figure 2 takes as input the set of SKU
performance characterizing models (i.e., Output 2) and com-
putes an optimal strategy to deploy the workload. This step
uses an optimization method that takes as input (i) A set
of performance SLOs; (ii) A set of hardware SKUs with
specific costs and performance characteristics; (iii) A set of
tenants with different performance SLOs to be scheduled; and
computes the hardware provisioning and the tenant scheduling
policies that minimize costs while satisfying all SLOs. This
step is discussed in more detail in Section II-C.

A. Characterizing Multi-Tenant Performance

This section discusses the first step in our framework that
is shown in Figure 2.

1) Workload and Performance Metric: To make the dis-
cussion concrete, in this paper we use TPC-C as a model
workload, which has also been used before to study DaaS [17].

Each of our TPC-C transactions were implemented as stored
procedures within SQL Server. Our application driver issued
stored procedure calls to SQL Server via .NET connections
from network attached clients. Like prior studies [23], we
maintained the full transaction mix ratio as dictated by TPC
but eliminated think-time pauses, implemented each tenant
with a single remote application driver, and did not scale the
number of clients with warehouses. As a performance metric,
we use the throughput of the new-order transactions, as is done
for reporting TPC-C results1.

2) Hardware SKUs: Table I shows the two server SKUs,
ssdC and diskC, that we use in this paper. Both servers are
identical except for the storage subsystem. Both server SKUs
are configured with low-power Nehalem-based L5630 Intel
processors (dual quad cores), and 32GB DDR3 memory, run-
ning Windows Server 2008R2 and the latest internal version of
SQL Server. The OS and the DBMS are installed on a separate
10K RPM 300GB SAS drive. In the ssdC configuration, all
the data files and log files of the database are stored on three
Crucial C300 256GB SSDs while in the diskC configuration,
these are stored on three 10K RPM 300GB SAS drives.

We note that the storage subsystem has a big impact on
the RDBMS performance in a multi-tenant environment, since
the load imposed on the hardware when serving independent
tenant requests naturally leads to randomized data access. This
behavior is in contrast to traditional single-tenant environments

1Disclaimer: While we have used the TPC-C benchmark as a representative
workload in this paper, the results presented are not audited or official
results, and, in fact, were not run in a way that meets all of the benchmark
requirements. Consequently, these results should not be used as a basis to
determine SQL Server’s performance on this or any other related benchmarks.



TABLE I
TWO SERVER CONFIGURATIONS (SKUS)

ssdC diskC
CPU 2X Intel L5630 2X Intel L5630

RAM 32GB 32GB
OS Storage 10K SAS 300GB 10K SAS 300GB

DB Data 2X Crucial C300 256GB 2X 10K SAS 300GB
DB Log Crucial C300 256GB 10K SAS 300GB

RAID Cntlr w/BBC YES YES
Cost $4,500 $4,000

where the DBMS schedules data accesses to be as sequential
as possible.

3) Multi-Tenancy and Performance: There are many ways
to deploy a DaaS on a cluster with multi-tenancy [4], [5], [15],
[17], [32]. We list four main approaches to housing tenants
that have emerged recently in decreasing order of complexity:
(1) all tenant data are stored together within the same database
and the same tables with extra annotation such as ‘TenantID’
to differentiate the records from different tenants [4], [5];
(2) tenants are housed within a single database, but with
separate schemas to differentiate their tables and provide better
schema-level security; (3) each tenant is housed in a separate
database within the same DBMS instance (for even greater
security); (4) each tenant has a separate Virtual Machine (VM)
with an OS and DBMS, which allows for resource control via
VM management [17].

We use option 3 to implement multi-tenancy, since this
option above provides a good trade-off between wasted re-
sources due to extra OSs in the VM method (option 4), and
the complex manageability and security issues associated with
options 1 and 2 [17]. Looking at the other options is an
interesting direction for future work.

In our experiments, we consider a workload comprised of
1GB TPC-C tenants with 10 warehouses. We recorded the
average per-tenant TPC-C transactions per second achieved
on both hardware SKUs for varying degrees of multi-tenancy
over a timespan of 100s. These results are shown in Figure 3.

There are a few important observations from Figure 3. First,
on our hardware SKUs, the only way tenants can achieve a
performance of 100tps is if their datasets almost completely
fit in memory. Note the drop-off in tps when the number of
tenants is increased beyond 25 (i.e., after the combined tenant
size crosses 25GB). Second, when the datasets fit completely
in memory, the cheaper diskC server can deliver the same per-
tenant performance as the more expensive ssdC server since
the storage subsystem is not the bottleneck. Finally, notice that
at the lower performance levels, the ssdC server can support
significantly more concurrent tenants than the diskC server.
This behavior is due to the better random I/O performance
of the SSD storage compared to the mechanical disk storage.
For instance, in Figure 3, the measured log disk utilization at
10 tenants for the ssdC and diskC SKUs was 39% and 41%
respectively. As we increased the number of tenants to 25, the
log disk utilization increased to 50% and 66% for these two
SKUs respectively. Finally, at 50 tenants and beyond, the log
disk utilization is saturated at more than 95% for both SKUs.

The curve shown in Figure 3 defines the maximum number
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Fig. 3. Performance for the ssdC and diskC SKUs (see Table I) as we
increase the number of tenants on a single SKU.

of tenants that each SKU can support while maintaining
a specific performance level per tenant. This homogeneous
multi-tenant benchmarking is a necessary first step since it
defines the boundaries of the performance that the DaaS
provider can promise in their SLOs.

Definition 2.1: Let the set S = {s1, s2, ..., sk} represent the
k SLOs published by a DaaS provider.

Typically, k > 1 since different tenants may require (and
be willing to pay for) different levels of performance. Given
a set of tenants with different SLOs to schedule on a cluster,
a natural scheduling policy is to schedule the tenants of each
class on the type of server that can handle the most number
of tenants of that class. However, this approach ignores the
relative cost of different SKUs, as well as the possibility of
scheduling tenants of different classes on the same server
to reduce the overall provisioning and operating costs. The
next step (Section II-B) is to determine the behavior of a
single SKU when loaded with tenants that are associated with
different SLOs.

B. Characterizing Heterogeneous SLOs

A number of mechanisms can be used to provide different
performance SLOs on the same server. One simple mecha-
nism is resource governance whereby tenants are allocated
specific amounts of critical resources like CPU and DBMS
buffer pages to limit their resource consumption. Another
mechanism is to use an admission control server that throttles
incoming tenant requests accordingly. Studying the different
mechanisms to implement performance SLOs is an interesting
topic, but is orthogonal to our optimization framework, and
hence beyond the scope of this paper.

To avoid the additional complexity of an admission control
server, we chose to simulate a buffer pool resource governance
mechanism on top of SQL Server. In our method, we start
separate SQL Server instances within each physical server
with one instance for each SLO class si (there are k of these
as per Definition 2.1). All tenants that belong to the same
SLO class si are assigned to the same SQL Server instance.
The performance of each SQL Server instance is throttled by
limiting the amount of main memory that is allocated to it.
The amount of main memory that is allocated to each SQL
Server instance (SLO class) is an average of two factors. The
first factor is the fraction of the tps requirements for that SLO
class compared to the aggregate total tps across all the SLO



classes. The second factor is the ratio of tenants in that SLO
class to the total number of tenants. This memory allocation
method provides a balance between allocating memory purely
based on tps and purely based on the number of tenants. (We
experimented with other methods, but found that this method
provided the best overall behavior allowing us to pack far more
tenants per SKU than other simpler methods. In the interest
of space we omit these additional details.)

Recall that Figure 3 characterizes the performance of the
server SKUs ssdC and diskC when all the tenants on a
SKU have equal access to resources. Given tenants with
different SLOs (Definition 2.1), we need to characterize the
performance delivered by each server SKU to each tenant class
si. For this purpose, we use a SKU performance characterizing
function, which is described next.

Definition 2.2: For a given SKU, let ~b = [b1 b2 ... bk]T

where bi represents the number of tenants of class si scheduled
on the server. For this server, the SKU performance character-
izing function, f(~b), represents the performance delivered over
a specific time interval for different tenant scheduling policies.
Here f(~b) = [φ1 φ2 ... φk]T where φi is the random variable
representing the performance achieved by the tenants of class
si scheduled on the server.

Using this definition for function f , it is possible to provide
the performance SLOs in the same way as the current uptime
SLAs. For instance, say that for a given SKU with a load
defined by ~b, we determine that the distribution of the mea-
sured performance over 100 seconds for the tenants of class
si (say, a 100tps class) is normal, with an average of 130 tps
and a standard deviation of 10tps; that is, φi ∼ N(130, 10).
Then, according to the definition of a normal distribution, for
all the 100tps tenants that are scheduled on this server, we can
guarantee the desired performance 99.6% of the time.

The ability to provide such guarantees makes our formula-
tion of the SKU characterizing function f very powerful in
defining performance SLOs. In practice, fully characterizing
f is likely to be very challenging and one has to simplify this
function. In this paper, we consider the following simplifica-
tion of f to a boolean characterizing function (exploring other
options is an interesting direction for future work).

Definition 2.3: Given a certain server SKU and ~b from
Definition 2.2, a simplified boolean SKU performance char-
acterizing function f̂(~b) returns true if all the tenants achieve
their respective SLO performance based on a set of summary
statistics of the random variables and false otherwise.

As a simplification for our experiments, we ignored other
statistics such as variance and defined f̂(~b) in terms of the
average transactions per second over 100s. For example, con-
sider Figure 1, we plotted f(~b) = [E[φ1] E[φ2] ... E[φk]]T for
ssdC (see Table I) for two SLO classes, S = {100tps, 10tps}.

Having defined the SKU performance characterizing func-
tion, the next question is to find acceptable operating zones that
deliver the promised performance to each tenant in each class
si. Again, using Figure 1 as an example, we wish to compute
the area in both subfigures where both the 100tps tenants and
the 10tps tenants meet their performance requirements. This
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Fig. 4. SKU performance characterizing functions for S = {10tps, 1tps}

area defines the acceptable “operating zone” for the ssdC SKU,
and is distinguished from the other areas using Definition 2.3.

To evaluate the function f̂ , a systematic search of the tenant
scheduling space is performed as follows: We first start by
scheduling the maximum number of highest-performance ten-
ants as determined by the benchmarking step in Section II-A.
Then, we systematically substitute a fixed small number
of these highest-performance tenants with low-performance
tenants (if there are more than two tenant classes, in this
step, we can iterate through fixed size combinations of the
lower performance tenant classes). For each sample, we run
a benchmark with the current mix of tenants, and record the
observed per-tenant performance. If the observed performance
satisfies all tenant SLOs, then f̂ returns true for this tenant
scheduling policy and for all other scheduling policies where
there are fewer tenants in any of the classes. If f̂ returns true,
we also try adding more low-performance tenants (iteratively
in every low performance class) and repeat the experiment.
We keep pushing up the number of the tenants in the low
performing tenant class(es) until f̂ returns false, in which case
we know we have reached the boundary of the f̂ function.
Thus, we determine a tenant scheduling “frontier”, so that
f̂ is true on one side of the frontier and false on the other
side. (As part of future work, it would be interesting to
consider obtaining this frontier via other methods such as
augmenting the query optimizer module to generate/estimate
this frontier [11], [18].)

1) Frontier for the SLO mix – 10tps and 1tps: Consider the
SLO set S = {10tps, 1tps}, and the SKUs ssdC and diskC
(see Table I). The frontiers for this case are shown in Figure 4
as the solid black line. The diamond points in this figure rep-
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Fig. 5. SKU performance characterizing functions for S = {100tps, 1tps}

resent some of the actual benchmark tests that were run. The
points that lie above a frontier line represent tenant scheduling
policies that fail to meet tenant SLOs (f̂ = false), whereas
the points that lie on the frontier line will satisfy all tenant
SLOs. The area below the frontier line contains scheduling
policies that will satisfy tenant SLOs but potentially waste
resources (i.e., are potentially over-provisioned).

An interesting point about the performance characteristics
shown in Figure 4 is that the bottleneck for the points in the
frontier is the log disk. Each database has a log file and as
more tenants are added, the I/Os to the log disk become more
random, and each log I/O becomes relatively more expensive.
As a result, if we look at the pure 10tps case (upper left point
in the graph) and remove x of the 10tps tenants, we can add
far fewer than 10x 1tps tenants.

Having a linear frontier as is the case in Figure 4 implies
that we can add/remove tenants of different classes to a server
according to a constant ratio. For example, consider again the
frontier for the diskC SKU (Figure 4(a)) and the ssdC SKU
(Figure 4(b)). The slope of the lines in both graphs is − 1

2 ,
which implies that for any operating point along these two
frontier lines, the DaaS provider can safely swap one 10tps
tenant for two 1tps tenants. Thus, a linear frontier simplifies
the tenant scheduling policies. As we discuss below, we may
not always observe a linear frontier.

2) Frontier for the SLO mix – 100tps and 1tps: Suppose
that a DaaS provider wishes to publish a 100tps SLO. From
Figure 3, we know that for both SKUs, we are limited to
about 25 100tps tenants on either SKU. Figures 5(a) and (b)
show the observed frontiers for both the diskC and ssdC SKUs
respectively, for S = {100tps, 1tps}. The frontiers are no
longer linear and show that if we start from the case of only
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Fig. 6. Average database log write wait time with vertical bars spanning the
1st to the 3rd quartiles, along with the average tps achievable by a single
100tps tenant on the ssdC SKU.

100tps tenants (upper left point in both graphs), the initial
curve is convex and then tapers off into a concave shape. At
the “only 100tps tenants” point, the system is memory bound
(see Figure 3). As we move to the right along the frontier, the
system now becomes log disk bound.

The initial shape of the frontier is convex since the log disk
saturates a little beyond the proportions dictated by the line
formed by connecting the two end points of the frontiers. For
example, in Figure 5(a) as we move from the 25 100tps case to
the right, we reach a point where there are 20 100tps tenants.
If the frontier were linear, then we should only be able to add
5×4 = 20 1 tps tenants, but we can add 25 1tps tenants before
the log disk saturates.

Now consider the concave tail of the frontier in Figure 5.
Again this has to do with the log disk. Consider the (bottom)
right-most point in the frontier. Here we have only 1 tps
tenants. At this point, the system is bottlenecked on the log
disk. This behavior is captured in Figure 6, which plots the log
disk performance (y axis) of an ssdC server with one 100tps
tenant as the number of 1tps tenants is varied (x axis). The
log write wait time is shown as a range by a vertical bar
where the low point denotes the first quartile and the high
point denotes the third quartile. The horizontal (green) bar
denotes the average. The performance achieved by the 100tps
tenant (shown on the right vertical axis) is plotted using round
dots.

In Figure 6, we see that at the 200/0 point, the log disk
writes takes an average of 12 ms (and the log disk is saturated
at this point). If we move to the left from this point by
dropping 25 1 tps tenants and adding one 100 tps tenant,
then the 100tps tenant only achieves around 20 tps. As we
continuously decrease the number of 1tps tenants by 25, we
observe that the average log write wait time decreases only
after 125 1tps tenants. The performance achieved by the 100tps
tenant very closely follows with a jump at 100 1tps tenants.
These results show why scheduling one 100tps tenant onto
the server in Figure 5 requires a substantial drop in 1tps
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(b) Performance on the ssdC SKU
Fig. 7. SKU performance characterizing functions for S = {100tps, 10tps}

tenants. To summarize, a high performance tenant requires
disproportionately large headroom in log disk provisioning
to process transactions with a high throughput. Thus, even
though the tenants are all running the same workload, the
sheer increased performance requirement of some tenants
over others causes resource requirement disparities similar to
tenants running different workloads.

3) Frontier for the SLO mix – 100tps and 10tps: Now
let us consider a mix of 100tps and 10tps tenants, i.e.,
S = {100tps, 10tps}. The results for this case are shown in
Figures 7(a) and (b) for the diskC and the ssdC SKUs respec-
tively. For the same reasons as discussed in Section II-B2, we
observe the a knee near the lower right corner of the frontier
line, and a convex shape near the upper left corner of the
frontier line.

C. Step 3: Putting It All Together

In the previous section, we described how to compute the
SKU performance characterizing function for each SKU. We
can now use these functions to formulate and solve the op-
timization problem for provisioning hardware and scheduling
tenants that satisfy different performance SLOs (namely Step
3 in Figure 2).

Definition 2.4: M is a multiset {m1,m2, ...,mp} where
each mj represents a server SKU defined by a pair mj =
(f̂j , cj) where function f̂j is the simplified SKU characterizing
function (defined in Definition 2.3) and cj represents the
amortized monthly operating cost for a server.

Note that since M is a multiset, mj need not be unique.
This allows a single server SKU to be scheduled with tenants
in different ways.

Recall that we have the set of published SLOs as defined
in Definition 2.1. We must now associate each tenant with its
corresponding SLO.

Definition 2.5: Let ti represent the set of tenants that sub-
scribe to SLO si as defined in Definition 2.1. We represent all
tenants by the set T = ∪ki=1ti.

Using Definitions 2.1 to 2.5, the following definition de-
scribes the main optimization (minimization) problem.

Problem Definition 1: Given the sets S, T , and multiset M ,
compute a = [α1 α2 ... αp] and B = [~b1 ~b2 ... ~bp]T , where
αi is the needed number of servers of type mi, and ~bi is a
vector of length k indicating how many tenants of each of the
k SLO classes should be scheduled on an individual server of
type mi. The objective function C = Σp

i=1αici satisfies the
following constraints:
Constraint 1 : aB = [|t1| |t2| ... |tk|] (cover all the tenants)
Constraint 2 : f̂i(~bi) returns true for 1 ≤ i ≤ p (all SLOs are
satisfied)

Problem Definition 1 is a non-linear programming problem
in the general case 2. Here, we need to compute the following
variables:
(1) a – the number of servers used for each SKU. This vector

determines the total cost for provisioning the servers.
(2) B – the tenant scheduling policy.

The entire space of solutions does not need to be fully
explored since the feasible regions are defined by the f̂
characterizing functions and the curves defined by Constraint
1 of Problem Statement 1. Since our space of solutions is
relatively small, a brute-force solver that explores the non-
negative integer space bounded by these curves sufficed for
our purposes. 3 Exploring other approaches is part of future
work.

With this brute-force solver and the experimental results
from Section II-B, we now have the tools that we need to
evaluate our framework.

III. EVALUATION

In this section we apply the framework described in Sec-
tion II to hypothetical DaaS scenarios to illustrate the merits
of the hardware provisioning and tenant scheduling policies
obtained as solutions to the cost-optimization problem defined
in Problem Definition 1.

In our evaluation, we assume that the hypothetical DaaS
provider must accommodate a total of 10,000 tenants running
TPC-C scale 10 workloads, with two available SKUs – ssdC
and diskC – as described in Section II-A2. We varied the
following three parameters to arrive at the 12 scenarios listed
in Table II.

2In simple cases, we can parameterize the problem into a linear program-
ming problem, but this is increasingly onerous when faced with non-linear
piecewise frontier functions that characterize the server SKUs. The approach
we take to solving the non-linear programming problem is much more straight-
forward.

3For a 5000 100tps tenant and 5000 10tps tenant problem, our single-
threaded brute-force solver finds a solution within 80 seconds on a 2.67Ghz
Intel i7 CPU.
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Fig. 8. Solutions for (a) SC1 - $13,861; (b) SC2 - $25,264; (c) SC3 - $36,667 (see Table II for details). Circle positions indicate tenant scheduling policy
and circle size/annotation indicate hardware SKU provisioning policy.
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Fig. 9. Solutions for (a) SC4 - $11,900; (b) SC5 - $20,338; (c) SC6 - $28,875 (see Table II for details). Circle positions indicate tenant scheduling policy
and circle size/annotation indicate hardware SKU provisioning policy.

TABLE II
EXPERIMENTAL PARAMETERS FOR EVALUATING VARIOUS SCENARIOS.

TENANT RATIOS DIVIDE 10,000 TENANTS ACROSS TWO SLOS FOR EACH
SCENARIO. THE ssdC SKU AMORTIZED COST OVER 36 MONTHS IS $125.

Tenant diskC Amortized
Scenario SLO set Ratio Cost

SC1 S2={100tps, 1tps} 20:80 $111
SC2 S2={100tps, 1tps} 50:50 $111
SC3 S2={100tps, 1tps} 80:20 $111
SC4 S2={100tps, 1tps} 20:80 $88
SC5 S2={100tps, 1tps} 50:50 $88
SC6 S2={100tps, 1tps} 80:20 $88
SC7 S3={100tps, 10tps} 20:80 $111
SC8 S3={100tps, 10tps} 50:50 $111
SC9 S3={100tps, 10tps} 80:20 $111

SC10 S3={100tps, 10tps} 20:80 $88
SC11 S3={100tps, 10tps} 50:50 $88
SC12 S3={100tps, 10tps} 80:20 $88

(1) Published set of SLOs: We limited ourselves to two
sets of SLOs discussed in Section II-B, namely S2 =
{100tps, 1tps}, and S3 = {100tps, 10tps}. We used
average tps over 100s as the metric to determine if an
SLO is satisfied or not. The results for SLO class S1 =
{10tps, 1tps} where the linear characteristic functions
along with the superior performance/$ of the ssdC SKU
result in pure ssdC provisioning strategies can be found
in an extended version of this paper [29].

(2) Tenant ratios: For each SLO set Si, we varied the relative
proportion of tenants belonging to one SLO versus the
other. We used three ratios in our scenarios – 20:80, 50:50
and 80:20. For instance, a 20:80 ratio for the SLO set
{100tps, 1tps} means that 2000 tenants are associated
with the 100tps SLO while 8000 tenants are associated
with the 1tps SLO.

(3) Relative costs between server SKUs: The true purchase
costs of a single ssdC and diskC server are $4,500 and
$4,000 respectively. Amortized over 36 months [20], we
arrived at monthly costs of $125 and $111 respectively.
Although in reality the diskC server is 10% cheaper than
ssdC, we also considered a hypothetical diskC price point
of $3,150 ($88 amortized, 30% less than ssdC) to consider
what happens if the relative costs of the hard disks were
lower (e.g., if we had used cheaper SATA3 disks). We note
that this method of running our framework with different
scenarios can potentially be used by a DaaS provider as a
way of “scoping out” the impact of varying SKUs when
making a purchasing decision.

A. Solutions From The Framework

Hardware provisioning and tenant scheduling policies are
depicted using bubble plots in a 2-dimensional space. Each
bubble represents a single hardware SKU with a specific
tenant schedule as determined by the coordinates of the center
of the bubble. The size of the bubble denotes the number
of servers provisioned from that SKU (i.e., αi in Problem
Definition 1). The position of the bubble corresponds to the
the tenant scheduling policy represented by vector ~bi in the
problem definition. That is, the y coordinate is the number of
high-performance tenants scheduled on that SKU, and the x
coordinate is the number of low-performance tenants. Recall
that Definition 2.4 allows a single hardware SKU to be used
multiple ways with different tenant scheduling policies. Thus,
even though we have only two types of servers, ssdC and
diskC, a single plot may contain more than two bubbles.

Next, we discuss the hardware provisioning and tenant
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Fig. 10. Solutions for (a) SC7 - $17,681; (b) SC8 - $26,486; (c) SC9 - $37,264 (see Table II for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.
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Fig. 11. Solutions for (a) SC10 - $16,250; (b) SC11 - $21,000; (c) SC12 - $29,400 (see Table II for details). Circle positions indicate tenant scheduling
policy and circle size/annotation indicate hardware SKU provisioning policy.

scheduling policies obtained for each set of SLOs in turn.

1) SLO Set 2 – 100tps and 1tps: Figures 8(a)-(c) show
the optimal hardware provisioning and the tenant scheduling
policies for scenarios SC1, SC2, and SC3 respectively (diskC
costs 10% less than ssdC). As expected, the cheaper diskC
SKU plays a large role in the optimal solution. In fact, when
the tenant mix contains a large proportion of 100tps tenants
(Figure 8(c)), the ssdC SKU is not used at all! Furthermore,
note that even when the ssdC servers are used (Figures 8(a)
and (b)), only the 1tps tenants are scheduled on these servers.
These results are somewhat counter-intuitive, since the high-
end SKU is scheduled only with the low-end tenants.

In Figure 9(a)-(c), we show the optimal solutions for sce-
narios SC4, SC5 and SC6 (diskC costs 30% less than ssdC).
Now, compared to the results shown in Figure 8, we observe
that the hardware provisioning policy uses even fewer ssdC
servers due to their higher relative cost.

An interesting observation from these results is that in the
recommended hardware provisioning policy, the ratio of the
number of servers of one SKU over the number of servers of
the other SKU is very large. Examples of this can be found for
SC2 and SC5, Figure 8(b) and Figure 9(b) respectively, where
the number of ssdC servers is an order magnitude less than
the number of diskC servers. An alternative (albeit suboptimal)
SKU provisioning strategy is to simply use only diskC servers,
and ignore ssdC altogether (or vice versa). The advantage
of this strategy is that it produces a homogeneous cluster
that is easier to manage and administer. In Section III-B, we
discuss this and other suboptimal (from the initial hardware
provisioning cost perspective) alternatives and their costs.

2) SLO Set 3 – 100tps and 10tps: Here we consider SLO
Set S3 corresponding to scenarios SC7-9 and SC10-12 in
Table II. Figure 10 plots SC7-9 where the diskC SKU costs
10% less than the ssdC SKU, and Figure 11 plots SC10-12
for the case where the diskC SKU costs 30% less.

Interestingly, for this set of SLOs, in some scenarios, the
optimal solution uses the ssdC SKU with two different tenant
scheduling policies. As seen in Figures 10(a) and 11(a), there
are two blue bubbles representing ssdC servers – one bubble
represents servers that are scheduled with only 10tps tenants
and the other represents servers that are scheduled with a mix
of tenants.

Since we have a 100tps SLO in S3, the diskC servers pro-
vide better value because they can handle the same number of
100tps tenants at a lower price. This is why we predominantly
see diskC servers in the solutions as the tenant ratio shifts
toward the high-performance tenants. Similar to Figure 9, as
we decrease the cost of the diskC SKU (Figure 11), or increase
the number of 100tps tenants (SC9 in Figure 10 and SC12
in Figure 11), the optimal solution provisions mostly cheaper
diskC servers.

Note that in Figure 10(c), the diskC servers (red bubble)
are scheduled with just one 10tps tenant per server. A simpler
solution (with a possibly higher cost) might be to simply
schedule no 10tps tenants on the diskC servers. Such solutions
are discussed in the following section.

B. Suboptimal Solutions – Simplicity vs Cost

In this section, we discuss issues related to the simplicity
and manageability of the hardware provisioning and tenant
scheduling policies dictated by our framework. At the outset,
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Fig. 12. Relative costs corresponding to solutions for {100tps, 1tps}
Scenarios (a) SC1-3 and (b) SC4-6 (see Table II) using our framework and 4
simple methods (see Table III).

TABLE III
COMPARING TENANT SCHEDULING ON TWO HARDWARE SKUS.

Methods ssdC SKU diskC SKU
Optimal heterogeneous SLOs heterogeneous SLOs
ssdC-only heterogeneous SLOs –
diskC-only – heterogeneous SLOs
ssdC-hightps homogeneous high-perf homogeneous low-perf
ssdC-lowtps homogeneous low-perf homogeneous high-perf

note that our notion of “total cost” is simplistic as it is only
defined in terms of the costs of individual servers. In cloud
deployments, issues such as cluster manageability also carry
a cost and play an important role in provisioning decisions.
In particular, heterogeneous clusters comprised of multiple
SKUs can be harder to maintain, manage, and administer
compared to homogeneous clusters comprised of a single
SKU. A related issue is the complexity of scheduling policies.
A straightforward scheduling policy (e.g., assign all tenants
with SLO s1 on SKU 1, s2 on SKU 2, etc.) may simplify
hardware provisioning decisions as well as tenant pricing
policies. For instance, if tenants of a given SLO class are
tied to a certain SKU, then they can be charged at a rate
determined by the price of that SKU. In this paper, we do
not attempt to quantify the notion of cluster “complexity”, but
leave that as part of future work. Nevertheless, the additional
server costs imposed by simpler hardware provisioning and
tenant scheduling policies can be determined.

Table III lists four alternative methods to our optimizing
framework. In method ssdC-only, we use a homogeneous
cluster comprised only of the ssdC SKU. Note that this method
allows a heterogeneous mix of tenants with different SLOs on
a server and also allows for different tenant scheduling policies
on different ssdC servers. Method diskC-only is similar, but
with diskC servers taking the place of the ssdC servers. In
method ssdC-hightps, all of the high-end tenants are scheduled
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Fig. 13. Relative costs corresponding to solutions for {100tps, 10tps}
Scenarios (a) SC7-9 and (b) SC10-12 (see Table II) using our framework
and 4 simple methods (see Table III).

on the ssdC servers, and all of the low-end tenants on the
diskC servers. In method ssdC-lowtps, this assignment is
reversed. Thus, in the latter two policies, the SLOs are tied
to SKUs. Note that another possible method is to provision
a homogeneous cluster and maintain a homogeneous tenant
scheduling policy each server. We omit this method since it
is subsumed by the ssdC-only and the diskC-only methods
that allow for both homogeneous and heterogeneous tenant
scheduling policies.

In Figures 12-13, we plot the total costs obtained by
the five methods outlined in Table III for the 12 scenarios
described Table II. All solutions are plotted relative to the
cost-optimal solution (shown as the left-most bar) discussed
in Section III-A. At a high-level, while in each case there are
some solutions that are identical or very close to the optimal
solution, there is no single method that consistently gives a
solution that is close to the optimal solution in all scenarios.
For example, while ssdC-lowtps seems to match optimal cost
in the S = {100tps, 1tps} cases, this is not the trend when
S = {100tps, 10tps}.

Let us examine a few solutions in more detail. In Figure 12
(the S = {100tps, 1tps} case), the ssdC-only and the ssdC-
hightps methods are expensive solutions in Figures 12(b) and
(a) respectively, since the ssdC and the diskC SKUs can both
handle only 25 100 tps tenants, but the ssdC server is more
expensive. Also, a homogeneous diskC cluster is generally
more expensive when the tenants skew towards the 1tps SLO.
This is because the ssdC SKU can schedule many per 1tps
tenants than diskC SKU (Figure 3). The trends shown in
Figure 13 (for S = {100tps, 10tps}) are similar to those of
Figure 12 for the same reason.

This analysis shows that simpler provisioning methods



may come close to the optimal solution provided by our
framework, but no single method produces consistently good
solutions. Moreover, these simpler heuristics still require SKU
performance characterization in order to schedule tenants
while adhering to tenant SLOs. Our framework produces low-
cost hardware provisioning and tenant scheduling policies for
multi-tenant database clusters that are up to 33% less costly
than simpler provisioning methods. Thus, the cost benefit of an
optimal solution over a suboptimal solution must be weighed
against cluster manageability and simplicity.

C. Discussion

While the focus of this paper is on performance SLOs
in a DaaS, we have not discussed the impact of tenant
replication (a solution for currently prevalent uptime SLAs) on
our performance models. While data replication may improve
performance for read-mostly workloads, maintaining replica
consistency under update-heavy OLTP workloads places addi-
tional demands on the resources of DaaS providers. A careful
study of how to deal with replica consistency and availability
while providing performance SLOs is beyond the scope of this
paper, but we sketch an initial method to deal with this issue.

For our framework to handle replica updates, we can modify
the benchmarking method that is used to determine the SKU
performance characterizing function (Section II) to account for
the extra work that is needed to maintain replica consistency.
For example, instead of measuring tenant performance on a
single server as we have done, we would measure the tps
observed by a tenant whose replicas are placed on r servers
and maintained via eager or lazy updates. The functions
obtained from such a benchmark could be used as constraints
to the optimization problem defined in Section II-C.

Using our framework, we can pose another interesting ques-
tion: given a cluster with a specific composition of hardware
SKUs, what (performance) SLOs can the DaaS provide agree
to, so that it maximizes the number of tenants that can fit on
this cluster? For this question, we need to formulate a new
objective function that optimizes for max(|T |) in Problem
Definition 1 where T is the set of all tenants. Our other
constraints would remain the same as specified in Problem
Definition 1.

We note that in calculating the amortized monthly costs, we
have not accounted for run time energy costs or amortized in-
frastructure cost (e.g., for the building, networking equipment,
and associated power and cooling equipments). However, these
can be accommodated in our framework (provided there were
an accurate model to compute these costs for each SKU) by
simply adding these costs to the amortized monthly cost that
we use in this paper.

Finally, in this paper we have shown an explicit benchmark-
ing approach for understanding the effects of mixing SLO
classes and tenants. However, our framework is modular in
that it is possible to leverage other analytic approaches that
predict the impact of mixing tenants with different workloads
and SLOs [11], [18].

IV. RELATED WORK

DBMSs have traditionally been engineered for a single-
tenant “on-premises” environment. However, emerging trends
indicate that DBMS workloads are moving towards the cloud.
In recent literature [2], [31], several systems for providing
databases in the cloud have been proposed and discussed.

In [9], issues such as performance, scalability, security,
availability and maintenance must be reconsidered in a multi-
tenant cloud environment. Furthermore, as shown in [20],
cloud infrastructure is a costly investment for DaaS providers.
Thus, an important goal in such an environment is to maximize
server utilization via tenant consolidation and minimize wasted
resources [12], [14], [28], [32].

As outlined in Section II-A3, there are several methods to
consolidate multiple tenants on a single server [4], [5], [8],
[15], [17], [32], [37]. In particular, methods based on the use
of Virtual Machines (VMs) have been studied in [1]. How-
ever, the performance overhead caused by VMs (paging [22],
contention [30], OS redundancy [17]) may be too expensive
for the more data-intensive workloads considered in this paper.
Thus, a number of frameworks for building native multi-tenant
applications have also been proposed [6], [13], [34].

The first step in providing performance-based SLOs for
customers is to model system performance under a realistic
multi-tenant workload (Section II-B). To this end, recent work
has focused on formulating and evaluating performance bench-
marks in a cloud environment [16], [24], [35]. Complicating
factors such as unpredictable load spikes [10], interference
between tenants [18], [26] have also been analyzed. Load bal-
ancing may require tenant migration [19] or alternatively, reas-
signment of a tenant’s “master” replica. Other work has studied
how to benchmark production systems and train performance
and resource utilization models without breaking performance
SLOs [7], [11]. This paper is different from these prior
complementary works because the focus is on developing a
framework for using SKU performance characterizing models
to come up with cost-effective hardware provisioning policies
and tenant scheduling policies for various performance SLOs.

SLAs for cloud-based services are usually formulated in
terms of uptime/availability guarantees [3]. Other work in this
field has considered allowing tenants to choose between SLAs
that guarantee different levels of consistency [25] and guaran-
teeing response times in in-memory column databases [33].

V. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper presents the
first study of a cost-optimization framework for multi-tenant
performance SLOs in a DaaS environment. Our framework
requires as input, a set of performance SLOs and the number
of tenants in each of these SLOs classes, along with the server
hardware SKUs that are available to the DaaS provider. With
these inputs, we produce server characterizing models that can
be used to provide constraints into an optimization module. By
solving this optimization problem, the framework provides a
hardware provisioning policy as well as a tenant scheduling
policy for the selected server SKUs. We have evaluated our



framework, shown that in many cases a mixed hardware cluster
is optimal, and we have also explored the impact of simpler
hardware provisioning and tenant scheduling policies.

To the best of our knowledge, this is the first paper to
formulate a new problem of performance-based SLOs for
DaaS, presenting a framework for thinking about this prob-
lem, presenting an initial solution, and evaluating this initial
solution to show its merits.

To limit the scope of our study, we have made some
simplifying assumptions on aspects such as performance met-
rics, tenant workload, and multi-tenancy control mechanism.
Relaxing these assumptions provides a rich direction for future
work. One direction for future work is to include the impact
of replication and load-balancing in our framework, perhaps
building on the ideas presented in [27]. Additionally, while
our experimental evaluation uses average performance as an
SLO metric, it could be extended to include variance as well
(as implied by the use of random variables in Definition 2.2).
Imbalanced load or flash-crowd effects could be modeled in
our framework as additional tenant classes with high perfor-
mance requirements – this would produce a hardware “over-
provisioning” policy to deal with these effects. If workload
spikes are detected in practice, tenants could be dynamically
re-scheduled on these extra machines to maintain performance
objectives. In addition, while the tenant classes used in this
paper have different memory and disk requirements, other
workloads should be considered as well. Finally, in our frame-
work we have taken an approach of explicitly benchmarking
the tenant workload classes and mixes, but our framework
could be extended to take a more analytical approach that
could predict the impact on performance of a different work-
load mixes, perhaps by using multi-query optimization-based
approach to estimate the impact on performance [11], [18].
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