
William Harris Research Statement

Modern programs are complex and, as a result, often untrustworthy (i.e. incorrect or insecure). In princi-
ple, modern research in programming languages provides powerful techniques for verifying and synthesizing
correct programs, but in practice, such techniques have subtle limitations. My research extends and
applies such techniques to enable programmers to build practical, trustworthy programs. My
approach is motivated by the practical needs for trustworthy programs that arise from computer security and
software engineering: I have collaborated with researchers in systems security [3, 4, 5, 7, 10] and operating
systems [6, 8, 9], and have studied the needs of computer end-users [1, 2], to identify the critical program-
ming problems faced by developers. To address each programming problem, I have developed (1) a novel
programming language that enables a programmer to describe the correctness and security properties of
their program simply and (2) techniques that automatically translate properties described by a programmer
in the language to an executable program that satisfies the properties.

I will now describe in more detail how I have applied my approach to accomplish three goals: (1) en-
abling programmers of security-critical applications to write secure programs, (2) enabling end-users to write
programs that transform tabular data, and (3) enabling programmers of performance-critical applications
to validate program optimizations.

Trustworthy programs from untrusted components Programs storing sensitive information are con-
stantly the targets of attacks that exploit vulnerabilities in complex, untrustworthy program modules (i.e.,
classes or functions). The systems-security community has demonstrated that rather than removing all vul-
nerabilities in a program, a program can be instrumented to use powerful programming primitives provided
by new security-conscious operating systems to preserve the security of the program’s information. However,
such systems require the programmer to determine if a program instrumented to use the system’s primitives
satisfies the programmer’s high-level notion of a security guarantee (i.e. policy), which the programmer must
leave as informal and implicit; the gap between instrumented programs and high-level policies has led even
the developers of such systems to instrument programs with behaviors that later surprised them.

I have developed programming tools for two types of security-conscious operating systems, namely capa-
bility and decentralized-information-flow systems. My tools significantly ease the task of programming for
such systems; they enable programmers to explicitly declare the security policies that their program must
satisfy separately from the program itself, and automatically obtain a program that satisfies the policies.
Such tools greatly ease the task of determining what attacks an attacker can or cannot carry out against a
program, and will hopefully encourage the adoption of security-conscious systems in the future.

The Capsicum capability system (now included in the FreeBSD operating system) provides primitives
based on capabilities (i.e., an object paired with a restricted set of operations that may be performed on
it). A program can use capabilities to limit the operations that untrusted program modules can perform on
sensitive information (e.g., a program can use capabilities to ensure that an untrusted compression function
can only write sensitive information to a user’s terminal but not to a network connection). However, a
programmer who instruments their program to execute on Capsicum must manually partition their program
into modules that execute with different capabilities. The programmer must then informally determine if
their partitioned program will only perform sequences of operations on sensitive information that constitute
secure behavior. To address this programming problem, I designed (1) a policy language that allows a
programmer to explicitly describe sequences of operations on sensitive information that a program should
or should not be able to carry out, and (2) a program instrumenter that takes an uninstrumented program
and a policy, and automatically instruments the program to satisfy the policy [5]. The key challenge in
designing such an instrumenter was to design an instrumentation algorithm that, from only a declarative
policy, generates executable code that (1) maintains relevant information about the current capabilities of
modules and (2) uses the information to update capabilities as necessary to satisfy a policy. I worked
with the Capsicum developers to write a set of policies for heavily used UNIX utilities; each policy forbids
vulnerabilities in recent versions of the utilities. I worked with a security-evaluation team at MIT Lincoln
Laboratory (MITLL) to write a policy for the PHP interpreter as part of an experimental secure system
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developed by MITLL. I applied my instrumenter to each program and its policy to produce an instrumented
program that satisfies its policy.

Decentralized Information Flow Control (DIFC) systems provide primitives that a program can use to
preserve the secrecy and integrity of its sensitive information (i.e., the program can ensure that its sensitive
information is not leaked or corrupted). A program calls DIFC primitives to direct how the operating system
maintains a partially-ordered lattice structure of labels, which the operating system consults to determine
if information can flow between system objects. Manually translating a secrecy or integrity policy to a
program that correctly maintains such a lattice is a difficult programming problem. To address this problem,
I developed (1) a policy language for the Flume DIFC operating system that allows a programmer to
declaratively describe desired secrecy and integrity policies for their program’s information, and (2) a program
instrumenter that takes an uninstrumented program and a policy, and automatically instruments a program
that directs the operating system to maintain labels so that the policy is satisfied [3]. The key challenge
in designing such an instrumenter was to design an instrumentation algorithm that could reason about the
powerful primitives provided by DIFC systems, which, unlike capabilities, are based on partial orderings
and transitive relations over an unbounded set of objects. Using the policy language and instrumenter, I
instrumented label-manipulating “launchers” for the ClamAV virus scanner and the OpenVPN network
client, and the Apache multi-process module.

Capsicum and Flume (along with other DIFC and tagged memory systems) demonstrate that the systems-
security community continues to develop powerful secure operating systems, each with distinct security
primitives. Rather than requiring a developer of a new operating system to develop a policy language
and instrumenter for their system from scratch, I designed an instrumenter-generator that a developer
can apply to automatically obtain a policy language and instrumenter for their operating system [4]. A
developer provides to the generator (1) the representation of their system’s security-relevant state (e.g., a
DIFC developer would provide the representation of a label), (2) the set of primitives that the system provides
to an application, and (3) a declarative description of how each primitive updates the security-relevant state
of the system. The generator provides (1) a policy language defined over features of the state provided
by the developer and (2) a program instrumenter, which operates as described above. They key challenge
in designing the generator was to find a language for describing system primitives that was expressive
enough to describe apparently disparate security-conscious systems, along with a “meta-policy language”
and “meta-instrumentation algorithm” that could be instantiated to a policy language and instrumenter
for any system that a developer could describe; we used an extension of first-order logic and a game-based
synthesis algorithm. We applied our instrumenter-generator to automatically generate an instrumenter for
the HiStar DIFC system from a declarative specification of HiStar primitives that is less than 1,500 lines.

Programs from user-provided examples Many computer users need to perform repetitive tasks, but
are not willing, and should not be expected, to dedicate the considerable time and resources required to
master a conventional programming language. As a Research Intern at Microsoft Research, I designed (1)
a domain-specific language capable of expressing popular transformations in the layout of spreadsheet tables
and (2) a program synthesizer that takes a set of example inputs and output tables from a user, and provides
to the user a general program that implements the examples [2]. The key challenge was to define a language
whose programs could be inferred efficiently from only examples, but could also describe practical spreadsheet
transformations, which typically treat a spreadsheet as partially-structured data (i.e., most end-users do not
use a spreadsheet table as a relational table). I applied the program synthesizer to automatically synthesize
programs that solved over 50 requests that had been posted to popular Excel help forums.

The language and synthesizer for transforming table layouts is part of a collective effort at Microsoft
Research to synthesize from examples programs that perform a variety of everyday tasks required by end-
users, such as matching and replacing rich patterns in strings and using knowledge of popular semantic
domains (e.g., calendar dates) [1]. I drove the design and development of the layout synthesizer, which was
described in a paper [2] that was one of two papers recognized collectively as a CACM Research Highlight.
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Explaining program optimizations Developers of mature, performance-critical applications spend con-
siderable time and resources optimizing the performance of their application, but struggle to determine that
their optimization preserves the functional behavior of their program. Previous work by systems researchers
at Wisconsin found that developers often significantly optimize the performance of their program by chang-
ing only how their program calls library functions, whose implementations either are not available, or are too
complex to be analyzed. We used this insight to develop an interactive optimization validator that takes an
original and optimized program and presents a condition on only the library functions called by the programs
such that if the condition holds, then the original and optimized programs are equivalent [6]. A programmer
using the tool can accept the condition as a formal assumption for why they believe their optimization to
be valid, or can refute the assumption and require the validator to find a new condition that is sufficient to
support the optimization. The key challenge was to design a validator that can suggest simple conditions
over purely the library functions called in an optimization based on how such functions are used, not how
the functions are implemented. We applied our validator to validate optimizations submitted in bug reports
for the Apache web server, Mozilla software suite, and MySQL database.

Classical program verification In addition to developing new languages for specifying program proper-
ties, I have proposed and developed automatic methods for checking that a program satisfies conventional,
fundamental properties, including safety properties [9, 10] (e.g., memory safety) and termination on all
inputs [8]. I have omitted detailed descriptions of this work, for brevity.

Future work Based on my previous work, I believe that the following strategy is effective for building
practical, trustworthy programs: (1) identify programs that require rigorous guarantees of correctness; (2)
decompose the problem of verifying that such a program into multiple verification sub-problems that exhibit
a tradeoff in scalability vs. tractability, and develop solutions to each problem; (3) compose the guarantees
obtained by solving each sub-problem to verify the desired guarantee of the entire program. My current
work implements the intermediate steps of this strategy in the domains of software security and interactive
verification. I plan to pursue the following research goals as next steps:

Fine-grained, system-wide information-flow For a program to completely protect the secrecy of its
sensitive information, the program must ensure that when it releases sensitive information in a data
structure to other objects on its system, the sensitive information is stored only in allowed objects on
the system. E.g., a program storing multiple users’ credit card information may need to ensure that
if it releases the information stored for a particular user in a table, then the information should only
be stored in the user’s home directory. DIFC languages (e.g., Jif ) provide powerful techniques for
reasoning about how information flows between data structures, but cannot reason about information
released by a program to other system objects. DIFC operating systems (e.g., HiStar) provide primitives
for controlling how information flows between system objects, but cannot control how information flows
between program data structures. A framework that composes a DIFC language and DIFC system,
using partly a program instrumenter developed in my previous work in programming for DIFC systems,
could allow a programmer to write programs with previously unattainable information-flow guarantees
that connect the information in program data structures to the information in objects throughout a
system. Designing such a framework will require collaboration between researchers in programming
languages, interactive and automatic verification, and operating systems.

Selectively-interactive verification Verifying desired properties of a program requires both (1) efficiently
summarizing the effects of large segments of the simple code (e.g., instructions that execute arithmetic
operations in sequence) and (2) inferring subtle properties of relatively small segments of complex code
(e.g., code that conditionally calls a recursive function). In practice, automatic-verification algorithms
summarize simple code well, but struggle to infer required subtle properties of complex code. By
decomposing a verification problem into the two subproblems described above, selectively asking a
programmer for assistance in finding subtle properties, and composing the programmer’s response
with summaries inferred by the analysis automatically, one may be able to verify non-trivial properties
of a significant class of practical programs that are beyond the scope of automatic algorithms, but with
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significantly less effort than by proving correctness of the entire program manually. Designing practical
interactive verification algorithms will require collaboration between experts in program verification,
software engineering, and human-computer interaction.

Hardware accelerators from optimization rules The hardware community has significantly optimized
program performance by designing architectures with hardware accelerators, i.e., specialized circuits
that a program can execute to perform the effect of a sequence of instructions more efficiently than
executing the explicit sequence. However, an accelerator designer faces significant challenges: acceler-
ators often aggressively optimize the sequence of instructions executed by a program, but it is often
unclear if an accelerator preserves the semantics of all sequences of instructions that a program may
execute. Furthermore, an accelerator designer must choose from a enormous space of circuits to add
to an architecture, and must choose under what conditions each circuit should execute.

Accelerator design could be significantly improved if an accelerator designer could specify the opera-
tions of an accelerator as a set of declarative optimization rules, and automatically obtain: (1) a proof
that optimizations allowed by the rules preserve program behavior, (2) a predictive model that the
designer can use to tune accelerator behavior on particular benchmarks, and (3) an executable acceler-
ator that implements the rules. A framework that synthesizes a behavior-preserving accelerator from
optimization rules will need to use distinct verification techniques for reasoning about the correctness
of optimization rules and for synthesizing accelerator circuits from optimization rules, and compose the
guarantees of these techniques to synthesize a correct accelerator circuit. Designing such a framework
will require collaboration between experts in verification, synthesis, and systems architecture.
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