
1

Dictionary-Based Compression for Long
Time-Series Similarity

Willis Lang, Michael Morse, Jignesh M. Patel
Computer Science and Engineering, University of Michigan

{wlang, mmorse, jignesh}@eecs.umich.edu

Abstract —Long time-series datasets are common in many domains, especially scientific domains. Applications in these fields often
require comparing trajectories using similarity measures. Existing methods perform well for short time-series but their evaluation
cost degrades rapidly for longer time-series. In this work, we develop a new time-series similarity measure called the Dictionary
Compression Score (DCS) for determining time-series similarity. We also show that this method allows us to accurately and quickly
calculate similarity for both short and long time-series. We use the well known Kolmogorov Complexity in information theory and the
Lempel-Ziv compression framework as a basis to calculate similarity scores. We show that off-the-shelf compressors do not fair well for
computing time-series similarity. To address this problem, we developed a novel dictionary-based compression technique to compute
time-series similarity. We also develop heuristics to automatically identify suitable parameters for our method, thus removing the task of
parameter tuning found in other existing methods. We have extensively compared DCS with existing similarity methods for classification.
Our experimental evaluation shows that for long time-series datasets, DCS is accurate, and it is also significantly faster than existing
methods.

Index Terms —Spatial databases and GIS, Database Management

✦

1 INTRODUCTION

Applications of time-series data range from electrocardiogram
(ECG) measurements in medicine, to facial recognition in
biometrics, to particle tracking in physics. Increasingly, long
time-series datasets and the need to analyze them have moti-
vated the database community to create efficient and accurate
similarity measures [4], [10], [11], [18], [48], [49], [55],
[57]. These time-series similarity measures are useful for
querying a database, classification, and clustering. Many of
these methods are based on the dynamic programming (DP)
paradigm where optimality in the data alignment is desired.
This optimality is variable depending on the properties to
be examined such as longest common subsequence or edit
distance. Since many state-of-the-art methods use the DP
method, the cost of comparing two time-series is quadratic
in the length of the time-series. This makes the evaluation
of similarity between twolong time-series very expensive.
Furthermore, many pruning techniques have been devised so
that time-series similarity queries do not need to compute
the similarity measures between the query and every time-
series in the database [6], [25], [32], [49], [57], [58]. These
techniques employ indexing methods to prune the search
space but still require many sequence comparisons, and the
amount of pruning is data dependent as we show in our
experimental results. Clustering algorithms such as the well-
known Unweighted Pair-Group Method with Arithmetic Mean
(UPGMA) [50], where a quadratic-space dissimilarity matrix
must be fully calculated, would benefit from a fast and accurate
similarity measure [21]. In such cases, if time-series are to be
clustered, no pruning can be done as all distances must be
calculated. The quadratic nature of existing methods would
make this computation extremely lengthy for longer time-

series. Thus, there is a need for a more efficient similarity
calculation method forlong time-series data.

Similarity measures based on compression have been sug-
gested for use with time-series [29]. This previous work has
used the Kolmogorov Complexity as a foundation for their
similarity score. These measures use off-the-shelf compression
methods as a basis for computing a similarity score [13].
Techniques of this type differ in approach from similarity
measures such as DTW, edit distance measures (EDR/ERP),
longest common subsequence (LCSS), or Euclidean because
this method does not use pairwise comparisons of points in
the time-series, but instead use the compressed sizes of entire
time-series data to estimate sequence similarity. As a scoring
technique, this method can be used for querying, classification,
or clustering just like the methods mentioned above. These
methods rely on both off-the-shelf compressors and discretiza-
tion of the input; we show that the compression-like strategy
of our method, which uses neither of these, is better than
the competing alternative. Problems with discretization include
improper discretization due to the hard bucket limits as well as
additional parameters for bucket sizes (this is discussed further
in Section 3.1). Moreover, as is evident in [13], [29], [38] and
in our own examination, while these methods work well on
text data, their performance on time-series can be improved.
As we show in this paper, our DCS method is more accurate
than these existing methods.

In this paper, we propose a novel compression-based scheme
for computing time-series similarity. Our technique, called the
Dictionary Compression Score (DCS), is a method that com-
putes time-series similarity in the native, continuous domain
space by looking at sequence segments. These segments are
then used to construct a dictionary, which in turn is used
to compute a similarity score. The dictionary construction

scheme bears some similarity to the method employed by
Lempel-Ziv compression, which builds words from a distinct
alphabet instead of time-series sequences. If the dictionary
used by the DCS technique is constructed on one time-series
and used to compress another time-series, the method can be
used as a similarity score similar to existing techniques such
as DTW, LCSS, or Euclidean.

Our results show that for long time-series, DCS is often
30% faster than lower bounded constrained DTW and an order
of magnitude faster than constrained LCSS using FTSE [43]
while providing competitively accurate similarity scores. DCS
is comparable to time-series Bitmaps [36] in speed; however,
DCS is more consistent in achieving high accuracy than
Bitmaps over varying types of data. While DCS is designed for
long time-series, it is also interesting to ask how it performs
on short time-series. DCS accuracy on short time-series is
competitive against constrained DTW, and LCSS, with no clear
statistical winner.

Specifically, this paper makes the following contributions:

1) A novel Continuous-Domain Dictionary Compression
method is developed that builds continuous time-series
elements in the native space to compute “words” suitable
for storage in a dictionary created by a Lempel-Ziv
compression-like scheme. The DCS method is developed
which uses the Continuous-Domain LZ Compression
method as a scoring method for time-series similarity.

2) We provide a simple hill-climbing and parameter refine-
ment method for parameter selection, essentially making
DCS a parameter-free method.

3) Our experimental section shows that for long time-series,
DCS is significantly faster than existing methods while
just as accurate. For short time-series, this compression
style method is competitive in accuracy while other
compression-based systems are not. These results show
that we have produced a compression-based scheme that
can compete with the current state-of-the-art where prior
compression-based schemes could not.

The remainder of this paper is organized as follows: Section
2 presents related work. Section 3, describes our DCS method.
Section 4 contains experimental results, and Section 5 contains
our concluding remarks.

2 RELATED WORK

As is commonly done in time-series similarity, we assume
that time is discrete throughout this paper. A time-seriesT is
defined as a sequenceT = (p1, t1), (p2, t2), ... , (pn, tn), where
eachpi is a data point in ad-dimensional space that is sampled
at time ti. Eachti is strictly greater than eachti−1, and we
assume that the sampling rates of time-series are equivalent.

A few examples of time-series from a labeled dataset are
shown in Figure 1. These time-series come from the popular
Cylinder-Bell-Funnel synthetic dataset [28]. This figure shows
three different time-series, namely (a) the cylinder type,(b) the
bell type, and (c) the funnel type. Given a query sequence, the
task is to classify the query as either a cylinder, bell, or funnel.

A normalization scheme for time-series is developed in [19].
Using this method, a time-seriesR is normalized by evaluating

∀ i ∈ m : ri = (ri − µ)/σ for all of the m elements of
R, whereµ is the mean of the data andσ is the standard
deviation. This method is widely used in [10], [28], [41]. In
this paper, all time-series are normalized as described above.
Further, we assume that time series to be compared are of the
same length.

There are many techniques for measuring the similarity be-
tween two time-series. For example, the simple Euclidean dis-
tance [2] between two time-series sums the Euclidean distance
between corresponding elements of each time-series. The
Dynamic Time Warping measure (DTW) was first introduced
in [4] and extensively developed further by [28] [46] [25] [30]
to name a few. Unlike Euclidean, DTW does not require time-
series to be of equal lengths and it allows for time shifting
between time-series by repeating some sequence elements.
There are several techniques based on the edit distance,
including the Edit distance with Real Penalty (ERP) [10]
and the Edit Distance on Real sequences (EDR) [11]. The
Longest Common Subsequence (LCSS) technique is presented
in [55] and most recently, the Sequence Weighted Alignment
(Swale) method that combines elements of the LCSS and EDR
methods is presented in [43]. A recent examination of these
state-of-the art methods is presented by Ding et al. [15].

Dimensionality reduction techniques have been extensively
studied, including the Discrete Fourier Transform [2], the
Singular Value Decomposition [35], Discrete Wavelet Trans-
form [8], [45], Piecewise Aggregate Approximation [27], [56],
and the Adaptive Piecewise Constant Approximation [31].
Indexing of time-series is studied in [18], which proposes
a lower bounding technique that guarantees no false dis-
missals. Indexing techniques for the DTW measure have been
proposed, including [25], [32], [49], [57], [58]. Since this
paper discusses a fundamentally different style of time-series
analysis, we do not discuss these methods further but we will
compare against some of them in our experimental evaluation.

Time-series similarity can be calculated using compression
techniques [29]. These methods approximate the Kolmogorov
Complexity by compressing time-seriesR concatenated with
time-seriesS. Recent work [12], [13], [29], [38], [39], [44]
has shown that the Kolmogorov complexity is a effective basis
for developing accurate similarity measures. This work dealt
with discrete data or discretizing continuous data and applying
off-the-shelf compressors to approximate the Kolmogorov
complexity. The intuition behind the scheme is that ifR and
S are similar, the compressed size of the concatenated file
should be smaller thanR andS compressed alone, since the
compression method has been “warmed up” withR beforeS is
compressed. Our methods use a dictionary similar to that used
by common compressors and we develop a scoring method
that utilizes the mechanics of a compression technique.

Another large body of work that is similar to the methods
we discuss here is that of Vector Quantization (VQ) [20].
Both methods are based on lossy compression. Our methods
similarly transform an input vector into smaller blocks or
segments. VQ can be used for classification as described
in [34]. However, while VQ maps fixed-length segments into
a finite (and thus discrete) set of possible values, our method
stores eachvariable-lengthsegment extracted from the input

2

Fig. 1. Three examples from the Cylinder-Bell-Funnel Dataset.

vector and so we do not have a finite or discrete set of mapping
targets. Further, our variable-length segments are determined
by a Lempel-Ziv like algorithm that lengthens segments based
on frequency. Details on this can be found in Section 3.2.

While we have discussed different methods of similarity
measure, here we discuss various applications of these simi-
larity measures. One use of these similarity measures is in data
clustering. Given a set of time-series, a dissimilarity matrix can
be calculated and clustering algorithms can be applied suchas
UPGMA [50] or Partitioning Around Medoids (PAM) [24].

In terms of database querying, the similarity measures can
be used to search a time-series database against a single time-
series query producing a ranked list of matching results. This
use naturally also leads to the use of these similarity measures
for classification using the Nearest-Neighbor method. For the
purpose of classification, other methods such as Random
Forest [7] and Support Vector Machines (SVM) [9] can be
used. But, these methods do not provide an explicit similarity
measure like DTW, EDR/ERP, LCSS, etc. and cannot be used
for any of the other uses of these similarity measures as
mentioned above.

2.1 Time-series Bitmaps

Time-series Bitmaps were introduced in [36]. This tool is used
to visualize time-series in the form of thumbnail images. These
bitmap images can also be used for time-series similarity. The
similarity between time-series Bitmaps and our method lie in
the calculation of short segments within each time-series and
their frequency. However, the way these segments are created,
counted, and analyzed are very different in both methods. For
a given alphabet size and desired segment length, Bitmaps
discretize the time-series, enumerate all possible words,and
finally calculate the frequency of each within a time-series. We
compare DCS with Bitmaps in our experimental evaluation.

2.2 Kolmogorov Complexity

Kolmogorov complexity is the measure describing the min-
imum amount of information required to produce a specific
item of data. Li et al. [38] defines it as:K(x) of a string
x is the length of the shortest binary program to computex
on an appropriate universal computer - such as a universal
Turing machine. Further,K(x|y) is the length of the shortest
program to generatex given y, an additional input. Finally,
K(x, y) is the length of the shortest program that generatesx
andy and a delimiter. Kolmogorov complexity is in general,
incomputable [38], [42]. We rely on the idea that two similar
strings of data will have very similar Kolmogorov complexi-
ties. Further, ifx andy are similar, we should expectK(x|y)

to be small; if x = y, K(x|y) = 0. The main approach
for approximation is to substituteK(x|y) with C(x|y) where
function C is a compressor and we can measure the length
of the compressed data. SinceK(x|y) is the length of the
shortest program that generatesx given y, the approximation
C(x|y) is the length of the code that can regeneratex given
y. Interested readers can refer to Vereshchagin for details of
Kolmogorov functions [53].

2.2.1 Off-the-Shelf Compression and Similarity

Since the relationship between the Kolmogorov complexity
and compressibility of data are quite related [39], it is un-
surprising to find a large body of work studying the ap-
proximation of K(x) using current compression techniques
[12], [13], [29], [38], [44]. These methods utilize off-the-
shelf compressors to approximate Kolmogorov complexity and
use it to determine similarity between data. In our study, we
have reached the same conclusion that these prior methods
work well for text and discrete data. While these methods
are arguably not suited for short time-series analysis [29], for
the purpose of completion, we tested how our method works
on short time-series. Interestingly, we see competitive results
for short time-series against classical dynamic programming
methods. Our work does not rely on off-the-shelf products but
instead augments the Lempel-Ziv algorithm to produce a more
accurate similarity measure.

2.3 Lempel-Ziv

Lempel-Ziv (LZ) has been well studied since its development
in 1977 [59]. The algorithmic complexity of LZ is linear [3].
In its raw form, it scans along a sequence of data and in one
pass simultaneously generates a dictionary and compressesthe
data. This is an elegant and effective method of compression,
as its compressed form can be disseminated and uncompressed
without ever requiring knowledge of the contents of the
dictionary. We use the LZ algorithm as shown in Algorithm 1.

2.3.1 Lempel-Ziv Shortcomings

As a compressor, the compression ratios achievable by LZ are
generally weaker than other commonly used compressors [40].
Its compression is based on its elongation of items in the
dictionary (we will refer to these as words). Since the algo-
rithm only makes one pass of the data, the recognition of
repetitive pieces of the data is limited. Also, the greedy nature
of word matching is not guaranteed to be optimal. Further
passes through the data would obviously provide the algorithm
with more knowledge of the highly repetitive, lengthy regions
that allow for best compression. Furthermore, the left to right

3

Algorithm 1 Lempel-Ziv Algorithm
1: Input: S = s0...sn

2: Initialize dictionary: set of singleton alphabet symbols
3: w = NULL
4: while |S| > 0 do
5: c=s0

6: if wc ∈ dictionary then w = wc
7: else addwc to dictionary; output code forw; w = c
8: end if
9: S = s1...sn

10: end while
11: output code forw

mechanism only gives better compression to the latter parts
of the input data as the dictionary becomes more populated.
This means that the earlier portions of the data will be poorly
compressed with smaller dictionary words. However, as it is
linear in time complexity with respect to the input data, it is
faster than many other compression techniques.

3 THE DCS METHOD

In this section, we describe our DCS method. We begin with an
overview of theContinuous-Domain Dictionary Compression.
Then, we describe a method for constructing a dictionary for
time-series datasets in the continuous domain.

3.1 Continuous versus Discrete

Before discussing the method itself, we motivate the benefits
of a non-discretizing method for time-series compression.
Figure 2 shows that discretization of continuous data may miss
proximity relationships that a more flexible interval method
may capture. Notice that the three data points in buckets E
and F. E contains two relatively distant points while E and F
contain two points that are close together. An interval-based
method discretizes the continuous value domain into intervals
that are all of a uniform length. The method determines a
score for two particular values based on whether or not they
map to the same interval. As seen in the figure, two points
that fall on opposite sides of an artificially imposed boundary
are unnecessarily penalized. While working in the continuous
domain requires extra overhead in terms of data structures
such as interval trees, it allows a more accurate view of the
relationships between time points.

3.2 Algorithm Overview

In this section we discuss the details of our work, starting
with a description of terms that we use. As the LZ algorithm
is used as a compressor for text data, the input is a string.
It inputs substrings, i.e. “words”, into its dictionary while
it scans through the characters. For time-series, the parallels
are as such: the time-series can be thought of as the string,
“segments” are analogous to “words”, and time points are
similar to characters.

The LZ algorithm constructs a dictionary by attaching a new
characterc from the string that it is compressing to a word
w that is already in the dictionary and checking to see if that
word is present. If it is,c is added to the word. This is the same

Fig. 2. Hard discretization quickly buckets data points
into partitions. This example shows that 2 data points
that are close together are partitioned into E and F
while a more distant point is also bucketed into E. Our
continuous compression method uses an ǫ parameter
to create intervals which distinguish nearby points more
flexibly. Here the middle interval intersects both the first
and last interval. The first and last intervals are non-
intersecting which maintains ǫ integrity. Searches for
nearby time points are facilitated by interval trees.

Algorithm 2 Build and Compress Phases
1: Input: X = x0...xn, Y = y0...yn

2: Output: score
3: DictX =BUILD DICTIONARY for X
4: COMPRESSY using the largest segments inDictX

5: OUTPUT compressed size ofY

intuition behind the way that the dictionary is constructedfor
our Continuous-Domain Dictionary Compression.

In a number of other time-series similarity scoring tech-
niques including the popular LCSS [55], EDR [11], and LCSS-
FTSE [43] measures, anǫ factor is used to find matching
elements. In these schemes, if two time-series elementsri ∈ R
and sj ∈ S are within ǫ of each other, i.e. if abs(ri − sj) <
ǫ, ri and sj are said to match. Otherwise, they are said to
not match. We also use thisǫ criteria to determine match-
ing time-series components. Continuous-Domain Dictionary
Compression constructs a dictionary for a time-seriesR by
attempting to attach a new time pointri from time-seriesR
to a set of previous elementsri′ ,...,ri−1 which constitute a
segment already in the dictionary. The time pointri is matched
with any elements in the dictionary that are within a distance
of ǫ, i.e. any elements that fall betweenri − ǫ and ri + ǫ.
Once the dictionary forR is constructed, a similarity score
between time-seriesR andS can be obtained by matching the
segments in the dictionary with segments ofS. We retain the
greedy method of matching segments in the dictionary based
on the length of the segment to retain the speed benefits. This
greedy approach of dictionary segment matching is simple and
effective as shown by our experiments. The overall scheme is
summarized by Algorithm 2.

Scoring measures such as Euclidean distance, DTW, and
LCSS calculate the similarity between two time-series by
comparing both sets of time points from the two series
simultaneously. Our method decouples the analysis of the two
series by looking at them sequentially. In this way, every
build phase can also be thought of as atraining phase.

4

Algorithm 3 Build phase
1: Input: S = s0...sn

2: Output: DictX

3: Initialize dictionary: empty dictionary hash
4: prev = NULL; loc = 0; Y = S
5: while |Y | > 0 do
6: segment = longest dictionary item that is prefix of Y
7: i = |segment|; loc = loc + i
8: if prev 6= NULL and |prev| > 0 then
9: prev = APPEND(prev, y0)

10: while |prev| > 0 do
11: ADD(dictionary, prev); prev = prev0...(|prev|−1)

12: end while
13: end if
14: prev = y0...yi−1; Y = yi...y|S|

15: end while
16: OUTPUT dictionary

Algorithm 4 Compression phase
1: Input: DictX , S = s0...sn

2: Output: CompressX(S)
3: CompressX(S) = 0; loc = 0; Y = S
4: while |Y | > 0 do
5: segment = longest dictionary item that is prefix of Y
6: i = |segment|; loc = loc + i; Y = yi...y|S|

7: CompressX(S) = CompressX(S) + 1
8: end while
9: OUTPUT CompressX(S)

Using the LZ dictionary framework allows our method to self
adjust to different levels of similarity. For example, if the
data that is used to create a dictionary is highly repetitive
with repeated structure, the dictionary will contain longer
segments. This allows our method to examine the target data
for longer repeatedphrasesor motifs and identify similarity
at a high level. However, if the input to the build process is
highly random, with few repeating phrases, the Compression
stage will simply look for two length segments that indicate
similarity at a lower alphabet level.

3.2.1 Building the Dictionary

We present our method for building a dictionary from a
time-series in Algorithm 3. For reasons explained below in
Section 3.2.2, we do not explicitly load singleton time-points
into the dictionary. Thus, the length of the shortest segment in
our dictionary is 2. In addition to adding the segmentprev to
the dictionary, all prefixes of the segment are also added (Lines
13-16). The reason for this is discussed below and illustrated
in Section 3.2.5. We now discuss the parameters that allow
our method to compress continuous data.

The first key idea is the dependency on theǫ value for
defining similarity between elements of two time-seriesR and
S. As mentioned in the previous section, since we are working
in the continuous domain, there is no alphabet for the time-
series. The data elements now lie in the real number domain,
so the issue of matching segments in the dictionary to a prefix
of a time-series must differ from previous approaches.

In Figure 3, we demonstrate how theǫ factor allows for
segment matching. Here, a segment in the dictionary of length
5 was created to span time points(t + 4)...(t + 8). We set an

Fig. 3. The matching region for a segment in the dic-
tionary where the ǫ = 0.5. Depicted is the static epsilon
technique where each data point is allowed a deviation of
ǫ in Euclidean distance away from it at a given time point.

Fig. 4. The δ factor is used to control dictionary segments
from being improperly used. Here, segments that are
produced by the peak of time-series A could be used
during the compression of the peak of target series B.
Further, both time-series have flat intermediary regions
that are within small ǫ. The compression sizes would be
quite similar and erroneously give favorable similarity.

epsilon factor of 0.5 which allows other time points to match
those in this dictionary segment within a Euclidean distance
of 0.5. We depict a staticǫ value in Figure 3, which means
that at each time point we rigidly allow anǫ shift. Through
experimentation, we have found that an averageǫ value for
a given segment works just as well, and in some cases even
better. For example, given anǫ of 0.05, a rigid ǫ constraint
forces each time point in the segment to satisfy the bounds.
However, the averageǫ constraint would simply require that
the average deviation over all time points in the segment be
within ǫ. The intuition behind this type of shifting is to be
resistant to noise factors at sporadic time points that would
have made this segment a reject.

The second parameter,δ, determines the time warping
sensitivity. Other methods employ aδ factor to restrict the
time warping of a matching scheme, such as the Sakoe-Chiba
band [48].

Figure 4 illustrates the significance of restriction. In this
figure, the two curves are quite different since time-seriesA
contains a peak early in the time-series and time-seriesB
contains a peak at the end of the time-series. The similarity
measure calculated by most existing techniques should reflect
this difference. In our case, the dictionary segments builtfrom
any location such as the peak in time-seriesA could match
any other location inB regardless of time warping. In this
example, if the dictionary that is produced from the peak of
time-series A is used to compress the peak of time-series B,
a high compression ratio could be achieved. Thus, we use the
δ factor to restrict dictionary segments to match a prefix. Our
warp restriction is primarily used to increase accuracy.

5

Fig. 5. A tree is built for each size of segment. If ǫ = 0.1,
then we can see the +/- 0.05 that is applied to the first
element of the segment. This interval (specific segment)
is then inserted into the tree. Since intervals in each
tree are equal to ǫ, the traversal required is more limited
than an interval tree with unrestricted interval sizes. An
example traversal of the tree is shown by the shaded
nodes.

The δ value to limit time warping is not used in the
dictionary build phase. It is ignored to allow for longer prefixes
to be matched and thus longer segments to be constructed
in the dictionary. The dictionary build phase also adds all
subsequent prefixes of a given segment into the dictionary as
described in section 3.2.1, so that the segment can be matched
with the δ restriction.

3.2.2 Implicit Singletons in the Dictionary

Note that unlike traditional dictionary building for LZ com-
pression, we do not initialize the dictionary with the entire
alphabet of singletons. The simple reason being that our
alphabet is not discrete and finite. As described above, we
search for increasingly longer segments to match the prefix.
Since our shortest segment length is 2, we start looking in the
dictionary for segments of length 2 to match the prefix of the
sequence. If none is found, implicitly, a singleton is matched.
This will be further illustrated in Section 3.2.5.

3.2.3 Dictionary Implementation

The implementation of the dictionary is crucial to the overall
performance of DCS. In the worst case, we must probe the
dictionaryO(n) times during the entire build/compression, and
our dictionary containsO(n) items. Without a good dictionary
implementation, our method cost isO(n2). The best solution is
to use an interval tree that allowsO(log(n)) time for additions.
While this solution does not guarantee a worst case solution
better thanO(n2), we show in Section 3.2.6 that this worst
case is pessimistic in practice.

The dictionary is implemented using an interval tree. The
details of an interval tree can be found in [14]. The interval
tree is used in the following way: for each segment, we use
the interval created by the epsilon bounds for the first value
of the segment as the key for the tree. This is depicted in
Figure 5. In the figure, we show that trees are constructed for
each segment size, which keeps all the segments of a particular
sizex together in an interval tree. In the figure, we show an
example where a segment of length 5 has an interval of0.16
to 0.26. Thus, if we have a query interval of0.11 to 0.21, our
tree traversal would find this interval and examine the segment
to which it is bound to see if the rest of the values satisfy theǫ

criteria. As an example, later nodes in the traversal are shaded
to show the nodes/segments that would have to be examined.

3.2.4 Scoring
The largest prefix of the target data sequence is matched
with entries in the dictionary until all elements of the target
data sequence have been examined. The details are shown
in Algorithm 4. The greedy nature of the algorithm for
segment matching makes it fast, but also means that it may not
produce the best possible alignment (just as some compressors
outperform LZ). However, like LZ, we show that our method
produces good alignments in practice.

In our method, each dictionary match is valued equally
toward the final similarity score. For example, if the target
data sequence is fully exhausted by the prefix matching and
100 segments in the dictionary are used (including singleton
segments as described in the building phase), then the return
measure from the compression phase is 100. The count is
incremented by one at each iteration regardless of prefix length
matched. The result is that for a sequence of length n, if all
segments used during the compression were of length 2, the
return value would be 0.5n. Our score mimics the length of
compressed data given by an LZ compressor.

While Cilibrasi and Vitanyi [13] try to approximate the Kol-
mogorov Complexity (K(x|y)) of a stringx given a stringy
using a compressor to find the compressed size of stringy con-
catenated with stringx, NCD(x, y) = (C(xy)−C(x))/C(y),
our method behaves differently in a subtle manner. Since we
do not add any new elements to the dictionary after examining
the first time-seriesy when scoringx, we do not find as near
an approximation to the Kolmogorov complexity ofx|y (the
minimum amount of information needed to communicatex
given y). We do however, find a more accurate measure of
how well the elements ofy can match the elements ofx. This
is because the dictionary only contains elements fromy. Since
this is our ultimate goal, it is a meaningful distinction.

Our DCS(x,y), like DTW, is not a distance metric, it is a
similarity score. The smaller the DCS(x,y), the more similar
x and y are to each other than any other pair within the set
of data. Notice that ifx = y, we do not achieveK(x|y) = 0
which is required for a score to be classified as a metric.

3.2.5 Example
Figure 6 is an example of building the dictionary on a source
data series as well as compressing two target data series.
The first time-series is used to build a dictionary by calling
Algorithm 3. Recall that singleton segments are not explicitly
loaded into the dictionary. For all segments added to the
dictionary, all prefixes of the segment are also included. This
is shown with the segment (0.30, 0.20, 0.90) where its length
2 prefix is added. The need for this step is illustrated by target
1 where it matches a segment of length 3. The only way this
could have occurred is if its prefix of length 2 was added
because none of the other segments of length 2 were valid.
Time of entry into the dictionary is also included. For example,
the segment (0.90, 1.00):5 was created when the algorithm
reached time point 5. When we compress using Algorithm 4,
we also obey theǫ and δ constraints. Theδ constraint is

6

Fig. 6. Building and compressing time-series of length 6 with ǫ = 0.5, δ = 2. Time-series Src, Tgt1, Tgt2 in panel
B correspond to the time-series source, target 1, target 2 in panel A respectively. Panel A shows the results
of building the Src time-series from panel B. In panel A, the dictionary items added are shown on the right of
the ‘match’ items. Dictionary items also store the time point at which they were created – (< segment >) :<
time of creation >. In a Lempel-Ziv manner, time-series segments in the dictionary are built from Src and Time-
series Tgt1, Tgt2 are compressed using this dictionary. Segment (0.30,−0.1) : 2 matches (0.70, 0.30) : 0 since the
it is within ǫ = 0.5 and δ = 2. The number of dictionary items used to compress the time-series is the DCS score.
Target 1 has a better score of 3 than target 2 with a score of 4 and so Src is more similar to Tgt1 in panel B.

utilized in the last time-series, we could not use the segment
(0.30, 0.20):4 to match the prefix (0.10, 0.10) in target 2
because the segment was created at time point 4 while we are
matching at time point 1. The temporal difference is greater
than theδ of 2. This forces us to use an implicit singleton in
the dictionary as the first match. Had we used the 2 length
segment, we would end up using 3 segments to compress
target 2 rather than the 4 shown. By visual inspection, we can
see that the second time-series (target 1) is more similar to
the first time-series (source). In comparison, the DCS score
is 3 for target 1 and 4 for target 2. This would translate
to C(target1|source) = 3 and C(target2|source) = 4.
Since C(target1|source) < C(target2|source), we would
conclude that target 1 is more similar to the source time-series
that target 2.

To conclude the discussion of the DCS algorithm, we
summarize our method.Time-series are built into interval tree
dictionaries in their native domain in one pass (LZ-style).
Compression of query time-series are done in a single pass
to give a “compressed” size of the query time-series. This
compressed size (similarity score) can be compared against
the size given when using other time-series dictionaries.

3.2.6 Algorithmic Cost Analysis
As mentioned earlier, LZ has linear complexity. In Algorithm 3
and 4, the worst case complexity isO(n × DictAccess).
The algorithm is linear with respect to the dictionary access
complexity, as we must examine each time point of the time-
series a constant number of times. Each of these examinations
is a probe of the dictionary: both a search and an addition.
The reason there is an addition is because in our technique, all
prefixes of a segment are added into the dictionary. Therefore,
the constant number is 2. We extend the LZ algorithm to
handle continuous data to retain its linear nature. However,
since we are doing interval searches, constant dictionary time
access is impossible.

Since we are using the interval tree, each addition into
the dictionary costsO(log(n)) time. Each probe into the

dictionary costsO(log(n) + m) where m are the matches
returned. Nodes can be examined in constant time if the
maximum segment length allowed in the dictionary is set to
some constant. This is generally done in LZ compression since
the dictionary size is generally bounded. Further, we do not
need to traverse the tree to recoverall matches, once we find
that there is a match, we stop the traversal and try to find a
segment of longer length. Sincem is bounded byO(n), the
algorithm has a worst case complexity ofO(n2).

Further analysis and empirical results reveal that theO(n2)
bound is very pessimistic in practice, as described below. For
simplicity, if we assume that two time-seriesS andT are both
of lengthn and the data is one dimensional, we can analyze
the bound form. Our two time-series are normalized around
0 and scaled by the standard deviation individually.

Now assuming that the data points are normally distributed
and follow a conditional density function of random variable
X as described byΦ(z) in Equation 1. The probability that
one of our data values, drawn from the distribution ofZ, falls
in an interval(a, b] is given byP [a < Z ≤ b] in Equation 2.
Given si ∈ S and tj ∈ T , then the time pointtj falls within
the interval given from(si − ǫ, si + ǫ] with the probability
P [N(si) − ǫ < N(tj) ≤ N(si) + ǫ] in Equation 3. Now
we can calculate the expected number of segments that are
returned from the interval tree;E[m|si] in Equation 4. The
total number from all the queries on the interval tree is given
by E[m] in Equation 5.

Φ(z) =
1

2
√

2π

∫ z

−∞

e−u2/2 du (1)

P [a < Z ≤ b] = Φ(b) − Φ(a) (2)

P [N(si) − ǫ < N(tj) ≤ N(si) + ǫ]

= Φ(N(si) + ǫ)− Φ(N(si) − ǫ) (3)

To find the average number of intervals examined dur-
ing a compression, we randomly generate 800, 2000 length

7

sequences of values between 0 and 1. We then normalized
each sequence by the mean and standard deviation. Using an
ǫ = 0.5 as in [54], we find that the average value form is
0.06n when compressing a time-series with a dictionary of
trees. That is, for each value in time-seriesT , we examine
on average 6 percent of the values in time-seriesS that built
the dictionary. As a result, the average cost of0.06n2. This
approximately translates to about a 15X improvement over
N2 time algorithms which is backed up by our long trajectory
empirical results.

E[m|si] = n(Φ(N(si) + ǫ) − Φ(N(si) − ǫ)) (4)

E[m] = n2

n∑
i=1

1

n
(Φ(N(si) + ǫ) −

Φ(N(si) − ǫ)) (5)

Note that our analysis here is similar to that of [43] as
both methods use anǫ parameter in similar ways. However,
an astute reader will have noticed that our averagem is well
below the figure reported in [43] because of the fact that
we discontinue the dictionary probe as soon as a matching
segment is found. As described earlier, the space complexity
of our algorithm is linear. This still holds for continuous data
as now in addition to the pointers for the segment, we store
the epsilon interval for each node which is constant space.

3.3 Usage in Classification and Clustering

As with other similarity measures, our method can also be
used for classification. For classifying continuous time-series
data, we simply use the DCS and theContinuous-Domain
Dictionary Compressionmethod. For classification, given a
set of training time-series with labels, DCS dictionaries can be
built for each and its source label is attached to the dictionary.
Given an incoming, unlabeled time-series, each of the database
DCS dictionaries are used to compress the unlabeled series and
a score is generated. The dictionary that gives the best score
confers its label to the unlabeled time-series. This methodis
the nearest neighbor classification technique [29], [33], [52],
where an unlabeled series is assigned its class label of its
nearest neighbor in the training set. It has been argued that
nearest neighbor classification is rather robust in its ability to
resist the effect of noise. Also, given that the purpose of this
classification is to highlight the effectiveness of the similarity
measure, nearest neighbor is the most suitable because of its
simplicity.

This idea can be similarly used for clustering methods such
as UPGMA. Given time-series that we may wish to cluster,
an N2 dissimilarity matrix must be given as input. If a new
trajectory is introduced to the database, the existing database
dictionaries can be reused to compress the new time-series
to create the pairwise scores. This feature of our method is
unique from existing methods and provides time performance
improvements for similarity score calculation.

3.4 Parameter Identification

Like many of the parameterized DTW methods such as the
Sakoe-Chiba Band [48] or LCSS-FTSE [43], DCS requires

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Accuracy

0.0125 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

6

10

14

18

22

26

30

34

38

42

46

50

54

58

62

66

70

Fig. 7. ǫ/δ parameter grid and the leave-one-out DCS
accuracy of the training set. δ parameter on the vertical
axis, ǫ parameter on the horizontal axis.

Fig. 8. ǫ/δ parameter grid with granularity refinement.

parameters to be set to produce optimal results. We train the
parameters using some training set, to determine the optimal ǫ
andδ (time warping) parameters. We note this framework we
describe below can be applied to other similarity measures,
such as Sakoe-Chiba Band or LCSS-FTSE. This is done sim-
ply by selecting each training time-series and calculatingthe
DCS against all the other training time-series in the leave-one-
out classification evaluation manner. Leave-one-out is often
used for cross-validation and classification error estimation,
but here we use it to discover suitable parameters [17].
Basically, at each “fold”, for a set of sizen, we choosen− 1
time-series to train with and try to classify the remaining time-
series. We repeat this proceduren times, allowing each of the
time-series to be left out once and determine how many times
(out of n) we correctly classified. Now for each full leave-
one-out process, we choose a different parameter set. In our
studies, we start with anǫ = 0.05 and increment0.05 until
ǫ = 1. At an ǫ = 1, we have hit the point where we allow
time points to be one standard deviation apart. Since having
an ǫ = 0 would not allow any matching, we addǫ = 0.0125
to represent the ‘exact’ time point match. Forδ, we did a
search in0.001m ≤ δ ≤ 0.035m where m is the length of a
time-series in increments of0.002m.

After we have calculated the leave-one-out accuracy in the
training set for allǫ/δ pairs, what we get a grid withǫ as
one dimension, andδ as the other dimension. For example,
Figure 7 shows anǫ/δ grid for the Synthetic Lightning EMP
dataset [23]. This dataset was one of the long time-series
datasets we ran experiments on. Details of this dataset can be
found in Section 4.1. While we use the Synthetic Lightning
EMP dataset here, these methods and results also hold with
all the time-series we use in Section 4. The horizontal axis

8

Algorithm 5 Parameter Identification Heuristic for Leave-one-
out classification (LOOC) on training data.

1: Input: a grid of LOOC accuracies,ǫ along x-axis,δ along y-axis
2: Output: epselect is x coordinate on grid anddelselect is y

coordinate on grid
3: if best accuracy is unique in gridthen
4: epidx = x coordinate for best accuracy
5: delidx = y coordinate for best accuracy
6: else
7: epidx = x where sum of top-k accuracies in column x is max
8: delidx = y where (epidx,y) is max in columnepidx
9: end if

10: epselect = epidx; dlo = delidx; dhi = delidx
11: step = FALSE; peak = grid(epselect, delidx)
12: while TRUE do
13: if grid(epselect,dlo) 6= peak AND step then BREAK end if
14: if grid(epselect, dlo) 6= peak then
15: step = TRUE; peak = grid(epselect, dlo)
16: end if
17: dlo = dlo - 1
18: end while
19: step = FALSE; peak = grid(epselect, delidx)
20: while TRUE do
21: if grid(epselect,dhi) 6= peak AND step then BREAK end if
22: if grid(epselect, dhi) 6= peak then
23: step = TRUE; peak = grid(epselect, dhi)
24: end if
25: dhi = dhi + 1
26: end while
27: delselect = (dlo + dhi)/2

plots δ and the vertical axis plotsǫ. The figure shows that
there is a clear gradient in the leave-one-out accuracy in the
training data. Further study of the grid data indicated that
the ǫ parameter was more influential in the end accuracy
of the calculated similarity measure than theδ parameter.
Thus, we developed the technique found in Algorithm 5. The
algorithm is based on hill climbing. First, we search for a
unique maximum accuracy within this grid. If this is found,
than we pick theǫ value at which this grid point is found.
If there are multiple maximum accuracies, we look at eachǫ
column in the grid and calculate the sum of the top-k values
within the column. In this tie situation, theǫ column with
the best top-k sum is theǫ value we choose. We use the top
75th percentile in each column to retain within a standard
deviation assuming N(0,1). Next, given thisǫ value, we look
at the maximum accuracy in the column and find the most
stable position within this peak. Thus we shift theδ value
such that we move into the middle of plateau. In this way, we
either choose the max peak, or we choose the bestǫ ridge and
then slide along it to find the most stable maximum position.
In Figure 7, there is one lone peak, atǫ = 1.0 and δ = 22.
After the δ stabilization, this shifts slightly toδ = 20.

A further heuristic is to develop theǫ/δ grid on a coarse
grain scale and iteratively examine finer granularity of thegrid.
The manner in which this is done factors into the amount
of time this heuristic takes. For instance, one could take a
coarse grain grid in bothǫ and δ dimensions of the grid. If
this is done such that only one deeper grain is examined, this
would be a 75% savings in grid computation in the original
iteration if the granularity doubles in each dimension. Figure 8

shows a schematic illustrative example. This example shows
granularity refinement after Algorithm 5 has found anǫ and
δ pair. Looking in a refined fixed region around the coarse
grain parameter pair allows us to look for maxima within the
region. In this manner, it is possible to increase the efficiency
of the parameter exploration in the training data.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance and accuracy of
the DCS method. All experiments are run on a machine with
an Intel 2.4Ghz Core 2 Duo processor with 2GB of DDR2 667
Mhz memory and SATA hard disks. The operating system was
Fedora Core 6 and methods are implemented in C++ (except
those where MATLAB code for comparison methods was
provided). For our results, statistical significance is calculated
with the Wilcoxon Matched Pairs Signed Ranks Test and a
p-value cutoff of 0.01. We use the Wilcoxon test because it
does not make the same normal distribution assumptions as
the Student’s t-test. Since we cannot make any assumption
about the distribution of the accuracy results, the Wilcoxon
test is more robust. Datasets are normalized as described in
Section 2. All response times shown are the average over triple
replicate runs.

A standard way to test similarity measures is to use it
to classify data, where the results of the classification are
known. This method has been used extensively in previous
works [1], [11], [29], [43], [55], and we adopt this method
here. We employ Nearest Neighbor and Leave-one-out style
classification in our study. The effectiveness of the similarity
measure is then measured using a singleaccuracymeasure,
which is computed as|correct|/|testset| [1]. Improvement
percentages are reported as|(DCS − Method)|/Method.

For our comparisons, we ran datasets over DTW-Sakoe-
Chiba 3% warp restriction (DTW-SC3), LCSS, and the sim-
ple Euclidean (Eucl) measure. Lower bounding as described
in [25] was applied to DTW-SC3 (DTW-SC3-LB for 3%). In
addition to DTW-SC3-LB, we also wanted to see how a larger
band would fare in accuracy and speed performance so a 10%
band with lower bounding was also tested (DTW-SC10-LB).
The DTW-SC is described as a special case of DTW-rk [1].
While the 3% warping band is shown to be a general sweet
spot in band size [47], we also used our parameter exploration
scheme to search for a band in the 1% to 10% range. We
found in most cases, the heuristic band size resulted in the
same accuracy as the 3% warping band. Also, the Sakoe-Chiba
band measure shows no statistically significant differencein
accuracy over the DTW-rk results posted in [1]. While we
did not implement an index for DTW, the run time saved
by implementing an index can be equated to the run time to
lower bound DTW which is the Euclidean run time. Since the
Euclidean run time is orders of magnitude faster than DTW
in our experiments, this lower bounding time is negligible.
For LCSS, our results are produced using LCSS-FTSE [43]
to speedup the computation of LCSS. LCSS-FTSE was run
with ǫ parameter set to0.25 and run with the same 10% warp
restricting band as that of DTW-SC10-LB.

We also compare against time-series Bitmaps (BM) as de-
scribed in [36]. However, as discussed above, this method uses

9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e(
m

s)
, l

og
 s

ca
le

0

10

100

1000

10000

100000

1000000

Accuracy(%)

DTW−SC3−LB
DTW−SC10−LB
DTW−SC3
LCSS−FTSE
DCS
Eucl
BM
NCDGZ3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e(
m

s)
, l

og
 s

ca
le

0

10

100

1000

10000

100000

1000000

Accuracy(%)

DTW−SC3−LB
DTW−SC10−LB
DTW−SC3
LCSS−FTSE
DCS
Eucl
BM

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e(
m

s)
, l

og
 s

ca
le

0

10

100

1000

10000

100000

1000000

Accuracy(%)

DTW−SC3−LB
DTW−SC10−LB
DTW−SC3
LCSS−FTSE
DCS
Eucl
BM

Fig. 9. Results of F2 classification by
nearest neighbor, data from [23].

Fig. 10. Results of F6 classification
by nearest neighbor, data from [23].

Fig. 11. Results of F7 classification
by nearest neighbor, data from [23].

rigid discretization while we use dynamic intervals to compare
time points. Further, Bitmaps rigidly enumerate and examine
all possible “word” segments while DCS lengthens segments
as our LZ-style algorithm examines prevalent “words”. Other
differences include the parameters required for DCS compared
to Bitmaps. The Bitmap parameters include two parameters for
the SAX discretization [41], one parameter for the alphabet
size (up to 4), and another parameter for the size of the
Bitmap. We use an alphabet size of 3 and a 64 cell Bitmap, as
recommended by the authors. The ‘N’ and ‘n’ parameters are
detailed on a per experiment basis. MATLAB code for SAX
was run to discretize the data for this method.

We also compare against NCD. While [13], [29] show
that using off-the-shelf compressors to approximate the Kol-
mogorov Complexity may work for discrete data such as
text and discretized time series, we wanted to evaluate how
well they do on time-series directly versus our method. We
utilized the NCD measure as described by [13] and the
gzip compressor. The details of NCD are described in sec-
tion 2.2, 2.2.1, 3.2.4. Conversion of the time-series data to a
discrete representation can be done via the SAX representa-
tion [41]. This representation carves up the assumed normal
distribution of data points such that discretization buckets have
uniform density. Given that this type of discretization requires
a parameter to denote the size of the resulting symbol alphabet,
we ran the same procedure over 3 values: 3, 10, 20. In other
words we discretized the time-series to 3, 10, and 20 symbol
alphabets and then ran gzip to compress these time-series
representations. A key problem with this technique is that
for the compression approximation to be as close as possible
to the Kolmogorov Complexity, the compressor must achieve
the highest possible levels of compression on the data [29].
Recently, an interesting finding has been that:“It is interesting
to note that PPM generally performs better than LZ-type
coding in terms of the compress ratio. However, comparing
the results shown in the first and second rows (figure), LZ78-
based approach performs better in terms of classification accu-
racy... [40]” . Of course, this introduces another disadvantage
to the method because all possible compressors must be tested
and even choosing the best compressor does not guarantee the
best accuracy. We applied gzip because it is one of the most
widely used and effective compressors. Here NCD using gzip
andx characters is denoted NCDGZ(x).

Time results for NCD and Bitmap are end-to-end and
included the time to discretize the unlabeled TEST data (we

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e(
m

in
),

 lo
g

sc
al

e

0

10

100

1000

10000

100000

Accuracy(%)

DTW−SC3−LB
DTW−SC10−LB
DTW−SC3
LCSS−FTSE
DCS
Eucl
BM
NCDGZ10

Fig. 12. Results of synthetic lightning (RS) classification
by nearest neighbor using data from [23].

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e(
m

s)
, l

og
 s

ca
le

0

10

100

1000

10000

100000

Accuracy(%)

DTW−SC3−LB
DTW−SC10−LB
DTW−SC3
LCSS−FTSE
DCS
Eucl
BM

Fig. 13. Results of Surveillance classification by nearest
neighbor using data from [36].

exclude TRAINING data processing time). Time results for
our DCS measure are calculated for the time taken to compress
a time-series with a dictionary since for classification the
dictionaries can be prebuilt. Since both building a dictionary
and compressing the time series both pass through the time-
series once, dictionary build time is approximately the same
as compression time. Parameter exploration time is also not
included as it can also be precomputed. Parameter exploration
time is approximately two times the dictionary build time on
all the training time-series (since this is basically leave-one-
out analysis on the training data and building and compression
are approximately the same speed) multiplied by the parameter
space size.

4.1 Long Time-Series

In this section we compare different time-series similarity
measures on long time-series. Here we deem time-series longer
than 1000 time points to be “long”. The goal here is to evaluate
the effectiveness of DCS against existing methods for long
time-series. In these experiments, we use a symmetric DCS
calculation, which means that for a set of time-series, the

10

Fig. 14. Examples of the long time-series data that was
analyzed. Class 6 from F7, class 1 from RS, class 2 from
Surveillance.

similarity matrix calculated is symmetric. For example, ina
one-sided DCS calculation, the similarity between query time-
series Q and database time-series T isDCST (Q) where is
represents the DCS when Q is compressed with the dictionary
built from T. A symmetric DCS score between two time-
series isDCST (Q) + DCSQ(T). This method resembles
the reciprocal best-hit method used for biological sequence
comparisons [22].

4.1.1 Datasets
We use a number of long time-series datasets. A few of the
datasets are provided from [23]. These are all longer than 2000
time points which is 3 times longer than the longest time-
series in [1](examined in Section 4.2). Another long time-
series dataset came from [36].

The first dataset also comes from [23]. This data is of
lightning data collected from the Fast On-orbit Recording of
Transient Events (FORTE) satellite. There are seven types
of lightning, each with distinguishing characteristics. The
interested reader can learn more about this data from [16]. The
three datasets derived have 2, 6, and 7 classes; these datasets
are called F2, F6, and F7, respectively. The first two, F2 and F6
contain the exact same time-series but with extra partitioning.
F7 contains all of those and also an additional class of
lightning measurement. They are not partitioned into training
and test sets. Each time-series is 3181 time points long, F2
and F6 have 121 time-series each, and F7 has 143 time-series.
The next dataset from [23] is a 2000 time point long, two
class, synthetic time-series of lightning’s electromagnetic pulse
(EMP) measurements. We denote this set RS. This dataset has
clearly partitioned training and test sets with 18000 test time-
series and 2000 training time-series.

We used one dataset from [36], the Surveillance dataset,
as the ECG dataset from that source is overly repetitive.
ECG waveforms are usually analyzed over a small number
of periods [5], [51]. We analyze a shorter ECG dataset in
Section 4.2. The Surveillance dataset is 1000 time points
long with four classes of 20 time-series. This dataset has no
training/test partitions.

Since no training/test sets exist for all the long time-series
except RS, we use the well known leave-one-out classification
evaluation method to compare all methods [17]. As described

above, leave-one-out simply takes a dataset of sizen and
takes each individual time-series out and tries to classifyit
against the remainingn− 1 time-series. While the leave-one-
out method is robust, it involves a very large number of runs.
In our case, it required us to relearn theǫ/δ parameters at each
fold of the classification (on the othern−1 time-series). This
relearning itself is a leave-one-out method as we describedin
Section 3.4. For the long time-series, we relearned at every
fold by applying our parameter exploration method over a
coarse grained parameter space:0.1 ≤ ǫ ≤ 1.0 with 0.1
increments andδ = 0.011m, 0.021m, 0.031m for length m
time-series. If leave-one-out is employed, classificationtime
reported is the time to classify alln time-series of each fold.
If a clear TRAIN/TEST partition is available, classification
time is the time to classify the entire TEST partition.

The Bitmap method utilizes subsequences of time-series for
measuring similarity. Since the authors do not provide a spe-
cific method for parameter discovery, we used the suggestions
that are found in [26]. The SAX method that they utilize has
two parameters ‘N’ and ‘n’. Parameter ‘N’ is suggested to
be two times the length of an interesting section of the time-
series. Parameter ‘n’ defines the aggregation of time-points.
For the F-series data, we used N=3181 and n=1 since this
data was not periodic. Similarly for RS, we used N=2000 and
n=1. For Surveillance, we used parameters (N=1000 and n=1).
Correspondence with the authors revealed that Bitmaps are not
very sensitive to changes in the parameter settings. This was
experimentally found to be true as changes in the accuracy
would change within approximately 5%.

For the NCD method, our implementations also utilized
SAX for discretization. Our parameters are N=length and n=1
for all long time-series.

4.1.2 Results
The first set of results we discuss is the F-series datasets.
These results are found in Figures 9, 10, and 11. Note that
the NCD results for F6 and F7 are missing because there are
no results from the NCD algorithm that gave us greater than
50% accuracy. As shown in Figures 9 to 11, DCS leads in
two of the three time-series datasets. DCS is also relatively
fast; only significantly slower than Euclidean. We also note
that the speed advantage for DTW-SC3-LB over DTW-SC10-
LB is around3− 4X and DCS is27%, 33%, 13% faster than
DTW-SC3-LB in F2, F6, and F7 respectively. This means that
DCS provides classification accuracy and speed performance
just as high as DTW-SC3-LB even though our DCS results
are not employing any pruning methods. We also notice that
DTW-SC10-LB has a slightly higher accuracy than DTW-SC3-
LB on F7. The heuristic band size found by our hill climbing
method gives classification accuracies that match the 3% band.

On the much larger RS dataset (Figure 12), with its18000
test time-series, DCS again outperforms DTW-SC3-LB in
speed but this time by an even larger48%. Both DTW-SC3-
LB and DCS have identical accuracies of89% on the RS
dataset. The 10% band turned out to be the band selected
by the hill climbing method and gave a higher accuracy of
91% but was slower than DTW-SC3-LB and DCS (by around
3X and 7X respectively). In this dataset, Euclidean provides

11

50
w

or
ds

A
di

ac

B
ee

f

C
B

F

C
of

fe
e

E
C

G
20

0

Fa
ce

A
ll

Fa
ce

Fo
ur

Fi
sh

G
un

_P
oi

nt

Li
gh

tn
in

g2

Li
gh

tn
in

g7

O
liv

eO
il

O
S

U
Le

af

S
w

ed
is

hL
ea

f

sy
nt

he
tic

_c
on

tro
l

Tr
ac

e

Tw
o_

P
at

te
rn

s

W
af

er

Y
og

a

0

20

40

60

80

100
A

cc
ur

ac
y

(%
)

DTWSC3LB DTWSC10LB DTWSC3 LCSS−FTSE DCS EUCL BM NCDGZ20

Fig. 15. Accuracy over 20 short time-series datasets.

50
w

or
ds

A
di

ac

B
ee

f

C
B

F

C
of

fe
e

E
C

G
20

0

Fa
ce

A
ll

Fa
ce

Fo
ur

Fi
sh

G
un

_P
oi

nt

Li
gh

tn
in

g2

Li
gh

tn
in

g7

O
liv

eO
il

O
S

U
Le

af

S
w

ed
is

hL
ea

f

sy
nt

he
tic

_c
on

tro
l

Tr
ac

e

Tw
o_

P
at

te
rn

s

W
af

er

Y
og

aTi
m

e(
m

ill
is

ec
on

ds
),

lo
g

sc
al

e

10

100

1000

10000

100000

1000000

10000000

DTWSC3LB DTWSC10LB DTWSC3 LCSS−FTSE DCS EUCL BM NCDGZ20

Fig. 16. Speed performance over 20 short time-series datasets.

the fastest calculation while giving a competitive accuracy
suggesting that this dataset has little time warping variance.
The poor accuracy of other compression based schemes,
Bitmap and NCD, for these datasets overshadow whatever
speed performance advantages they may have.

The Surveillance dataset results (Figure 13), show that
DCS is slower and less accurate than DTW-SC3-LB for this
dataset. However, we would like to note that the difference in
accuracies between DCS and DTW-SC3-LB is only two clas-
sifications(out of 80). Again, the heuristic band found provided
the same accuracy as the 3% band which is unsurprising given
the findings in [47]. Also, as shown in Figure 14, the graph-
ical representations of the time-series in these long datasets,
Surveillance is a repetitive time-series with 6 complete periods
while other datasets are non-repetitive. This may help explain
a number of interesting points about the results in Figure 13.
First, this is one reason why DCS is less accurate than DTW-
SC3-LB. Second, since the Bitmap method is discretizing,
this helps explain why it does much better on this dataset
than the others. Since its word blocks are constant length
and fixed alphabet, patterns in reoccuring periodicity is easier
to deal with than a non-repetitive dataset. With a variable
length dictionary word and no alphabet, DCS overcomes this
limitation. Third, when we compare the speed benefits of lower
bounding in F2, F6, F7, and RS to Surveillance, we see that a
repetitive dataset aids in much better pruning for DTW-SC3.

To summarize, Figures 9 to 13 show that DCS calculates a
fast and accurate similarity score that can be used to search
for similar time-series. DCS provides the same accuracy as the
next leading method DTW-SC3-LB. DCS also provides a faster
similarity score than DTW-SC3-LB for non-repetitive long
time-series. Different methods may be better suited for different
types of datasets; DCS performs well for non-repetitive time-
series while DTW-SC-LB gets the most pruning benefit when

the data is repetitive. While other compression-based schemes
do not compete well with DTW-SC3-LB, we show that a
compression-based scheme can be developed to produce high
accuracy while retaining its speed advantages.

4.2 Short Time-Series

As stated, DCS is designed with long time-series analysis in
mind. However, for completeness, we briefly look at DCS
performance when analyzing short time-series.

4.2.1 Datasets

Our short time-series data is from [1]. It consists of 20
time-series datasets of varying length and class cardinality.
Table 1 lists all the time-series in this collection along with
number of classes and length. The sources of the time-
series range from motion capture (GunPoint), to OCR word
recognition (50Words), to electrocardiogram measurements
(ECG200). Lightning 2 and 7 are down sampled by 5X and
10X respectively from the long F2 and F7 and the DCS results
in the next section illustrate how DCS is more suitable for long
time-series similarity.

For DCS, the scores calculated are one-sided (non-
symmetric) scores to simulate database queries as described
above. Parameter exploration was analyzed using the methods
described in Section 3.4. DTW warp restriction is limited to
the narrow median band of 3% and the classic 10% band
(optimal warp bands found at [1] show no statistical advantage
over the 3% band). Bitmap times included the discretization
time for the query TEST set only, this was done with the
MATLAB SAX code from the SAX authors. SAX parameters
used areN = 32 andn = 8. NCD time included discretization
and compression steps as these would be requiredper query.

12

TABLE 1
Characteristics of the short time-series datasets.

Dataset Classes/ |Train|: Dataset Classes/ |Train|:
Length |Test| Length |Test|

50Words 50/270 450:455 Adiac 37/176 390:391
Beef 5/470 30:30 CBF 3/128 30:900
Coffee 2/286 28:28 ECG200 2/96 100:100
FaceAll 14/131 560:1690 FaceFour 4/350 24:88
FISH 7/175 175:175 GunPoint 2/150 50:150
Lightning2 2/637 60:61 Lightning7 7/319 70:73
OliveOil 4/570 30:30 OSULeaf 6/427 200:242
SwedishLeaf 15/128 500:625 Synthetic 6/60 300:300
Trace 4/275 100:100 TwoPattern 4/128 1000:4000
Wafer 2/152 1000:6174 Yoga 2/426 300:3000

4.2.2 Results
Figure 15 and 16 show the classification accuracy and speed
(for all the time-series in the TEST sets) over the 20 short
time-series (these results are also available in tabular form
at [37]). In these figures, NCDGZ3 and NCDGZ10 are omitted
since most their accuracies are less than 0.5. For rigor, we
computed the statistical significance (see Section 4) and found
no statistically significant advantage in accuracy betweenDCS
and DTW-SC and LCSS-FTSE over all 20 datasets. DCS is
statistically more accurate than NCD, Bitmaps, and Euclidean
on these 20 datasets (DCS is always more accurate than NCD
and only less accurate than Bitmaps and Euclidean on 3
and 6 datasets respectively, see the appendix in [37]). With
the discretized constant length words, Bitmaps is unable to
consistently provide accurate scores for time-series of such
short length. Similarly, NCD’s reliance on a discretized time-
series also makes it inaccurate.

We notice that while DCS is more accurate than Euclidean
for the long versions of Lightning F2 and F7 time-series, when
the time-series’ are down sampled and shorter in Lightning2
and Lightning7, DCS’ accuracy advantage is not clear. This
is because DCS’ accuracy is dependent on the size of the
dictionary it builds and thus the length of the time-series.

DCS’ computational overhead made is slower than both
DTW-SC3 and DTW-SC3-LB as well as Euclidean. DCS was
faster than DTW-SC10-LB in 11 of the 20 datasets; there is
no statistical significant difference.

To summarize, while DCS is designed for long time-series
similarity scoring, we have shown that for short time-series,
it can still provide competitive accuracies. While compression
based NCD and Bitmaps schemes cannot handle such short
data, our method overcomes their limitations.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new compression-based sim-
ilarity scoring method called DCS. DCS uses a compression
technique called Continuous-Domain Dictionary Compression,
which permits the computation of a similarity score in the
native space of time-series. In this way, our method is different
from existing compression-based techniques that utilize off-
the-shelf compressors to calculate similarity. We have also
shown that while methods using off-the-shelf compressors
are shown to not fare well for short time-series similarity,
our compression method does well enough to make them
competitive with existing techniques. For short time-series, we
have shown that the DCS accuracy is competitive with those
of the other dynamic programming methods.

However, the true strength of our technique lies in the novel
nature of building a dictionary on a continuous time-seriesand
compressing another for a relative similarity measure, which
allows efficient and effective comparison of long time-series.
In the long time-series tests, we have shown that DCS provides
similarity scores just as accurate as that of DTW-SC3-LB.
Experimental results show DCS is faster than lower bounded
DTW (DTW-SC3-LB) on long time-series even though DCS
does not prune and scans the entire database. For certain
applications such as UPGMA clustering, the input quadratic
space dissimilarity matrix must be calculated in a timely
manner and the fastest accurate measure should be used. DCS
provides a more stable classification accuracy across different
types of data than compression-based Bitmaps and NCD.

As part of future work, we plan on exploring additional
methods to speed up the parameter selection (though this may
have a limited impact, given that it is a one time cost), and
developing pruning and indexing techniques for time-series
comparisons based on the DCS framework.

ACKNOWLEDGEMENTS
We would like to thank the reviewers of this paper for
their constructive comments on a previous version of this
manuscript. This research was funded in part by funding from
the National Science Foundation under grants IIS-0929988 and
DBI-0926269.

REFERENCES

[1] The UCR Time Series Classification/Clustering Homepage.
”www.cs.ucr.edu/∼eamonn/timeseriesdata/”.

[2] R. Agarwal, C. Faloutsos, and A. R. Swami. Efficient Similarity Search
in Sequence Databases. InFODO, pages 69–84, 1993.

[3] R. Agarwal, K. Gupta, S. Jain, and S. Amalapurapu. An Approximation
to the Greedy Algorithm for Differential Compression.IBM Journal of
Research and Development, 50(1), 2006.

[4] D. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns
in Time Series. InAAAI-94 Workshop on Knowledge Discovery in
Databases, pages 359–370, 1994.

[5] B. Boucheham. Matching of quasi-periodic time series patterns by
exchange of block-sorting signatures.Pattern Recognition Letters, 29,
2008.

[6] T. Bozkaya, N. Yazdani, and Z. Ozsoyoglu. Matching and Indexing
Sequences of Different Lengths. InCIKM, 1997.

[7] L. Breiman. Random forests.Machine Learning, 45:5–32, 2001.
[8] K. Chan and A.-C. Fu. Efficient Time Series Matching by Wavelets. In

ICDE, pages 126–133, 1999.
[9] C. Chang and C. Lin. LIBSVM: a library for support vector machines.

2001.
[10] L. Chen and R. Ng. On the Marriage of Lp-norms and Edit Distance.

In VLDB, pages 792–803, 2004.
[11] L. Chen, M. T.Özsu, and V. Oria. Robust and Fast Similarity Search

for Moving Object Trajectories. InSIGMOD, pages 491–502, 2005.
[12] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker. Shared

Information and Program Plagiarism Detection.IEEE Transaction on
Information Theory, 50(7), 2004.

[13] R. Cilibrasi and P. M. Vitanyi. Clustering by Compression. IEEE
Transactions on Information Theory, pages 1523–1545, 2005.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction
to Algorithms. The MIT Press, 2001.

[15] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh.
Querying and Mining of Time Series Data: Experimental Comparison
of Representations and Distance Measures.VLDB, 2008.

[16] D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler.
Genetic Algorithms and Support Vector Machines for Time Series
Classification, 2002.

[17] A. Elisseeff and M. Pontil. Leave-one-out Error and Stability of Learning
Algorithms with Applications.Advances in Learning Theory: Methods,
Models and Applications, Vol.190, 2003.

13

[18] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence
Matching in Time-Series Databases. InSIGMOD, pages 419–429, 1994.

[19] D. Goldin and P. Kanellakis. On Similarity Queries for Time-Series
Data: Constraint Specification and Implementation. InConstraint
Programming, pages 137–153, 1995.

[20] R. M. Gray. Vector Quantization.IEEE ASSP, 1984.
[21] I. Gronau and S. Moran. Optimal Implementations of UPGMA and

other Clustering Algorithms.Information Processing Letters, 2007.
[22] A. Hirsh and H. Fraser. Protein Dispensibility and Rateof Evolution.

Nature, 2001.
[23] C. Jeffery. Synthetic Lightning EMP Data, 2005.

http://public.lanl.gov/eads/datasets/.
[24] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley-Interscience, 1990.
[25] E. Keogh. Exact Indexing of Dynamic Time Warping. InVLDB, pages

406–417, 2002.
[26] E. Keogh. Tutorial: Mining Shape and Time Series Databases with

Symbolic Representations.SIGKDD, 2007.
[27] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality

Reduction for Fast Similarity Search in Large Time Series Databases.
KAIS, 3(3):263–286, 2000.

[28] E. Keogh and S. Kasetty. The Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. InSIGKDD,
pages 102–111, 2002.

[29] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. TowardsParameter-
Free Data Mining. InInternational Conference on Knowledge Discovery
and Data Mining, 2004.

[30] E. Keogh and M. Pazzani. Scaling Up Dynamic Time Warpingto
Massive Datasets. InPKDD, pages 1–11, 1999.

[31] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Locally
Adaptive Dimensionality Reduction for Indexing Large TimeSeries
Databases. InSIGMOD, pages 151–162, 2001.

[32] S.-W. Kim, S. Park, and W. W. Chu. An Index-Based Approach
for Similarity Search Supporting Time Warping in Large Sequence
Databases. InICDE, pages 607–614, 2001.

[33] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high
dimensions. pages 599–608, 1997.

[34] T. Kohonen. Improved versions of learning vector quantization. Proceed-
ings of the International Joint Conference on Neural Networks, 1990.

[35] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently Supporting Ad Hoc
Queries in Large Datasets of Time Sequences. InSIGMOD, pages 289–
300, 1997.

[36] N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana.
Time-series Bitmaps: A Practical Visualization Tool for working with
Large Time Series Databases.5th SIAM International Conference on
Data Mining, 2005.

[37] W. Lang, M. D. Morse, and J. M. Patel. Dictionary-
Based Compression for Long Time-Series Similarity. 2008.
http://cs.wisc.edu/∼wlang/compressextended.pdf.

[38] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi. The Similarity Metric.
In 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[39] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer, 1997.

[40] M. Li and Y. Zhu. Image Classification Via LZ78 Based String Kernel:
A Comparative Study. Springer Berlin, 2006.

[41] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A Symbolic Representation
of Time Series, with Implications for Streaming Algorithms. DMKD,
2003.

[42] A. B. Matos. Kolmogorov Complexity in Multiplicative Arithmetic.
DCC-FCUP Technical Report, 2005.

[43] M. Morse and J. M. Patel. An Efficient and Accurate Methodfor
Evaluating Time Series Similarity.SIGMOD, 2007.

[44] H. H. Otu and K. Sayood. A New Sequence Distance Measure for
Phylogenetic Tree Construction.Bioinformatics, 19(16):2122–2130,
2003.

[45] I. Popivanov and R. Miller. Similarity Search Over TimeSeries Data
Using Wavelets. InICDE, page 212, 2001.

[46] C. Ratanamahatana and E. Keogh. Making Time-series Classification
More Accurate Using Learned Constraints. InSIAM International
Conference on Data Mining, 2004.

[47] C. Ratanamahatana and E. Keogh. Three Myths about Dynamic Time
Warping. InSIAM International Conference on Data Mining, 2005.

[48] H. Sakoe and S. Chiba. Dynamic Programming Algorithm Optimization
for Spoken Word Recognition.IEEE Trans. Acoustics, Speech, and
Signal Proc., Vol. ASSP-26(1):43–49, 1978.

[49] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: Fast Similarity
Search under the Time Warping Distance. InPODS, pages 326–337,
2005.

[50] P. H. E. Sneath and R. R. Sokal. Numerical Taxonomy. 1973.
[51] T. Syeda-Mahmood, D. Beymer, and F. Wang. Shape-based Matching

of ECG Recordings.EMBS, 2007.
[52] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee. Anytime Classification Using

the Nearest Neighbor Algorithm with Applications to StreamMining.
pages 623–632, 2006.

[53] N. K. Vereshchagin and P. M. Vitanyi. Kolmogorov’s Structure Func-
tions and Model Selection.Transactions on Information Theory, 15(12),
2004.

[54] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing
Multi-Dimensional Time-Series with Support for Multiple Distance
Measures. InSIGKDD, pages 216–225, 2003.

[55] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering Similar
Multidimensional Trajectories. InICDE, pages 673–684, 2002.

[56] B.-K. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary
Lp Norms. InVLDB, pages 385–394, 2000.

[57] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar
Time Sequences Under Time Warping. InICDE, pages 201–208, 1998.

[58] Y. Zhu and D. Shasha. Warping Indexes with Envelope Transforms for
Query by Humming. InSIGMOD, pages 181–192, 2003.

[59] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, 23(3):337–
343, 1977.

Willis Lang is currently a PhD graduate student
at the University of Wisconsin-Madison. He has
research interests in database energy manage-
ment, spatial data management, and bioinfor-
matics. He has an MSc’08 from the University
of Michigan and a BMath’06 from the University
of Waterloo.

Michael Morse is currently a database scientist
with the MITRE Corp. He has research interests
in time series similarity, spatial and temporal
data management, and schema integration. He
completed his PhD in 2007 at the University of
Michigan.

Jignesh M. Patel is an Associate Professor
at the University of Wisconsin-Madison. He re-
ceived his PhD from the University of Wisconsin-
Madison in 1998. He is the recipient of an NSF
Career Award and multiple IBM Faculty Awards.
He has served on a number of Program Com-
mittees including SIGMOD, VLDB and ICDE.
He has also served as the VLDB 2009 Core
Database Technology PC Chair, as Vice-Chair
for IEEE ICDE 2005, as an Associate Editor for
the Systems and Prototype section of ACM SIG-

MOD Record, and as an Associate Editor for the IEEE Data Engineering
Bulletin. He is a member of the ACM and the IEEE.

14

