Dictionary-Based Compression for Long
Time-Series Similarity

Willis Lang, Michael Morse, Jignesh M. Patel
Computer Science and Engineering, University of Michigan
{wW ang, mmorse, jignesh}@ecs.un ch.edu

Abstract —Long time-series datasets are common in many domains, especially scientific domains. Applications in these fields often
require comparing trajectories using similarity measures. Existing methods perform well for short time-series but their evaluation
cost degrades rapidly for longer time-series. In this work, we develop a new time-series similarity measure called the Dictionary
Compression Score (DCS) for determining time-series similarity. We also show that this method allows us to accurately and quickly
calculate similarity for both short and long time-series. We use the well known Kolmogorov Complexity in information theory and the
Lempel-Ziv compression framework as a basis to calculate similarity scores. We show that off-the-shelf compressors do not fair well for
computing time-series similarity. To address this problem, we developed a novel dictionary-based compression technique to compute
time-series similarity. We also develop heuristics to automatically identify suitable parameters for our method, thus removing the task of
parameter tuning found in other existing methods. We have extensively compared DCS with existing similarity methods for classification.
Our experimental evaluation shows that for long time-series datasets, DCS is accurate, and it is also significantly faster than existing
methods.

Index Terms —Spatial databases and GIS, Database Management

O

1 INTRODUCTION series. Thus, there is a need for a more efficient similarity
calculation method folong time-series data.
Applications of time-series data range from electrocaytion Similarity measures based on compression have been sug-
(ECG) measurements in medicine, to facial recognition igested for use with time-series [29]. This previous work has
biometrics, to particle tracking in physics. Increasindgng used the Kolmogorov Complexity as a foundation for their
time-series datasets and the need to analyze them have nsitiilarity score. These measures use off-the-shelf cossjma
vated the database community to create efficient and aecunaiethods as a basis for computing a similarity score [13].
similarity measures [4], [10], [11], [18], [48], [49], [55] Techniques of this type differ in approach from similarity
[57]. These time-series similarity measures are useful fareasures such as DTW, edit distance measures (EDR/ERP),
querying a database, classification, and clustering. M&ny longest common subsequence (LCSS), or Euclidean because
these methods are based on the dynamic programming (D} method does not use pairwise comparisons of points in
paradigm where optimality in the data alignment is desirethe time-series, but instead use the compressed sizesia ent
This optimality is variable depending on the properties tiime-series data to estimate sequence similarity. As arsgor
be examined such as longest common subsequence or ttihnique, this method can be used for querying, classditat
distance. Since many state-of-the-art methods use the BPclustering just like the methods mentioned above. These
method, the cost of comparing two time-series is quadratitethods rely on both off-the-shelf compressors and digeret
in the length of the time-series. This makes the evaluatidion of the input; we show that the compression-like strateg
of similarity between twolong time-series very expensive.of our method, which uses neither of these, is better than
Furthermore, many pruning techniques have been devisedtlse competing alternative. Problems with discretizatimsiude
that time-series similarity queries do not need to compui@proper discretization due to the hard bucket limits ad agl
the similarity measures between the query and every timadditional parameters for bucket sizes (this is discussegtdr
series in the database [6], [25], [32], [49], [57], [58]. Bee in Section 3.1). Moreover, as is evident in [13], [29], [38ida
techniques employ indexing methods to prune the searchour own examination, while these methods work well on
space but still require many sequence comparisons, and tket data, their performance on time-series can be improved
amount of pruning is data dependent as we show in ofis we show in this paper, our DCS method is more accurate
experimental results. Clustering algorithms such as thi wethan these existing methods.
known Unweighted Pair-Group Method with Arithmetic Mean In this paper, we propose a novel compression-based scheme
(UPGMA) [50], where a quadratic-space dissimilarity nratrifor computing time-series similarity. Our technique, edlthe
must be fully calculated, would benefit from a fast and adeuraDictionary Compression Score (DCS), is a method that com-
similarity measure [21]. In such cases, if time-series arbd putes time-series similarity in the native, continuous dom
clustered, no pruning can be done as all distances mustdpace by looking at sequence segments. These segments are
calculated. The quadratic nature of existing methods woullden used to construct a dictionary, which in turn is used
make this computation extremely lengthy for longer timeto compute a similarity score. The dictionary construction

scheme bears some similarity to the method employed Wyi € m : r; = (r; — p)/o for all of the m elements of
Lempel-Ziv compression, which builds words from a distincR, where i, is the mean of the data angd is the standard
alphabet instead of time-series sequences. If the diaijonaeviation. This method is widely used in [10], [28], [41]. In
used by the DCS technique is constructed on one time-setileis paper, all time-series are normalized as describegieabo
and used to compress another time-series, the method car-beher, we assume that time series to be compared are of the
used as a similarity score similar to existing techniqueshsusame length.
as DTW, LCSS, or Euclidean. There are many techniques for measuring the similarity be-
Our results show that for long time-series, DCS is oftetween two time-series. For example, the simple Euclidean di
30% faster than lower bounded constrained DTW and an ordance [2] between two time-series sums the Euclidean distan
of magnitude faster than constrained LCSS using FTSE [43tween corresponding elements of each time-series. The
while providing competitively accurate similarity scor€CS Dynamic Time Warping measure (DTW) was first introduced
is comparable to time-series Bitmaps [36] in speed; howevar [4] and extensively developed further by [28] [46] [2513
DCS is more consistent in achieving high accuracy thda name a few. Unlike Euclidean, DTW does not require time-
Bitmaps over varying types of data. While DCS is designed feeries to be of equal lengths and it allows for time shifting
long time-series, it is also interesting to ask how it perfer between time-series by repeating some sequence elements.
on short time-series. DCS accuracy on short time-seriesTihere are several techniques based on the edit distance,
competitive against constrained DTW, and LCSS, with norcleeacluding the Edit distance with Real Penalty (ERP) [10]
statistical winner. and the Edit Distance on Real sequences (EDR) [11]. The
Specifically, this paper makes the following contributions Longest Common Subsequence (LCSS) technique is presented
1) A novel Continuous-Domain Dictionary Compressiorn [55] and most recently, the Sequence Weighted Alignment
method is developed that builds continuous time-seriégwale) method that combines elements of the LCSS and EDR
elements in the native space to compute “words” suitabfethods is presented in [43]. A recent examination of these
for storage in a dictionary created by a Lempel-zivtate-of-the art methods is presented by Ding et al. [15].
compression-like scheme. The DCS method is developedPimensionality reduction techniques have been extensivel
which uses the Continuous-Domain LZ Compressi(ﬁiudied, inCIUding the Discrete Fourier Transform [2], the
method as a scoring method for time-series similarity.Singular Value Decomposition [35], Discrete Wavelet Trans
2) We provide a simple hill-climbing and parameter refineform [8], [45], Piecewise Aggregate Approximation [27]6[5
ment method for parameter selection, essentially makig§d the Adaptive Piecewise Constant Approximation [31].
DCS a parameter-free method. Indexing of time-series is studied in [18], which proposes
3) Our experimental section shows that for long time-seried lower bounding technique that guarantees no false dis-
DCS is significantly faster than existing methods whil@1issals. Indexing techniques for the DTW measure have been
just as accurate. For short time-series, this compressiiPposed, including [25], [32], [49], [57], [58]. Since thi
style method is competitive in accuracy while othePaper discusses a fundamentally different style of timeese
Compression_based systems are not. These results SleSiS, we do not discuss these methods further but we will
that we have produced a compression-based scheme fdfipare against some of them in our experimental evaluation

can compete with the current state-of-the-art where prior Time-series similarity can be calculated using compressio
compression-based schemes could not. techniques [29]. These methods approximate the Kolmogorov

The remainder of this paper is organized as follows: SectiGfPMPIexity by compressing time-serig¢s concatenated with

2 presents related work. Section 3, describes our DCS methgne-seriesS. Recent work [12], [13], [2_9]’ _[38]' [39]: [44])
Section 4 contains experimental results, and Section fawnt has shown Fhat the Kolmo_go_rov_ complexity is a e_ffectwe Hasi
our concluding remarks. for developing accurate similarity measures. This workldea

with discrete data or discretizing continuous data andyapg!
off-the-shelf compressors to approximate the Kolmogorov
2 RELATED WORK complexity. The intuition behind the scheme is thafifand

As is commonly done in time-series similarity, we assumg are similar, the compressed size of the concatenated file
that time is discrete throughout this paper. A time-sefies should be smaller tha® and.S compressed alone, since the
defined as a sequente= (p1, t1), (2, t2), ..., (o, tn), Where compression method has been “warmed up” witheforeS' is
eachp; is a data point in @-dimensional space that is sampledompressed. Our methods use a dictionary similar to that use
at timet¢;. Eacht; is strictly greater than each_;, and we by common compressors and we develop a scoring method
assume that the sampling rates of time-series are equivalethat utilizes the mechanics of a compression technique.

A few examples of time-series from a labeled dataset areAnother large body of work that is similar to the methods
shown in Figure 1. These time-series come from the populae discuss here is that of Vector Quantization (VQ) [20].
Cylinder-Bell-Funnel synthetic dataset [28]. This figuh®ws Both methods are based on lossy compression. Our methods
three different time-series, namely (a) the cylinder typg¢the similarly transform an input vector into smaller blocks or
bell type, and (c) the funnel type. Given a query sequeneg, ttegments. VQ can be used for classification as described
task is to classify the query as either a cylinder, bell, omfel. in [34]. However, while VQ maps fixed-length segments into

A normalization scheme for time-series is developed in [1%9% finite (and thus discrete) set of possible values, our ntetho
Using this method, a time-seriésis normalized by evaluating stores eaclvariable-lengthsegment extracted from the input

8 S 8 ,‘ 8
‘,‘-‘ WA A ‘)u“‘ \Wv""v\ 1
4 I; ‘ 4 vl""/"\"w,,,\ 4 4 i pred
| | | V ‘\ My ,,\‘/& v ‘}
0 z‘/,_\;“\"/\ A ln‘v'f"\lw”f"‘“‘w”r‘vu,‘., 0 ““\‘.‘”v/“‘v"/‘l‘/\-"‘}‘ V v‘,‘N‘\"‘,\/V‘\/“(V\,\."v\‘,“/\.\ 0 A, /-,»'w.\‘{"“" AR J/\\,/\"u",-w/
0 40 80 120 0 40 80 120 0 40 80 120

Fig. 1. Three examples from the Cylinder-Bell-Funnel Dataset.

vector and so we do not have a finite or discrete set of mappitegbe small; ifz = y, K(z|ly) = 0. The main approach

targets. Further, our variable-length segments are d@tedn for approximation is to substitut& («|y) with C'(z|y) where

by a Lempel-Ziv like algorithm that lengthens segments 8as&unction C' is a compressor and we can measure the length

on frequency. Details on this can be found in Section 3.2. of the compressed data. Sindé(x|y) is the length of the
While we have discussed different methods of similaritghortest program that generategiven y, the approximation

measure, here we discuss various applications of these sifi{z|y) is the length of the code that can regeneratgiven

larity measures. One use of these similarity measures iata dy. Interested readers can refer to Vereshchagin for detéils o

clustering. Given a set of time-series, a dissimilaritymxatan Kolmogorov functions [53].

be calculated and clustering algorithms can be applied asch

UPGMA [50] or Partitioning Around Medoids (PAM) [24]. 2.2.1 Off-the-Shelf Compression and Similarity

In terms of database querying, the similarity measures C8fhce the relationship between the Kolmogorov complexity
be used to search a time-series database against a single tiid compressibility of data are quite related [39], it is un-
series query producing a ranked list of matching resultss Thsurprising to find a large body of work studying the ap-
use naturally also leads to the use of these similarity nreasuproximation of K () using current compression techniques
for classification using the Nearest-Neighbor method. ﬁert[lz]’ [13], [29], [38], [44]. These methods utilize off-the
purpose of classification, other methods such as Rand@Relf compressors to approximate Kolmogorov complexity an
Forest [7] and Support Vector Machines (SVM) [9] can bgse it to determine similarity between data. In our study, we
used. But, these methods do not provide an explicit sinylarinaye reached the same conclusion that these prior methods
measure like DTW, EDR/ERP, LCSS, etc. and cannot be usgérk well for text and discrete data. While these methods
for any of the other uses of these similarity measures gfe arguably not suited for short time-series analysis, [29]
mentioned above. the purpose of completion, we tested how our method works
on short time-series. Interestingly, we see competitigailie
for short time-series against classical dynamic programgmi

2.1 Time-series Bitmaps
Time-series Bitmaps were introduced in [36]. This tool isdis Methods. Our work does not rely on off-the-shelf products bu

to visualize time-series in the form of thumbnail imagesedéd nStéad augments the Lempel-Ziv algorithm to produce a more
bitmap images can also be used for time-series similarty TacCUrate similarity measure.

similarity between time-series Bitmaps and our methodrie i

the calculation of short segments within each time-senes a2.3 Lempel-Ziv

their frequency. However, the way these segments are dieajgsmpel.-ziv (LZ) has been well studied since its development
counted, and analyzed are very different in both methods. g 1977 [59]. The algorithmic complexity of LZ is linear [3].

a given alphabet size and desired segment length, Bitmapsis ra\ form, it scans along a sequence of data and in one
discretize the time-series, enumerate all possible wadd, ¢ simultaneously generates a dictionary and comprieses
finally calculate the frequency of each within a time-sef®8 513 This is an elegant and effective method of compression
compare DCS with Bitmaps in our experimental evaluation,q jts compressed form can be disseminated and uncompressed
without ever requiring knowledge of the contents of the
dictionary. We use the LZ algorithm as shown in Algorithm 1.

Kolmogorov complexity is the measure describing the min-

imum amount of information required to produce a specifi¢-3-1 Lempel-Ziv Shortcomings

item of data. Li et al. [38] defines it adi'(z) of a string As a compressor, the compression ratios achievable by LZ are
x is the length of the shortest binary program to comptte generally weaker than other commonly used compressors [40]
on an appropriate universal computer - such as a univer#al compression is based on its elongation of items in the
Turing machine. Furthedy (z]y) is the length of the shortestdictionary (we will refer to these as words). Since the algo-
program to generate giveny, an additional input. Finally, rithm only makes one pass of the data, the recognition of
K(x,y) is the length of the shortest program that generatesrepetitive pieces of the data is limited. Also, the greediyre.
andy and a delimiter. Kolmogorov complexity is in generalpf word matching is not guaranteed to be optimal. Further
incomputable [38], [42]. We rely on the idea that two similapasses through the data would obviously provide the algaorit
strings of data will have very similar Kolmogorov complexiwith more knowledge of the highly repetitive, lengthy regso
ties. Further, ifx andy are similar, we should expedt(z|y) that allow for best compression. Furthermore, the left ghti

2.2 Kolmogorov Complexity

Algorithm 1 Lempel-Ziv Algorithm

cInput: S = sp...5n |

. Initialize dictionary: set of singleton alphabet symbols |
w = NULL

: while |S| > 0 do

C=S0

if we € dictionary then w = wce

else add wc to dictionary; output code forw; w = ¢

end if

S = 51...5n Continuous

- end while —+— Intervals

. output code forw

.] Discretized
[177 Buckets

POoOOXNOORLONE

e

Fig. 2. Hard discretization quickly buckets data points
into partitions. This example shows that 2 data points

mechanism only gives better compression to the latter pal tl are cIos%.t(t)getther_ ?r.e plart|tt|)onidt 'gtc.) tE En% F
of the input data as the dictionary becomes more populaté’&. It('a a more distant poin 'Stﬁ sdo ucketed nto . tur
This means that the earlier portions of the data will be |Q,oorlcon INUOLS COMPression Method Uses an ¢ parameter

compressed with smaller dictionary words. However, as it i%) clreate intervals V.VhiCh .distingu?sh nearby points more
linear in time complexity with respect to the input data,sit i exibly. Here the middle interval intersects both the first

faster than many other compression techniques and last interval. The first and last intervals are non-
' intersecting which maintains ¢ integrity. Searches for

nearby time points are facilitated by interval trees.
3 THE DCS METHOD y e be? Y
) }) ~_Algorithm 2 Build and Compress Phases
In this section, we describe our DCS method. We begin with afy Input: X = 202, Y — 509
overview of theContinuous-Domain Dictionary Compression ». Output: score " "
Then, we describe a method for constructing a dictionary fos: Dictx =BUILD DICTIONARY for X

time-series datasets in the continuous domain. 4: COMPRESSY using the largest segments Inict x
5. OUTPUT compressed size of

3.1 Continuous versus Discrete

Before discussing the method itself, we motivate the beneffr%tuition behind the way that the dictionary is constructed

of a non-discretizing method for time-series compression. . R)
our Continuous-Domain Dictionary Compression.

Figure 2 shows that discretization of continuous data magsmi In a number of other time-series similarity scoring tech-

proximity relat|ons_,h|ps that a more flexible _mter_val merﬂhon. ues including the popular LCSS [55], EDR [11], and LCSS-
may capture. Notice that the three data points in buckets . . .
SE [43] measures, aa factor is used to find matching

and F. E contains two relatively distant points while E and : . :
. . . elements. In these schemes, if two time-series elememtsk?

contain two points that are close together. An intervaleldas o ST
ands; € S are withine of each other, i.e. if abs(— s;) <

method discretizes the continuous value domain into mlerv6 r ands; are said to match. Otherwise, they are said to

that are all of a uniform length. The method determines r‘?ot match. We also use this criteria to determine match-

score for two particular values based on whether or not they = . .) L

; : : . II1g time-series components. Continuous-Domain Dictipnar

map to the same interval. As seen in the figure, two poin : - .

that fall on opposite sides of an artificially imposed bouwyda ompression constructs a dictionary for a time-seriey
attempting to attach a new time point from time-seriesRk

are unnecessarily penalized. While working in the contiraio . . .
. . - to a set of previous elements,...;;_; which constitute a
domain requires extra overhead in terms of data structures . - . L
: : . egment already in the dictionary. The time poinis matched
such as interval trees, it allows a more accurate view of the . L - .
. . X : with any elements in the dictionary that are within a distanc
relationships between time points. .
of ¢, i.e. any elements that fall between — ¢ and r; + .
_) Once the dictionary for is constructed, a similarity score
3.2 Algorithm Overview between time-serieB and.S can be obtained by matching the
In this section we discuss the details of our work, startingegments in the dictionary with segmentsSfWe retain the
with a description of terms that we use. As the LZ algorithrgreedy method of matching segments in the dictionary based
is used as a compressor for text data, the input is a striran the length of the segment to retain the speed benefits. This
It inputs substrings, i.e. “words”, into its dictionary vidi greedy approach of dictionary segment matching is simpde an
it scans through the characters. For time-series, the Iplral effective as shown by our experiments. The overall scheme is
are as such: the time-series can be thought of as the strisgmmarized by Algorithm 2.
“segments” are analogous to “words”, and time points are Scoring measures such as Euclidean distance, DTW, and
similar to characters. LCSS calculate the similarity between two time-series by
The LZ algorithm constructs a dictionary by attaching a neaomparing both sets of time points from the two series
characterc from the string that it is compressing to a wordsimultaneously. Our method decouples the analysis of tie tw
w that is already in the dictionary and checking to see if thaeries by looking at them sequentially. In this way, every
word is present. If it is¢ is added to the word. This is the saméuild phase can also be thought of astraining phase.

4

Algorithm 3 Build phase

1: Input: S = so...5n o S S

2: Output: Dictx P I < o L =05 . _.._.._.. _

3: Initialize dictionary: empty dictionary hash o M

4: prev = NULL; loc=0;Y =85 1 v _ _‘N: ________________ B

5: while |Y| > 0 do I

6: segment = longest dictionary item that is prefix of Y 55220

7. i =|segment|; loc = loc+ i S S SO S

8: if prev # NULL and|prev| > 0 then t t+2 tr4 t+6 t+8 t+10

1gf evrhﬁfeTpfei’f’féVg)(prev,yo) Fig. 3. The matching region for a segment in the dic-
11: ADD(dictionary, prev); prev = prevo...(jprev|-1) tionary where the ¢ = 0.5. Depicted is the static epsilon
12: end while technique where each data point is allowed a deviation of
13: end if € in Euclidean distance away from it at a given time point.
14: prev =yo..yi-1; Y =yi..ys A s

15: end while N

16: OUTPUT dictionary [\\

P

Algorithm 4 Compression phase ! "\

1: Input: Dictx,S = S¢...Sn /l \

2: Output: Compressx(S) F S—_ === ——=

3: Compressx(S) =0;loc=0;Y =8 t

4: while |Y'| > 0do) _ o

5. segment = longest dictionary item that is prefix of Y Fig. 4. The ¢ factor is used to control dictionary segments
6: 0= |segment|; loc =loc+i; Y = yi..ys from being improperly used. Here, segments that are
gf mgzvmlﬁgessx(s) = Compressx(S) +1 produced by the peak of time-series A could be used
o: OUTPUT Compressx (S) during the compression of the peak of target series B.

Further, both time-series have flat intermediary regions
that are within small . The compression sizes would be

) o quite similar and erroneously give favorable similarity.
Using the LZ dictionary framework allows our method to self

adjust to different levels of similarity. For example, ifeth epsilon factor of 0.5 which allows other time points to match
data that is used to create a dictionary is highly repetiti¥fiose in this dictionary segment within a Euclidean distanc
with repeated structure, the dictionary will contain longepf 0.5. We depict a statie value in Figure 3, which means
segments. This allows our method to examine the target dgiat at each time point we rigidly allow anshift. Through
for longer repeategbhrasesor motifs and identify similarity experimentation, we have found that an averagelue for
at a high level. However, if the input to the build process ig given segment works just as well, and in some cases even
highly random, with few repeating phrases, the Compressiggtter. For example, given anof 0.05, a rigid e constraint
stage will simply look for two length segments that indicat@yrces each time point in the segment to satisfy the bounds.
similarity at a lower alphabet level. However, the average constraint would simply require that
the average deviation over all time points in the segment be
3.2.1 Building the Dictionary within e. The intuition behind this type of shifting is to be
We present our method for building a dictionary from desistant to noise factors at sporadic time points that doul
time-series in Algorithm 3. For reasons explained below inave made this segment a reject.
Section 3.2.2, we do not explicitly load singleton timesiei The second parameted, determines the time warping
into the dictionary. Thus, the length of the shortest sedriten sensitivity. Other methods employ @& factor to restrict the
our dictionary is 2. In addition to adding the segmgntv to time warping of a matching scheme, such as the Sakoe-Chiba
the dictionary, all prefixes of the segment are also addetki.i band [48].
13-16). The reason for this is discussed below and illustiat Figure 4 illustrates the significance of restriction. Insthi
in Section 3.2.5. We now discuss the parameters that alléigure, the two curves are quite different since time-seres
our method to compress continuous data. contains a peak early in the time-series and time-seHes
The first key idea is the dependency on thevalue for contains a peak at the end of the time-series. The similarity
defining similarity between elements of two time-serfeand measure calculated by most existing techniques shouldctefle
S. As mentioned in the previous section, since we are workirlgis difference. In our case, the dictionary segments fain
in the continuous domain, there is no alphabet for the timany location such as the peak in time-serigsould match
series. The data elements now lie in the real number domaamy other location inB regardless of time warping. In this
so the issue of matching segments in the dictionary to a preixample, if the dictionary that is produced from the peak of
of a time-series must differ from previous approaches. time-series A is used to compress the peak of time-series B,
In Figure 3, we demonstrate how thefactor allows for a high compression ratio could be achieved. Thus, we use the
segment matching. Here, a segment in the dictionary of kengt factor to restrict dictionary segments to match a prefix. Our
5 was created to span time poirfts+ 4)...(t + 8). We set an warp restriction is primarily used to increase accuracy.

<-interval -» criteria. As an example, later nodes in the traversal ardestha

0.16 10.21} 0.26 to show the nodes/segments that would have to be examined.
10.33:
10.34, 3.2.4 Scoring
50-243 The largest prefix of the target data sequence is matched
0.19, with entries in the dictionary until all elements of the terg

data sequence have been examined. The details are shown
in Algorithm 4. The greedy nature of the algorithm for
Fig. 5. A tree is built for each size of segment. If e = 0.1, segment matching makes it fast, but also means that it may not
then we can see the +/- 0.05 that is applied to the first produce the best possible alignment (just as some compsesso
element of the segment. This interval (specific segment) outperform LZ). However, like LZ, we show that our method
is then inserted into the tree. Since intervals in each produces good alignments in practice.
tree are equal to ¢, the traversal required is more limited In our method, each dictionary match is valued equally
than an interval tree with unrestricted interval sizes. An toward the final similarity score. For example, if the target
example traversal of the tree is shown by the shaded data sequence is fully exhausted by the prefix matching and
nodes. 100 segments in the dictionary are used (including singleto
The & value to limit time warping is not used in thesegments as described in thg building phase), then thenretu_r
measure from the compression phase is 100. The count is

dictionary build phase. Itis ignored to allow for longer fixes . . .)
to be matched and thus longer segments to be construcl{?a%{ememed by one at each iteration regardiess of prefgthen

in the dictionary. The dictionary build phase also adds ar|r|1atched. The resuIF Is that for a sequence of length n, if all
segments used during the compression were of length 2, the

subsequent prefixes of a given segment into the dictionary @ urn value would be 0.5n. Our score mimics the length of

described in section 3.2.1, so that the segment can be naatche .
) L compressed data given by an LZ compressor.
with the § restriction.

While Cilibrasi and Vitanyi [13] try to approximate the Kol-
. . - mogorov Complexity i (z|y)) of a stringx given a stringy
322 Implicit Singletons in the Dictionary using a compressor to fi(né the compressed size of sirican-
Note that unlike traditional dictionary building for LZ com catenated with string, NCD(z,y) = (C(zy)—C(2))/C(y),
pression, we do not initialize the dictionary with the eetiroyr method behaves differently in a subtle manner. Since we
alphabet of singletons. The simple reason being that oy$ not add any new elements to the dictionary after examining
alphabet is not discrete and finite. As described above, & first time-serieg when scoringz, we do not find as near
search for increasingly longer segments to match the prefi, approximation to the Kolmogorov complexity ofy (the
Since our shortest segment length is 2, we start lookingen thinimum amount of information needed to communicate
dictionary for segments of length 2 to match the prefix of th@iven y). We do however, find a more accurate measure of
sequence. If none is found, implicitly, a singleton is matth pow well the elements aof can match the elements of This

This will be further illustrated in Section 3.2.5. is because the dictionary only contains elements fyoiince
o) this is our ultimate goal, it is a meaningful distinction.
3.2.3 Dictionary Implementation Our DCS(x,y), like DTW, is not a distance metric, it is a

The implementation of the dictionary is crucial to the oVlerasimilarity score. The smaller the DCS(X,y), the more simila
performance of DCS. In the worst case, we must probe tkeand y are to each other than any other pair within the set
dictionaryO(n) times during the entire build/compression, andf data. Notice that ifz = y, we do not achieveX (z|y) = 0
our dictionary contain®(n) items. Without a good dictionary which is required for a score to be classified as a metric.
implementation, our method costdyn?). The best solution is
to use an interval tree that allow¥log(n)) time for additions. 3.2.5 Example
While this solution does not guarantee a worst case solutiBigure 6 is an example of building the dictionary on a source
better thanO(n?), we show in Section 3.2.6 that this worstata series as well as compressing two target data series.
case is pessimistic in practice. The first time-series is used to build a dictionary by calling
The dictionary is implemented using an interval tree. Thalgorithm 3. Recall that singleton segments are not exgici
details of an interval tree can be found in [14]. The intervdbaded into the dictionary. For all segments added to the
tree is used in the following way: for each segment, we uskctionary, all prefixes of the segment are also includeds Th
the interval created by the epsilon bounds for the first valug shown with the segment (0.30, 0.20, 0.90) where its length
of the segment as the key for the tree. This is depicted Mprefix is added. The need for this step is illustrated byetarg
Figure 5. In the figure, we show that trees are constructed fbiwhere it matches a segment of length 3. The only way this
each segment size, which keeps all the segments of a particabuld have occurred is if its prefix of length 2 was added
size x together in an interval tree. In the figure, we show abecause none of the other segments of length 2 were valid.
example where a segment of length 5 has an interv@l if Time of entry into the dictionary is also included. For exdenp
to 0.26. Thus, if we have a query interval 6f11 to 0.21, our the segment (0.90, 1.00):5 was created when the algorithm
tree traversal would find this interval and examine the segmeaeached time point 5. When we compress using Algorithm 4,
to which it is bound to see if the rest of the values satisfyethewe also obey the: and § constraints. The) constraint is

>
vy

1.5
8 0.15|0.70/0.30 [0.20 | 0.90| 1.00 match words added to dictionary
5 0.15
o
a — 0.70 (0.15, 0.70):1 1
—— 0.30, 0.20 (0.70, 0.30):2 ——Src
] 0.90 (0.30, 0.20, 0.90):4 (0.30, 0.20):4 \ Tgtl
— 1.00 (0.90, 1.00):5 05 .
— —k— — Tg‘tZ
©1]030]-0.1(-0.1 O |0.85[0.90 dictionary words used _*~ .
2| 1| C 1|33 (0.70,0.30):2 (0.30, 0.20, 0.90):4 _a-l — ‘A
g
82]o.10[0.10] o [1.00[0.90|-0.1 a 6
—= |c = [= (030, 0.20, 0.90):4
0 1 2 3 4 5 0.5
time -
Time

Fig. 6. Building and compressing time-series of length 6 with ¢ = 0.5, = 2. Time-series Src, Tgtl, Tgt2 in panel
B correspond to the time-series source, target 1, target 2 in panel A respectively. Panel A shows the results
of building the Src time-series from panel B. In panel A, the dictionary items added are shown on the right of
the ‘match’ items. Dictionary items also store the time point at which they were created — (< segment >) :<
time of creation >. In a Lempel-Ziv manner, time-series segments in the dictionary are built from Src and Time-
series Tgtl, Tgt2 are compressed using this dictionary. Segment (0.30, —0.1) : 2 matches (0.70,0.30) : 0 since the
it is within ¢ = 0.5 and 6 = 2. The number of dictionary items used to compress the time-series is the DCS score.
Target 1 has a better score of 3 than target 2 with a score of 4 and so Src is more similar to Tgtl in panel B.

utilized in the last time-series, we could not use the segmatictionary costsO(log(n) + m) where m are the matches
(0.30, 0.20):4 to match the prefix (0.10, 0.10) in target gturned. Nodes can be examined in constant time if the
because the segment was created at time point 4 while we ar@imum segment length allowed in the dictionary is set to
matching at time point 1. The temporal difference is greatsome constant. This is generally done in LZ compressioresinc
than they of 2. This forces us to use an implicit singleton irthe dictionary size is generally bounded. Further, we do not
the dictionary as the first match. Had we used the 2 lengtleed to traverse the tree to recowadr matches, once we find
segment, we would end up using 3 segments to compréisat there is a match, we stop the traversal and try to find a
target 2 rather than the 4 shown. By visual inspection, we caagment of longer length. Sinee is bounded byO(n), the
see that the second time-series (target 1) is more similaratgorithm has a worst case complexity ©fn?).

the first time-series (source). In comparison, the DCS scoreFurther analysis and empirical results reveal that@ie?)

is 3 for target 1 and 4 for target 2. This would translatbound is very pessimistic in practice, as described belaw. F
to C(targetl|source) = 3 and C(target2|source) = 4. simplicity, if we assume that two time-seri§sandT are both
Since C(targetl|source) < C(target2|source), we would of lengthn and the data is one dimensional, we can analyze
conclude that target 1 is more similar to the source timéserthe bound form. Our two time-series are normalized around
that target 2. 0 and scaled by the standard deviation individually.

To conclude the discussion of the DCS algorithm, we Now assuming that the data points are normally distributed
summarize our methodime-series are built into interval tree and follow a conditional density function of random variabl
dictionaries in their native domain in one pass (LZ-style)X as described byp(z) in Equation 1. The probability that
Compression of query time-series are done in a single passe of our data values, drawn from the distributionfffalls
to give a “compressed” size of the query time-series. This an interval(a, b] is given by Pla < Z < 1] in Equation 2.
compressed size (similarity score) can be compared agai@en s; € S andt; € T, then the time point; falls within
the size given when using other time-series dictionaries. the interval given from(s; — ¢, s; + €| with the probability

o _ P[N(si) — € < N(t;) < N(s;) + ¢ in Equation 3. Now
3.2.6 Algorithmic Cost Analysis we can calculate the expected number of segments that are
As mentioned earlier, LZ has linear complexity. In Algoritt8 returned from the interval treef/[m|s;] in Equation 4. The
and 4, the worst case complexity @(n x DictAccess). total number from all the queries on the interval tree is give
The algorithm is linear with respect to the dictionary ascesy E[m)] in Equation 5.
complexity, as we must examine each time point of the time-
series a constant number of times. Each of these examigation

is a probe of the dictionary: both a search and an addition. Q(z) = e 2 gy, (1)
The reason there is an addition is because in our technitjue, a V2r

prefixes of a segment are added into the dictionary. Thezefor Pla<Z<b] = ®(b)—2(a))
the constant number is 2. We extend the LZ algorithm to

handle continuous data to retain its linear nature. However P[N(s;) — ¢ < N(t;) < N(si) + ¢
since we are doing interval searches, constant dictionamy t = O(N(si)+e)— ®(N(si))—¢) (3)

access is impossible.
Since we are using the interval tree, each addition into To find the average number of intervals examined dur-
the dictionary costsO(log(n)) time. Each probe into the ing a compression, we randomly generate 800, 2000 length

sequences of values between 0 and 1. We then normalized
each sequence by the mean and standard deviation. Using an
e = 0.5 as in [54], we find that the average value far is
0.06n when compressing a time-series with a dictionary of
trees. That is, for each value in time-seri€s we examine

on average 6 percent of the values in time-sefiethat built

the dictionary. As a result, the average costOdfén?. This
approximately translates to about a 15X improvement over
N? time algorithms which is backed up by our long trajectory
empirical results.

00125 01 02 03 04 05 06 07 08 09 1

Fig. 7. /5 parameter grid and the leave-one-out DCS

Efmlsi] = n(®(N(si) +¢) = @(N(si) —€)) (4) accuracy of the training set. § parameter on the vertical
Elm] = n zn: %(@(N(si) +e)— axis, e parameter on the horizontal axis.
=1

®(N(si) =€) (5)

Note that our analysis here is similar to that of [43] as
both methods use anparameter in similar ways. However,
an astute reader will have noticed that our averages well
below the figure reported in [43] because of the fact that
we discontinue the dictionary probe as soon as a matchin
segment is found. As described earlier, the space complexit
of our algorithm is linear. This still holds for continuouatd

as now in addition to the pointers for the segment, we stofgg. 8. ¢/§ parameter grid with granularity refinement.
the epsilon interval for each node which is constant space.

. s _ parameters to be set to produce optimal results. We train the

3.3 psage in Qla§5|f|cat|on and Clustering parameters using some training set, to determine the optima
As with other similarity measures, our method can also kgd (time warping) parameters. We note this framework we
used for C|§SSIflcatI0n. For classifying continuous tine@es describe below can be applied to other similarity measures,
data, we simply use the DCS and t@ntinuous-Domain such as Sakoe-Chiba Band or LCSS-FTSE. This is done sim-
Dictionary Compressiomethod. For classification, given aply by selecting each training time-series and calculathre
set of training time-series with labels, DCS dictionarias ®e DCS against all the other training time-series in the leane-
bqilt for ec_’:lch and its source Iapel is at'gached to the dietign out classification evaluation manner. Leave-one-out igrpft
Given an incoming, unlabeled time-series, each of the da@bysed for cross-validation and classification error estiomat
DCS dictionaries are used to compress the unlabeled seéxies put here we use it to discover suitable parameters [17].
a score is generated. The dictionary that gives the besescBasically, at each “fold”, for a set of size, we chooser — 1
confers its label to the unlabeled time-series. This meiBodtime-series to train with and try to classify the remainiinge-
the nearest neighbor cla_ssifif:ation_technique [29], [332].[series. We repeat this procedurdimes, allowing each of the
where an unlabeled series is assigned its class label of tifhe-series to be left out once and determine how many times
nearest neighbor in the training set. It has been argued ti@dt of n) we correctly classified. Now for each full leave-
nearest neighbor classification is rather robust in itsitgib one-out process, we choose a different parameter set. In our
resist the effect of noise. Also, given that the purpose & thstudies, we start with am = 0.05 and incremen?.05 until
classification is to highlight the effectiveness of the ¢amily ¢ — 1. At ane = 1, we have hit the point where we allow
measure, nearest neighbor is the most suitable because ofie points to be one standard deviation apart. Since having
simplicity. ane = 0 would not allow any matching, we add= 0.0125

This idea can be similarly used for clustering methods sugh represent the ‘exact’ time point match. Férwe did a
as UPGMA. Given time-series that we may wish to clustesearch in0.001m < § < 0.035m where m is the length of a
an N? dissimilarity matrix must be given as input. If a newime-series in increments ®f002m.
trajectory is introduced to the database, the existingbdesta After we have calculated the leave-one-out accuracy in the
dictionaries can be reused to compress the new time-sefi@fning set for alle/d pairs, what we get a grid with as
to create the pairwise scores. This feature of our methoddge dimension, and as the other dimension. For example,
unique from existing methods and provides time performanggyure 7 shows an/é grid for the Synthetic Lightning EMP

improvements for similarity score calculation. dataset [23]. This dataset was one of the long time-series
o datasets we ran experiments on. Details of this datasete&an b
3.4 Parameter Identification found in Section 4.1. While we use the Synthetic Lightning

Like many of the parameterized DTW methods such as tEMP dataset here, these methods and results also hold with
Sakoe-Chiba Band [48] or LCSS-FTSE [43], DCS requireall the time-series we use in Section 4. The horizontal axis

Algorlthm 5 Parameter Identification Heuristic for LeaVE'OneshOWS a schematic illustrative examp|e_ This examp|e shows
out classification (LOOC) on training data. granularity refinement after Algorithm 5 has found amnd
1: Input: a grid of LOOC accuracieg, along x-axis§ along y-axis § pair. Looking in a refined fixed region around the coarse
2: Output: epselect is x coordinate on grid andelselect iS Y grain parameter pair allows us to look for maxima within the
coordinate on grid region. In this manner, it is possible to increase the efiicye

3: if best accuracy is unique in grithen : . o

4 epidz = x coordinate for best accuracy of the parameter exploration in the training data.

5: delidz =y coordinate for best accuracy

6: else 4 EXPERIMENTAL RESULTS

72 epidy =X where sum of top-k accuracies in column x is max, yhis section, we evaluate the performance and accuracy of

8: delidx =y where gpidz,y) is max in columnepidx . ; .

9 end if the DCS method. All experiments are run on a machine with
10: epselect = epidz; dlo = delidz; dhi = delidx an Intel 2.4Ghz Core 2 Duo processor with 2GB of DDR2 667
11: step = FALSE; peak = grid(epselect, delidx) Mhz memory and SATA hard disks. The operating system was
12: while TRUE do Fedora Core 6 and methods are implemented in C++ (except

13: if grid(epselect,dlo) # peak AND step then BREAK end if

9 those where MATLAB code for comparison methods was
14: if grid(epselect, dlo) # peak then ided | istical sianifi . d
15. step = TRUE; peak = grid(epselect, dlo) provide). Eor our results, statistical significance icoldte
16: end if with the Wilcoxon Matched Pairs Signed Ranks Test and a
17: dlo =dlo - 1 p-value cutoff of 0.01. We use the Wilcoxon test because it
18: end while does not make the same normal distribution assumptions as

19: step = FALSE; peak = grid(epselect, delidx) - : :
20: while TRUE do the Student’s t-test. Since we cannot make any assumption

21. if grid(epselect,dhi) # peak AND step then BREAK end if about the distribution of the accuracy results, the Wilaoxo

22: i grid(epselect, dhi) # peak then test is more robust. Datasets are normalized as described in
23: step = TRUE; peak = grid(epselect, dhi) Section 2. All response times shown are the average ovée trip
24: end if replicate runs.

25: dhi =dhi +1

. A standard way to test similarity measures is to use it

26: end while - .
27+ delselect = (dlo + dhi)l2 to classn‘y_data, where the results of the gIaSS|f!cat|on are
known. This method has been used extensively in previous
works [1], [11], [29], [43], [55], and we adopt this method
here. We employ Nearest Neighbor and Leave-one-out style
plots § and the vertical axis plots. The figure shows that classification in our study. The effectiveness of the siritjla
there is a clear gradient in the leave-one-out accuracyeén theasure is then measured using a sirageuracymeasure,
training data. Further study of the grid data indicated th@fhich is computed ascorrect|/|testset| [1]. Improvement
the e parameter was more influential in the end accura@ercentages are reported @g&C'S — Method)|/Method.
of the calculated similarity measure than theparameter. For our comparisons, we ran datasets over DTW-Sakoe-
Thus, we developed the technique found in Algorithm 5. Thghiba 3% warp restriction (DTW-SC3), LCSS, and the sim-
algorithm is based on hill climbing. First, we search for gle Euclidean (Eucl) measure. Lower bounding as described
unique maximum accuracy within this grid. If this is foundin [25] was applied to DTW-SC3 (DTW-SC3-LB for 3%). In
than we pick thec value at which this grid point is found. addition to DTW-SC3-LB, we also wanted to see how a larger
If there are multiple maximum accuracies, we look at eachband would fare in accuracy and speed performance so a 10%
column in the grid and calculate the sum of the top-k valuggind with lower bounding was also tested (DTW-SC10-LB).
within the column. In this tie situation, the column with The DTW-SC is described as a special case of DTW-rk [1].
the best top-k sum is the value we choose. We use the topvhile the 3% warping band is shown to be a general sweet
75th percentile in each column to retain within a standakhot in band size [47], we also used our parameter exploratio
deviation assuming N(0,1). Next, given thissalue, we look scheme to search for a band in the 1% to 10% range. We
at the maximum accuracy in the column and find the mogund in most cases, the heuristic band size resulted in the
stable position within this peak. Thus we shift thevalue same accuracy as the 3% warping band. Also, the Sakoe-Chiba
such that we move into the middle of plateau. In this way, wWgand measure shows no statistically significant differeince
either choose the max peak, or we choose the badtje and accuracy over the DTW-rk results posted in [1]. While we
then slide along it to find the most stable maximum positiogid not implement an index for DTW, the run time saved
In Figure 7, there is one lone peak, at= 1.0 andd = 22. py implementing an index can be equated to the run time to
After the § stabilization, this shifts slightly t¢ = 20. lower bound DTW which is the Euclidean run time. Since the

A further heuristic is to develop the/é grid on a coarse Euclidean run time is orders of magnitude faster than DTW
grain scale and iteratively examine finer granularity ofgfiel. in our experiments, this lower bounding time is negligible.
The manner in which this is done factors into the amoufor LCSS, our results are produced using LCSS-FTSE [43]
of time this heuristic takes. For instance, one could taketa speedup the computation of LCSS. LCSS-FTSE was run
coarse grain grid in botl and é dimensions of the grid. If with ¢ parameter set t6.25 and run with the same 10% warp
this is done such that only one deeper grain is examined, théstricting band as that of DTW-SC10-LB.
would be a 75% savings in grid computation in the original We also compare against time-series Bitmaps (BM) as de-
iteration if the granularity doubles in each dimension.Uf@8 scribed in [36]. However, as discussed above, this methes us

Time(ms), log scale

1000000

1000000

1000000

% A DpTw-sc3-LB O % A DpTW-sc3-LB ¥ A DpTw-sc3-LB
100000 P X % DTw-sc1o-LB 100000 % DTw-sc1o-LB 100000 v % DTw-sc1o-LB
> O V¥V DTW-SC3 » V¥V DTW-SC3 » K) V¥V DTW-SC3
O Lcss-FTsE © Lcss-FTsE O Lcss-FTsE
10000 <> DCs 10000 <> DCs 10000 <> DCs
O Eucl O Eucl O Eucl
» Bm » Bm » Bm

1000

100 o

10 o

0

Accuracy(%)

T T T T T T T T T
05 055 06 065 07 075 08 085 09 095

<« NcDGZ3

Time(ms), log scale

1000

100 o

10 o

0

T T T T T T T T T
05 055 06 065 07 075 08 085 09 095

Accuracy(%)

Time(ms), log scale

1000

100 o

10 o

0

T T T T T T T T T
05 055 06 065 07 075 08 085 09 095

Accuracy(%)

Fig. 9. Results of F2 classification by Fig. 10. Results of F6 classification Fig. 11. Results of F7 classification

nearest neighbor, data from [23].

rigid discretization while we use dynamic intervals to care
time points. Further, Bitmaps rigidly enumerate and examin
all possible “word” segments while DCS lengthens segments
as our LZ-style algorithm examines prevalent “words”. Q@the
differences include the parameters required for DCS coetpar
to Bitmaps. The Bitmap parameters include two parameters fo
the SAX discretization [41], one parameter for the alphabet
size (up to 4), and another parameter for the size of the
Bitmap. We use an alphabet size of 3 and a 64 cell Bitmap, as
recommended by the authors. The ‘N’ and ‘n’ parameters are

by nearest neighbor, data from [23].

Time(min), log scale

100000

by nearest neighbor, data from [23].

10000 \

(o3 2

1000

100 4

10 o

m}

A DTW-SC3-LB
% DTw-sc1o-LB
V¥ DTW-SC3

© Lcss-FTSE
<O bcs

O Eucl

» Bm

<« NCDGZ10

o T T T T T T T
05 055 06 065 07 075 08 085 09 095
Accuracy(%)

detailed on a per experiment basis. MATLAB code for SAXig. 12. Results of synthetic lightning (RS) classification

was run to discretize the data for this method.
We also compare against NCD. While [13], [29] show

100000

by nearest neighbor using data from [23].

A DTW-sC3-LB
% DTw-sc10-LB

that using off-the-shelf compressors to approximate thé Ko ¥ pO|y orwscs
mogorov Complexity may work for discrete data such as O |Q peesree
text and discretized time series, we wanted to evaluate how S o

well they do on time-series directly versus our method. We
utilized the NCD measure as described by [13] and the
gzip compressor. The details of NCD are described in sec-
tion 2.2, 2.2.1, 3.2.4. Conversion of the time-series data t
discrete representation can be done via the SAX representa-
tion [41]. This representation carves up the assumed nor
distribution of data points such that discretization buskeve
uniform density. Given that this type of discretization ue@gs

Time(ms), log scale

100 o

10 o

o T T

T T T T T
05 055 06 065 07 075 08 085 09 095
Accuracy(%)

nll—"ilé. 13. Results of Surveillance classification by nearest
neighbor using data from [36].

a parameter to denote the size of the resulting symbol aghalexclude TRAINING data processing time). Time results for
we ran the same procedure over 3 values: 3, 10, 20. In otloerr DCS measure are calculated for the time taken to compress
words we discretized the time-series to 3, 10, and 20 symkoltime-series with a dictionary since for classification the
alphabets and then ran gzip to compress these time-sed@gionaries can be prebuilt. Since both building a diction
representations. A key problem with this technique is thand compressing the time series both pass through the time-
for the compression approximation to be as close as possib&ties once, dictionary build time is approximately the sam
to the Kolmogorov Complexity, the compressor must achievas compression time. Parameter exploration time is also not
the highest possible levels of compression on the data [28icluded as it can also be precomputed. Parameter exmorati

Recently, an interesting finding has been thits interesting

time is approximately two times the dictionary build time on

to note that PPM generally performs better than LZ-typall the training time-series (since this is basically leave-

coding in terms of the compress ratio. However, comparirgut analysis on the training data and building and compoessi
the results shown in the first and second rows (figure), LZ78e approximately the same speed) multiplied by the pamet
based approach performs better in terms of classificatiauac space size.

racy... [40]". Of course, this introduces another disadvantage

to the method because all possible compressors must bd tegteé Long Time-Series
and even choosing the best compressor does notguaranteqﬁ'hﬁ]is section we compare different time-series simiarit

best accuracy. We applied gzip because it is one of the m

widely used and effective compressors. Here NCD using 9ZiPan 1000 time points to be

andz characters is denoted NCDGZ).

ﬂ'f‘éasures on long time-series. Here we deem time-seriesiong
“long”. The goal here is to evauat
the effectiveness of DCS against existing methods for long

Time results for NCD and Bitmap are end-to-end antime-series. In these experiments, we use a symmetric DCS
included the time to discretize the unlabeled TEST data (welculation, which means that for a set of time-series, the

10

7 above, leave-one-out simply takes a dataset of sizand

2] takes each individual time-series out and tries to clasiify
o M against the remaining — 1 time-series. While the leave-one-
s S0 1deo 1s00 2000 2500 3000 out method is robust, it involves a very large number of runs.
Rs In our case, it required us to relearn tlé parameters at each
2] fold of the classification (on the other— 1 time-series). This
o] Ww—»—v‘-L-—mw—v‘ relearning itself is a leave-one-out method as we desciibbed
ar: 550 1000 1500 2600 Section 3.4. For the long time-series, we relearned at every
Surveillance fold by applying our parameter exploration method over a
o] coarse grained parameter spafet < ¢ < 1.0 with 0.1
o] MJJ increments and = 0.011m,0.021m, 0.031m for length m
e 260 #60 860 8do 1000 time-series. If leave-one-out is employed, classificatiome

reported is the time to classify all time-series of each fold.
If a clear TRAIN/TEST partition is available, classificatio
time is the time to classify the entire TEST patrtition.

The Bitmap method utilizes subsequences of time-series for
similarity matrix calculated is symmetric. For example,an measuring similarity. Since the authors do not provide a spe
one-sided DCS calculation, the similarity between queneti cific method for parameter discovery, we used the suggestion
series Q and database time-series TD€'S(Q) where is that are found in [26]. The SAX method that they utilize has
represents the DCS when Q is compressed with the dictionamo parameters ‘N’ and ‘n’. Parameter ‘N’ is suggested to
built from T. A symmetric DCS score between two timebe two times the length of an interesting section of the time-
series isDCSr(Q) + DCSqo(T). This method resemblesseries. Parameter ‘n’ defines the aggregation of time-point
the reciprocal best-hit method used for biological seqeenEor the F-series data, we used N=3181 and n=1 since this

Fig. 14. Examples of the long time-series data that was
analyzed. Class 6 from F7, class 1 from RS, class 2 from
Surveillance.

comparisons [22]. data was not periodic. Similarly for RS, we used N=2000 and
n=1. For Surveillance, we used parameters (N=1000 and n=1).
4.1.1 Datasets Correspondence with the authors revealed that Bitmapsaire n

We use a number of long time-series datasets. A few of thiery sensitive to changes in the parameter settings. Thss wa
datasets are provided from [23]. These are all longer th@®20experimentally found to be true as changes in the accuracy
time points which is 3 times longer than the longest timevould change within approximately 5%.
series in [1](examined in Section 4.2). Another long time- For the NCD method, our implementations also utilized
series dataset came from [36]. SAX for discretization. Our parameters are N=length and n=1
The first dataset also comes from [23]. This data is &ér all long time-series.
lightning data collected from the Fast On-orbit Recordirig o
Transient Events (FORTE) satellite. There are seven typgd.2 Results
of lightning, each with distinguishing characteristicshel The first set of results we discuss is the F-series datasets.
interested reader can learn more about this data from [16]. TThese results are found in Figures 9, 10, and 11. Note that
three datasets derived have 2, 6, and 7 classes; thesetslatéise NCD results for F6 and F7 are missing because there are
are called F2, F6, and F7, respectively. The first two, F2 &hd Fo results from the NCD algorithm that gave us greater than
contain the exact same time-series but with extra partiijpn 50% accuracy. As shown in Figures 9 to 11, DCS leads in
F7 contains all of those and also an additional class bfo of the three time-series datasets. DCS is also relgtivel
lightning measurement. They are not partitioned into trajn fast; only significantly slower than Euclidean. We also note
and test sets. Each time-series is 3181 time points long, that the speed advantage for DTW-SC3-LB over DTW-SC10-
and F6 have 121 time-series each, and F7 has 143 time-sefi@sis around3 — 4X and DCS is27%, 33%, 13% faster than
The next dataset from [23] is a 2000 time point long, tw®TW-SC3-LB in F2, F6, and F7 respectively. This means that
class, synthetic time-series of lightning’s electromagrigulse DCS provides classification accuracy and speed performance
(EMP) measurements. We denote this set RS. This datasetjoas as high as DTW-SC3-LB even though our DCS results
clearly partitioned training and test sets with 18000 teset are not employing any pruning methods. We also notice that
series and 2000 training time-series. DTW-SC10-LB has a slightly higher accuracy than DTW-SC3-
We used one dataset from [36], the Surveillance dataseB on F7. The heuristic band size found by our hill climbing
as the ECG dataset from that source is overly repetitivmethod gives classification accuracies that match the 3%.ban
ECG waveforms are usually analyzed over a small numberOn the much larger RS dataset (Figure 12), with1&800
of periods [5], [51]. We analyze a shorter ECG dataset best time-series, DCS again outperforms DTW-SC3-LB in
Section 4.2. The Surveillance dataset is 1000 time poirgpeed but this time by an even larg&%. Both DTW-SC3-
long with four classes of 20 time-series. This dataset has hB and DCS have identical accuracies &% on the RS
training/test partitions. dataset. The 10% band turned out to be the band selected
Since no training/test sets exist for all the long time-aeri by the hill climbing method and gave a higher accuracy of
except RS, we use the well known leave-one-out classificati®1 % but was slower than DTW-SC3-LB and DCS (by around
evaluation method to compare all methods [17]. As describ8X and 7X respectively). In this dataset, Euclidean proside

11

Accuracy (%)

100

80

60

40

20

0

L @ 5 @ 1) ©
M K ;
O .

Adiac
Beef
OliveOil /=

£ ¢ § 3 3 & § 2 B g § £ § § & 8
o [0} Q a z = = 2 >
= 5] & [} | £ £ =) = S = £ =
[=] o w S c = = 7]) S, <
3 m 8 S =) =] o 3 o o
[G) s 3 03) = o
[2) 2 =
=] =
&
MW pTwsc3te B bpTwsciorB B DTwsC3 LCSS-FTSE pcs [euc MW BMm M NCDGZ20

Fig. 15. Accuracy over 20 short time-series datasets.

10000000
1000000
100000
10000
1000

100

10

Time(milliseconds), log scale

Yoga

OliveOil
Wafer

=
=)
i
@
=}
&
w

Gun_Point
Lightning2
Lightning7

SwedishLeaf

Two_Patterns

synthetic_control

B pTwscs3ts B prwsciorB B DTwsC3 LCSS-FTSE DCs O eucL N BM B NCDGZz20

Fig. 16. Speed performance over 20 short time-series datasets.

the fastest calculation while giving a competitive accyradhe data is repetitive. While other compression-basedraelse
suggesting that this dataset has little time warping vagan do not compete well with DTW-SC3-LB, we show that a
The poor accuracy of other compression based schememnpression-based scheme can be developed to produce high
Bitmap and NCD, for these datasets overshadow whatewa&curacy while retaining its speed advantages.

speed performance advantages they may have.

The Surveillance dataset results (Figure 13), show that))
DCS is slower and less accurate than DTW-SC3-LB for thfs2 Short Time-Series

dataset._ However, we would like to note that _the differemce jg stated, DCS is designed with long time-series analysis in
accuracies between DCS and DTW-SC3-LB is only two clagsind. However, for completeness, we briefly look at DCS

sifications(out of 80). Again, the heuristic band found pded performance when analyzing short time-series.
the same accuracy as the 3% band which is unsurprising given

the findings in [47]. Also, as shown in Figure 14, the graph-

ical representations of the time-series in these long ditas4-2-1 Datasets

Surveillance is a repetitive time-series with 6 completéqus QOur short time-series data is from [1]. It consists of 20
while other datasets are non-repetitive. This may helpa®pl time-series datasets of varying length and class cardjnali

a number of interesting points about the results in Figure 1able 1 lists all the time-series in this collection alongtwi
First, this is one reason why DCS is less accurate than DTWamber of classes and length. The sources of the time-
SC3-LB. Second, since the Bitmap method is discretizingeries range from motion capture (GunPoint), to OCR word
this helps explain why it does much better on this datasgicognition (50Words), to electrocardiogram measurement
than the others. Since its word blocks are constant lenqCG200). Lightning 2 and 7 are down sampled by 5X and
and fixed alphabet, patterns in reoccuring periodicity isi&@a 10X respectively from the long F2 and F7 and the DCS results
to deal with than a non-repetitive dataset. With a variabl@ the next section illustrate how DCS is more suitable foigo
length dictionary word and no alphabet, DCS overcomes thige-series similarity.

limitation. Third, when we compare the speed benefits of fowe For DCS, the scores calculated are one-sided (non-

bounding in F2, F6, F7, and RS to Surveillance, we see tha§@nmetric) scores to simulate database queries as describe
repetitive dataset aids in much better pruning for DTW-SC3%pove. Parameter exploration was analyzed using the method
To summarize, Figures 9 to 13 show that DCS calculatesdascribed in Section 3.4. DTW warp restriction is limited to
fast and accurate similarity score that can be used to searte narrow median band of 3% and the classic 10% band
for similar time-series. DCS provides the same accuracyas t(optimal warp bands found at [1] show no statistical advgata
next leading method DTW-SC3-LB. DCS also provides a fastarer the 3% band). Bitmap times included the discretization
similarity score than DTW-SC3-LB for non-repetitive longime for the query TEST set only, this was done with the
time-series. Different methods may be better suited féerdiit MATLAB SAX code from the SAX authors. SAX parameters
types of datasets; DCS performs well for non-repetitiveetimused areV = 32 andn = 8. NCD time included discretization
series while DTW-SC-LB gets the most pruning benefit whand compression steps as these would be reqpieedjuery

12

TABLE 1
Characteristics of the short time-series datasets.

Dataset Classes/ [Train]: Dataset Classes/ [Train]:

Length | Test| Length | Test|
50Words 50/270 450:455 Adiac 37/176 390:391
Beef 5/470 30:30 CBF 3/128 30:900
Coffee 2/286 28:28 ECG200 2/96 100:100
FaceAll 14/131 | 560:1690 | FaceFour 4/350 24:88
FISH 71175 175:175 | GunPoint 2/150 50:150
Lightning2 2/637 60:61 Lightning7 71319 70:73
OliveQil 4/570 30:30 OSUL eaf 6/427 200:242
SwedishL eaf 15/128 500:625 | Synthetic 6/60 300:300
Trace 4/275 100:100 TwoPattern 4/128 | 1000:4000
Wafer 2/152 | 1000:6174 | Yoga 2/426 | 300:3000

4.2.2 Results

Figure 15 and 16 show the classification accuracy and spené

ot

(for all the time-series in the TEST sets) over the 20 sh
time-series (these results are also available in tabulan fo

at [37]). In these figures, NCDGZ3 and NCDGZ10 are omitted
since most their accuracies are less than 0.5. For rigor, W

computed the statistical significance (see Section 4) amado
no statistically significant advantage in accuracy betw2€s

and DTW-SC and LCSS-FTSE over all 20 datasets. DCS
statistically more accurate than NCD, Bitmaps, and Eualide
on these 20 datasets (DCS is always more accurate than N
and only less accurate than Bitmaps and Euclidean on

and 6 datasets respectively, see the appendix in [37]). W,

the discretized constant length words, Bitmaps is unable

However, the true strength of our technique lies in the novel
nature of building a dictionary on a continuous time-sesed
compressing another for a relative similarity measure,cihi
allows efficient and effective comparison of long time-ssri
In the long time-series tests, we have shown that DCS previde
similarity scores just as accurate as that of DTW-SC3-LB.
Experimental results show DCS is faster than lower bounded
DTW (DTW-SC3-LB) on long time-series even though DCS
does not prune and scans the entire database. For certain
applications such as UPGMA clustering, the input quadratic
space dissimilarity matrix must be calculated in a timely
gnner and the fastest accurate measure should be used. DCS
ovides a more stable classification accuracy acrossrélifte
types of data than compression-based Bitmaps and NCD.

As part of future work, we plan on exploring additional
ethods to speed up the parameter selection (though this may
&ve a limited impact, given that it is a one time cost), and
developing pruning and indexing techniques for time-serie

clgmparisons based on the DCS framework.

m

éBKNOWLEDGEMENTS

would like to thank the reviewers of this paper for
eir constructive comments on a previous version of this
nuscript. This research was funded in part by funding from

te National Science Foundation under grants 11S-0929888 a

t

consistently provide accurate scores for time-series c¢hsuDBI-0926269.

short length. Similarly, NCD’s reliance on a discretizemhd+
series also makes it inaccurate.

We notice that while DCS is more accurate than Euclidefm
for the long versions of Lightning F2 and F7 time-series, whe
the time-series’ are down sampled and shorter in Lightnind?

and Lightning7, DCS’ accuracy advantage is not clear. T

is because DCS'’ accuracy is dependent on the size of the

dictionary it builds and thus the length of the time-series.
DCS’ computational overhead made is slower than bo

DTW-SC3 and DTW-SC3-LB as well as Euclidean. DCS was

faster than DTW-SC10-LB in 11 of the 20 datasets; there
no statistical significant difference.

To summarize, while DCS is designed for long time-serigs

similarity scoring, we have shown that for short time-sgrie
it can still provide competitive accuracies. While comgien

REFERENCES

The UCR Time Series Classification/Clustering
"www.cs.ucr.edut-eamonn/timeseries data/”.

R. Agarwal, C. Faloutsos, and A. R. Swami. Efficient Samity Search
in Sequence Databases. FODO, pages 69-84, 1993.

R. Agarwal, K. Gupta, S. Jain, and S. Amalapurapu. An Appmation

to the Greedy Algorithm for Differential CompressiolBM Journal of
Research and Developmersi0(1), 2006.

D. Berndt and J. Clifford. Using Dynamic Time Warping tm& Patterns

in Time Series. InAAAI-94 Workshop on Knowledge Discovery in
Databasespages 359-370, 1994.

B. Boucheham. Matching of quasi-periodic time seriedtgras by
exchange of block-sorting signatureBattern Recognition Letter29,
2008.

T. Bozkaya, N. Yazdani, and Z. Ozsoyoglu.
Sequences of Different Lengths. GIKM, 1997.
L. Breiman. Random forestdMachine Learning 45:5-32, 2001.

K. Chan and A.-C. Fu. Efficient Time Series Matching by \&&fs. In

Homepage

i
5

Matching andelxing

[7]
(8]

based NCD and Bitmaps schemes cannot handle such short ICDE, pages 126-133, 1999.

data, our method overcomes their limitations.

5 CONCLUSIONS AND FUTURE WORK

[9] C. Chang and C. Lin. LIBSVM: a library for support vectorachines.
2001.

[10] L. Chen and R. Ng. On the Marriage of Lp-norms and Editt@nse.
In VLDB, pages 792-803, 2004.

[11] L. Chen, M. T.Ozsu, and V. Oria. Robust and Fast Similarity Search

In this paper we have proposed a new compression-based Sim- for Moving Object Trajectories. I8IGMOD, pages 491-502, 2005.
ilarity scoring method called DCS. DCS uses a compressifgl X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker. =Stk

technique called Continuous-Domain Dictionary Compiassi

Information and Program Plagiarism DetectiolEEE Transaction on
Information Theory 50(7), 2004.

which permits the computation of a similarity score in th@l3] R. Cilibrasi and P. M. Vitanyi. Clustering by Compressi IEEE

native space of time-series. In this way, our method is wéfiée
from existing compression-based techniques that utilife o

Transactions on Information Theqrpages 1523-1545, 2005.
[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction
to Algorithms The MIT Press, 2001.

the-shelf compressors to calculate similarity. We have al§l5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and Eogb.
shown that while methods using off-the-shelf compressors Querying and Mining of Time Series Data: Experimental Corison

are shown to not fare well for short time-series similarit

V6]

of Representations and Distance MeasukésDB, 2008.
D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Portexd d. Theiler.

our compression method does well enough to make them Genetic Algorithms and Support Vector Machines for Time i&er

competitive with existing techniques. For short time-sgrive
have shown that the DCS accuracy is competitive with tho
of the other dynamic programming methods.

13

Classification, 2002.
g.?] A. Elisseeff and M. Pontil. Leave-one-out Error andlsiity of Learning
€ Algorithms with Applications.Advances in Learning Theory: Methods,
Models and Applicationsvol.190, 2003.

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]
[34]

[35]

[36]

[37]

(38]
[39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

C. Faloutsos, M. Ranganathan, and Y. Manolopoulost Faksequence
Matching in Time-Series Databases.SHGMOD, pages 419-429, 1994.
D. Goldin and P. Kanellakis. On Similarity Queries fome-Series
Data: Constraint Specification and Implementation. Constraint
Programming pages 137-153, 1995.

R. M. Gray. Vector QuantizationlEEE ASSP1984.

I. Gronau and S. Moran. Optimal Implementations of UP&Mnd
other Clustering Algorithmsinformation Processing Letter2007.

A. Hirsh and H. Fraser. Protein Dispensibility and RafeEvolution.
Nature 2001.

C. Jeffery. Synthetic Lightning
http://public.lanl.gov/eads/datasets/.

L. Kaufman and P. J. RousseeuwFinding Groups in Data: An
Introduction to Cluster AnalysisWiley-Interscience, 1990.

E. Keogh. Exact Indexing of Dynamic Time Warping. \\DB, pages
406-417, 2002.

E. Keogh. Tutorial: Mining Shape and Time Series Dasaisawith
Symbolic RepresentationsSIGKDD, 2007.

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotran&nhsionality
Reduction for Fast Similarity Search in Large Time Seriesabases.
KAIS 3(3):263-286, 2000.

E. Keogh and S. Kasetty. The Need for Time Series Datairigin
Benchmarks: A Survey and Empirical Demonstration. SIGKDD,
pages 102-111, 2002.

E. Keogh, S. Lonardi, and C. A. Ratanamahatana. TowRetameter-

EMP Data, 2005.

[49] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: Fagnifirity
Search under the Time Warping Distance. RODS pages 326-337,
2005.

P. H. E. Sneath and R. R. Sokal. Numerical Taxonomy. 1973

T. Syeda-Mahmood, D. Beymer, and F. Wang. Shape-basathing
of ECG RecordingsEMBS 2007.

K. Ueno, X. Xi, E. Keogh, and D.-J. Lee. Anytime Classifion Using
the Nearest Neighbor Algorithm with Applications to Stredviining.
pages 623-632, 2006.

N. K. Vereshchagin and P. M. Vitanyi. Kolmogorov's Stture Func-
tions and Model SelectionTransactions on Information Theqr¥5(12),
2004.

M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and Eedgh. Indexing
Multi-Dimensional Time-Series with Support for Multiple i€%ance
Measures. IrSIGKDD, pages 216-225, 2003.

M. Vlachos, G. Kollios, and D. Gunopulos. Discoveringm8ar
Multidimensional Trajectories. ICDE, pages 673-684, 2002.

B.-K. Yi and C. Faloutsos. Fast Time Sequence IndexaorgAfrbitrary
Lp Norms. InVLDB, pages 385-394, 2000.

B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient fefal of Similar
Time Sequences Under Time Warping. IGDE, pages 201-208, 1998.
Y. Zhu and D. Shasha. Warping Indexes with Envelope Ji@ms for
Query by Humming. InSIGMOD, pages 181-192, 2003.

J. Ziv and A. Lempel. A Universal Algorithm for SequeditiData

[50]
[51]

[52]

(53]

[54]

[55]
[56]
[57]
(58]
[59]

Compression. IEEE Transactions on Information Theorg23(3):337—
343, 1977.

Free Data Mining. Innternational Conference on Knowledge Discovery

and Data Mining 2004.

E. Keogh and M. Pazzani. Scaling Up Dynamic Time Warpiog
Massive Datasets. IRKDD, pages 1-11, 1999.

E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzaocally
Adaptive Dimensionality Reduction for Indexing Large Tingeries
Databases. I8IGMOD, pages 151-162, 2001.

S.-W. Kim, S. Park, and W. W. Chu. An Index-Based Appioac
for Similarity Search Supporting Time Warping in Large Sence
Databases. IfCDE, pages 607—614, 2001.

J. M. Kleinberg. Two algorithms for nearest-neighb@asch in high
dimensions. pages 599-608, 1997.

T. Kohonen. Improved versions of learning vector qumaiton. Proceed-
ings of the International Joint Conference on Neural Nekgod990.

F. Korn, H. Jagadish, and C. Faloutsos. Efficiently Sufipg Ad Hoc
Queries in Large Datasets of Time SequencesSIBMOD, pages 289—
300, 1997.

N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Rataredhatana.
Time-series Bitmaps: A Practical Visualization Tool for rking with
Large Time Series DatabaseSth SIAM International Conference on
Data Mining, 2005.

W. Lang, M. D. Morse, and J. M. Patel
Based Compression for Long Time-Series Similarity.
http://cs.wisc.edutwlang/compressextended.pdf.

M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. The SimilayitMetric.

In 14th Annual ACM-SIAM Symposium on Discrete Algorithg@93.
M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications Springer, 1997.

M. Li and Y. Zhu. Image Classification Via LZ78 Based String Kernel:
A Comparative StudySpringer Berlin, 2006.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A Symbolic Regpentation
of Time Series, with Implications for Streaming Algorithm®MKD,
2003.

A. B. Matos. Kolmogorov Complexity in Multiplicative #hmetic.
DCC-FCUP Technical Repar2005.

M. Morse and J. M. Patel. An Efficient and Accurate Methfod
Evaluating Time Series SimilaritySIGMOD, 2007.

H. H. Otu and K. Sayood. A New Sequence Distance Measorre f
Phylogenetic Tree Construction.Bioinformatics 19(16):2122-2130,
2003.

I. Popivanov and R. Miller. Similarity Search Over Tin8eries Data
Using Wavelets. INCDE, page 212, 2001.

C. Ratanamahatana and E. Keogh. Making Time-seriessfiization
More Accurate Using Learned Constraints. 8$AM International
Conference on Data Mining2004.

C. Ratanamahatana and E. Keogh. Three Myths about Dgnéime
Warping. InSIAM International Conference on Data Mining005.

H. Sakoe and S. Chiba. Dynamic Programming Algorithnti@jzation
for Spoken Word Recognition.IEEE Trans. Acoustics, Speech, and
Signal Proc, Vol. ASSP-26(1):43-49, 1978.

14

Dictionary- | §
2008

ot

Willis Lang is currently a PhD graduate student
at the University of Wisconsin-Madison. He has
research interests in database energy manage-
ment, spatial data management, and bioinfor-
matics. He has an MSc'08 from the University
of Michigan and a BMath’06 from the University
of Waterloo.

Michael Morse is currently a database scientist
with the MITRE Corp. He has research interests
in time series similarity, spatial and temporal
data management, and schema integration. He
completed his PhD in 2007 at the University of
Michigan.

Jignesh M. Patel is an Associate Professor
at the University of Wisconsin-Madison. He re-
ceived his PhD from the University of Wisconsin-
Madison in 1998. He is the recipient of an NSF
Career Award and multiple IBM Faculty Awards.
He has served on a number of Program Com-
mittees including SIGMOD, VLDB and ICDE.
He has also served as the VLDB 2009 Core
Database Technology PC Chair, as Vice-Chair
for IEEE ICDE 2005, as an Associate Editor for
the Systems and Prototype section of ACM SIG-
MOD Record, and as an Associate Editor for the IEEE Data Engineering
Bulletin. He is a member of the ACM and the IEEE.

