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Abstract. Advances in resting state fMRI and diffusion weighted imag-
ing (DWI) have led to much interest in studies that evaluate hypotheses
focused on how brain connectivity networks show variations across clin-
ically disparate groups. However, various sources of error (e.g., tractog-
raphy errors, magnetic field distortion, and motion artifacts) leak into
the data, and make downstream statistical analysis problematic. In small
sample size studies, such noise have an unfortunate effect that the differ-
ential signal may not be identifiable and so the null hypothesis cannot
be rejected. Traditionally, smoothing is often used to filter out noise.
But the construction of convolving with a Gaussian kernel is not well
understood on arbitrarily connected graphs. Furthermore, there are no
direct analogues of scale-space theory for graphs — ones which allow to
view the signal at multiple resolutions. We provide rigorous frameworks
for performing ’multi-resolutional’ analysis on brain connectivity graphs.
These are based on the recent theory of non-Euclidean wavelets. We pro-
vide strong evidence, on brain connectivity data from a network analysis
study (structural connectivity differences in adult euthymic bipolar sub-
jects), that the proposed algorithm allows identifying statistically signif-
icant network variations, which are clinically meaningful, where classical
statistical tests, if applied directly, fail.

1 Introduction

The development of diffusion weighted imaging (DWI) and functional magnetic
resonance imaging (fMRI) have laid the groundwork for ambitious initiatives
towards a full characterization of the human connectome (the brain’s wiring
diagram) to better understand the structural and functional aspects of brain
connectivity. While such large scale projects will clearly push the frontiers of
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neuroscience forward, these efforts must necessarily go hand in hand with stud-
ies seeking to answer more focused questions pertaining to the variations in the
connectivity structure in the context of specific neurodegenerative diseases, and
how its manifestation is modulated by genetic and demographic factors. As such
these studies operate in the small sample size regime, and the first order re-
quirement on analysis methods appropriate for such applications is to maximize
statistical power — in other words, the likelihood of observing a differential
signal in the connectivity data given the limited size of the cohort.

Consider a brain connectivity network modeled as an undirected weighted
graph denoted as G = (V, E , ω). The vertices, V may denote anatomically mean-
ingful parcellations [6] or regions exhibiting spatially contiguous BOLD activa-
tions where as the weighted edges may correspond to temporal correlations or
strength of tract connectivity[1]. Now, our interest is to perform statistical anal-
ysis on a population of such brain connectivity networks in clinically disparate
groups, to understand which connections are severely affected by the disease.
The overwhelming majority of current literature suggests applying standard hy-
pothesis testing at the level of individual network edges. This approach generally
works well, but when the group-wise differences are weak to begin with, one finds
that after correcting for multiple comparisons, a statistically significant signal
may be unidentifiable. One may smooth out the noise variance in E and V, but
it is still an issue in brain connectivity analysis. For example, even a small head
motion in the scanner can influence the DTI connectivity information. [16]

The standard procedure to improve the signal to noise ratio is to smooth
the input signal. In image processing, the measurements are defined on a uni-
formly sampled lattice (Euclidean space) where the standard notions of a convo-
lution filter apply directly. The few instances in the literature which implement a
smoothing process on brain network data essentially average the measurements
within a the node or edge ROIs with isotropic Gaussian kernels [18,14], discard-
ing the network structure. In computer vision, anisotropic diffusion kernels [15],
heat kernels [20] and pyramids [11] have been used extensively, but mostly in
the context of a regular lattice over pixels. Developments of these ideas have led
to much work in scale space theory, towards deriving multi-resolution represen-
tations of the image by incremental smoothing. The question we investigate is
whether such connections can be exploited to analyze brain connectivity network
data with enhanced statistical sensitivity. The literature offers few strategies for
filtering of signals on the edges of a brain connectivity network.

Key contributions. The most natural mathematical tool which offers multi-
resolution behavior, i.e., wavelets, was until recently, restricted to the Euclidean
space. But the objects of interest here are networks with arbitrary topology
(non-Euclidean). a) We make use of a recent harmonic analysis results to show
how non-Euclidean wavelets provide tools for defining multi-scale representations
of brain networks. b) We demonstrate an application to analyzing structural
connectivity differences between euthymic bipolar disorder and healthy subjects.
Our framework applies multi-resolutional analysis on the information defined on
the edges, not on the vertices. The noise in raw connectivity data has the effect
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that few edges show up as statistically significant after accounting for multiple
comparisons correction. But applying the proposed method, clinically meaningful
group differences can be detected at the Bonferroni threshold of α < 0.01.

2 Non-Euclidean Wavelets

Wavelet transform is conceptually similar to the well-known Fourier transform,
however, it uses a certain shape of oscillating function as a basis with finite du-
ration instead of the sine and cosine basis with infinite duration. The traditional
construction of wavelets is defined by a mother wavelet function ψ and a scaling
function φ, which are band and low-pass filters in the frequency domain.

The wavelet function ψ on x is a function defined by two parameters, the
scale parameter s and translation parameters a

ψs,a(x) =
1

a
ψ(
x− a
s

). (1)

Change in s varies the dilation of the wavelet, and together with a translation
parameter a, approximates a signal in harmonics using wavelet expansion. The
function ψs,a(x) forms bases for the signal and can be used with other basis at
different scales to decompose a signal. The wavelet transform of a signal f(x) is
defined as the inner product of the wavelet basis ψs,a and f(x),

Wf (s, a) = 〈f, ψ〉 =
1

a

∫
f(x)ψ∗(

x− a
s

)dx, (2)

where Wf (s, a) is the wavelet coefficient at scale s and at location a. The original
signal f(x) can be reconstructed from Wf (s, a) and basis function without loss
of information; the inverse transformation is

f(x) =
1

Cψ

∫∫
Wf (s, a)ψs,a(x)dads (3)

where Cψ =
∫ |Ψ(jω)|2

|ω| dω is known as the admissibility condition constant, Ψ is

the Fourier transform of the wavelet [9], and ω denotes the frequency domain.
Recent work in harmonic analysis [7] provides wavelet basis on structured

data which expresses in a wide spectrum of frequencies. The solution in [7] re-
lies on a graph Fourier transform to derive a spectral graph wavelet transform
(SGWT). It is shown that SGWT formalization preserves the localization prop-
erties at fine scales as well as other wavelet specific properties, while addressing
the bottleneck of defining scales on a domain where the space is non-Euclidean.

Let a graph G = {V, E , ω} be a undirected graph with a vertex set V with
N vertices, an edge set E and corresponding edge weight ω ≥ 0. The adjacency
matrix A of G is given as a N × N matrix whose elements aij are the edge
weight ωij if ith and jth nodes are connected. The degree matrix D is computed
as a N ×N diagonal matrix whose ith diagonal is

∑
j ωij . The graph Laplacian

from these graph matrices is defined in the usual way as L = D − A. Then,
the complete orthonormal basis χl and eigenvalues λl, l ∈ {0, 1, · · · , N − 1}
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obtained from the graph Laplacian, a self-adjoint operator, forms the basis for
the graph Fourier transformation. Note that the λl are increasingly ordered, and
are irrelevant to the order of vertex index in the graph domain. Using these
basis, the forward and inverse graph Fourier transformation are defined using
the eigenvalues and eigenvectors of L as,

f̂(l) = 〈χl, f〉 =

N∑
n=1

χ∗l (n)f(n) and f(n) =

N−1∑
l=0

f̂(l)χl(n) (4)

Using these transforms, we construct spectral graph wavelets by applying band-
pass filters at multiple scales and localizing it with an impulse function and
low-pass filter for the scaling function.

Here, λl, the spectrum of the Laplacian, serves as an analog of the 1-D
frequency domain, where scales can be easily defined. This directly provides the
key component in obtaining a multi-resolutional view of the signal localized at n.
Constructing a kernel function g which acts as band-pass filter in the frequency
domain, when g is transformed back to the original graph domain, we directly
obtain a representation of the signal for that scale. Repeating this procedure
for multiple scales, the set of coefficients obtained for each s ∈ S gives a multi-
resolution representation for that particular vertex.

Since the transformed impulse function in the frequency domain is equivalent
to a unit function, the wavelet ψ localized at vertex n can now be defined as,

ψs,n(m) =

N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (5)

where m is a graph vertex. With this in hand, the wavelet coefficients of a given
function f(n) is given by the inner product of wavelets and the function,

Wf (s, n) = 〈ψs,nf〉 =

N−1∑
l=0

g(sλl)f̂(l)χl(n) (6)

SGWT follows the same procedure of constructing wavelets as in the contin-
uous wavelet transform. In the fine scale limit, SGWT maintains many of the
properties of the traditional wavelet transform, including localization.

Remark. Wavelets in Euclidean space have a rich history in Signal process-
ing. However, defining wavelets in non-Euclidean space is a recent development
[7,5], and is especially interesting for network analysis in Neuroimaging.

3 Deriving a Multi-Resolution Perspective of a Network

Line Graphs. In graph theory, one defines the line graph L(G) as a dual form
of graph G. The L(G) is formed by interchanging the roles of V and E in G.
Two vertices in L(G) are connected when the corresponding edges in G share
a common vertex. The line graph L(G) = {VL, EL, ωL} has a vertex set for the
edges {E , ω} and a edge set that corresponds to the vertices V in G [8].
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Fig. 1: Examples of graphs and the corresponding line graphs. Original graphs with
vertices (red) and edges (yellow) with edge weights (thickness), and corresponding line
graphs with vertices (yellow) with function (vertex size) and edges (red).

The transformation of L(G) from a graph G is defined as follows. Let gij be
the elements in the adjacency matrix AL of L(G), then

gij =

{
1 if v ∈ V, v v ei, ej

0 otherwise
(7)

where v is a vertex in V and e is an edge in E . This means that when two
edges share a common vertex in G, these edges are connected to each other
by the common vertex. After this transformation, the isolated vertices in G are
completely neglected in L(G). If there are no isolated vertices in G, then G and
L(G) have equal number of components. After constructing a line graph L(G)
of a graph G, the edges in G form a completely new domain of analysis and the
edge weight ω can be defined as a function defined on each vertex in VL, where
the connection between each vertex in EL is given from V. Toy examples of this
transformation are shown in Fig. 1.

In a measured signal, the true signal tends to change smoothly while noise
varies very rapidly in high frequencies. Using wavelets, smoothing can be ef-
ficiently performed by removing high frequency components tied to the finer
scales, moreover, due to the bandpass property of wavelet, we can get a multi-
resolutional view of the given signal. The multi-scale view comes from the inverse
wavelet transformation of the resultant function that provides the estimate of
the signal at various scales. Rewriting (3) in terms of the graph Fourier basis,

f(m) =
1

Cg

∑
l

(∫ ∞
0

g2(sλl)

s
ds

)
f̂(l)χl(m) (8)

which sums over the entire scale s. Limiting the scales to the coarse scales will
reconstruct the smoothed approximation of the original signal, and the original
signal can be reconstructed by adding finer scales.

In order to filter the network structure, it is necessary to bring the network
connectivity information as a signal into another domain. As described above,
the transformation of a graph domain G to a line graph L(G) enables us to view
the edge weights as a signal defined in the domain of L(G). We can therefore
define the connectivity as a signal on each vertex of L(G), and continue with the
smoothing technique using wavelet. An illustrative example of the framework for
the network smoothing is given in Fig. 2, where the edge weights are filtered along
their connection and not losing the original topology of G. The corresponding
adjacency matrices are displayed at the bottom.
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Fig. 2: A toy example of graph structure filtering. The top panel shows the graph
filtering steps: (1) Construction of the line graph, (2) filtering the signal on the line
graph vertices, (3) reconstructing the filtered graph. The bottom panel shows the cor-
responding adjacency matrices.

In addition to the filtering, we define Wavelet Multi-scale Descriptor (WMD)
using the wavelet wavelet coefficients over the signal defined on each vertex as

WMDf (n) = {Wf (s, n)|s ∈ S} (9)

which characterizes the signal at multi-resolutions on the vertex according to
the geometry of the graph[10]. While [19] uses a sphere to obtain the descriptor,
which causes data distortion by mapping process, WMD is derived based on the
eigenfunction of the original graph itself, and thus avoids ’ballooning’.

4 Connectivity Differences in Bipolar Disorder

Dataset. We scanned 25 healthy subjects (13 male and 12 female; age: 42.2 ±
10.8) and 25 gender and age matched bipolar subjects (14 male, 11 female; age:
41.7±12.6). All bipolar subjects received comprehensive psychiatric evaluations
using the structured clinical interview for DSM disorders (SCID) and met the
DSM IV criteria for bipolar I disorder (at the time of image acquisition all
subjects have been in an euthymic state for at least 30 days). A Siemens 3T Trio
scanner was used to acquire the brain MRI data. High resolution T1-weighted
images were acquired with MPRAGE sequence (FOV = 250×250 mm2; TR/TE
= 1900/2.26 ms; flip angle = 9◦; voxel size = 1×1×1 mm3). Diffusion weighted
(DW) images were acquired using SS-SE-EPI sequences (FOV = 190×190 mm2;
resolution 2 × 2 × 2 mm3; TR/TE = 8400/93 ms; 64 gradient directions, b =
1000 s/mm2 and one minimally DW scan: b=0 image).

Structural brain networks were generated using a pipeline which integrates
multiple image processing steps. First, DW images were eddy current corrected
using FSL by registering all DW images to their corresponding b=0 images with
12-parameter affine transformations. This was followed by the computation of
diffusion tensors and then deterministic tractography using the FACT algorithm
[13] built into the DTIStudio program (maximum bending angle 60 degrees;
FA cut-off 0.25). T1-weighted images were used to generate label maps using

http://www.scid4.org
http://www.fmrib.ox.ac.uk/fsl
http://www.mristudio.org
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Fig. 3: Anatomical connectivity showing group differences between bipolar and controls
after Bonferroni threshold at α = 10−7. Connection thickness represents the p-value in
negative log scale; color gives sign of strength: red (and blue) are stronger in controls
(and bipolar group). Region labels are: 1. ctx-rh-precentral, 2. ctx-rh-superiorfrontal,
3. ctx-lh-superiorfrontal, 4. ctx-rh-caudal anterior cingulate, 5. ctx-lh-precentral, 6.
ctx-lh-temporalpole, 7. left amygdala, 8. right hippocampus, 9. left hippocampus.

Freesurfer. The number of tracts connecting 87 cortical/subcortical regions were
used in constructing 87× 87 connectivity matrix for each subject.

Group Analysis. There are total 3741 edges in the network. In order to de-
tect connectivity differences between the two groups, we performed a Hotellings
T 2- test using WMD. WMD was realized by a Mexican-hat wavelet, which was
defined at 5 scales over the spectrum of λ. Since typically noise lies in high fre-
quency, we dropped 2 scales that correspond to larger λ, and used the rest for
the statistical analysis. When using the raw edge weights, we could not detect
any significant difference between the two groups after accounting for Bonfer-
roni correction at α = 0.05 significance level. However, after applying WMD on
smoothed edge weights with the proposed method, we identified 5 connections
over 9 different brain regions as having significant connectivity differences at a
very conservative Bonferroni correction level, 10−7.

Interpretation. Results showed that relative to control subjects, bipolar pa-
tients on average exhibited weaker strength for the connections within the frontal
lobe (bilateral precentral to superior frontal) as well as in fiber tracts linking the
bilateral hippocampus. These findings are consistent with past studies where
abnormalities in the frontal, limbic, and callosal systems have been reported (for
a review, see for example [12]). Additionally, previous fMRI studies of euthymic
bipolar patients have also consistently revealed frontal hypoactivation [4,3,17].
In contrast, bipolar subjects exhibit a stronger connection, relative to controls,
between the left amygdala and the left temporal pole and between the left supe-
rior frontal gyrus and the right caudal anterior cingulate. Although our subjects
were in euthymia at the time of the scan, these stronger connections in bipolar
may be related to amygdala activation during mania as reported in [2].

5 Conclusion

In this paper, we introduced a novel signal filtering approach for brain network
data that takes into account the non-Euclidean nature of the structured data.
Using a line graph construction from the original network, we perform band-pass
filtering of signals defined on network edges to obtain a multi-resolutional view.

http://surfer.nmr.mgh.harvard.edu
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The algorithm siginficantly improves the statistical sensitivity of connectivity
differences using Hotelling’s T 2-tests and Bonferroni correction. We believe that
adapting non-Euclidean wavelets for improving the statistical properties of brain
connectivity networks may improve analysis of a much wider variety of studies.
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