
Supplementary material: Latent Variable Graphical Model Selection using
Harmonic Analysis: Applications to the Human Connectome Project (HCP)

1. Summary
We provide proofs of lemmas and technical details for implementation. Also, additional experimental results are provided

which were not included in the main paper due to limited space.

2. Proofs of Lemmas
Lemma 1 If Θ � 0,Θ = ΘT and kernel g satisfies the admissibility condition∫ ∞
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Using the definition of ψ`,s and WΘ,s(`) for the reconstruction of Θ,
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�
Now, we introduce a result for our inverse covariance estimation with a two parameter kernel function g(s, σ). Analo-

gously, we can define a basis function ψ`,s and wavelet-like coefficients WΘ,s as (9) and (10) in the main paper, namely,

ψ`,s = g(s, σ`)V
∗
` (i)V`(j) and WΘ,s(`) = σ`g(s, σ`),∀` ∈ {1, . . . , n}. (3)

Then, we can show the admissibility condition for two parameter kernels for the reconstructing the graph structure (a function
on edges) represented by the precision matrix as in Lemma 2
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Lemma 2 If Θ � 0,Θ = ΘT and kernel g satisfies the admissibility condition∫ ∞
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This corollary can be proved in the same way as Lemma 1. This result shows that two parameter kernels can be used for the
reconstruction of both the graph structure (functions on edges) as well as in the classical setting (functions on the nodes) with
a well-defined admissibility condition. This gives the ability to define more flexible kernels if needed.

Similar to Lemma 2, we provide the admissibility condition for two parameter kernels for for the classical SGWT. We
follow the notations of [1].

Lemma 3 If the kernel g satisfies the admissibility condition∫ ∞
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where f# = f − 〈χ0, f〉χ0
if there exists a zero eigenvalue. When all eigenvalues are strictly positive, f# = f .

Proof: By the definition of ψs,n and Wf (s, n) with graph Fourier bases, the left hand side of (7) is given as
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Equality (a) holds since
∑
n χ
∗
l′(n)χl(n) = δl,l′ (Kronecker’s delta) with orthonormal basis χl. �

3. Choice of the Kernel Function
For the choice of kernel function g(), we used the popular Gaussian function exp(− 1

2sx). This kernel function models
diffusion or a random walk process, and is used to define diffusion type of wavelets. The kernel function itself may not
satisfy the admissibility condition, which is not an issue because we work with a single scale. However, to work with all
scales concurrently, we will be limited to only that class of kernels which directly satisfies the admissibility condition.



K(s, σ) = σg2(sσ) = σe−sσ (8)

is able to perfectly reconstruct the original sample precision matrix Θ. Intuitively, in our optimization problem, we should
be able to reconstruct the exact Θ in the non-regularized setting. This is because of σ in front of g() in (8). That is, our
estimation Θ̃
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4. Details of Our Experiments
4.1. Experimental Setup and Additional Analysis of Synthetic Pathways

To provide more details for the experiments with synthetic brain pathways, we first demonstrate how the data were gen-
erated as in Fig. 1. First, arbitrary relations between the 50 connectivity pathways were randomly generated assuming and
their relation with the 10 covariates were defined as shown in Fig. 1 a). Then, 10 latent variables were added with random
associations with the observed variables (i.e., pathways and covariates) as in Fig. 1 b), which is a precision matrix with all
variables and demonstrates the effects from the latent variables to our observation. Finally, a covariance matrix was derived
from the precision matrix as in Fig. 1 c). The covariance matrix was used to generate 2000 multi-variate Gaussian samples.
For our algorithm, we chose the kernel function g(·) as in section 3, and γ = 2 for the sparsity parameter which yields a good
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Figure 1: a) Precision with 50 observed variables only (Ground truth), b) Precision matrix with both 50 observed and 10
latent variables, c) Covariance matrix derived from b).

result as shown in the main paper.
In the following, we demonstate additional analysis of precision matrix estimation. In Fig. 2, results from experiments

with different number of latent variables (i.e., 0, 5, 10, 20) are displayed. The top row in Fig. 2 shows the inverse covariance
matrix and the bottom row shows our result. At a glance, we can easily see that the increase in the number of latent variables
makes the inverse covariance matrix denser, on the other hand, our estimation results yield correct sparse graphical models
despite the increase. In Fig. 3, we show the precision matrix estimation in different scales with 5 latent variables. Fig. 3 a), b)
and c) are the estimation results with s = 0, 0.5, 0.7, and d) shows a result with the optimal scale s = 0.2089 obtained from
our optimization scheme. The estimation result significantly varies depending on the scale parameter with dense non-zero
elements, but our optimization is able to find the optimal scale that provides an estimation that is sparse and similar to the
inverse covariance matrix.
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Figure 2: Precision matrix estimation with different numbers of latent variables. Top row shows the inverse covariance
matrix, and the bottom row shows our estimation result. a) no latent variables, b) 5 latent variables, c) 10 latent variables, d)
20 latent variables. We can easily see that the inverse covariance matrix becomes denser as the number of latent variables
increases, while our method yields good estimation of the sparse graphical model.
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Figure 3: Precision matrix with 5 latent variables in different scales. a) estimation with s = 0, b) estimation with s = 0.5, c)
estimation with s = 0.7, d) estimation with optimal scale s = 0.2089. Our optimization scheme find the optimal scale that
gives a sparse graphical model.

4.2. Details of non-Imaging Covariates

In this section, we provide a full list of non-imaging covariates that we used in our HCP brain connectivity pathways
analysis. The list consists of various measurements from physical, mental, and cognitive status of participants, and are
commonly used for analysis of structural and functional behavior of brains.
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Category Covariate name
Demographics Age, gender, years of education completed (Edu)
Physical health Height, weight
Alertness Mini mental status exam (MMSE)
Sleep Pittsburgh sleep questionnaire (PSQI)
Episodic memory Picture sequence recall (PicSeq)
Cognitive flexibility Picture matching accuracy and reaction time (CardSort)
Inhibition Flanking accuracy and reaction time (Flanker)
Fluid intelligence Correct responses in Penn progressive matrices (PMA CR)
Reading NIH toolbox reading recognition test (ReadEng)
Vocabulary NIH toolbox picture vocabulary (PicVocab)
Processing speed NIH toolbox pattern comparison speed (ProcSpeed)
Spatial orientation Expected number of correct clicks (VSPLOT CRTE),

total off positions (VSPLOT OFF)
Sustained attention Short Penn continuous performance test:

sensitivity (SCPT SEN), specificity (SCPT SPEC),
longest run of non-responses (SCPT LRNR)

Episodic memory Penn word memory test: total correct responses
(IWRD TOT), reaction time (IWRD RTC)

Working memory NIH toolbox sorting working memory (ListSort)

Table 1: Full list of non-imaging covariates used in our analysis spanning a wide range high-level human behavior and highly
relevant physiological measurements.


