
Partial Results in Database Systems

Willis Lang, Rimma V. Nehme, Eric Robinson, Jeffrey F. Naughton*
Microsoft Gray Systems Lab, *University of Wisconsin

{wilang,rimman,errobins}@microsoft.com, *naughton@cs.wisc.edu

ABSTRACT
As the size and complexity of analytic data processing systems
continue to grow, the effort required to mitigate faults and perfor-
mance skew has also risen. However, in some environments we
have encountered, users prefer to continue query execution even
in the presence of failures (e.g., the unavailability of certain data
sources), and receive a “partial” answer to their query. We explore
ways to characterize and classify these partial results, and describe
an analytical framework that allows the system to perform coarse to
fine-grained analysis to determine the semantics of a partial result.
We propose that if the system is equipped with such a framework,
in some cases it is better to return and explain partial results than to
attempt to avoid them.

1. INTRODUCTION
In this paper we consider evaluating relational queries over multi-

ple information sources, some of which might return incomplete tu-
ple sets. This situation could arise in a wide variety of scenarios. For
example, it could arise with queries spanning a collection of loosely
coupled cloud databases, if one or more of them is temporarily down
or unusable (say due to network congestion or misconfigurations);
we may also see it with queries in a traditional parallel RDBMS, if a
node fails during query evaluation and its data becomes unavailable;
or it could even appear with queries in a single node system, if some
base tables or views are known to be incomplete.

Consider a specific example the authors have encountered: today,
with public clouds (e.g., AzureDB), users can sign up for multiple
independent instances of relational databases. A significant num-
ber of these users choose to “self-shard” (or horizontally partition)
their tables across hundreds to thousands of these databases. A
critical point is that in such a scenario, each of the sharded rela-
tional database systems is an independent entity, and there is no
unifying system collectively managing the collection of relational
systems. These customers often wish to query over the totality of
these systems, but unfortunately, poor latency, connection failures,
misconfigurations, or system crashes are all quite possible in any
of the loosely coupled databases. At this point the law of large
numbers becomes fatal — even with 99.9% uptime, a query over a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2612176 .

1000-shard table will likely have at least one inaccessible shard, and
if executing the distributed query requires all of the 1000 systems
to be accessible during execution, the query may literally never
complete.

In every instance of an incomplete input, our traditional database
instincts tell us that the solution is to fix the problem: we should
either replicate the data sources comprising the distributed system or
make them more reliable; we should add replication and failover to
the nodes of our parallel DBMS; or we should embark on data clean-
ing and repairing efforts to fix the incomplete tables and views in the
single node system [4,5,7,10,14,16,20,30,33–36]. However, these
solutions can be either financially costly, performance hindering, or
both. Furthermore, in certain cases, such as querying over loosely
coupled cloud sources, an error external to the database or miscon-
figurations may be impossible to fix. Finally, consistent querying
techniques that rely on functional dependencies and integrity con-
straints currently become inapplicable in this environment. That
is why, in this paper we consider a different approach: letting the
query run to “completion” despite the incomplete input(s).

In some cases, of course, this is a very bad idea. When reporting
numbers to the SEC, or billing a customer, or the like, incomplete
answers are not acceptable. However, there are use cases in which
the user may be willing to accept an answer computed with incom-
plete inputs. For example, the user may be doing exploratory work
to gain some insight, or may be interested in answering a query like
“find me 1000 customers satisfying the following condition...” In
such cases, it may be preferable to return imperfect answers rather
than to have the query fail, or to incur a delay, or incur the cost and
effort of ensuring that such failures happen very rarely.

The astute reader may be wondering “haven’t I seen something
like this approximate result stuff before?” Undoubtedly the answer is
“yes,” but here we are working in a very different setting. Rather than
viewing query processing as an incremental process in which the
query processor systematically explores more and more of the input
to yield successively closer approximations to the true result [23,28,
31], we are interested in query processing in which, due to forces out
of the control of the query processor, part of the input is simply not
available and will not become available during the query’s lifetime.

Of course, merely returning such an answer to an unsuspecting
user would be very poor form; the system needs to tell the user that
this result is computed based upon incomplete data. Furthermore,
the more the system can guarantee about the partial result, or explain
to the user about the result, the better. This raises the following
intriguing question: is there anything we can say about a computed
answer based upon incomplete data other than “be careful, this
is based on incomplete data?” For example, can we make any
guarantees (about what the user may or may not receive)? Can we
classify the types of anomalies that might result and develop sound
mechanisms for determining when they can and cannot occur?

SELECT R.X, AVG(R.Y) FROM R WHERE R.Y > 0
GROUP BY R.X HAVING AVG(R.Y) > 100

A
B
C

145
624
224

R.X AVG(R.Y)
A
C

177
224

R.X AVG(R.Y)

D 104

Partial Result

E 192

?(2)

True Result

?(3)

?(1)

Figure 1: Example: a True result versus a Partial result.

This brings us to the heart of this work: we present a broad clas-
sification of what can “go wrong” when evaluating queries over
incomplete data, and show how to detect the various anomalies that
arise by analyzing how they are created and propagated through
the operators in a query plan. This classification can be used ei-
ther proactively, where the user specifies “I will only tolerate the
following kind of anomalies;” or after the fact, where the system
returns “here is what I can tell you about the anomalies that might
exist in this result.” We present our initial approach to interactively
displaying such information to the user in Section 6.

Note that although the root cause of incomplete information may
be straightforward, its impact on a query plan is less obvious. The
nature of a query result over incomplete inputs is not simply that we
receive fewer tuples. Figure 1 shows a simple query that concisely
illustrates “all that can go wrong” when a system produces a partial
result. In the figure, we consider the result of a simple aggregation
query over table R. Suppose that the scan of R is incomplete
(perhaps R itself is incomplete, or perhaps R is partitioned and
some partition of R resides on a currently inaccessible node.)

In our example, the result for group ‘C’ is correct, but every other
row is problematic. The three main differences between the true
result and the result over incomplete data are: (1) the average value
calculated for group ‘A’ is incorrect; (2) a tuple for group ‘D’ is
produced even though it is not found in the true result; and (3) the
partial result does not have a tuple for either group ‘B’ or group
‘E’. Each of these anomalies occurred because the scan of table R
was not complete, but these anomalies surface at different times
and for different reasons during query execution. For anomaly (1),
if we are missing any tuples from R that contribute to the group
for ‘A’, it is not hard to see that the average calculation may be
wrong. For anomaly (3), the result tuple for group ‘B’ is perhaps
missing, because all of the tuples in R that contribute to group
‘B’ are missing, while the result tuple for group ‘E’ may be absent
because tuples missing from the scan ofR caused the computation of
an incorrect average for group ‘E’, which in turn failed the HAVING
clause. Finally, anomaly (2) arose because an incorrect value for the
aggregate for group ‘D’ caused the group to mistakenly satisfy the
HAVING clause. Anomaly (2) is unique because it demonstrates
that results over incorrect inputs may have “extra” tuples in their
output (not in the True result); we call such tuples “phantom” tuples.

This example provides the intuition behind our classification of
the errors that can arise when evaluating relational queries over
incomplete inputs. Our classification can be viewed as expanding
the space of answers produced by database systems as shown in
Figure 2. The status quo, of course, is to return only complete and
correct tuple sets. But in addition to these complete and correct
results, Figure 2 characterizes additional kinds of results with two
orthogonal axes: cardinality and correctness. For cardinality we
consider four possible categories: complete, missing tuples but no
phantom tuples, phantom tuples but no missing tuples, or indetermi-
nate (both missing tuples and phantom tuples). Correctness refers to
the values in the tuples that are returned, and is simpler: either the

Status Quo

Indeterminate Complete
Incomplete/

Phantom

Credible
(Correct)

Non-credible
(Perhaps Incorrect)

Cardinality Properties

D
a

ta
 C

o
rr

e
ct

n
e

ss
 P

ro
p

e
rt

ie
s

Figure 2: Characterizing partial results.

values are credible (correct) or not credible (possibly incorrect). Fig-
ure 3 displays this same taxonomy in a different format, representing
the options in the cardinality dimension as a partial order.

The challenge, of course, is to determine, for a particular query
with a given incomplete input, where in this classification the result
set lies. This is the key to returning only the result sets that satisfy
user requirements if they impose them. For example, if the user
specifies that she wants no phantom tuples, we should analyze the
query execution and only return result tuples if we can guarantee
phantom tuples are not present, or refuse to return any answer at
all if we cannot. It is also the key to providing a user with after the
fact information about the result if that is their desire. For example,
telling the user that both phantoms and missing tuples could have
occurred and letting them decide whether to accept the answer or not.
Due to the dynamic nature of failure detection, the classification of
a partial result is plan dependent. The precision of our classification
depends on the depth to which we are willing to analyze all the
information about the missing data and the query. Finally, the last
challenge is to communicate our partial result semantics back to the
user in a meaningful yet intuitive way.

In this work, we present partial result production as a first-class ap-
proach to deal with data access failures in database systems. Existing
work that is similar to ours focuses on the basic tenet of producing
the true result, albeit through the analysis of iterations of partial an-
swers and through certain operating assumptions [9, 37]. Our work
is complementary to existing research in the areas such as online ag-
gregation [23,28,31], data provenance and lineage [8,13,19,26,39],
and approximate query processing [2, 11, 15, 18, 32] in that we are
providing certainties for an uncertain result produced due to failures.

The contributions of this paper are as follows:

• We identify the tuple set properties that can be used to classify
partial results. (Section 2)

• We present a partial result analysis framework with four mod-
els that determine the degree of our partial result classification
precision. (Section 3)

• We describe how relational operators propagate partial result
semantics in our framework. (Section 4)

• We describe the relationship between query optimization,
failure models, and our partial result classification. (Section 5)

• We implemented a prototype system and discuss how a user
may use and tune a partial result-aware system. (Section 6)

Related work follows in Section 7 along with our conclusions and
future work in Section 8.

2. PARTIAL RESULTS TAXONOMY
We provide a way to classify results by the guarantees that can

be made on different partial result properties. We define a “partial
result” as a tuple set that is produced from some query execution
where some data needed by the query is unavailable. The system

Credible

Non-credible

Cardinality properties Data correctness property

c1 c2 c3

c1 c2 c3 c1 c2 c3

c1 c2 c3
c1 c2 c3

COMPLETE

INCOMPLETE PHANTOM

INDETERMINATE

Non-credible

Credible

Figure 3: Cardinality and correctness partial results.

has registered the failure and continues query execution using only
the available data. Thus, a partial result may not be the same as the
result that would have been produced had the query read the base
tables completely (the True result).

Our partial result semantics are based on a combination of two
basic properties of a tuple set. As we show in Figure 3, these
two properties are used to describe how a particular partial result
tuple set differs from the True result. These two properties are the
cardinality and the correctness of a partial result.

2.1 Cardinality of Partial Results
There are two basic aspects that characterize the cardinality of a

result set relative to the corresponding True result. The partial result
may be missing some tuples, which we call the Incomplete aspect;
Or, the partial result may have some extra tuples, which we call the
Phantom aspect.

While it may be obvious how we may classify a result as Incom-
plete, the Phantom aspect may not be as straightforward. We have
already seen one way that we may encounter the Phantom aspect:
they can be generated by a predicate over values that are incorrect.
This was the case in the “HAVING” clause in Figure 1. Another way
Phantom tuples can be produced is by non-monotone relational
operations such as SET DIFFERENCE. To see this, note that for the
SET DIFFERENCE A − B, if B is Incomplete, then the result of
A−B may have more tuples than if B were complete.

If we cannot rule out the Incomplete aspect of the cardinality of
a result, and simultaneously cannot rule out the Phantom aspect,
then we call partial result Indeterminate. Conversely, if we can
simultaneously rule out both the Incomplete and Phantom aspects,
then we say that the cardinality of the result is Complete.

Therefore, given the presence or absence of these two cardinality
aspects, a result set’s cardinality can be labeled as either Complete,
Incomplete, Phantom, or Indeterminate. These four labels are placed
in a partial order lattice in Figure 3. At the bottom of the lattice,
a partial result is Complete if we are able to guarantee that each
of the tuples that are returned correspond to a tuple of the True
result. When we lose cardinality guarantees, we may “escalate”
the state of the tuple set to another state. Escalation of a partial
result (and its properties) means that we have lost the ability to make
guarantees that we could make lower in the lattice. As we will see
in Section 4, many operators exhibit this escalation behavior under
different circumstances.

2.2 Correctness of Partial Results
The other partial result property we consider is the correctness

of the data values in the result. The cardinality property is separate
from the correctness property because Completeness does not imply
data correctness and vice versa. For example, we can have a partial
result tuple set that is guaranteed to be Complete even though none

of the data values can be guaranteed to be correct. (As a simple ex-
ample, consider a COUNT aggregation without a GROUP BY clause:
we will always get the correct cardinality of exactly one tuple.)

We classify data that cannot be guaranteed to be correct as Non-
credible, while correct data is classified as Credible. For simplicity,
in this paper, we assume that the input data read off of persistent
(potentially remote) data storage is Credible (although this need
not be the case in general). This means that data can only lose the
Credible guarantee when it is calculated (produced by an expression)
during query processing. For example, calculating a COUNT over a
partial result that is Indeterminate means that the result value may
be wrong, so we have to classify it as Non-credible. We can describe
a data set with respect to credibility at different granularities. At the
coarsest granularity, we can say the entire result set is Non-credible,
but sometimes we can do better. For instance, if we know which
column was created by an expression evaluation, then we may be
able to distinguish some parts of the partial result as Credible and
other parts as Non-credible.

The correctness property of a result is not the only property
where we can classify a tuple set at different granularities. The
cardinality property can be further refined for horizontal partitions
of the data. Next, we will discuss different analysis levels and data
granularities at which we can classify partial results.

3. PARTIAL RESULT ANALYSIS MODELS
We will start by providing an overview of how we can analyze

queries to provide partial result semantics. Consider the distributed
querying example from Section 1, where we have a “table” defined
over a set of remote databases. Suppose a data access failure occurs
while querying these databases and the user has elected to accept
partial results. Our goal is to provide information to help the user
understand the quality of this partial result. Depending on how
much we know about what has failed, and how deep we are willing
to drill into the semantics of the query, we can provide the user with
different partial result guarantees.

Initially, suppose that we know nothing about how the tables are
partitioned or the query being executed, and only know that some
node that the system tried to access for data was unavailable. In this
situation we cannot guarantee any nontrivial partial result properties
on the output. This translates to Indeterminate and Non-credible
semantics. However, if we know which query was executed, and
which tables were Incomplete due to failures, we can make more
meaningful guarantees.

Furthermore, if we look into the detailed semantics of the oper-
ators applied in the query (e.g., which columns a PROJECT elimi-
nates), we can be even more precise and provide semantics on the
vertical partitions of the tuple set. Finally, if we can identify which
specific data nodes were unavailable, and we know the horizontal
partitioning strategy of the tables, we can classify subsets of tuples
(horizontal partitions of the result).

In this section, we will discuss these four models with different
analysis “granularities” (see Figure 4). A finer granularity model
requires an increased understanding of the data failure that occurred
and the operator tree executed. We present four models because this
emphasizes that many levels of result quality guarantees are possible.
The four models we discuss in this section are representative of a
reasonable spectrum of models, and illustrate that there is a tradeoff
between the precision and implementation effort required and the
guarantees that are possible.

3.1 From Query to Partition Level Analysis
For concreteness, we will use an example based on a TPC-H

benchmark Query 15. The view creation query is over a single

Table

Complete Incomplete Phantoms Indeterminate

Credible data (values are correct) Non-credible data (values may be wrong)

INPUT INPUT
Table

INPUT
Partition 0

Partition 1

Partition 0

Partition 1

?

Cardinality guarantees

Data correctness guarantees

(a) Query model (b) Operator model (c) Column model (d) Partition model

Figure 4: Partial result analysis models.
column name data type column name data type
L_ORDERKEY identifier L_RETURNFLAG fixed text, size 1
L_PARTKEY identifier L_LINESTATUS fixed text, size 1
L_SUPPKEY identifier L_SHIPDATE date
L_LINENUMBER integer L_COMMITDATE date
L_QUANTITY decimal L_RECEIPTDATE date
L_EXTENDEDPRICE decimal L_SHIPINSTRUCT fixed text, size 25
L_DISCOUNT decimal L_SHIPMODE fixed text, size 10
L_TAX decimal L_COMMENT var text, size 44

Table 1: TPC-H LINEITEM table

LINEITEM table (whose schema is shown in Table 1) and the view
definition is as follows:

View Definition For TPC-H Q15
CREATE VIEW REVENUE (SUPPLIER_NO, TOTAL_REVENUE) AS

SELECT L_SUPPKEY, SUM(L_EXTENDEDPRICE x (1-L_DISCOUNT))

FROM LINEITEM

WHERE L_SHIPDATE >= DATE ’[DATE]’ AND

L_SHIPDATE < DATE ’[DATE]’ + INTERVAL ’3’ MONTH

GROUP BY L_SUPPKEY

Consider a few queries over this view. In addition to simply scan-
ning the view, we will consider a query variant that essentially adds
a HAVING clause to the SUM AGGREGATE:

Q1 – SELECT * FROM REVENUE

Q2 – SELECT * FROM REVENUE WHERE TOTAL_REVENUE > 100000

Figure 4 describes the four different models of analysis that one
can do to determine the partial result semantics when we have a
table access failure. We will discuss each of the four models next,
starting with the coarsest analysis.

3.1.1 Query Model
At the Query Model granularity, we treat a query as a black box

that has produced a partial result (Figure 4(a)) given that the input
data to it is Incomplete. We do not know what is “wrong” with
the partial result (i.e., how it deviates from the True result), so we
cannot provide any guarantees about it. Therefore, for both queries
Q1 and Q2, the partial results that are produced are classified as

Indeterminate and Non-credible:

Query Model:
Q1 – Indeterminate, Non-credible; Q2 – Indeterminate, Non-credible

3.1.2 Operator Model
Now suppose we are willing to look into a query and analyze

its logical operator tree. Furthermore, suppose that for multi-table
queries, we can distinguish between Incomplete and Complete ta-
bles based on the failures (as we show in Figure 4(b)). With this
information, we can now provide stronger guarantees. At this gran-
ularity, for each operator in the tree, we need to know the input’s
partial result semantics (i.e., whether it is Incomplete; Phantom;
or Credible). Then, for each operator, we need to determine the
semantics of the output tuple set that it returns.

For query Q1, we may have the following query plan:

PROJECT -> SELECT -> SUM

The input to the PROJECT operator is Incomplete (but fully
Credible) because we were unable to read the LINEITEM table in
its entirety.1 We need to figure out if and how it will change the
partial result guarantees of the query’s output. Given a tuple set
that may be Incomplete, but is Credible, a PROJECT operator does
not change the partial result semantics of the tuple set and simply
produces a result labeled with the same semantics as its input.

Moving up the operator tree, the input to the SELECT is still
Incomplete but Credible. Here, the SELECT doesn’t change the
partial result semantics since all the data is Credible, so the output
from the SELECT is still Incomplete and Credible.

Finally, the SUM aggregate takes as input Incomplete and Cred-
ible results and computes a SUM using a single column for the
GROUP BY. Given that the input tuple set may be missing some
tuples, we cannot guarantee that the SUM produces the correct
value. Furthermore, we don’t know if we captured all the groups of
1In our paper, we consider the SQL version of PROJECT instead of the duplicate-
eliminating relational PROJECT operator. Duplicate eliminating PROJECT can be
thought of as a composition of PROJECT – AGGREGATE – PROJECT where the
AGGREGATE is a simple COUNT with a GROUP BY over all the columns.

Partial Result Credibility Semantics
→ Query plan operator order →

Q1 query plan scan π σ sum
Q3 query plan scan π σ sum σ

L_ORDERKEY T
L_PARTKEY T
L_SUPPKEY T T T T T

L_LINENUMBER T
L_QUANTITY T

L_EXTENDEDPRICE T T T
L_DISCOUNT T T T

L_TAX T
L_RETURNFLAG T

L_LINESTATUS T
L_SHIPDATE T T T

L_COMMITDATE T
L_RECEIPTDATE T

L_SHIPINSTRUCT T
L_SHIPMODE T
L_COMMENT T

Σ –TOTAL_REVENUE F F

Partial Result Cardinality Semantics
Incomplete T T T T T

Phantom F F F F T

Table 2: Column-model semantics for Q1 and Q2.

the GROUP BY. Thus the output of the SUM will be labeled with
Incomplete and Non-credible partial result semantics.

Query Q2 performs a SELECT filter on the aggregated column
of the (unmaterialized) view, which essentially can be treated as a
GROUP BY ... HAVING. Given Incomplete and Non-credible
input, the SELECT “escalates” the partial result semantics to Inde-
terminate. This is because the input values are Non-credible, and
we don’t know if we are correctly allowing tuples to pass the filter
or not.

Therefore, the output of these two queries will have the following
partial result semantics:

Operator Model:
Q1 – Incomplete, Non-credible; Q2 – Indeterminate, Non-credible

While the operator tree analysis model allows us to distinguish
different partial result semantics, it still produces overly conservative
guarantees. This is because, while it no longer treats the entire query
as a black box, the Operator model still treats the inputs and outputs
as black boxes. If we tease apart the columns of a tuple set, it will
allow us to be more precise about the partial result semantics, which
leads us to the Column model of analysis.

3.1.3 Column Model
At the operator level of analysis, we treat the input and output data

as a homogeneous group of data and set the partial result semantics
for all of the tuples and columns without distinction. If we study
partial result semantics at the column-level, then we are able to
discern and track the credibility of different parts of a tuple. To do
this, we must identify the parameters of the operators to know which
columns of the tuple they are processing. We now revisit the view
definition query from TPC-H Query 15 and show the differences
between the Column model of analysis and the prior Operator model
analysis.

The operators in the query plan for the view are of course the
same PROJECT, SELECT, and AGGREGATE operators considered
in the Operator-model analysis. However, each operator is now
aware of the credibility of individual columns. In Table 2, we
show the column credibility semantics produced by each operator.
We can see in Table 2 that for query Q1, the columns read off of
storage, through the PROJECT, and the SELECT are all Credible.
The tuple set is also Incomplete. However, when we calculate

LINEITEM partitioning
Node 1 Node 2

Column-level 1 <L_SUPPKEY< 10000
LO: HI:

Partition-level 1 <L_SUPPKEY< 5000 5001 <L_SUPPKEY< 10000

Table 3: Partition model analysis exploits the systems knowl-
edge of how the table data is partitioned across the data nodes.

the SUM aggregate over the Incomplete tuple set, the resulting
TOTAL_REVENUE column is determined to beNon-credible. For
query Q2, the SELECT predicate evaluating a Non-credible column
(TOTAL_REVENUE) results in an escalation to Indeterminate (both
Incomplete and Phantom aspects cannot be ruled out).

The Column model of analyzing partial result semantics provides
finer granularity precision for making partial result guarantees:

Column Model:
Q1 – Incomplete, Credible(L_SUPPKEY) Non-credible(TOTAL_REVENUE)
Q2 – Indeterminate, Credible(L_SUPPKEY) Non-credible(TOTAL_REVENUE)

Compared to the partial result semantics produced when using the
Operator model, we now know that certain columns of the output
have correct values. For the two queries, we now have a mix of
Credible and Non-credible columns, which can be considered the
hallmark of the Column model of analysis (as shown in Figure 4(c)).

3.1.4 Partition Model
So far we have only considered what happens when the entire

input data is classified as Incomplete or Complete. In the Partition
model, by contrast, we consider the input table to be a collection of
partitions, and use properties of partitions in our analysis. In large-
scale parallel data processing systems typically data is partitioned
according to appropriate partitioning schemes [40].

Recall our example working environment of querying over loosely
coupled remote databases, where a table is “sharded” across the
individual shards. If we know which nodes were unavailable or
returned incomplete data, then we can classify the other partitions
of the table as Complete and Credible. This means that, if the
partition properties can be propagated through the analysis of the
query, we can determine that certain partitions of the result match
the corresponding partitions in the True result. This is depicted in
Figure 4(d), where Partition-level analysis breaks all of the tuple
sets (input, intermediate, and final) horizontally into partitions. If
we revisit our running example of querying over TPC-H Q15’s view,
then we will find that the partition-model analysis gives us an even
more precise classification than column-model analysis.

Assume that the LINEITEM table was partitioned across two
nodes using the L_SUPPKEY column. Call one partition ‘HI’ and
the other ‘LO’, where the HI partition has the half of the tuples
with the larger L_SUPPKEY values (see Table 3). The input to our
queries Q1 and Q2 are now the two partitions of LINEITEM where
one is Complete (e.g., HI) and the other is Incomplete (LO).

When the initial PROJECT operator takes the tuples from the
Complete partition (HI) as input, it produces a Complete (and still
fully Credible) output. On the other hand, when it processes the
Incomplete partition, the output analysis is the same as the Column-
level analysis: Incomplete and all columns are Credible. Here,
the PROJECT processes these two partitions and the output can
be divided into two partitions because the partitioning column,
L_SUPPKEY, was retained. Next, the SELECT operator processes
the two partitions in the same manner as the PROJECT. Its output
can also be thought of as two separate partitions: the HI tuples and
the LO tuples. Again, it is key that the SELECT operator does
not remove columns, so we retain the partitioning knowledge in
L_SUPPKEY. Finally, since the SUM operator performs a GROUP

Query model Operator model Column model Partition model
Partial result semantics card. cred. card. cred. card. cred. part card. cred.

L_SUPPKEY TOTAL_REVENUE L_SUPPKEY TOTAL_REVENUE

Q1: SELECT L_SUPPKEY, Indet. F Incomp. F Incomp. T F HI Complete T T
TOTAL_REVENUE FROM REVENUE LO Incomp. T F
Q2: SELECT L_SUPPKEY, TOTAL_REVENUE

FROM REVENUE Indet. F Indet. F Indet. T F HI Complete T T
WHERE TOTAL_REVENUE > 100000 LO Indet. T F

Table 4: Side-by-side comparison of partial result semantics determined using four different analysis models for Q1 and Q2.

BY on L_SUPPKEY, its output tuples are also partitioned into the
HI and LO partitions. Here we see the advantages of Partition-level
analysis. Since the HI partition was Complete and all the columns
were Credible, the SUM on any of the HI groups is correct and can
be classified Credible. This means the partial results of query Q1
will have semantics as follows:

Partition Model:
Q1:
HI – {Complete, Credible (L_SUPPKEY, TOTAL_REVENUE)}
LO – {Incomplete, Credible (L_SUPPKEY) Non-credible (TOTAL_REVENUE)}

Since query Q2 essentially adds a SELECT operator to process
the results of the AGGREGATE, it will also take the HI and LO
partitions as input. The partial result semantics of Q2 is:

Q2:
HI – {Complete, Credible (L_SUPPKEY, TOTAL_REVENUE)}
LO – {Indeterminate, Credible(L_SUPPKEY) Non-credible(TOTAL_REVENUE)}

We can see that with partition-level analysis, for all partial results,
we are able to identify and return some tuples that are exactly the
same as in the True result. The partition model for analysis provides
the most precise guarantees in its partial result semantics by pro-
viding the finest granularity in its data classification. However, it is
also the most complex.

Summary: In Table 4, we summarize our analysis for two queries
based on the TPC-H Q15 view as we draw tighter boxes around the
data. The partial result semantics for each query using the four levels
of analysis are shown with the coarsest Query-level granularity on
the left and the finest-granularity Partition-level analysis on the right.
As we move from left to right, we see that we are able to classify
more and more of the result set as Complete and Credible which
provides better value for the user.

4. PROPAGATION OF PARTIAL RESULT
SEMANTICS

In the previous section we illustrated by examples how the rela-
tional operators of a query may change the partial result semantics
of a tuple set as it processes the data. In this section, we will select
a few common relational operators (four unary operators and three
binary operators), and describe in detail their behavior with respect
to partial result semantics.

Here we discuss the way operators propagate partial result se-
mantics using the Partition model of analysis. Since the other three
models are essentially “roll-ups” of the Partition model in terms of
precision, the operators’ behavior in those models can all be derived
from our description of the Partition model.

4.1 Unary Operators
The four unary operators we study are SELECT, PROJECT, EX-

TENDED PROJECT, and AGGREGATION. For the SELECT op-
erator, we will limit our scope to “simple” predicate types that
involve expressions (using <,≤,=,≥, >,<>) on the columns of
the tuples being processed. We differentiate projection into two cat-
egories: those that simply remove columns (PROJECT), and those

Complete

Complete

Complete

Complete

Phantom

Phantom

Phantom

Phantom

A
 -

 In
co

m
pl

et
e

B
 -

 P
h

an
to

m

PR
O

JE
CT

In
de

te
rm

in
at

e

A
 -

 C
om

p
le

te

1

B
 -

 In
co

m
pl

et
e

P
R

O
JE

C
T

P
h

an
to

m

2

3

4

1

2

3

4

A
 -

 P
h

an
to

m
B

 –
 In

de
t.

(a) Affect of PROJECT – Single Partitioning Column

(b) Affect of PROJECT – Multiple Partitioning Columns

Product of a JOIN

C1 C2 C3 C4 C3 C4C1

C1 C2 C3 C4 C2 C3 C4

Figure 5: (a) Removing the sole partitioning column. (b) Re-
moving a partitioning column from a tuple set that has multiple
partitioning columns.

that can define a new column through an expression (EXTENDED
PROJECT). For the AGGREGATE operators, we only consider the
basic types: COUNT, SUM, AVG, MIN, and MAX.

For each operator we will describe how it is affected by the input
with certain partial result semantics and how it defines the partial
result semantics of the result set.

4.1.1 SELECT
As we discussed in Section 3, the SELECT operator affects partial

result semantics if it has a predicate expression that operates over
columns that are Non-credible. In that case, since we don’t trust
the data values that we are evaluating expressions over, then we
can’t be confident of the elimination of tuples and the retention of
tuples. In this case we must set the cardinality property of the result
to Indeterminate. If the predicate is defined over all-Credible data, it
simply propagates the partial result semantics from input to output.

4.1.2 PROJECT
The PROJECT operator only affects the partial result cardinality

property of a tuple set. The only way it can do this is when the
tuple set is partitioned. Figure 5 illustrates how the PROJECT
operator can “taint” the semantics of a tuple set if it eliminates the
partitioning column. Figure 5(a) shows a simple partitioned tuple
set where partition ‘A’ is Incomplete and partition ‘B’ is Phantom.
If the PROJECT operator eliminates the partitioning column C2,
then the tuple set becomes a single “partition” and we can no longer
know if tuples are missing or if Phantom tuples exist (thus making

p1
Complete

p2
Phantom

Complete

SELECT SUM (c1), SUM(c2) FROM TABLE

c1 c2

NC NC

p3
Incomplete

p1
Complete

p2
Phantom

c1 c2

C

C

NC

C

SELECT c1, SUM(c2) FROM TABLE
GROUP BY c1

c1 SUM(c2)

C

C

NC

NC

p1
Complete

p2
Phantom

C C
p3

Complete

p3
Complete

C C

p 2
Indeterminate

p1
Indeterminate

SELECT SUM(c1), SUM(c2), c3
FROM TABLE GROUP BY c3

c1 c2

C

C

NC

C

NC NC

NC NC

c3

C

C

p1
Complete

p2
Phantom

C C C
p3

Incomplete

C

C

SUM(c2)SUM(c1) c3

p2
Indeterminate

p1
Indeterminate

SELECT SUM(c1), c2, SUM(c3)
FROM TABLE GROUP BY c2

c1 c2

C

C

NC

C

NC NC

NC NC

c3

C

C

p1
Complete

p2
Phantom

C C C
p3

Incomplete

NC

NC

c2SUM(c1) SUM(c3)

p3
Indeterminate

NC NC NC

p4
Indeterminate

NC NC NC

SUM(c2)SUM(c1)

Query 1 Query 2 Query 3 Query 4

(a) No GROUP BY (b) GROUP BY partitioning column (c) GROUP BY non-partitioning column (d) GROUP BY Non-credible data

Figure 6: Aggregation operators behave very differently depending on which columns are used in the GROUP BY clause. C –
Credible, NC – Non-credible, the partitioning column is shaded lighter.

it Indeterminate). Hence the resulting “merge” of the two partitions
taints the result set.

In Figure 5(b) we look at a more complicated example, where the
input to the PROJECT operator is the product of a CARTESIAN
PRODUCT/JOIN (see Section 4.2.2). Column C1 is 4-way parti-
tioned while column C3 is 2-way partitioned. Column C1 has two
partitions (partitions 1 and 3) that have Phantom semantics while
the other two are Complete. Column C3’s partitions are Complete
and Incomplete. If we remove C1 through PROJECT, we can no
longer identify sets of tuples that may harbor Phantoms. Therefore,
both partitions defined by C3 are now tainted by the partitions of C1
and thus are escalated to Phantom and Indeterminate.

On the other hand, if the PROJECT operator removes a non-
partitioning column, then PROJECT simply propagates the remain-
ing rows’ partial result semantics. Intuitively, in this case the
PROJECT operator is not affected by, nor does it affect, the credibil-
ity of columns.

4.1.3 EXTENDED PROJECT
The EXTENDED PROJECT operator can create a new column

using an expression that may rely on the other columns of the
tuple set, and so it is affected by input data with Non-credible
columns. Intuitively, if an expression computes a value using Non-
credible values as input, then the output is also Non-credible. If the
expression parameters are all Credible, then this operator produces
a column that we can guarantee as Credible. The EXTENDED
PROJECT operator does not affect the cardinality semantics (i.e.,
Incomplete and Phantom) of a partial result.

4.1.4 AGGREGATE
We consider five types of AGGREGATE functions in this op-

erator: COUNT, SUM, AVG, MIN and MAX. To simplify our
discussion, we only consider instances where we apply the func-
tions over one column of the input tuple set.2 We also assume that
there is no implicit PROJECT operation happening over the input
that is eliminating columns (i.e., if five columns are provided as
input, the output will also have five columns).

The four queries we use to describe AGGREGATE behavior are
shown in Figure 6. In the figure, C means the data is Credible, NC
means the data is Non-credible, and the partitioning column is lightly
shaded. First, Figure 6(a) (Query 1) shows that an AGGREGATE
without any GROUP BY clause always creates a single tuple, so

2Any scenario where we want to compute an aggregate over an expression can be
broken down into an EXTENDED PROJECT followed by an AGGREGATE.

it will always be Complete. AGGREGATE is the only operator
with this ability to take a non-Complete (Phantom, Incomplete, or
Indeterminate) input and produce a Complete output. However, we
show that if any of the input partitions are not Complete, the results
will always be Non-credible.

In Figure 6(b) (Query 2), if the GROUP BY clause is over par-
tition columns, then the output rows will take the partial result
semantics of the source partitions. For example, if a partition has
Phantom semantics, then the resulting tuple is also classified as
Phantom. Furthermore, similar to Query 1, computing over Non-
complete data results in Non-credible results. (Query 4 shows what
happens if we GROUP BY a column that is Non-credible.)

Figure 6(c) (Query 3) shows a GROUP BY over a non-partitioning
column that is Credible. In this case, since the input had Phantom
and Incomplete partitions, the output tuples are tainted by these
partitions and are escalated to Indeterminate (see Figure 3).

Finally, in Figure 6(d) (Query 4), we show that if the GROUP BY
clause includes any columns that have Non-credible values, then
all the output is escalated to Indeterminate and all data is deemed
Non-credible. This is the only way a partitioning column becomes
Non-credible, since by our assumption, partitioning columns read
from the base tables are deemed Credible.

4.2 Binary Operators
The binary operators we consider are UNION ALL, CARTE-

SIAN PRODUCT, and SET DIFFERENCE. Using Figure 7, we will
describe examples that illustrate the key partial result behavior of
these three operators.

4.2.1 UNION ALL
The UNION ALL operator takes two tuple sets and creates a new

one by combining all of the tuples. UNION ALL’s partial result
behavior is to escalate the cardinality property of the output based
on the combination of the two input’s cardinality properties. For
data correctness, an output column is escalated to Non-credible if
either of the corresponding input columns are Non-credible.

In Figure 7, we show two examples that illustrate this behavior. In
Figure 7(a), two tuple sets with identical partitioning strategies are
given as input. The output will maintain this partitioning strategy,
and thus the semantics of partition 1 becomes Indeterminate because
the two inputs were Phantom and Incomplete. Furthermore, the
credibility of column 2 is lost because one of the inputs for column
2 was Non-credible. Similarly, for partition 2, the escalation (based
on the lattice “join” in Figure 3) of Incomplete and Complete results
in an Incomplete result.

In
co

m
p

.
C

om
p

le
te

Indet.

Indet.

Incomplete

Complete

Phantom

p
A

C
o

m
p

le
tep1

p2

C1 C2 D1 D2

Complete

Phantom p1

p2

pA
p

B

C1 C2

D1 D2

Complete

Phantom
p1
C

p2
C

C

C

C1 C2

Incomplete

Incomplete
p1
C

p2
C

NC

C

C1 C2
U p1

C

p2
C

NC

C

C1 C2

Complete

Phantom
p1
C

p2
C

C

C

C1 C3

Incomplete

Incomplete
pX
C

pY
C

C

C

U C C

C

C

C

NC

C2

C1 C3C2

NC

C1 C3C2

Complete

Incomplete
p1
C

p2
C

C

C

C1 C2

IncompleteC C

C1 C2

Phantom

Indet.
p1
C

p2
C

C

C

C1 C2

Complete

Incomplete
p1
C

p2
C

C

C

C1 C2

Phantom

Incomplete
p1
C

p2
C

C

C

C1 C2

Incomplete

Indet.
p1
C

p2
C

C

C

C1 C2

Complete

Incomplete
p1
C

p2
C

C

C

C1 C2

CompleteC NC

C1 C2

Indet.

Indet.
p1
C

p2
C

C

C

C1 C2

UNION ALL CARTESIAN PRODUCT SET DIFFERENCE

(b)

(c)

(g)

(a)

(f)

(e)

Complete

Phantom

pB
In

co
m

p
.p1

p2

In
co

m
p

.
C

o
m

p
le

te

Phantom

Phantom

pA
P

h
an

to
mp1

p2

C1 C2 D1 D2

Phantom

Phantom p1

p2

pA
pB

C1 C2

D1 D2

(d)

Phantom

Phantom

p
B

In
de

t.p1

p2

Figure 7: Examples of how UNION ALL, CARTESIAN PRODUCT, and SET DIFFERENCE behave when given partial result input.
C – Credible, NC – Non-credible, the partitioning column is shaded lighter and partitions are identified by “p<ID>”.

In the second example in Figure 7(b), we show that if we don’t
have partition alignment for the two inputs to UNION ALL, we lose
all the partitions. The result is then considered a single “partition,”
where all of the cardinality semantics of the input partitions escalate
the output. In this case, the result is Indeterminate. The column
credibility is also escalated to Indeterminate for column C2.

4.2.2 CARTESIAN PRODUCT
The CARTESIAN PRODUCT is relatively straightforward in its

behavior. It performs a cross of the two sets of partitions to create the
output. It is not affected by, nor does it change the credibility of the
data values. However, the CARTESIAN PRODUCT may or may not
simply propagate the input semantics to the output. In Figure 7(c),
we show a case where the semantics of the input partitions are all
retained.

In contrast, in Figure 7(d), we show how the CARTESIAN PROD-
UCT operator can cause partial result semantic tainting. In Fig-
ure 7(d), all of the partitions of C1 were (homogeneously) Phantom,
the CARTESIAN PRODUCT taints the cardinality semantics of par-
tition A (column D1) to Phantom and partition B to Indeterminate.

4.2.3 SET DIFFERENCE
In Figure 7(e)-(g), we depict three scenarios for the SET DIFFER-

ENCE operator. As we have mentioned, SET DIFFERENCE is a
non-monotone operator so it can create Phantom results. In the first
example in Figure 7(e), we see that Phantom semantics are set if the
second input is Incomplete. Here, the second input is not partitioned,
thus both input partitions get tainted by the Phantom aspect.

The second example (Figure 7(f)) shows what happens if the
second input is partitioned. In this case, the corresponding partitions
are processed together: p1 with p1 and p2 with p2. We also show
that if the second input has Phantom semantics, the output is tainted

by the Incomplete aspect since we may have removed tuples we
shouldn’t have.

Finally, in Figure 7(g), we show that if the second input has
Non-credible data, all partitions of the result are escalated to Inde-
terminate since we cannot trust the presence (or the absence) of any
tuples in the output. If the first input has any Non-credible data, then
we would also escalate the partial result to Indeterminate.

5. DEPENDENCE ON QUERY PLAN
At an abstract level, we envision our classification system being

applied as follows. The optimizer chooses a plan to be run; the
system then begins running the plan, which consists of a tree of
operators. The data accessed by these operators is stored in multiple
shards. If at any point during execution an input to an operator
“fails” (perhaps the site is or becomes unavailable), then we use the
techniques from Section 4 to determine and propagate the effect
of these errors up the query plan. Each operator in turn passes the
result of this analysis to operators further up in the tree, until at the
root, the answer set is classified.

5.1 Dynamically Detecting Failures
Since errors are determined dynamically and by the specific plan

executed, it is reasonable to ask how the result classification depends
upon the plan chosen. After all, a foundational principle of query
evaluation in traditional settings is that the same result is computed
independent of the plan; it would be nice if this carried over to
partial results analysis so that here, the result classification was
independent of the plan. Unfortunately, this is not the case when
we consider failures during execution, for at least two main reasons,
neither of which are due to our analysis or propagation models.

First, consider two plans (L1) R ./ S and (L2) S ./ R where
the join is computed by a hash-join operator. Here L1 and L2 differ

in that they reverse the build and probe relations of the hashjoin.
Now suppose that it turns out that some shard storing a partition of
R fails during the execution. The question is when. If the shard
fails during the later part of the execution, it is possible that plan
L1 may not even “see” this, since it may have completed its read
of R before the failure, whereas plan L2 might see the failure, if it
occurred during the scan of R at the end of the query plan.

Here we have a remarkable result that the query result itself differs
depending upon which plan is chosen. We emphasize that this is not
the “fault” of any design decision; we think it is actually reasonable
in the world of unplanned failures in large distributed computations.
However, it definitely means that our result classification is not
independent of the plan chosen; it would seem unreasonable to
expect it to be.

This does raise another question: what about scenarios where the
failures do not impact the final result? Is it possible that, whenever
two plans give the same result in an execution possibly containing
failures, our classification scheme always yields the same classi-
fication? Unfortunately, the answer is again “no.” Consider two
physical plans P1 and P2 for a simple selection query on a relation
sharded across multiple loosely coupled data sources. Plan P1 scans
all of the data sources in parallel applying the selection. Plan P2 is
more clever, using a global index that matches the selection predi-
cate, and thus it is able to execute the query by only consulting the
subset of shards that actually contain results to the query. The alert
reader will likely see what is coming: suppose that some node(s)
that contains no results has failed. Plan P1 will see the failure, but
Plan P2 will not, because it does not even access the failed node(s).

Of course, this dependency on plan choice occurs even in tra-
ditional centralized systems — as a contrived example, one can
imagine a situation where a table has a corrupted index, so the plans
that use the index will fail while the plans that don’t will succeed.
What is new here is that we are now accepting partial query results
and trying to classify their properties — this exposes the interaction
between plans and failures.

At this point the reader might wonder if there are any guaran-
tees we can make whatsoever. It turns out that this is tied to the
class of plans and failures considered. To illustrate this, the rest
of this section will focus on the following: first, we consider the
case where all failures occur before the query begins executing and
persist throughout the entire execution (we call this the “persistent
failure model”); second, we consider plans that are equivalent mod-
ulo transformations enabled by exploiting the relational algebraic
property commutativity. As the following section shows, under
these assumptions, we can say that equivalent plans yield identical
partial results classification.

5.2 Partial Results Consistency
with Operator Re-orderings

In this section we will show the following: under the persistent
failure model, for different orderings (plans) of commutative op-
erators, we will have identical classifications of the partial result
outputs.

Problem Statement: For two commutative operators α and β,
we wish to show that for the sequences (α –> β) and (β –> α), under
the persistent failure model, the partial result guarantees produced
by our analysis are identical for any (partial) inputs.

The persistent failure assumption means that for any set of re-
orderings, the (partial result) input to the operator plans will be the
same, and also, no failures occur in the middle of the plans. Due
to space limitations, we do not provide a formal proof. However,
we will thoroughly illustrate how all pairs of commutative operators

σ NC C C

c1 c2 c3 c1 > 3

Incomplete

NC C C

c1 c2 c3

Indeterminate

U NC NC C

c1 c2 c3

Indeterminate

NC C C

c1 c2 c3

Incomplete

U

C NC C

c1 c2 c3

Complete

NC NC C

c1 c2 c3

Incomplete

σ

c1 > 3

NC NC C

c1 c2 c3

Indeterminate

σ C NC C

c1 c2 c3 c1 > 3

Complete

C NC C

c1 c2 c3

Complete

(a) SELECT before UNION ALL

(b) SELECT after UNION ALL

Figure 8: Commutative pairs of SELECT and UNION ALL.

from our operator set maintain partial result consistency when re-
ordered.

5.2.1 Commutative Pairs of Unary Operators
Commutative pairs of unary operators are two operators α and

β, such that given an input tuple set R, if we execute either α–>
β or β–>α, then the output will always be S . This restricts the
pairs we need to examine because of the conditions under which
two operators are commutative. For example, a PROJECT cannot
eliminate the column that a SELECT requires for its predicate.

Below we will discuss commutative pairs where one of the op-
erators is a SELECT; and a commutative pair of PROJECT and
EXTENDED PROJECT. AGGREGATE is not commutative with
PROJECT or EXTENDED PROJECT (recall we define AGGRE-
GATE to use all of the tuple’s columns for either GROUP BY or the
aggregate function.)
Pairs involving SELECT: We want to show that for any pair involv-
ing a SELECT, given any ordering, the classification of the output
will be the same. The key behavior of SELECT is that it only affects
partial result properties if the predicate is on a Non-credible column.
The propagation behavior of SELECT (when the predicate is defined
on all-Credible columns) means: if the SELECT predicate is defined
over solely Credible columns, then any commutative pairing with
any operator will have consistent partial result semantics.

Now we only need to discuss when the SELECT predicate is de-
fined over Non-credible columns. In this case, the SELECT operator
doesn’t change any of the credibility properties, but escalates the out-
put cardinality to Indeterminate. Therefore, it suffices to show that if
we pair the SELECT (with a Non-credible predicate) with any of the
other three unary operators, the output will always be Indeterminate
and the credibility of the partial result will be consistent. We can
reason about this by “proof by contradiction” reasoning. Suppose
we paired a SELECT (with a Non-credible predicate) with either
PROJECT, EXTENDED PROJECT, or AGGREGATE whereby (a)
the result was not classified as Indeterminate in the ordering where
the SELECT operator is first, and/or (b) different operator order-
ings result in data being classified as Credible and Non-credible.
Then case (a) is not possible because the only operator that can
“de-escalate” the cardinality property is AGGREGATE (when there
is no GROUP BY) and here, GROUP BY columns must exist for
SELECT to be commutative with AGGREGATE. Case (b) is not
possible because under the commutative conditions and the Non-
credible SELECT predicate, the AGGREGATE will only produce
Non-credible data, and EXTENDED PROJECT is unaffected by the
cardinality property.

Incomp.

Incomp.

Incomp.

CompletepA

pB

C1 C2 D1 D2
2 partition table 2 partition table

Complete

Complete p1

p2

π

p2

C1 D2
p1

π

Incomp.

C1 D2

Complete

Complete p1

p2

Incomp.

Incomp.

Complete

Complete

Incomp.

Complete

Complete

p
A

p2

C1 C2 D1 D2

pA

pB

C1 C2 D1 D2
2 partition table 2 partition table

Complete

Complete p1

p2

p1

Complete

p
B

p2

p1

π

p2

C1 D2
p1

C
o

m
p

le
te

In
co

m
p

.

(a) CARTESIAN PRODUCT before PROJECT (b) CARTESIAN PRODUCT after PROJECT

Figure 9: Commutative pairs of PROJECT and CARTESIAN
PRODUCT (light shade – partitioning columns).

Commutative PROJECT and EXTENDED PROJECT: Since
the PROJECT operator’s behavior is only concerned with the par-
tial result cardinality property while the EXTENDED PROJECT
operator’s behavior is only concerned with the partial result data
correctness property, we will always classify the result the same
way regardless of the ordering of this pair.

5.2.2 Commutative Unary/Binary Pairs
We will break up this discussion into three parts for three differ-

ent unary operators. The AGGREGATE operator is not generally
commutative with our binary operators so we omit it.
Pairs involving SELECT: If the SELECT predicate is defined over
all-Credible data, the operator simply propagates the partial result
semantics of its input to its output. Therefore, similar to the argu-
ment for unary operator pairs with SELECT, for any unary/binary
pair where the SELECT predicate is defined over all-Credible data,
partial result semantics are consistent in the presence of re-ordering.

If the SELECT predicate is defined over a column that is Non-
credible, the SELECT always escalates the result’s cardinality prop-
erty to Indeterminate. Furthermore, we know that the SELECT
operator does not affect the column’s credibility. The UNION ALL
operator is commutative with the SELECT operator. UNION ALL
“taints” (see Section 4.1.2) its output’s partial result semantics with
the semantics of its inputs. As we show in Figure 8, the SELECT,
UNION ALL commutative pair maintains partial result consistency
because the SELECT will always receive the Non-credible column
for its predicate.

Pairing SELECT with either the CARTESIAN PRODUCT or
the SET DIFFERENCE operator does not result in an inconsistent
partial result classification. Using the similar reasoning by counter
example that we used above, there is no condition under which an
operator re-ordering leads to different partial result semantics.
PROJECT: The PROJECT operator is only commutative with
the UNION ALL and CARTESIAN PRODUCT operators. For
PROJECT and CARTESIAN PRODUCT, we show in Figure 9 that
regardless of how we order the two operators, the PROJECT oper-
ator will always taint the output of the pair in the same way. This
is because the CARTESIAN PRODUCT “crosses” all of the parti-
tions from each input and combines the inputs’ columns together.
In Figure 9(a), the CARTESIAN PRODUCT operator propagates
the input partitions’ semantics to its output and then the PROJECT
operator “taints” its output when it removes the partitioning column
D1. In Figure 9(b), the PROJECT removes the partitioning column
D1, creating a single Incomplete partition. Then, the CARTESIAN

Indet.

Incomplete

Phantom

Indet.

Indet.

Incomplete

Complete

Phantom
p1
C

p2
C

C

C

C1 C2

Incomplete

Incomplete
p1
C

p2
C

NC

C

C1 C2
U

p1
C

p2
C

NC

C

C1 C2

Complete

Phantom
p1
C

p2
C

C

C

C1 C3

Incomplete

Incomplete
pX
C

pY
C

C

C

U C C

C

C

C

NC

C2

C1 C3C2
NC

C1 C3C2

(a) PROJECT after UNION ALL

Indet. NC

C2

πC2

Incomplete

Complete

Phantom
p1
C

p2
C

C

C

C1 C2

Incomplete

Incomplete
p1
C

p2
C

NC

C

C1 C2 U Indet. NC

C2
πC2

πC2

NC

C2

C

C2

πC1,C2

C NC

C1 C2

Complete

Phantom
p1
C

p2
C

C

C

C1 C3

Incomplete

Incomplete
pX
C

pY
C

C

C

C

C

C

NC

C2

C1 C3C2

πC1,C2

πC1,C2

Complete

Phantom
p1
C

p2
C

C1

C

C

C2

C NC

C1 C2

U
Indet.

C NC

C1 C2

(b) PROJECT before UNION ALL

(c) PROJECT after UNION ALL

(d) PROJECT before UNION ALL

Figure 10: Commutative pairs of PROJECT and UNION ALL
(light shade – partitioning columns).
PRODUCT operator taints its output partitions’ semantics, since
one of its inputs is homogeneously Incomplete. As a result, both
orderings result in two partitions classified as Incomplete. Neither of
these operators are affected by or can affect the data credibility prop-
erty. Thus, PROJECT and CARTESIAN PRODUCT commutative
pair have consistent partial result semantics.

For the PROJECT and UNION ALL pair, we only need to con-
sider the case where PROJECT removes a partitioning column (since
removal of a non-partitioning column is straightforward). Further-
more, we only need to consider the partial result cardinality clas-
sification since the PROJECT operator’s behavior does not affect
credibility. In Figure 10, two examples illustrate that this pair of
operators will be classified consistently regardless of the order. In
Figures 10(a) and (b) we show the case when the two inputs have
partition alignment (C1), while Figures 10(c) and (d) show the case
where the two inputs don’t have partition alignment (C1 and C3).
EXTENDED PROJECT: Commutative pairs of EXTENDED PRO-
JECT – UNION ALL operators or EXTENDED PROJECT – CARTE-
SIAN PRODUCT operators have consistent partial result semantics.
Since EXTENDED PROJECT’s (XPROJ) behavior only involves
data credibility and CARTESIAN PRODUCT is concerned with
partial result cardinality, it is straightforward to see that we will
always classify the result consistently.

Similarly, since XPROJ does not affect the cardinality semantics
of a result, for pairs with the UNION ALL operator, we only need
to show that a new column produced by the XPROJ operator that
is Credible in one ordering cannot be Non-credible in the opposite
operator ordering. The reason this is true is straightforward to un-

derstand: if the new column were ever Non-credible in one ordering,
then this would mean that one of the inputs to the pair of operators
had a Non-credible column necessary for the XPROJ expression.
Therefore, since the UNION ALL operator taints the output’s credi-
bility with both of its input’s credibility, we will always classify the
result consistently.

5.2.3 Pairs of Binary Operators
Binary operators are only commutative (and associative) with

themselves (i.e., we cannot have a heterogeneous set of binary oper-
ators that is commutative.) Thus, we only need to show that pairs of
homogeneous binary operators will be consistently classified. Due
to space limitations we will omit this discussion in this paper.

6. EXPERIENCE & IMPLEMENTATION
So far, we have discussed the way a database system can analyze

queries to produce partial result guarantees in the presence of input
failures. Of course, another important aspect of partial results is
how users can control and use a partial result-aware system along
with the impact of implementing such a framework into a system.

First, we will discuss how users may interact with partial result-
aware database systems. We consider two aspects of user interaction:
user input to the system, and presentation of the partial result output
to users. Both aspects are key to increasing the value of partial
results to a user. We will briefly describe our initial approach to how
users may interact with a partial result-aware system. Clearly other
approaches could be considered as well, and we present the ideas in
this section as a high-level example of what could be done, rather
than as a definitive proposal for the best way to interact with partial
result-aware systems.

A user that elects to receive partial results from a database can
control how the database behaves to ultimately increase the value of
a potential partial result output. For example, depending on whether
or not the consumer of the result is a human or an application, the
user may wish to receive any partial result or may chose to set
constraints that limit the types of anomalies that are acceptable.
In the former case, perhaps a human is doing exploratory, ad-hoc
data analysis and is willing to accept any result anomaly. In the
latter case, an application may accept only certain partial result
classifications such as Incomplete and Credible results, otherwise
return an error. In all of these cases, we may wish to provide the
user with a way to signal her intentions to the system; perhaps in
the form of session controls, DDLs, or query (or table) hints.

On the output side of the problem, there may be many different
ways that a partial result can be presented to the user. If we consider
the ad-hoc, exploratory user who accepts all partial results, perhaps
an operator-by-operator style presentation of how the partial result
guarantees are made would be useful. In Figure 11, we show a
prototype interface that we have built and connected to our real,
partial result-aware database system. Here a user can zoom in on any
operator of a query plan and examine the partial result guarantees
made about the data at that point. In the figure, the focus is on the
PROJECT operator before a CARTESIAN PRODUCT. With this
style of interface, the user may wish to receive the partial result
output from any operator in the plan to maximize the value of the
query’s execution. Alternatively, one can imagine an interface that
presents the actual raw data output to the user with appropriate
meta-data tags. Perhaps with these interfaces, a user may even wish
to “bless” the result at a given point in the plan to manipulate the
meta-data tags directly and gauge the effects. While our paper has
focused on how a database system can internalize the notion of
partial results, ultimately, the way users can interact with the system
is key to providing value through partial results.

None of the
partitions have

phantoms

All data is credible
Partitions 1, 3 may
have missing tuples

Query:
SELECT c.c_custkey, c.c_name
FROM customer AS c, orders AS o
WHERE c.c_custkey = o.o_custkey
OPTION (PARTIAL RESULTS)

π

σ

π π

c o

Figure 11: An interface example for partial results exploration.
Incorporating partial results analysis into an existing DBMS re-

quires minimal changes to the codebase, and has almost no impact
on the performance of the system. When failures occur, they must be
detected, which most systems already do today. Instead of returning
an error message when some base data is unavailable, the engine
continues the query execution (as if it had 100% of the data), and
just before the final answers are returned back to the user, the partial
results analyzer (a stand-alone component) would take the detected
runtime failures and the query plan used as its inputs and produce
the partial results guarantees. This implementation whereby failures
are simply passed to the stand-alone analyzer at the end also allow us
to manage intermediate data access errors. We would simply retag
the inputs or outputs of certain operators if some failure happened
between any two operators. Our framework does not impose any-
thing that precludes intermediate failures from being detected and
applied. These guarantees along with the result tuples are returned
back to the user as the final answer.

7. RELATED WORK
Our paper is related to many research areas, including fault tol-

erance in big-data systems, data provenance and lineage, online
aggregation, approximate query processing, and data quality. Per-
haps the most closely related works to ours include the “partial
answers” work by Bonnet et al. [9], the view lineage paper by Cui
et al., the Trio project [17, 39], and the semantic analysis of ap-
proximate answers by Vrbsky et. al., with their APPROXIMATE
system [37]. While Bonnet et al. focused on combining partial
answers into a complete answer (using “parachute” queries), their
work does not focus on classifying and analyzing partial answers
and how the operators in the query pipelines may propagate the
partial results semantics [9].

The Trio project focuses on a data model, query language, and
execution strategies for a system that allows the querying of either
inexact data or lineage data [3,17,39]. Our work here is different be-
cause we are describing how to identify and derive characterizations
for partial results when failures occur while querying traditional
relational data. The semantic tags produced by our framework along
with the partial results could be stored within the Trio system.

The APPROXIMATE system focused on monotone query process-
ing and did not study aggregations or data credibility (correctness of
values) issues [37]. Other related works includes characterizing er-
rors in cardinality estimates [25, 27] and identification of phantoms
through non-monotone operators [38], which cover only certain
aspects of the entire “partial result” space that we study here.

In the theoretical database research community, “naïve querying”
over incomplete databases discussed query evaluation and “certain
answers” over relations that have null values due to causes such as
incomplete data integrations [21]. Other theoretical work includes

the seminal work that characterizes consistent data in an inconsistent
database for the purposes of database repair [5]. Such work relies
on the knowledge provided by the semantics of integrity constraints
and functional dependencies whereas in our target environment of
loosely coupled, independent cloud databases, these logical seman-
tics are generally not available. If future cloud services are able
to capture user-provided (or even machine-learned) constraints and
dependencies (and monitor and enforce them) across 100s to 1000s
of cloud databases, then we may be able to leverage the complex
reasoning techniques of these prior works to identify tuples that we
may have lost or tuples that could never have been present. This is
the focus of our future work.

Computing partial results in the absence of complete table data is
also similar in spirit to producing results via online aggregation [23,
28, 31], continuous querying of data streams [6, 12], and querying
over sampled data [2,22,24]. These systems heavily rely on random
sampling to provide an “early returns” approximation of a correct
answer that may otherwise take much longer to compute. We, on
the other hand, attempt to provide guarantees with respect to which
parts of the returned results are identical to those in the true result,
and which ones are not, and how they may differ if they do indeed
differ. Ultimately, our approach provides a taxonomy of partial
results that could be utilized by all of these other systems to further
subdivide results produced based on their types and provide even
tighter guarantees.

The research problem of data lineage and data provenance that
provide the capability to see and track back where the data came
from has been well studied in many contexts including data explo-
ration, privacy and security, and uncertain database systems [1, 8,
11, 13, 15, 18, 19, 26, 29, 32, 39, 41]. While those approaches focused
on developing logical data models, query languages, and physical
execution methods for querying uncertain data, our work focuses on
the process in which relational queries can produce partial results
when failures occur during query processing. In other words, one
can see a partial result-aware system that we have described here
as populating the kinds of databases that these prior state-of-the-art
works have described.

8. CONCLUSIONS AND FUTURE WORK
In this paper we deal with the problem of partial results, whereby

query execution continues and results are produced even when some
data may be unavailable. We identify partial result classes and
present a classification framework equipped with four different
models for analyzing partial results semantics at various granular-
ities. The contributions of this paper can be utilized in large scale
systems as either a mitigation mechanism for frequent failures or
unexpected unavailability of data sources, as well as for exploratory,
time-constrained query processing.

Substantial room for future work exists. For example, it would
be interesting to explore partial results-aware query optimization,
including the development of cost functions and plan selection al-
gorithms that take into account user preferences regarding partial
results semantics and the likelihood/impact of particular data access
failures. Another direction to explore is a deeper investigation of the
interaction between the schema, partitioning functions (including
columnar storage and vectorized execution), queries, and specifics
of incomplete inputs that may yield finer granularity reports on the
quality of results. As discussed in the related work section, if our
knowledge of the loosely coupled cloud databases is enhanced with
constraints and dependencies, then we can provide even more pre-
cise guarantees. Finally, exploring alternatives for presenting partial
result information to users is fertile ground for further research.

9. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join

Synopses for Approximate Query Answering. In SIGMOD, 1999.
[2] S. Agarwal, B. Mozafari, A. Panda, et al. BlinkDB: Queries with

Bounded Errors and Bounded Response Times on Very Large Data. In
EuroSys, 2013.

[3] P. Agrawal, O. Benjelloun, A. D. Sarma, et al. Trio: A system for data,
uncertainty, and lineage. In PVLDB, 2006.

[4] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, et al.
MillWheel: Fault-tolerant Stream Processing at Internet Scale. In
VLDB, 2013.

[5] M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in
Inconsistent Databases. In PODS, 1999.

[6] S. Babu and J. Widom. Continuous Queries over Data Streams.
SIGMOD Record, 2001.

[7] J. Barr, A. Narin, and J. Varia. Building Fault-Tolerant Applications on
AWS. 2011. http://bit.ly/1cD6k4w.

[8] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and J. Widom.
Databases with Uncertainty and Lineage. VLDB Journal, 2008.

[9] P. Bonnet and A. Tomasic. Partial Answers for Unavailable Data
Sources. INRIA Technical Report, 1997.

[10] Y. Cao, W. Fan, and W. Yu. Determining the Relative Accuracy of
Attributes. In SIGMOD, 2013.

[11] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
Approximate Query Processing Using Wavelets. VLDB Journal, 2001.

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, et al. TelegraphCQ: Continuous Dataflow Processing. In
SIGMOD, 2003.

[13] A. Chapman and H. V. Jagadish. Why Not? In SIGMOD, 2009.
[14] R. Cheng, J. Chen, and X. Xie. Cleaning Uncertain Data with Quality

Guarantees. In VLDB, 2008.
[15] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating

Probabilistic Queries over Imprecise Data. In SIGMOD, 2003.
[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, et al. Spanner:

Google’s Globally-distributed Database. In OSDI, 2012.
[17] Y. Cui, J. Widom, and J. L. Wiener. Tracing the Lineage of View Data

in a Warehousing Environment. TODS, 2000.
[18] N. Dalvi and D. Suciu. Management of Probabilistic Data:

Foundations and Challenges. In PODS, 2007.
[19] D. Fabbri and K. LeFevre. Explanation-based Auditing. In VLDB,

2011.
[20] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC

Data-Cleaning Framework. In PVLDB, 2013.
[21] A. Gheerbrant, L. Libkin, and C. Sirangelo. When is Naive Evaluation

Possible? In PODS, 2013.
[22] P. B. Gibbons and Y. Matias. New Sampling-Based Summary Statistics

for Improving Approximate Query Answers. In SIGMOD, 1998.
[23] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. In

SIGMOD, 1997.
[24] Y. Hu, S. Sundara, and J. Srinivasan. Supporting Time-constrained

SQL Queries in Oracle. In VLDB, 2007.
[25] Y. E. Ioannidis and S. Christodoulakis. On the Propagation of Errors in

the Size of Join Results. In SIGMOD, 1991.
[26] A. Meliou, W. Gatterbauer, et al. The Complexity of Causality and

Responsibility for Query Answers and non-Answers. In PVLDB, 2010.
[27] S. Nirkhiwale, A. Dobra, and C. M. Jermaine. A Sampling Algebra for

Aggregate Estimation. In PVLDB, 2013.
[28] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online

Aggregation for Large MapReduce Jobs. In PVLDB, 2011.
[29] H. Park, R. Ikeda, and J. Widom. RAMP: A System for Capturing and

Tracing Provenance in MapReduce Workflows. In PVLDB, 2011.
[30] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive Data

Cleaning System. In VLDB, 2001.
[31] V. Raman and J. M. Hellerstein. Partial Results for Online Query

Processing. In SIGMOD, 2002.
[32] C. Ré and D. Suciu. Approximate Lineage for Probabilistic Databases.

In VLDB, 2008.
[33] J. Shanmugasundaram, K. Tufte, et al. Architecting a Network Query

Engine for Producing Partial Results. In WebDB, 2000.
[34] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, et al. F1: A

Distributed SQL Database That Scales. In VLDB, 2013.
[35] H. Singh. Fault-tolerance in Windows Azure SQL Database. 2012.

http://bit.ly/1bUS3V5.
[36] M. A. Soliman, I. F. Ilyas, and S. Ben-David. Supporting Ranking

Queries on Uncertain and Incomplete Data. VLDB Journal, 2010.
[37] S. V. Vrbsky and J. W. S. Liu. APPROXIMATE – A Query Processor

That Produces Monotonically Improving Approximate Answers.
TKDE, 1993.

[38] T.-Y. Wang, C. Ré, and D. Suciu. Implementing NOT EXISTS
Predicates over a Probabilstic Database. In MUD, 2008.

[39] J. Widom. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. Technical report, Stanford InfoLab, 2004.

[40] J. Zhou, P. A. Larson, and R. Chaiken. Incorporating Partitioning and
Parallel Plans into the SCOPE Optimizer. In ICDE, 2010.

[41] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo,
and M. Sherr. Distributed time-aware provenance. In PVLDB, 2013.

