
GRID-GRAPH PARTITIONING

By

William W. Donaldson

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN – MADISON

2000

i

Abstract

Previous researchers showed that striping techniques produced very good (and, in some

cases, asymptotically optimal) partitions when applied to grid graphs. These striping

algorithms can be thought of as two-phase methods. The first phase consists of breaking

the original problem into smaller, but similar, problems (striping). The second phase

(stripe assignment) consists of the actual assignment of cells within the stripes. Results

from this reseach show how to improve both phases.

We improve the stripe-assignment phase of Christou, Meyer and Yackel so as to

guarantee locally optimal solutions for rectangular grid graphs. It is shown that under

certain assumptions, the assignment algorithm of Christou-Meyer will produce a locally

optimal solution. This algorithm is extended to handle a larger class of grid graphs. A

third algorithm is described that produces a locally optimal solution for the same class

of problems and also potentially reduces the chance of producing solutions with certain

undesirable characteristics.

In the striping phase, the methods of Yackel-Meyer, Christou-Meyer, and Martin dif-

fer in the stripe-height selection process. Yackel-Meyer and Christou-Meyer use genetic

algorithms for generating feasible solutions for a general class of grid graphs. Martin con-

siders rectangular domains and transforms the original problem into a knapsack problem

and considers a large set of stripe heights. Under the assumption that a stripe-assignment

approach satisfying certain generic conditions is given, we derive a dynamic-programming

method that generates the best possible set of stripe heights.

ii

Acknowledgements

I would like to thank my major professor, Robert R. Meyer, for giving me the opportunity

to work in a subject area that I enjoy and for helping me attain a life-long goal. I

would also like to thank professors Eric Bach (Reader), Steven Bauman, Deborah Joseph

(Reader), and Olvi Mangasarian for serving on my committee.

I would like to acknowledge Amir Roth and Victor Zandy for their help with imple-

mentation and performance-measurement issues.

I would like to thank several families outside the academic community. These persons

showed me a level of kindness that certainly was not expected. And although they will

remain anonymous, I will never forget what they did for me.

I would also like to acknowledge the use of hardware that was funded under NSF

grant CDA-9623632.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Problem Description . 1

1.2 Alternative Formulations of Graph Partitioning 2

1.2.1 Quadratic and Mixed Integer Programming Formulations 2

1.2.2 Minimum Perimeter Formulation 4

1.3 Motivation and Background . 6

1.4 Contributions of this Dissertation . 8

1.4.1 Local Optimality Assignments within Stripes 8

1.4.2 Stripe-Height Selection . 9

1.5 Organization of this Dissertation . 10

2 Background and Related Work 11

2.1 Introduction . 11

2.2 Non-Striping Partitioning Algorithms . 12

2.2.1 Kernighan-Lin . 12

2.2.2 Geometric Mesh Partition . 13

2.2.3 Recursive Spectral Bisection . 14

2.2.4 METIS . 16

2.3 Stripe-Based algorithms . 17

iv

2.3.1 Stripe Assignments based on Genetic Algorithms 19

2.3.2 Yackel-Meyer Algorithm . 20

2.3.3 Christou-Meyer Algorithm . 20

2.3.4 Knapsack Algorithm . 23

2.3.5 The Shortest-Path/Dynamic-Programming Approach 24

2.4 Improved Stripe Assignment . 25

2.5 Summary . 25

3 Improved Stripe Assignment 26

3.1 Introduction . 26

3.2 Terms and Definitions . 28

3.3 Local Optimality of the CM Fill Procedure 32

3.4 Overflow Assignments . 42

3.5 The Basic U-turn Algorithm . 43

3.6 The Improved U-turn Algorithm . 66

3.7 Unbalanced Partitions . 68

3.8 Summary . 68

4 Subproblems for the Dynamic-Programming Approach 70

4.1 Introduction . 70

4.2 Terms and Definitions . 71

4.3 Defining Subproblems . 75

4.3.1 Identifying Subproblems . 75

4.3.2 Selecting a Divider Cell . 77

4.4 Relationship between Subproblems and Stripes 80

4.4.1 Construction of a Stripe-based Solution 81

v

4.5 Properties of Subproblems . 81

4.5.1 The Existence of Common Subproblems 81

4.5.2 Optimal Substructure within a Solution 84

4.6 Grid Partitioning as a Shortest-Path Problem 85

4.7 Summary . 87

5 Optimal Partitioning Algorithms 89

5.1 Introduction . 89

5.2 Stripe-Height Selection . 90

5.3 A Detailed Example . 95

5.4 A State-Graph Representation of Grid Graph Partitioning 99

5.4.1 Background . 99

5.4.2 Description of a State Graph . 101

5.4.3 Proof of Optimality . 103

5.5 A Dynamic-Programming Approach . 105

5.5.1 Background . 105

5.5.2 A Recurrence Relation for Grid-Graph Partitioning 106

5.6 Summary . 112

6 Implementation and Results 113

6.1 Introduction . 113

6.2 Implementation . 114

6.2.1 Subproblem Definition . 114

6.2.2 Software and Hardware Issues . 116

6.3 Stripe Assignments . 116

6.4 Results . 118

vi

6.5 Error Gaps . 124

6.6 Summary . 125

7 Conclusions, Contributions and Future Work 127

7.1 Conclusions . 127

7.2 Contributions . 128

7.2.1 Improved Stripe Assignments and Local Optimality 128

7.2.2 Exhaustive Searches are not Feasible 129

7.2.3 Defining Subproblems . 129

7.2.4 Improved Stripe-Height Selection 130

7.3 Future Work . 131

7.3.1 Post-Processing . 131

7.3.2 Stripe-Height Range . 132

7.3.3 Extension to the 3-D case . 132

7.3.4 Parallel Computing . 133

7.4 Summary . 137

Bibliography 138

1

Chapter 1

Introduction

1.1 Problem Description

Given a graph G = (V,E) and a number of components P, the graph partitioning problem

(with uniform node and edge weights) requires dividing the vertices into P groups of equal

size such that the number of edges (cut edges) connecting vertices in different groups is

minimized. This problem is known to be NP-Complete [GJ79]. In this dissertation, a re-

stricted class of graphs is studied, namely grid graphs (Yackel and Meyer, [Yac93], showed

that for this restricted set of graphs the partitioning problem is NP-Hard.). Figure 1 con-

tains an example of a grid graph. The vertices lie at lattice points of a rectangular grid

and are connected only to points adjacent on the lattice. Graph partitioning of large

uniform grid graphs arises in the context of parallel computation for a variety of problem

classes including the solution of PDEs using finite difference schemes [Str89], computer

vision [Sch89], and database applications [GMSJ93].

1 2 3 4 5 6

7 8 9 10 1211

13 14 15 16 17

Figure 1: A grid graph

2

In applications the nodes represent tasks that are to be allocated in a balanced manner

among P processors, and the edges represent communication requirements, so that cut

edges measure interprocessor communication.

1.2 Alternative Formulations of Graph Partitioning

1.2.1 Quadratic and Mixed Integer Programming Formulations

There are several ways of formulating this graph-partitioning problem. One way is to

treat it as a network assignment problem. The vertices will be partitioned into P groups

containing specified numbers Ap (number of vertices assigned to processor p), p = 1,...P, of

vertices. The corresponding network problem would have P supply nodes with capacities

Ap, V demand nodes (note: V is used to denote |V| as well as the set V), each with a

demand of 1, and a quadratic objective function (see [Chr96]).

Let,

x
p
i = 1 if vertex i is assigned to processor p

= 0 otherwise,

and consider the following problem:

min
∑

i,j (
∑P

p,p′=1,p6=p′ cij x
p
i x

p′

j)

s.t.































∑

i∈V x
p
i = Ap p = 1, ..., P

∑P
p=1 x

p
i = 1 i ∈ V

x
p
i ∈ {0, 1} p = 1, ..., P, i ∈ V

cij =















1 if(i, j) ∈ E

0 otherwise

Display 1 : A quadratic-assignment-problem formulation

3

For the objective function for the QAP formulation, vertices that share an edge are

the only combinations that can contribute to the objective function. In this case cij

equals 1. If vertices i and j share an edge and are assigned to the same processor p, then

all terms x
p
i x

p′

j equal zero. If vertex i is assigned to processor p and vertex j is assigned

to processor p′ with p 6= p′, then the cij x
p
i x

p′

j term counts the cut edge by adding one

to the objective value.

The problem can also be formulated as a linear mixed integer programming problem

[NW85], by adding additional variables and constraints. In the following formulation

[Mey99], the number of edges connecting vertices assigned to the same group (internal

edges) is maximized. Define I to be the set of pairs of vertices that are connected by an

edge. The formulation becomes:

max
∑

(i,j)∈I, p∈P
z

p
i,j

s.t.



































































∑

i∈V x
p
i = Ap p = 1, ..., P

∑P
p=1 x

p
i = 1 i ∈ V

x
p
i ∈ {0, 1} i ∈ V, p = 1, ..., P

z
p
i,j ≤ x

p
i (i, j) ∈ I, i ∈ V, p = 1, ..., P

z
p
i,j ≤ x

p
j (i, j) ∈ I, i ∈ V, p = 1, ..., P

Display 2: A linear mixed-integer-programming formulation

This research focuses on the equi-partition case in which each group is assigned the

same number of vertices (i.e., for p and p′ ∈ {1... P} Ap = Ap′). However, we also discuss

extensions of the methods that we develop to the case |Ap - Ap′| ≤ 1 that corresponds

to “balancing” partition sizes as much as possible when perfect balance is not possible

because P does not divide |V|.

4

1.2.2 Minimum Perimeter Formulation

Christou and Meyer [CM96] consider a geometric way of formulating this problem, which

is useful in terms of generating lower bounds on the optimal value. Figure 2 gives an

example of how the original graph is transformed into a domain of cells. Each vertex in

the graph becomes a cell (of unit area) and each edge becomes a boundary edge between

two cells (domain boundary edges are added as needed to provide four edges for each

cell). This geometric view is also the most natural representation of the PDE, vision,

and DB applications.

1 2 3 4 5 6

7 8 9 10 1211

13 14 15 16 17

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

Figure 2: The original graph and the geometric problem.

For the transformed problem, instead of counting cut edges, the sum of the perimeters

of the associated components is minimized. Formally, the problem to be solved is:

minimize
∑

i Perim(Ci)

s.t.

each cell is assigned to one processor, and

each processor is assigned an equal number of cells,

5

where Perim(Ci) equals the perimeter for component Ci.

The relationship between cut edges and the total perimeter is:

cut edges = (total perimeter - perimeter of the boundary of the domain)/2

Since the perimeter of the boundary is a constant, minimizing perimeter is equivalent

to minimizing cut edges. Figure 3 shows an example of this relationship.(It also illustrates

a case in which the component sizes differ by one, because the number of components

(six, in this case) does not divide the number of cells (17). Thus, five components are of

size three and one component is of size two.)

A B B

A A B C C

C

D

D D

EEF F F

A A B C C D

A B B C D D

F F F E E

Figure 3: The top figure shows the original graph partitioned. The bottom figure shows
an equivalent partition of cells.

In this example the minimum number of cut edges equals 14. The corresponding sum

of the perimeters for the components is 46 which is in agreement with the relation above,

since the perimeter for the original domain is 18, yielding the number of cut edges as

(46-18)/2. The bottom figure is also an example of a stripe-based solution (to be defined

formally below; informally this means that components are confined to horizontal bands

6

except possibly for “overflows” at the ends of the bands (overflows do not occur in figure

3)). The perimeter is optimal in this problem instance since it is easily shown to match

the lower bound as derived by Yackel, et.al. [YMC97]. (Yackel, et. al. showed that

a lower bound for the minimum perimeter when partitioning A cells evenly among P

processors is:

2P(d2(A/P)0.5e)

All the developed methodology below is based on the geometric model.

1.3 Motivation and Background

This research is a continuation of work done by Yackel and Meyer (YM, [Yac93]), Christou

and Meyer (CM, [Chr96]), and Martin [Mar98]. For the partitioning of a grid graph,

the methodologies of Christou and Martin [Chr96], [Mar98] both outperform more well-

known algorithms such as recursive spectral bisection and geometric mesh partition (both

algorithms will be described in Chapter 2)..

Table 1 contains results using the Christou-Meyer methodology [Chr96] and shows

how the Distributed Genetic Algorithm (DGA) [Chr96] (this algorithm is described

in Chapter 2) outperforms recursive spectral bisection (RSB), implemented using the

Chaco package [HL95a], and the Geometric Mesh Partition [GMT95] [MTTV93] for

rectangular grids. In tables 1, 2 and 3, all times are measured in seconds and “Gap %”

represents the difference between the perimeter generated by the given methodology and

the Yackel-Meyer lower bound. (For the 32x31 to be partitioned among 256 components,

the Geometric Mesh Partition algorithm produced a negative gap, as marked with an

asterisk(*). This indicates that the solution produced was not feasible, i.e., there exists

7

Time Gap %Time Gap % Time Gap %M x N P

32 x 31 8 1.8 6.52 43.6 5.43 6.9 1.08

32 x 31 256 4.3 6.73 152.3 -2.73* 7.1 0.00

32 x 30 64 3.0 6.25 90.4 6.25 7.8 0.00

100 x 100 8 9.0 9.33 111.0 7.39 17.7 2.28

128 x 128 128 85.5 14.13 539.9 7.13 15.5 1.63

256 x 256 256 227.8 13.25 3304.2 4.15 36.9 0.00

512 x 512 512 - - - - 123.8 0.56

Problem RSB GEOMETRIC DGA

Table 1: Christou-Meyer versus other graph-partitioning algorithms for rectangular grids

at least one component that was assigned at least two cells more than at least one other

component.) For more information about the chosen set of problems see [Chr96].

Martin [Mar98] also studied rectangular grids and obtained the results contained in

table 2, via a knapsack method for stripe height selection. In all cases, both Christou

and Martin [Chr96], [Mar98] did much better than the other methodologies. Christou

[Chr96] also studied non-rectangular grids. Table 3 contains those results.

When looking at table 3, for Christou’s methodology [Chr96] if the number of cells

within the overall grid is held constant as the number of cells to be assigned to each

component increases, performance decreases. Intuitively, this makes sense, since it is

harder to assign a small number of bigger groups near-optimally than it is to assign a

large number of smaller groups of cells near-optimally.

While the methodologies of Christou-Meyer and Martin [Chr96], [Mar98] outper-

formed the other methods, both methodologies have shortcomings (to be discussed later)

that are eliminated by the results in this dissertation.

8

Time Gap %Time Gap % Time Gap %M x N P

Problem RSB GEOMETRIC MSP

32 x 31 8 1.8 6.52 43.6 5.43 0.01 1.09

32 x 30 64 3.0 6.25 90.4 6.25 0.01 0

128 x 128 128 85.5 14.13 539.9 7.13 0.04 1.63

256 x 256 256 227.8 13.25 3304.2 4.15 0.09 0

32 x 31 256 4.3 6.73 152.3 -2.73* 0.01 0

512 x 512 512 - - - - 0.25 0.14

100 x 100 8 9.0 9.33 111.0 7.39 0.04 5.63

Table 2: Martin versus other graph-partitioning algorithms for rectangular grids

1.4 Contributions of this Dissertation

Striping algorithms may be classified as two-phase processes. A set of stripe heights must

be selected in the first phase. In the second phase the cells within the stripes are assigned

(possibly with overflow into the next stripe at stripe ends). As a result of this research,

both phases have been improved.

1.4.1 Local Optimality Assignments within Stripes

A partition that cannot be improved by swapping the assignments for exactly two ver-

tices is said to be locally optimal (This is the smallest change that can be made in

a feasible solution in order to obtain a different feasible solution, in the equi-partition

case). By producing locally optimal solutions initially, the amount of post processing

will be reduced, since there will be no need to check for improving two-cell swaps.

9

Time Gap %Time Gap % Time Gap %Shape P

Problem RSA

circle 16 23.3 24.44 9.1 21.80 19.8 8.33

 torus 64 36.5 22.86 18.5 34.3 17.2

ellipsis 16 2.3 10.83 1.4 13.33 8.3 8.33

ellipsis 64 3.5 5.16 2.2 15.10 9.4 5.36

 torus 16 27.3 28.97 12.5 32.67 18.8 11.50

diamond 16 14.0 38.67 6.5 35.74 10.7 16.40

diamond 64 18.7 29.78 9.0 28.80 16.2 13.37

 11.00

RSQ DGA

circle 64 34.7 16.87 14.5 28.34 19.4 5.87

Table 3: Christou-Meyer versus other graph-partitioning algorithms for non-rectangular
grids

By identifying conditions under which local optimality is achieved by greedy assign-

ment procedures, a suite of alternative stripe-assigning procedures was developed to re-

duce undesirable assignments. While a given stripe-assigning procedure will not always

produce a good assignment, for most instances, at least one of the procedures within the

suite will work well.

1.4.2 Stripe-Height Selection

The bottleneck in all earlier striping algorithms was the stripe-height selection process.

For these methods to obtain the best solution, at least a super-polynomial amount of

time would potentially be required. An algorithm will be presented that produces an

optimal set of stripe heights in polynomial time.

10

1.5 Organization of this Dissertation

In Chapter 2, an overview of the methodology of this dissertation will be presented, along

with short descriptions of some well-known or related algorithms. Chapter 3 presents

three algorithms that produce locally optimal solutions. Chapter 4 shows how a grid

graph may be broken into a series of smaller and independent subproblems. Chapter 5

describes how to select the optimal set of stripe heights for a given assignment procedure.

Chapter 6 contains results and comparisons with some previous methodology. Chapter

7 contains concluding remarks and directions for future work.

11

Chapter 2

Background and Related Work

2.1 Introduction

Unless the graph is small, standard branch-and-bound techniques aren’t very useful for

partitioning a graph. The amount of computing resources required grows far too quickly.

Using AMPL [FGK93] to formulate the problem and CPLEX [Fra99]to solve it, the

software can reasonably handle at most the case of a 5 x 5 grid to be partitioned among

five components. For problems larger than this, the branch-and-bound trees get too large

to handle. Space and time become limiting factors.

Several heuristics have been devised for discovering good, if not optimal, solutions.

The algorithms to be discussed can be roughly broken into two groups: stripe-based and

non-stripe-based. The algorithms resulting from the research presented in this disserta-

tion, along with the related predecessor algorithms, fall into the category of stripe-based

methods. The other algorithms fall into the class of non-stripe-based methods.

A general description of the stripe assignment procedures (defined in Chapter 3) used

by Donaldson-Meyer (DM) and the formulation of stripe-height selection as a shortest-

path problem or as a dynamic-programming problem will be presented. The latter two

formulations suggest algorithms that exploit the presence of overlapping subproblems

within the solution in order to eliminate redundant calculations. These two formulations

are basically equivalent, except for the organization of data for the subproblems. The

12

end result is that both find the best stripe-based solution in polynomial time (although,

only the run-time for the dynamic-programming based solution will be presented).

2.2 Non-Striping Partitioning Algorithms

Four algorithms will be presented in this section: Kernighan-Lin, Recursive-spectral

Bisection, Geometric Mesh Partitioning, and METIS. None of these algorithms take ad-

vantage of known geometric properties of a graph (Geometric Mesh Partitioning assumes

that vertices that are far apart in euclidean distance probably don’t have an edge con-

necting the two vertices.). This is the main difference between the non-striping and

striping algorithms.

2.2.1 Kernighan-Lin

A well-known graph partitioning algorithm is due to Kernighan and Lin [KL70] [Chr96].

The algorithm divides the vertices into two groups and then looks for sequences of swaps

of vertices that reduce the number of cut edges. Within this sequence of swaps, it is

possible that a swap could be made that increases the number of cut edges, but leads to

later swaps that produce a net improvement in the number of cut edges. This algorithm

can lead to a locally optimal solution.

Kernighan and Lin proposed a way of getting away from a locally optimal solution.

Assume that the original graph has been partitioned into two groups: A and B. Within

both groups, recursively run the algorithm and identify groups A1 and A2, subgroups of

A, and B1 and B2, subgroups of B. The algorithm can then be run again using some

combination of subgroups as an initial partition.

13

2.2.2 Geometric Mesh Partition

The method of Miller, Teng, Thurston, and Vavasisi [GMT95], [MTTV93] differs from the

other non-striping algorithms in that this algorithm doesn’t use the adjacency information

of a graph to partition the graph. Instead this algorithm partitions the vertices of a graph

using only the physical location of vertices as the deciding factor. When describing the

algorithm, the ideas will be presented using two- and three-dimensional terms, but the

methodology is applicable for higher dimensions.

Geometric Mesh Partition Algorithm (Additional discussion about individual

steps follows the description of the algorithm.)

Input - The (x,y) coordinates for every vertex in the graph.

Output - The vertices in the original graph are divided into three sets:A,B, and C,

where A and B don’t share an edge and C is a set that when removed disconnects all

paths from A to B.

Algorithm

1. Map the points from R2 onto a unit sphere in R3.

2. Determine the centerpoint (defined below) for the points in R3.

3. Rotate and scale the points so that the centerpoint is at the

the origin.

4. Find a cutting plane that goes through the centerpoint.

5. Project down to R2 the points and cutting plane from step 4

6. Determine sets A, B, and C

For step 1, for a given (x,y) pair in R2, this point is mapped to (x,y,0) in R3. The cor-

responding point on the unit sphere is calculated by projecting along the line determined

by (x,y,0) and (0,0,1).

14

For step 2, the centerpoint is defined to be a point such that every plane through that

point divides the points into approximately equally sized groups. The authors [GMT95]

state that every set of points contains a centerpoint and the centerpoint can be found

using linear programming.

For step 4, the cutting plane defines a “Great Circle” that lies on the the sphere and

goes through the origin.

For step 5, the authors use several factors for partitioning the vertices into the three

groups. In the actual inplementation, the vertices are divided into only groups A and B,

thus creating an edge-separating set.

Although the algorithm doesn’t use any edge information, the authors [GMT95] apply

the methodology in a way so as to glean some edge information. Instead of calculating

the centerpoint, the authors calculate a “pseudo-centerpoint”. This is done by using a

sample of points to calculate a “centerpoint”. For this calculated centerpoint, several

cutting planes are generated. The cutting plane that performs the best is the one that

is used.

2.2.3 Recursive Spectral Bisection

Recursive spectral bisection describes a class of algorithms that follow the general form

[ST93]:

Function Recursive Bisection

Input - A graph G = (V,E) and p = number of groups (p = 2n)

15

1. Find an “optimal” bisection, G′ and G′′ of G.

2. While (| G′ | > |V|/p)

Perform Recursive Bisection(G′)

Perform Recursive Bisection(G′′)

3. Return the subgraphs G1,G2, ... , Gp

Finding an “Optimal” Partition: Spectral Bisection

Assume that the graph G = (V,E) is to be partitioned. For every vertex vi in V

create a new variable xi that may assume the values 1, -1. If xi is not equal to xj, then

vi is not in the same group as vj. The problem of finding the minumum number of cut

edges for partitioning a graph into two parts can be modeled as the following quadratic

program [HL95b], [Chr96].

min 1
4

∑

(i,j)∈E (xi - xj)
2

s.t.















∑|V |
i=1 xi = 0 (1)

xi ∈ {−1, 1} i = 1..|V | (2)

Define L, the Laplacian matrix of the graph, to be:

Li,j =































−1 if (i, j) ∈ E

di if i = j

0 otherwise,

where di is the degree of of vertex vi. The matrix L = D - A, where D is a matrix

such that Dii equals the degree of vi and all other entries are zero, and A is the adjacency

matrix of G. The matrices D, A and the previous objective function are related as follows:

16

∑

(i,j)∈E (xi - xj)
2 =

∑

(i,j)∈E(x2
i + x2

j) - 2
∑

(i,j)∈E xixj

=
∑

(i,j)∈E 2 - x′Ax

= x′Dx - x′Ax

= x′Lx.

The original quadratic problem then becomes:

min 1
4

x′Lx

s.t.















x′e = 0 (1)

xi ∈ {−1, 1} i = 1..|V | (2)

This problem is NP-Complete.

In the previous problem, constraint (2) can be relaxed producing a new problem

that has a known solution. In the previous formulation, if constraint (2) is replaced by

the constraint x′x = n, the optimal solution for the relaxed problem is x =
√

n(second

normalized eigenvector of L) (this result was stated in [HL95b]). This produces x ∈ Rn,

but the components of x may not be feasible for the original quadratic problem.

To generate a feasible point, first, the median of the components of x is calculated.

For each component of x, if xi is greater than the median, then the corresponding vertex

is assigned to group 1; otherwise, the vertex is assigned to group 2. Some evening out of

the groups may be required, to obtain partitions of equal size.

2.2.4 METIS

METIS is the name of the software implementation of the methodology of Karypis and

Kumar [KK95c], [KK95a], [KK95d]. A high-level view of the methodology is:

17

1. Collapse the original graph down to a smaller graph through

a series of matchings. Matched vertices are combined as a single

vertex as are the corresponding set of edges that were incident

to the vertices.

2. Partition the reduced graph (for example, by spectral bisection).

3. Expand out the smaller graph, while maintaining the general

partition created in step 2.

After step 1, one vertex may represent several vertices. If vertex v is is one of the

vertices in the final collapsed graph and is assigned to group 1, then all of the vertices

that v represents are initially assigned to group 1. The speed of this algorithm comes

from the fact that size of the graph that is actually partitioned may be substanially

smaller than the original graph. At each phase of expansion, reassignment of vertices

may take place.

In the actual implementation of METIS, the authors implement four different algo-

rithms for partitioning a graph. Three of the algorithms are based on graph growing

heuristics. The other algorithm is based on spectral bisection. The authors evaluate the

performance of the different algorithms in [KK95b].

2.3 Stripe-Based algorithms

For a given grid, a stripe-based algorithm partitions the rows into groups of consecutive

rows (stripes) and then stripe-wise assigns the cells, within the stripes, to components.

Figure 4 presents a graphical description of this process in which cells are consecutively

assigned (top-to-bottom in each column) until a component has the correct number of

cells.

18

 Original Grid

Striping
 the
 grid

Assigning cells within a stripe

Figure 4: Stripe-based assignment of a grid.

19

An optimal component is defined to be a component whose perimeter equals the

minimum perimeter required to enclosed the corresponding number of cells (area). Yackel

and Meyer showed that for every given number of cells a rectangle, with possibly at most

two fringe columns (columns that contain fewer assigned cells than all the other columns,

except perhaps for another fringe column), is an optimal component. A stripe height is

said to be optimal if optimal components can be assigned within the stripes.

For optimal or near-optimal stripe heights, stripe-based fill procedures produce opti-

mal or near-optimal components (in most cases, more on this later). This follows from

the fact that the stripes provide an easy way to assign rectangularly-shaped components.

This discovery of organizing the assignments into stripes came about from the use of

genetic algorithms for generating feasible solutions.

2.3.1 Stripe Assignments based on Genetic Algorithms

Both the methodology of Yackel-Meyer and of Christou-Meyer use a genetic-algorithm

heuristics [Gol89] [Hol92] [Mic94] for generating feasible solutions. Genetic algorithms

create a new set of feasible solutions from a parent set. The interactions of combining

parts of two feasible solutions (crossover) or changing part of a feasible solution (muta-

tion) are used to generate new feasible solutions. Both Yackel-Meyer and Christou-Meyer

then add in a decision-making policy for throwing out certain feasible solutions (survival

policies).

The major difference in the methodologies of Yackel-Meyer and Christou-Meyer is

how the elements of the feasible set of solutions are discovered. For Yackel-Meyer, there

is a single processor (host) that maintains the current set of feasible solutions. The host

node distributes work to the “node” processors. For Christou-Meyer, each node works

20

on its own set of feasible solutions. The nodes interact when the processor broadcasts a

set of feasible solutions to the other processors and then receives sets of solutions from

the other processors.

2.3.2 Yackel-Meyer Algorithm

Yackel and Meyer implemented a parallel version of a genetic algorithm. In this model,

there are two types of processors: host and node. The host processor coordinates ac-

tivities by sending out pairs of feasible solutions to node processors. A node processes

the feasible solutions via crossover to produce a pair of offspring. The offspring are then

mutated. A pair of solutions (selected from the two parents and two offspring) is then

passed back to the host processor. The process continues until stopped by a limit on the

number of iterations or if the lower bound is hit. The user is not guaranteed an optimal

solution, unless a feasible solution that matches the lower bound is found.

2.3.3 Christou-Meyer Algorithm

Christou and Meyer used several different ways for generating feasible solutions (a ran-

domized method for generating stripe heights and methods based on genetic algorithms).

The results generated using a distributed genetic algorithm produced the best overall re-

sults and will be discussed here.

Christou and Meyer eliminate the need for a host processor. From a very high-

level point of view, Christou-Meyer starts up a certain number of sibling processes each

of which generates a set of feasible solutions. At each node, certain members of the

feasible set are mated (and on certain individuals other genetic operations are applied).

Periodically, each process selects individuals to share with other processes and receives

21

individuals from other processes. This loop continues for some specified amount of time.

Christou and Meyer showed that any grid with enough rows can be partitioned into

stripes that allow the assignment of components that are of optimal or near-optimal

perimeter, as defined by Yackel and Meyer (see lemma 3 in [Chr96]). It follows that for

a large group of grid graphs, the vast majority of components will have perimeters at or

near optimal value. Figure 5 illustrates this point.

In figure 5, those components labeled I (I is for interior-to-stripe) are at or near

optimal perimeter. The unmarked components may be far from optimal. If the growth

in the perimeters for the unmarked components can be controlled, the total perimeter

for the grid will be very good. Intuitively, it seems reasonable that this striping method-

ology should produce very good results. Christou and Meyer have proven, under mild

assumption, that stripe-based solutions asymptotically approach (from the standpoint of

relative error) the optimal perimeter.

In particular, Christou and Meyer showed under mild assumptions (for MxN rectan-

gular grids partitioned among P components) that the relative difference between the

observed performance and the optimal partition (defined as δ below) is bounded from

above as follows:

δ < 1
A0.5

p

+ 1
Ap

.

As Ap, the number of cells assigned to component p, tends to infinity(as also does the

number of cells in the grid), then the relative difference goes to zero. For more details,

see Chapter 3 (Theorem 8) in this dissertation or Chapter 2 in [Chr96].

22

I

I I I

I I I I I

I I I I

I I

I

Figure 5: Interior-to-stripe (I) components at or near optimal perimeter

23

2.3.4 Knapsack Algorithm

Garey and Johnson in [GJ79] discuss the Knapsack problem and show it is an NP-

Complete problem. The following definition was taken from page 134 of [GJ79]:

Given : Given a finite set of items, U, such that each u ∈ U has an associated size

s(u) ∈ Z+ and value v(u) ∈ Z+ and a positive knapsack capacity B ≥ max {s(u): u ∈

U}.

Solve

max
∑

u∈U v(u)

∑

u∈U s(u) ≤ B

Martin [Mar98] converts the stripe partitioning problem into a slight variant of the

Knapsack problem. In this variant formulation, the sum of the weights must equal B

(Martin also solves the minimization version of this problem.). This alternate problem

is also NP-Hard, since the original Knapsack problem can be reduced to this modified

Knapsack Problem by adding a slack variable.

Martin used software [MT90] that required that the problem be in standard form

(i.e. the constraint being an inequality). For a restricted set of inputs, Martin showed

that the solution of the problem in standard form satisfied the inequality constraint as

an equality. Because of this restriction on the inputs, we do not know if the problem

that Martin solved is NP-Hard.

For Martin’s algorithm only rectangular grids are considered. Only stripe heights

corresponding to an integral number of components are allowed. (That is, components

are not allowed to overflow from one stripe into the next.) Because of these assumptions,

the author is able to take advantage of certain features of the original graph. For a more

detailed discussion of the material that follows see Chapter 5.

24

For each valid stripe height, there is a unique perimeter (the objective coefficients

in the previous narrative) determined by adding the perimeters of the components as-

sociated with the height (the s(u)’s in the previous narrative). Since the domain is a

rectangle, for a given stripe height, no matter where these rows appear within the grid,

the same number of cells will occur in the stripe. It follows that for a feasible solution,

the order of the stripe heights doesn’t matter and the number of feasible solutions in-

volves counting combinations, rather than permutations. However, the total number of

solutions is at least super polynomial, as will be proved in Chapter 5.

2.3.5 The Shortest-Path/Dynamic-Programming Approach

Both methods are based on the fact that, under certain assumptions, two row indices

of the grid and a direction of assignment can be used to divide the original problem

into two problems that are identical in nature to the original problem, but which can be

solved independently of one another. (These two smaller problems will be referred to as

subproblems throughout the remainder of this dissertation) The ability to divide the

original problem into similar, but independent problems, is the single most important

tool in the discovery of polynomial-time algorithms for determining the best stripe-based

solution.

Although there are two algorithms presented, the only real difference between the

methods is how the the data for subproblems are organized.

25

2.4 Improved Stripe Assignment

Donaldson and Meyer [Don97] show that under certain circumstances a modified version

of the Christou-Meyer fill produces a locally optimal solution for a rectangular grid. Don-

aldson and Meyer also present two algorithms that can produce locally-optimal solutions

for a larger class of grids.

Initial experimentation using a slight variation of one of the locally-optimal algorithms

(the Improved U-turn Algorithm, see Chapter 3) did not produce very good results. As a

result, research into different assigning procedures was conducted that produced a set of

nine different assignment methods for the cells that are assigned to components appearing

in more than one stripe. This multi-heuristic approach produced very good results.

2.5 Summary

When looking at a stripe-based method two areas for concern appear. Assignments of

components that cross stripe boundaries can add significantly to the total perimeter of

the domain. Poorly chosen stripe-heights can also drastically affect the total perimeter.

Methods that address these two issues are the two main areas of focus for the remainder

of this dissertation.

Throughout the remainder of this dissertation, references will be made to the work

of Yackel-Meyer and Christou-Meyer. Rather than write out the full names, when the

work of Yackel and Meyer is being referred to, YM will be used. In the case of Christou

and Meyer, CM will be used.

26

Chapter 3

Improved Stripe Assignment

3.1 Introduction

In earlier research, Yackel-Meyer (YM) and Christou-Meyer (CM) were able to produce

very good results using striping techniques. Nothing was known about the possibilities

for improvement via swapping (although, in their implementation, CM used a post-

processing swap phase). In particular, it was not known under what conditions when

pairs of cells could have their assignments swapped with the result being an improved

total perimeter.

The first result of this research shows that under certain conditions (including rect-

angular origin domain) CM does produce a locally optimal solution (i.e., an assignment

that can’t be improved by reassigning two cells). Local optimality is clearly desirable

from a theoretical viewpoint. It is also computationally desirable since it eliminates the

need for a post-processing swap phase. It will also be shown that CM can also make

assignments that are far from locally optimal, if certain conditions are not satisfied.

We now discuss the Basic U-turn algorithm, and show that it makes assignments

that are guaranteed to be locally optimal for all cases of rectangular grids. This method

can be extended to a more elaborate algorithm, the Improved U-turn algorithm. The Im-

proved U-turn algorithm will be briefly discussed but the proof of its local optimality

will only be sketched.

27

The concept of a U-turn region (to be defined later) arose initially as we considered the

area within an assignment where swap improvements could be made. As mentioned in the

previous chapter, YM and CM make assignments such that the majority of components

have optimal or near-optimal perimeters. However, large deviations from optimality

occurred when trying to assign components at the boundary of the domain. The research

presented in this chapter is designed to reduce the effects of these boundary components.

Two factors were examined to reduce the ill effects of a poor assignment within the

U-turn region. The first was an improvement of the CM method called the Basic U-

turn algorithm. The second factor involved increasing the size of the U-turn region and

developing assignment patterns that would be better suited to handle certain situations

(the Improved U-turn algorithm). The reader should notice that by expanding the U-

turn region, components that would have been assigned in near-optimal patterns may

no longer be, so a balance between the size of the U-turn region and the number of

well-shaped components had to be achieved.

Local optimality of a fill procedure is proved only in the case of rectangular domains.

However, the ideas developed in conjunction with the proof are useful in terms of devel-

oping good fill procedures for more general domains as we will see in Chapter 6.

The U-turn region also provided a completely unexpected result. This region in the

grid provided a convenient method of dividing the grid into independent parts. This

ability to divide the grid into independent parts is the foundation upon which the second

major breakthrough of the research is built. This led to the discovery of a polynomial

algorithm that produces the best stripe-based solution for a given fill procedure.

28

3.2 Terms and Definitions

In this chapter, only rectangular grids will be considered. Examples of a rectangular

and a non-rectangular grid are given in figure 6.

Rectangular Grid

Non-rectangular Grid

Figure 6: A rectangular and a non-rectangular grid

Definition - A stripe is defined to be any collection of consecutive rows within a

grid.

Definition - A component is any collection of cells assigned to the same group (or

processor). Figure 7 shows a component assigned to group A.

29

Definition - The process of assigning the cells within a stripe is called stripe as-

signment.

Definition - For this discussion, a solution is said to be locally optimal if the overall

perimeter can’t be reduced by swapping the assignments for two cells.

Definition - Swapping the assignments for two cells will be referred to as a two-cell

swap. (We focus on the balanced case in which components have equal area. In this

case the smallest change that can produce another feasible solution is a two-cell swap).

Figure 7 will be used to demonstrate several definitions.

In figure 7, we assume that the cells shown represent all the cells assigned to compo-

nent A and categorize the cells according to their contribution to the total perimeter of

the component.

Definition - An interior cell is assigned to the same component as all four of its

neighbors. In figure 7, interior cells are marked as 0.

Definition - An edge cell contributes one to the perimeter. These cells are marked

with a 1 in figure 7.

Definition - A vertex cell is a corner cell in a component or a cell with exactly two

neighbors assigned to its component. These cells are marked with 2’s. Type 2 cells may

also occur in “peninsulas”. These are marked with 2∗ in figure 7.

Definition - A spike cell is a cell that has only a single neighbor assigned to the

same processor. This cell is marked with a 3.

Definition - An island cell is assigned to a different processor than all of its neigh-

bors. An example of this is marked with a 4. (In the constructions to follow, island cells

are not generated)

Definition - In figure 7 those cells marked as 2∗ and 3∗ make up a peninsula. A

peninsula is a connected collection of cells with the property that all cells in it are type-2

30

A A A A A A

A A A A

A A A A

A A A A

A

A

2 1 1 1 3 4

1 0 0 1

1 0 0 1

1 1 1 2

2*

3*

Figure 7: Classification of cell assignments by perimeter contribution

31

or 3.

Definition - Boundary cells are those cells that are of types 1 through 3

Definition - Semi-perimeter equals the sum of the number of rows and columns

occupied by a component.

Definition - The enclosing frame (also known as the rectangular hull or enclos-

ing rectangle) for a connected component is the minimum sized rectangle that encloses

the component.

Definition - If a component is not a rectangle, but can be represented as the union

of a rectangle plus additional incomplete “boundary” rows or columns, then the cells in

these “boundary” rows or columns are fringe cells.

Definition - A component is said to be slice convex if for any two cells within a

row or column of a component, all the cells within the row or column between these two

cells are assigned to the component.

Definition - For a component C, a gap occurs within a column (or row) if there

are two cells, a and b, assigned to C within that column (or row), and one or more cells

between a and b that are not assigned to C (between a and b there are no other cells

assigned to C). Figure 10 shows examples of interior and boundary gaps.

Definition - A component is said to be top-to-bottom column-wise assigned if, with

the rows numbered top to bottom and the columns numbered left to right, within column

j, cell[i][j] is assigned before cell[i+1][j] and cells in column j will be assigned before cells

in column j-1 (when assigning right to left) or j+1 (when assigning left to right).

Definition - To row-wise assign a component is to assign all cells in row i, either

left to right or right to left, within certain columns, before assigning any cells in row i+1.

32

3.3 Local Optimality of the CM Fill Procedure

In figure 8, we have two locally optimal solutions. The assignment on the right reflects

the simplest columnwise fill procedure for a single stripe that we will consider in part 2.

For any component, the perimeter cannot be reduced by a two-cell swap, without making

another processor’s perimeter worse by a larger or equal amount.

1 1 1 1 1 1 2 3 4 4
2 2 2 2 1 1 2 3 4 4
3 3 3 3 1 2 2 3 3 4
4 4 4 4 1 2 2 3 3 4

Figure 8: Locally optimal assignments

Lemma 3.1 The perimeter for a connected component is greater than or equal to the

perimeter of the enclosing frame. If the component is slice convex and connected, then

the two perimeters are equal. Perimeters can be calculated using the following formulas;

where the second formula applies even if the component is not connected.

(1) Perimeter = 2 * (no. of rows + no. of cols

(slice-convex component) = 2 * semi-perimeter

(2) Perimeter = 2 * (no. of rows + no. of cols

(non-slice-convex component) + no. of gaps)

= 2*(semi-perimeter+no. of gaps)

Proof

If the component is slice convex, then there is a 1-1 and onto mapping between the

perimeter edges of the component and the edges of the enclosing frame. Figure 9 contains

an example of a slice convex and non-slice convex domain. If the enclosing frame for the

domain is broken up into unit lengths, where each length is considered an element, then

there is an obvious 1-1 and onto mapping from this set of elements and the perimeter

33

edges of the slice-convex domain. The mapping would project each edge of the grid to the

corresponding edge of the enclosing rectangle (see edges marked e,f,g, and h in figure 9).

For the case of a non-slice convex component, the mapping is no longer an isomor-

phism, because the number of perimeter edges for the domain is greater than the number

of elements in the set of unit lengths for the enclosing rectangle; but the mapping from

the edges of the enclosing frame to the perimeter edges of the component is 1-1.

Slice-convex domain

Non-slice-convex domain

Enclosing
rectangle

1 2 3 4 5 6 7 8 9 10 11

12

13

14

15

16

1718192021222324252627
28

29

30

31

32

c d
a b

e f

g

 h

Figure 9: No elements in the enclosing frame map to a,b,c, and d

A non-slice convex component has gaps within rows or columns which contribute to

the total perimeter. If the gap is along the boundary of the grid (that is, the gap occurs

in a row or column but not both), then two additional edges are added to the set of

perimeter edges of the component. If the gap is in the interior of the grid, then the

gap occurs in both a row an column and four additional edges are added to the set of

34

perimeter edges (see figure 10) (The gap count in Lemma 3.1 includes both row and

column gaps.).

2

A A A A A A A A

A A A A A A A

A A A A A A A A

 Perimeter of enclosing rectangle = 2*(4+8) = 24

A A A A A A A

Perimeter = 2*(4+8) + 4 + 2 = 30

Figure 10: Perimeter for component with interior gap and boundary gap

Lemma 3.2 Adding a cell to a slice-convex component cannot decrease the perimeter.

Proof

Follows from Lemma 3.1, formulas 1 and 2, since semi-perimeter cannot decrease.

2

Lemma 3.3 The perimeter for a rectangular component can not be reduce by a two-cell

swap.

Proof (sketch) - Case 1, the component is assigned to either a single column or row

(see any of the components in the lefthand picture in figure 8). Moving a corner cell will

reduce the number of rows or columns by one, but will increase the number of columns

or rows by one. There is no improvement. Moving an interior cell increases the overall

perimeter.

35

Case 2 - The component appears in multiple rows and columns. Moving a cell will

not reduce the number of rows or columns, because each row and column contained more

than one cell. In fact, wherever the new assignment is made at least one column or row

will be added to the size of the enclosing frame.

2

In figure 11, we have a non-locally-optimal solution. Here the boldfaced 3 and 4 can

be swapped and the overall perimeter will be reduced. In this case, moving the 3 reduces

the number of columns by one. Moving the 4 to 3’s old position doesn’t make worse 4’s

perimeter.

Lemma 3.4 Assuming slice convexity and no island cells, the only swap that can improve

the total perimeter is one in which a spike cell is moved to a corner destination (one with

vertical and horizontal neighbors in the same component).

Proof -

Moving a type-3 cell to a corner position will reduce semi-perimeter because its origin

was the only cell in its row or column and its destination is a position for which the

corresponding row and column are already included in the semi-perimeter.

Type-k cells, k = 2,1, or 0, either

1) have vertical and horizontal neighbors in their component, so corresponding loca-

tion swaps cannot reduce semi-perimeter; or

2) lie on a peninsula, in which case a swap produces a gap, and therefore, by the second

formula in lemma 3.1, this gap compensates for the row or column count decrement and

the perimeter cannot decrease.

2

36

1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
1 1 3 3 2 2

4 4 4 3 3 3
4 4 4 3 3 3
4 4 4 4 3 3

Figure 11: A non-locally optimal assignment

In the original CM fill method, the actual columns were filled from the top. We will

show that a modified CM fill method will produce a locally optimal solution if certain

conditions are met, as indicated in the following theorem:

Theorem 3.1 Let the following assumptions be satisfied:

1. Graph partitioned using a stripe decomposition method.

2. Filling by column, alternate (down and up) fill directions.

(snake-fill procedure).

3. An integral number of processors is contained within each stripe.

4. Component area is ≥ 4.

5. 3
4

* component area ≥ the largest stripe height

Then the solution generated is locally optimal.

(In the discussion to follow, A will be used to denote the area or the number of cells

assigned to a component.)

The first three conditions are needed for defining the stripe assignment. The last two

are needed for technical reasons. If the area to be assigned to a component is 1, 2 or 3,

then any connected component is of minimum perimeter, so the assignments produced

by the fill procedure are actually optimal. So we only consider areas greater than or

equal to 4. As a consequence of assumption 5 we will show that there will never be spike

cells in consecutive columns.

37

(2/3 - e)s

(2/3 + e)s

(1/3-e)s

e*s

s

1 2 3 4

C C

D

D

D

Figure 12: Spike cells in non-consecutive columns

In figure 12 we have two components, C and D, with area equal to 4/3 of the stripe

height (The proof is analogous if A > 4/3*stripe height). If C is to have a spike in the

column labelled 2, then the number of C cells in column 2 must be greater than the

number of C cells in column 1. Thus, we assume that C contains (2/3 - ε)*s cells in

column 1 and (2/3 + ε)*s cells in column 2. The remainder of column 2 contains (1/3 -

ε)*s cells of D. Since D is also assigned an area equal to 4/3*s, there are s+ ε remaining

cells of D to be assigned. That means that all of the column labelled 3 and part of 4 will

contain D’s. Therefore, D cannot have a spike cell in column 3, and D and C cannot have

spike cells in consecutive columns (This prevents the following from happening: suppose

s > 3/4*A and as a result, there are no D cells in column 4, then the bottom D cell in

column 3 could be swapped with the top C cell in column 2, and the total perimeter

would be reduced.)

Observations

Fact 3.1 Assumption 2 guarantees that the cells for a given processor are connected.

This follows from the fact that the first cell assigned in the next column will be adjacent

to the last assigned cell in the current column.

38

Fact 3.2 The assignment is slice convex. This follows from the fill procedure. Within

column, the cells are assigned consecutively. Columns are filled from left to right, and

this implies that the row assignments are slice convex, since clearly this fill can produce

no gaps in a row.

Fact 3.3 It follows from Fact 3.1 and assumption 5 that no component will contain an

island cell.

Overview of Proof of Theorem 3.1 - The proof will be broken into several parts.

First, certain cells will be eliminated as possible candidates for swapping. Across-stripe

swaps will be shown to not improve the overall perimeter. Lastly, it will be shown that

no within-stripe swap will improve the overall perimeter.

In all cases, we will show that either:

1. The component has at least two cells within every row or column, which

means swapping will not reduce the number of rows or columns of

the component; or

2. The component has a single cell appearing in a row or column, in which

case swapping that cell assignment would increase the perimeter of the

other component.

B B* A*
... B B* A* ...

B* A* A
.
.
.

B* A* A

Figure 13: Boundary cells: B∗’s and A∗’s

The following lemma is useful.

39

Lemma 3.5 No swaps between non-adjacent components can improve the overall perime-

ter.

Proof - Follows from lemma 3.4..

2

This lemma implies that the only cells that could possibly produce a better solution

are those cells along the boundary between two adjacent areas.

Lemma 3.6 A swap across a stripe cannot improve the combined perimeter for the com-

ponents involved.

Proof -

Such a swap cannot have a corner cell as a destination, by lemma 3.4 there can be no

improving swap.

2

This lemma implies that only swaps of cells contained within the same stripe need be

considered.

It will now be shown that there does not exist a within-stripe swap that improves

the overall perimeter. If a swap were to improve the overall perimeter, for at least one of

the components the perimeter would have to decrease and for the other component the

perimeter would have to remain the same or decrease. (This follows from the fact for a

given component that the only increments for change in size of perimeter are a decrease

by 2, no change, and an increase by 2 or 4). Denote a component for which the size of

the perimeter decreases as “I” (for improving). A component for which the size of the

perimeter is at worst unchanged will be denoted by “N” (non-increasing).

In order to prove that there does not exist a within-stripe swap that reduces the overall

perimeter, it will be shown that there does not exist a pair of adjacent components one

40

of which is a N and the other is an I (called an I-N pair). Only adjacent regions need by

considered by lemma 3.5

Because of the hypothesis that stripe height is less than or equal to 0.75*component

area, a component cannot fit into a single column. Therefore, there are two cases that

must be examined:

1. I intersects at least three columns.

2. I intersects exactly two columns.

Case 1 - A three-column I component

I I N

? I N

. N

. N

. N

? I I

1 2 3 column labels

(Note: The ?’s indicate that the cell may or may not contain an I.)

Also assume that an N component appears in column labelled 3. Since there can be

no spikes in column labelled 2 because every cell in the column has at least two neighbors,

the only swaps that would reduce the size of the perimeter of I are those that move a

spike cell from column 1 or 3 to column 3 or 1. Assuming that a spike appears in column

3, then the swap to reduce I would not involve the N component. Therefore, this pair of

components can not be an I-N pair.

For the case that I intersects more than three columns the argument is analogous (the

only change is the number of columns completely assigned to I’s).

41

Case 2 - I is a two-column component. (this is relevant when 4
3
*stripe height ≤ A ≤

2 * stripe height).

We have the following case:

I I
I I
H I
.
. ?

I

1 2 3 column labels

Figure 14: I as a two-column component.

If A < 2*stripe height, by Lemma 3.4, if I’s perimeter is to be reduced, then the spike

cell must be moved to a corner position. In figure 14, that corner position is marked

with an H. Whatever component was originally assigned in position H does not appear

in column labelled 3. As a consequence of assumption 4, we know that cell H is not a

spike cell. So to swap I to position H will reduce I’s perimeter, but will also increase the

other component’s perimeter by an equal amount. Therefore, no overall improvement

occurs.

Again, in the previous argument, if the fringe is on the other side, the argument still

holds.

If A equals 2*stripe height, then all the components are rectangles and are at a local

minimum.

All possible configurations that the I component could have assumed have now been

checked, and no I-N improving swap is possible.

2

The left grid in figure 8 illustrates a local minimum of poor quality. In that example,

each component has a perimeter of 10, whereas an optimal solution uses 2x2 components

42

with perimeter equal to eight each.

However, if the CM method is applied with properly chosen stripe heights, good

solutions are obtained. If the grid is MxN and the grid is to be broken into P partitions,

then we have the following theorem based on constructing a feasible solution via a striping

approach of CM [CM95].

Theorem 8 (Christou-Meyer) - Assuming P divides MN and that P ≥ max (M,N)

the minimum perimeter problem MP (M,N,P) has a feasible solution whose relative

distance δ from the lower bound satisfies:

δ < 1
A0.5

p

+ 1
Ap

Thus the error bound δ converges to zero as Ap (the area of each processor) tends to

infinity.

3.4 Overflow Assignments

All the previous results are for rectangular grids that have been partitioned into stripes

that can be assigned to an integral number of components. How does the CM algorithm

handle the case that an integral number of components can’t be assigned within a stripe?

When a component overflows from one stripe to the next, CM row-wise assigns the

overflow cells. This can lead to the creation of peninsulas. Figure 15 shows two peninsula

examples.

Component G has a horizontal peninsula, and component F has a vertical peninsula.

Obviously, row-assigning the overflow cells does not always produce good assignments (to

improve the assignments the reader can think of “folding in” the peninsula like a blade

in a pocket knife). Column-assigning the cells can also produce peninsulas. We may now

formally define the region in which these overflow assignments occur.

43

A B D E F

FGH

 peninsula

 peninsula

Figure 15: A horizontal and a vertical peninsula

Definition - Those cells at the end of stripe i that are assigned to components

appearing in two stripes make up the U-turn region for stripe i.

In figure 15, those cells in the upper stripe assigned to F make up the U-turn region

in this example.

In the next section the Basic U-turn algorithm will be presented. This eliminates

certain peninsulas via a series of two-cell swaps and and reduces in the overall perimeter.

The result is a local optimum.

3.5 The Basic U-turn Algorithm

Assumptions/Notation

For a given stripe i, an integral number of processors cannot be assigned to cells

within that stripe. The last processor that is completely assigned within this stripe is N.

44

In the following algorithm, the direction of assignment is left to right; the arguments

can be suitably modified if the direction of assignment is right to left. All columns are

filled top-down (This is not a source of difficulty with respect to local optimum because

we assume stripe height < A/4.).

Overview of Algorithm

This algorithm can be broken into two parts. The first part is the initial columnwise

assignment of cells in the grid. The second part searchs the grid for pairwise swaps

that will reduce the overall perimeter. After all such swaps are identified and made, the

result is a locally optimal solution. In figure 16 assignments are made columnwise top to

bottom. The arrows indicate the direction of fill. Figures 17 and 18 show the kinds of

swaps that are made as needed (the reader may have noticed that an across-stripe swap

is a “vertical” slider swap).

Algorithm

Cells are assigned columnwise, top to bottom, unless indicated as exceptions below:

Step 1 - Assigning processor N (see figure 19), the non-overflow case.

while (the number of unassigned cells >= area)

{

- assign the cells for the processor columnwise top

to bottom.

}

Now assume that in figure 19, the unassigned area between columns j and s, inclusive,

in stripe i, is not large enough to accommodate another complete component with A cells

and thus is designated as the U-turn region.

The next processor to be assigned will overflow into the next stripe.

45

initial fill →

↓
overflow

← fill

↓
overflow

fill →

↓
. overflow
.
.

→ fill

↓
overflow

fill ←

Figure 16: Flow of assignments

46

I I I I I I N N N N N N N
I I I I I I N N N N N N N

 Before

I I I I I I N N N N N N N
I I I I I I N N N N N N N

O I I I I I I N N N N N N N

After

First swap
Second swap

O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O

I I I I I I N N N N N N N O

Figure 17: An example of a pair of slider swaps

47

N N N N N N N N O

N N N N N N N O O
N N N N N N N O O

O O O
O O
O O

Before

Swap

N N N N N N N O O
N N N N N N N O O

O O
O O

N N N N N N N O O

N O O

After

Figure 18: An example of an across-stripe swap

N N N
Stripe i N N N

↓
. N
. -
. -

N N -

. j s

Figure 19: Assigning non-overflow component N

48

Step 2 - Assigning component O (see figure 20), the overflow case.

N N N O O O
Stripe i N N N O O

↓ .
. N .
. O O
. O

N N O O

column labels s

- - - - - - O O
Stripe i+1 - - - - - - ↓ ↓

Figure 20: Assigning overflow component O

Assign all the remaining cells in stripe i to O.

while (there remain O’s to assign)

{

Assign the O’s top to bottom in stripe i+1.

}

if (column s, in both stripes, is not completely assigned

to O’s)

{ // Balance heights in column s-1 and s via reducing swaps

// (see figure 20).

for the stripe in which the O’s don’t completely fill

column s

while (height of O’s in column s-1) + 1 <

(height of O’s in column s)

49

{

swap the spike O with the lowest (highest) N (N’, if the

peninsula is in stripe i+1) in column s - 1.

}

// Taking care of the extra cell.

if (height of O’s in column s > height of O’s in column s-1)

{

if (stripe == i)

{

assign this extra cell in the last row of stripe i in

column s-2.

}

else

{

assign this extra cell in the first row of stripe i+1

in column s-2.

}

}

}

(Note: In figure 21, because of assumption 1 (stated below), the O in column s-2 can

never be a spike. See lemma 3.9 for details.)

Step 3 - Making reducing swaps.

At this point, the grid has been completely assigned. We refer to this assignment as

the initial assignment. For any pair of stripes, there can be at most one component

50

N N N N N N N N N N
N N N N O N N N N N
N N N N N N N

Stripe i N N . N N N O O
N N . N N N O O
N N . N N N O O

Z N N N N O Z N N O O O
s s

Figure 21: Removing a peninsula via swaps

that appears in both stripes. There are two types of swaps that can improve the total

perimeter. The first is an across-stripe swap. The second is a slider multi-swap (referred

to below as simply a slider). A slider occurs when a component from stripe i+1 (i) has

a single cell in stripe i (i+1). Multi-swaps may involve several two-cell swaps. After

performing these swaps in Step 3, the assignment is locally optimal.

Step 3 - Making reducing swaps.

i = 1;

while (i <= number of stripes - 1)

{

Step 4.1 - Check for across-stripe swap for components adjacent to overflow com-

ponents. Components assigned immediately after an O component are designated N’ For

the following block of code, refer to figures 22 and and figure 23.

N N N N N N O N N N N N O O
N N N N N O O N N N N N O O
N N N N N O O N N N N N O O
N N N N N O O N N N N N O O

N’ N’ N’ O O O O N’ N’ N’ N O O O
N’ N’ N’ N’ O O O N’ N’ N’ N’ O O O

Figure 22: An N-O across-stripe swap

51

N N N N O O O N N N N O O O
N N N O O O O N N N N’ O O O

N’ N’ N’ N’ N’ O O N’ N’ N’ N’ N’ O O
I N’ N’ N’ N’ O O I N’ N’ N’ N’ O O
I N’ N’ N’ N’ O O I N’ N’ N’ N’ O O
I N’ N’ N’ N’ N’ O I N’ N’ N’ N’ O O

m m

Figure 23: A O-N’ across-stripe swap

if (O has a side spike in stripe i(i+1)) &&

(O’s spike falls within the columns containing N) &&

(N(N’) has a rightside spike in stripe i+1(i))

{

- swap the two spikes.

}

At this point, N,O or N’ could have cells in both stripe i and i+1, but this is not true

for any other component appearing in either stripe.

Observe that across-stripe swaps for O result in full height rectangles in stripes i and

i+1 (and no O spikes), because these swaps have corner cells as destinations.

The last improving swap within stripe and is called a slider swap. This definition

will be demonstrated by an example, see figures 24 and 25 (Bottom slider swaps are

also possible, and are similar, hence are not illustrated here.).

stripe i 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

stripe i+1 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 2
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3

Figure 24: Before a top slider (the bold 2 is the slider)

52

stripe i 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

stripe i+1 5 5 5 5 2 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3

Figure 25: After a two top slider swaps

Step 4.2 - Check for a slider.

Search for a slider cell within each stripe.

Slide this cell by swapping as necessary.

(Several swaps may be required.)

}// This ends the while (i <= number of stripes - 1).loop

At this point, all of the components in stripe i have locally optimal perimeters.

Proof of Local Optimality

Assumptions

1. Area for each processor > 4*(smallest stripe height).

2. Stripe height ≥ 4.

3. Each stripe has at least 5 components.

Fact 3.4 A swap is only made if it reduces the overall perimeter.

We group the components into three types. The first, Type I (I is for interior), is

a component that is not a neighbor of an overflow component in the same stripe, at

the end of the initial assignment. The second type, Type O (O is for overflow), is a

component that does extend over two stripes at the end of the initial assignment (these

53

types of components will always span two stripes). The last component, Type N (N is

for neighbor), is a component that is a within-stripe neighbor to a Type O component.

To prove local optimality, we will show that no component can be improved via a

swap. Each type of component will be considered separately. When considering possible

swap cells, only destinations with assignments that match neighbors of spike cells need be

considered, since otherwise an island cell would result. We need the following definition:

Definition - For a given U-turn region, define those cells that are assigned to type-N

components, type-O components, and any other component that is involved in a slider

swap to be the swap area for the U-turn region.

We first need to prove that processing a U-turn region doesn’t result in a configuration

that would allow a chain reaction of other swaps. In order to prove this result, we need

the following lemma and associated definition.

Definition - A component in which a slider cell was detected will be termed a slider

component.

Lemma 3.7 There is at least one component in each stripe that cannot participate in a

slider swap.

Proof (by contradiction) - A slider component can either be a N-component or

an O-component. For this argument, assume that the slider components are N’s (the

argument for other cases is similar).

Assume that N and N’ (see figure 26) are slider components. Because of the as-

sumption about each stripe containing at least five components, it follows that neither

N and N’ can extend to the halfway column of the grid. From this it also follows there

there exists a component Is that neither component can affect. Also, N (N’) can’t affect

anything to the right (left) of Is. So it follows that two slider components cannot affect

54

common components.

By a similar argument, if N and N’ appear in consecutive stripes, then N (or N’)

cannot affect N’ (or N) (see figure 26).

We have now shown that both stripes within a swap area area cannot be affected by

any component outside the swap area.

2

This previous lemma is useful in that it shows that there is a termination point to the

slider swap. We also know that a N-component could never involve another N-component

from another U-turn region.

Slider component
N

Slider component

N’

UnaffectedUnaffected I_s
by by

NN’

U-turn
region

Swap area for N’

U-turn
region

Swap area for N

Figure 26: Component Is can’t be affected by slider swaps.

N

N’

U-turn
region

U-turn
region

Figure 27: One slider component cannot affect another slider component.

55

This previous lemma is useful in that it shows that there is a termination point to the

slider swap. We also know that a N-component could never involve another N-component

from another U-turn region.

Lemma 3.8 The final total perimeter for the domain is independent of the order in

which the U-turn regions are processed.

Proof - From the previous lemma, we know that a slider swap in one region does not

change the assignment for a component in another swap area. The only other type of

swap is an across-stripe swap, which involves only O and either N or N’ component within

the U-turn region. It follows that the swap areas are mutually exclusive. Therefore, we

can process the U-turn regions in any order, without affecting the final solution.

2

Because of this lemma, we may processes the U-turn regions starting at the top of

the grid and working down, as was done in the algorithm.

It is important that the reader understand the necessity of the previous two lemmas.

The proofs that follow depend on potential spike positions being easily identified.

For the following proof, the direction of assignment is assumed to be left to right in

the stripe that could produce an overflow into the next stripe. The argument is similar

for the case of right-to-left assignment.

To prove the theorem, we must show that for each type of configuration that the

configuration cannot be improved whether or not the configuration had been involved

in some type of swap. Since the O-type configuration is where the swapping begins,

this is the configuration that will be dealt with first. First we need to state some facts

concerning slider swaps.

Facts concerning a slider swap

56

1

2

3

i

i+1

t

Swap

area

Swap

area

Swap

area

Swap

area

Swap

area

Swap

area

Figure 28: Mutually exclusive swap areas

1. The overflow for the slider component can only contain a

single cell (which forms a spike).

2. Any component that is improved as a result a slider will have

a rectangle for its final configuration.

3. A slider allows for across-component swaps.

Before we examine the O-component, we need the following lemma, which eliminates

possible spike positions.

Lemma 3.9 If the peninsula elimination procedure is applied to a component, then the

number of columns completely assigned to that component in the other stripe is at least

three.

Proof - By assumption 1, we know that component O has enough area to be assigned

to at least four columns, within one stripe. Since the peninsula elimination phase only

57

occurs if the peninsula does not occupy a full column (and of height > 1), that forces at

least three columns in the other stripe to be completely assigned to component O.

2

It follows that the odd O cell moved to column s-2 can never be a spike cell (see

figure 30).

TYPE-O COMPONENTS

The case tree for the O component is shown in figure 29.

O processed
O not processed

O not a slider
component

O is a slider
component

across-stripe swap
O is involved in an O is not involved in an

across-stripe swap
(Case O-c)(Case O-b)

(Case O-a)

(Case O-d)

Figure 29: Case tree for Type-O components

If O is processed (columns s and s-1 are assigned an equal number of O’s), then O

can’t be a slider, because there is more than one O assigned in either stripe. Also, O

can’t be involved in an across-stripe swap, because neither N nor N’ will have a spike in

column s-1 (see figures 22 and 23).

If O has not been processed, then O could be involved in either an across-stripe swap

or a slider swap (as only a slider component, since no other component can surround

58

O) but not both. If O has only a single cell in either stripe, then O could be a slider

component. If there exists an across-stripe swap, then O has more than one cell in both

stripes and cannot be a slider component.

O component is processed (Case = O-a in tree)

Here the O’s were be reassigned to columns s-1 and s-2. To prove local optimality,

we need only look at neighbors of spikes.

By lemma 3.9, the cell marked with an X is the only position that could contain

a spike (this follows from the fact that at most three columns in the upper stripe will

contain O’s and by the lemma, at least three columns in the lower stripe contain O’s,

therefore there can be no spikes in the upper stripe). By lemma 3.4, if O’s perimeter

is to be reduced, then spike X must be moved to a corner position. At most there are

two corner positions: 41 and 42 (there is only one, 41, if the O’s only appear in a single

row in stripe i). To move a 4 from either 41 or 42 would add a row to 4’s height (since

neither 41 or 42 is a spike cell), offsetting any improvement in O. Therefore, there is no

improving swap.

Direction 4 4 4 4
→ 4 4 4 4

4 4 4 4
4 4 4 4

4 4 42 O O
stripe i 4 4 41 O O O

stripe i+1 X O O O O
5 O O O O

← 5 O O O O
5 O O O O

q s

Figure 30: Spike positions when O is processed out

The reader should note that a single-column peninsula is possible. However, if O

59

completely fills the last column of a stripe, then this component is at a local minimum,

with respect to two-cell swaps (Since the height of the stripe is at least four, this O

peninsula could be folded in and reduce O’s height by at least two, while increasing N

width by 1. But this would require an initial non-improving two-cell swap, which has

been disallowed.).

Direction 2 O O O O 4 4 4 4 Y
→ 2 O O O O 4 4 4 4 O

2 O O O O 4 4 4 O O
stripe i W O O O O 4 4 4 O O

stripe i+1 5 5 5 O O X O O O O
5 5 5 O O O O O O

← 5 5 5 5 O O O O O
5 5 5 5 Z O O O O

q q+1 s q q+1 s

Figure 31: Possible spike positions for an O-component (column s is completely assigned
to O).

Direction 4 4 4 4 4 Y
4 4 4 4 O O

Stripe i 4 4 4 4 O O
4 4 4 4 O O

Stripe i + 1 X O O O O O O
O O O O O O
O O O O O O
O O O O O O

q+1 s

Figure 32: When an across-stripe swap may not be made, even though there is a spike
in column q+1. The O spike can also appear in the other stripe.

O is processed

No across-stripe swap was possible (Case = O-b in tree).

60

See figures 31 and 32, as fill proceeds, if W starts as a spike, we will either stop

short of W’s column when assign O’s and W remains a spike, or continue filling with O’s,

past W’s column, and X could possible become a spike. W (X) can only be moved to

a corner by swapping across stripe. Since we know that the 5 (4) component does not

have any cells in stripe i (i+1), this swap will increase 5’s (4’s) height, without reducing

the width (the 5 (4) component is assigned completely to three columns and the far right

column must contain at least two of this components cells OR (see figure 32) O’s spike

falls outside the columns containing N, which would have created a “4” island cell, if 4

and O had been swapped; otherwise an across-stripe swap would have been made).

To move Z (Y) to a corner position would require a 5 (4) to be assigned to column

s. This increases the number of columns component 5 (4) appears in. And since 5 (4)

appears in at least three full columns, the row count of component 5 (4) can’t be reduced.

Therefore, no improvement is possible.

A N-O across-stripe swap (Case = O-c in tree)

(See figures 22 and 23)

N has a side-spike cell in stripe i+1 (i) and O has a side-spike cell in stripe i (i+1).

When these two cells are swapped, the N cell has effectively been slid from side to top

or bottom of the component. After the swap, O will have no spike cells, but rather a

rectangle in stripe i and a rectangle in stripe i+1 (each rectangle is of width at least 2,

by assumption 1). It follows that O is at a local minimum.

Slider Swaps were performed

The O component is the slider component (Case = O-d in case tree)

(see figure 33)

In figure 33, both W and Z are potential O spikes. Since component O is a slider

component, then Z is on the bottom border of the component. In this case, O is the only

61

N N O O O O O
Direction N N O O O O O
→ N N O O O O O

N W O O O O O

5 5 Z 4 4 4
5 5 5 4 4 4
5 5 5 4 4 4
5 5 5 4 4 4
b

Figure 33: A top-slider swap component

component that appears in both stripes. The only corners to which Z could be moved

are all in the upper stripe. But those positions are assigned to components that only

appear in the upper stripe. So any reduction in Z’s height will produce an increase in

height for the swapping component.

For the case of W, we need only look at at components N and 5. The only corner

position that W could be moved into occurs in the bottom stripe. Moving a 5 to the

upper stripe will not decease 5’s width, but will increase 5’s height. Therefore, this type

of swap produces no improvement.

Therefore, this O component is at a local minimum before and after a slider swap.

The argument for the slider cell (Z) being at the top of the component is similar.

TYPE-N COMPONENTS

The cases for showing that N is at a local minimum are listed in the tree as shown in

figure 34. If N is not involved in any type of swap, then N only appears in one stripe, and

only a within-stripe swap could possible improve N. In this case, N could not possibly be

a slider configuration.

The other case occurs if N was involved in some type of swap. If N were involved in

an across-stripe swap with O, then N may or may not be a slider component. If N were

not involved in an across-stripe swap, then N appears only in a single stripe, but could

62

be affected by a slider swap.

The arguments to follow apply to both N and N’.

N not involved in either
across-stripe or slider swap

(Case N-a)

N involved in some type of swap

N involved in an
across-stripe
swap.

N not involved in an
across-stripe swap

 (Case N-b)
N is a slider component

(Case N-c)

(Case N-d)

N is a not slider component

Perim(N) is reduced
by a slider swap

The case with N as a slider configuration can only occur after an across-stripe swap.
If Perim(N) is reduced by a slider configuration, then it cannot become a slider configuration.

Figure 34: Case tree for Type-N components

N not involved in any swaps (Case = N-a tree)

If the O component is not evened out in N’s stripe, then in this case the type N

component is assigned like a type I component. N can have at most two side spikes that

cannot be moved within frame without making the perimeter for another component

worse (This was shown to be true in the proof of local optimality of CM for the rectangular

case.).

If the O component was processed in N’s stripe, to reduce N’s perimeter would cause

O to become non-slice convex (see figures 21 and 30, where N spikes are boldfaced Z

63

and 4). Since N occupies more than four columns and only possible spike position is at

the left boundary, the N spike would have to be moved to a corner position, reducing N’s

perimeter by two. In doing so, we would make O non-slice convex, thereby increasing

O’s perimeter.

N involved in a swap

N involved in an across-stripe swap, but is not a slider component. (Case N-b in tree)

The side spike for N has been slid to either the top or bottom of the component. The

N component can now only have one side spike and a slider spike. The bottom spike can

occur in any cell between columns b and e, inclusive, as shown in figure 35 (Otherwise,

the column count for N would increase and no improvement in total perimeter possible.

This could only occur if O’s spike is in a column outside of N’s enclosing frame; and we

said that this swap would not be made.).

I N N N N N O
I N N N N N O
I N N N N N O
N N N N N N O

b N e O

Figure 35: N component after an across-stripe swap

As in the case for the O component, we have shown that the leftside N spike can’t be

moved within frame and that the bottom N spike can’t be moved into the upper stripe

in column b. The only other possible move for the N spike is to column e+1, but there

are no corners in this column.

It follows that N’s component, as the slider component, is at a local minimum after

one or more slider swaps.

N is in an across-stripe swap AND is a slider component. (Case N-c in tree)

The proof is exactly the same as for case N-b. The spikes, at the side or bottom,

64

can’t be moved within the enclosing rectangle without increasing the perimeter for the

other component.

N was subjected to a slider swap only (Case = N-d in tree)

This situation can occur if the neighboring O component in stripe i (i+1) is the slider

component. In this case, N component in stripe i+1 (i) becomes a rectangle and cannot

be improved.

TYPE-I COMPONENTS

Figure 36 is the case tree for proving that I is at a local minimum. From the discussions

for the two previous types of components, we know that I is never involved in an across-

stripe swap (swapping with either the O component or the N component would not

produce an improved total perimeter). Therefore, an I-component can only appear in

one stripe and can never be a slider component. A type-I component can only be involved

in slider swaps as the component whose perimeter is going to be reduced. So we only

have to look at the cases of slider swap or not.

I not involved in a
slider swap.

I not involved in
a slider swap

(Case I-a) (Case I-b)

Figure 36: Case tree for Type-I components

Fact 3.5 For type I components, only within-stripe swaps offer the possibility of improve-

ment.

I not involved in a slider swap (Case = I-a)

65

Previous Stripe C C C C C C

Direction Y I I C
← I I I

I I I
I I I
I I I
D I I X

D D D D D D

Figure 37: A Type I component

To swap cells with another type I processor will not reduce the perimeter (this was

shown to be true in the proof of local optimality of CM for rectangular grids). A non-

slider I-N swap is analyzed in the same way, and therefore no improvement is possible.

An I-O swap within stripe is impossible, because I and O are not adjacent within the

same stripe..

I involved in a slider swap (Case = I-b)

Case - An I-O/N swap (see figure 37)

I is a rectangle and cannot be further reduced (in fact, any swap will increase I’s

perimeter).

We have now shown that the grid is at a local minimum, by showing that none of the

components can be improved after the second phase of the algorithm.

2

The next algorithm was developed to reduce the effect of peninsulas on the overall

perimeter.

66

3.6 The Improved U-turn Algorithm

The Basic U-turn algorithm is an extension of the CM algorithm. Initially, only a single

processor may extend over stripe boundaries. This algorithm has been proven to produce

locally optimal solutions; although undesirable components can still occur. The size of

the U-turn region is greater than or equal to zero and less than one component.

A further refinement was devised: The Improved U-turn algorithm. In this algorithm

the U-turn region was expanded to be of size greater than one component and strictly

less than two components (in the implementation the number of cells could exactly equal

two components). Within this expanded region much more elaborate methods were used

for assigning the components (We believe that each stripe must contain enough cells for

at least seven components, in order to guarantee that neighboring U-turn regions don’t

overlap.). The motivation behind this algorithm is to reduce the possibility of getting

components with large perimeters. The generic version of the Improved U-turn algorithm

is:

1. Assign the C component row-wise in the upper stripe.

2. Assign the 3 component column-wise across both stripes.

3. Assign the remaining cells in the upper stripe to L’s.

Any remaining L’s are assigned row-wise in the bottom

stripe.

4. The M component is assigned column-wise in the bottom stripe.

One of the main differences is that last component that can be completely assigned

within the stripe is assigned row-wise. Intuitively, this has the effect of reducing by half

the height that an overflow component could have in stripe i. The Improved U-turn

algorithm is like the Basic U-turn algorithm in that after an initial assignment, certain

67

areas of the grid are searched for improving swaps. There is a trade-off that must be

considered, however. A component assigned using the Basic U-turn algorithm in a near-

optimal shape may be assigned in a shape with a perimeter far from optimal using the

Improved U-turn algorithm. In figure 38, the component labeled C would have been

assigned in a shape with a perimeter closer to optimal using the Basic U-turn algorithm.

So a tradeoff takes place: making worse the perimeter of one or more components (the

perimeters for L and M may also be made worse) in the hopes of improving the total

perimeter for the components appearing in the U-turn region.

B
C

3L

M

Figure 38: An Improved U-turn assignment

In related research, Donaldson and Meyer [Don97] present a full description of the

Improved U-turn algorithm and a proof of local optimality (the number of cases is huge).

The proof of optimality is similar to the proof for the Basic U-turn algorithm, except for

a greater number of cases and refining swaps have to be checked.

There are cases that the Improved U-turn algorithm doesn’t process well. This led

to the development of nine different assigning techniques for a U-turn region. All of the

techniques are based on a U-turn region of size greater than one component and less than

68

two. The actual patterns of assignment are shown in chapter 6.

The theme of all these patterns is to use the best possible assigning pattern for a given

situation. There are cases for which CM does a good job. There are other cases where

column assigning does better. At each U-turn region, all nine assignments processes are

tried and the best perimeter is kept.

There is another more subtle benefit that comes with the identification of a U-turn

region. At the point where the U-turn region starts, an integral number of components

will have been assigned. The perimeters of these completely assigned components are

independent of the assignments for the rest of the grid. This is a key idea that will be

exploited in the next chapter when defining subproblems.

3.7 Unbalanced Partitions

The methodology developed in this chapter is still valid if P does not divide the number

of cells in the grid, |V |. Our arguments were not based on the area per component, but

if there were enough remaining cells within a stripe to to assign a component. If P does

not divide |V |, then (|V | mod P) components will be assigned to ((|V | div P) + 1) cells.

The remaining components will be assigned to (|V | div P) cells. The components can

be assigned in any order, just so long as a record is kept of how many of each type of

component have be assigned.

3.8 Summary

Besides developing algorithms that produce locally optimal solutions, the identification

of the U-turn area was the most important discovery of this section. For most stripes,

69

those components appearing outside of the U-turn region tend to have perimeters that

are close to the optimal perimeter. But bad things happen within the U-turn region. In

the implementation that follows, several different stripe assignment procedures are used

to reduce the chance of occurrence of components with perimeters that deviate greatly

from the lower bound.

The second benefit occurred by careful consideration of the role of the U-turn region.

The U-turn region is basically that part of a stripe that possibly contains a non-integral

number of components. That part of the stripe that precedes the U-turn region plus all

the cells appearing above the stripe can be assigned an integral number of components,

in other words a subproblem. This fact plus the fact that an optimal solution possesses

two traits that are present in problems that dynamic programming is applicable lead to

the discovery of polynomial-time algorithms.

70

Chapter 4

Subproblems for the

Dynamic-Programming Approach

4.1 Introduction

The ability to define a subproblem [DM99] is the foundation upon which the algo-

rithms to be presented are based. The subproblems yield an efficient way of organizing

intermediate results, which in turn eliminates redundant calculations. This reduction

in redundancy allows an expanded set of graphs to be handled (as compared to Martin,

who considered only the case of domains yielding stripes containing an integral number of

components) and finds the optimal set of stripe heights (as compared to Christou-Meyer),

while maintaining a polynomial run-time.

For a given set of stripes, the number of components varies from stripe to stripe.

Within a stripe, after a component has been completely assigned, we know that an

integral number of components have been assigned. This implies that a grid graph can

be partitioned into two parts, each containing an integral number of components, by just

splitting the graph at the last component assigned. Which component should be used

for this division? By assumption, each stripe does contain a final component that is

completely assigned to the stripe. (If this was the last component that could have been

completely assigned within the stripe, then the Basic U-turn algorithm can be used for

71

assigning the cells. If the next to last component was chosen, then the Improved U-turn

Algorithm can be used.) This last component assigned also defines a U-turn region.

In this chapter, three main topics will be discussed. The first is subproblem definition.

The second topic is the relationship between subproblems and stripes. The last point is

that the subproblems possess properties that may be exploited in order to construct a

shortest-path version of the problem and a dynamic-programming solution of the original

problem.

4.2 Terms and Definitions

The following example, figure 39, is presented in order to demonstrate concepts and

definitions that will appear in the paper.

For this grid, there are 360 cells to be assigned among 9 processors. The 26 rows

(numbered 0 to 25) have been partitioned into four stripes. At most one component is

allowed to “overflow” from one stripe into the next stripe. All components are assigned

column-wise, top to bottom. For those components that appear in two stripes, all the

remaining cells in stripe i are assigned first, then the remaining required number of cells

are assigned column-wise in stripe i+1. The total perimeter of this solution is 294. In

chapter 5, figure 52 contains a four-stripe optimal stripe partition of the same graph

which produced a perimeter of 282. The fill procedure used for obtaining this optimal

solution is described in Chapter 6.

Definition - A begin-end row pair defines a stripe as the collection of cells with

corresponding row indices (in figure 39, stripe 1 is defined by the begin-end-row pair

(0,6)).

Definition - A row in a grid is said to be an end-row if it is the last row in a stripe

72

12

13

14

11

10

9

8
7

6

5

0
1

2

3

 4

15

16

17

18

19

20

21

22

23

 24

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

a

a

a

a

a

a

a

a

a

a

a a a a a

a

a

a

a

a

a

a

a

a
a

a

a

a

a a

a a

a a

a a

a a

a A

b

b b

b b b

b b b b

b b b b b

b b

b b b

b b b b

b b b b b

b b b b b

b b b b b b

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c c

c c c c c c c

c

c

d d d d d d

d d d d d d

d d d d d d d

d d d d d d d

d d d d d d d

D d d d d d de e e e e e

e e e e e

e e e e

e e e

e e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

f

f f f f f f f

f f f f f f f

f f f f f f f

f f f f f f

f f f f f f

f f f f f f

g g g g g g G
g g g g g g

g g g g g g

g g g g g g g

g g g g g g g

g g g g g g g

h h h h h

h h h h h h

h h h h h

h h h h

h h h

h h

hh

h

h

h

h

h

h

h

h

h

h

h

h

h

I i i i i i i i i

i i i i i i i i

i i i i i i i

i i i i i i

i i i i i

i i i i

i

Figure 39: An assignment of a grid graph

73

(in figure 39, rows 6, 12, 18, and 25 are end-rows). A begin-row is defined similarly.

Definition - A subset of the grid is said to be filled if all of its cells have been

assigned.

Definition - Within a stripe, a divider cell will be the last cell of the last com-

ponent whose assignment was completed within a stripe (in 39, the uppercase A, D,

G, and I are divider cells). The reader should understand that for the given example,

the divider cells corresponded to the last components that could be assigned within the

stripe. In the implementation, the divider cell was chosen to be the last cell assigned to

the next-to-last component that could be completely assigned within the stripe (under

most circumstances). In the implementation, the divider cell is a data structure that

eliminates the need to keep track of individual cells in in the U-turn region (defined

below).

For stripe i, defined by the begin-end row pair (bi, ei), we assume that a divider cell

position for this stripe is uniquely determined by the fill procedure and the pair (bi, ei),

and is independent of prior stripes. We assume that all cells in stripe i-1 up to and

including the divider cell are assigned before we consider the assignment of cells in stripe

i. This will allow an incrementally discovered partition of the graph.

Definition - A U-turn region for stripe i consists of those cells within stripe i that

“follow” the divider cell and hence are not assigned until stripe i+1 is considered.

In figure 39, the upper regions corresponding to the cells assigned to components b,

e, and h are the U-turn regions.

Definition - Those cells required to complete the assignments for components as-

signed within the U-turn region are called overflow.

Definition - A begin-end-row pair is valid if the corresponding stripe contains a

divider cell.

74

Definition - A set of end-rows (r1, r2, ..., ri) is said to be a feasible sequence of

end-rows if:

for i ≥ 0, (ri+1, ri+1) is a valid stripe (where r0 = -1).

The corresponding sequence of begin-end-row pairs is ((0,r1), (r1+1,r2),..., (ri−1+1,ri))

(note: the use of valid-stripe sequences implies the existence of a divider cell within each

stripe).

The expressions component and configuration will be used interchangeably below.

Although, in the graph literature components are normally considered to connected, we

do not assume this below.

Definition - A subproblem is valid if and only if it can be partitioned by a feasible

sequence of end-rows.

The next definitions applies to the “state graph” constructed in the shortest-path

version of the stripe-height problem.

Definition - A vertex in the state graph is uniquely defined by a begin row, an end

row, and direction of assignment within that stripe in the original grid graph. In the

figures to follow, a vertex is defined by (bi, ei, di). An ordered triple may be a valid

vertex label if and only if bi and ei define a valid stripe.

For the constructions to follow, we further restrict what vertices will be considered.

We only consider vertices that correspond to valid subproblems.

For a given pair of vertices, (B,E,D) and (B’,E’,D’), there is a directed edge connecting

the vertices if and only if D = (D + 1) mod 2 and B’ = E + 1.

In section 4, for the original grid, it will be shown that

75

1) bi, ei, and di uniquely define a subproblem;

2) If there is an edge between (B,E,D) and (B’,E’,D’), then (B’,E’,D’)

is a one-stripe extension of the subproblem defined by (B,E,D); and

3) The cells contained within this one-stripe extension are uniquely defined

by (B,E,D) and (B’E’,D’).

Definition - Define perim (bi−1,bi,ei,di) to be the perimeter for the cells falling within

the stripe defined by the extension of (bi−1,ei−1,di−1) to (bi,ei,di−1+1 mod 2), where bi =

ei−1 + 1.

4.3 Defining Subproblems

4.3.1 Identifying Subproblems

In this section, a method for breaking up the original problem into similar but smaller

subproblems will be presented. This is a the key step in the dynamic-programming

and greedy algorithms that will be presented later in this dissertation.

Definition - Given a grid G that contains M rows. Let bi and ei be two row indices

within G such that bi ≤ ei. Let di be the direction of assignment within this stripe. And

let ci be a divider cell appearing within this stripe. We say that bi, ei, and di define a

subproblem.

In the following example, we assume that an integral number of components can be

assigned to the cells in the union of regions A and B, where ci denotes the divider cell in

stripe i.

If the graph is symmetric, then bi and ei uniquely define a subproblem. If the grid is

not symmetric, then direction of assignment becomes a factor.

For the two configurations appearing in figure 41, the assignments for the last stripes

76

A

b_i

e_i

 Original Problem Subproblem

A

B B

c_i

Figure 40: Subproblem example

are in opposite directions. Both subproblems are defined by the same pair of rows, but

the configurations (U and U’) of remaining unassigned cells are different. Again, this

difference may result in different perimeter increases when the next stripe is added.

U U’
b_i

e_i

c_i c_i’

Figure 41: Direction of assignment affects the configuration of remaining cells.

For the discussion to follow, we assume that each stripe contains a divider

cell and focus on the role of the divider cell within a stripe.

77

4.3.2 Selecting a Divider Cell

For the arguments to follow, the choice of divider cell ck for a given stripe (bk,ek,dk) must

be independent of the height of the previous stripe. Also, for a given striping assignment,

once a divider cell has been identified, the configuration of unassigned cells that appear

within the given stripe (U-turn region) must be independent of the height of the previous

stripe. Any assignment of components to the cells of the stripe may be used provided

that the U-turn region is independent of the previous stripe and all unassigned cells are

in the current stripe (and none are in the previous stripe).

For the algorithms to follow, we choose ci to be the last cell in the last component

assigned (assuming all the cells in the previous stripe have been assigned and a column-

wise assignment was used for the last components) before the U-turn region for stripe

(bi,ei,di).

For a given fill procedure, a begin-end-row pair and the direction of assignment

uniquely define a subproblem (by default, also uniquely defined are the U-turn region

for the current stripe and the remaining cells that will have to be assigned). In partic-

ular, these three variables uniquely define the last cell of a subproblem. Assuming that

the subproblem is valid, then figure 42 shows how a begin-row, end-row, and direction

of assignment determine a subproblem, independent of how previous subproblems have

been defined.

For our choice of ci, we are guaranteed that all of the cells above stripe (bi,ei,di) will

have been assigned before any cells in this stripe are assigned. In figure 42 the number

of cells above row bi is independent of the choice for bi−1, assuming that there exists valid

subproblem defined by (bi−1,bi-1,di + 1 mod 2). It then follows that the U-turn region

within the stripe defined by stripe (bi,ei,di) is independent of the previous stripe.

78

Last cell assigned for both configuration
 is the same.

Number of cells
 in these areas
 are equal.

b_i

e_i

b_i-1
b_i-1’

No. of cells = T - a’

No. of cells = a’
No. of cells = a

No. of cells = T - a

Figure 42: Begin-row end-row and direction uniquely determine a subproblem.

79

Subproblems: Perimeters:
No. bi ei di U-turn Current Total Subproblem

region(Ui) stripe(Si/Ui) Increment Perimeter
1 0 6 1 0 32 32 32
2 7 12 0 44 54 98 130
3 13 18 1 34 56 90 220
4 19 25 0 42 32 74 294

Table 4: Dynamic-programming data for partition in figure 39

This deterministic way of uniquely defining subproblems allows for the use of dynamic-

programming techniques for organizing subproblem results and eliminates redundant cal-

culations (e.g. the subproblem defined by (bi, ei, di), and implicitly ci, may be contained

within several other larger subproblems). This ability to define subproblems also pro-

vides a useful way of identifying vertices and calculating edge weights in the corresponding

shortest-path problem (see Chapter 5,“Description of a State Graph”).

Consider the partitioned grid in figure 39. Examples of the two ways that the

subproblem data can be presented are shown in table 4 and figure 43. Table 4 contains

the perimeter data as organized by the dynamic-programming implementation. Figure

43 presents the data in the form of a weighted graph, with vertices corresponding to

subproblems and edge weights equal to the perimeters for the incremental stripes.

The perimeter for the partition in figure 39 equals 294 (this is the final subproblem

perimeter in the far right-hand column in table 4). This is not an optimal partition.

An optimal stripe-based partition, with perimeter equal to 282, is shown in Chapter 5,

figure 52.

Unassigned
 Grid

Assigned
 Grid

(0,6,0) (7,12,1) (13,18,0) (12,25,1)

32 98 90 74 0

Figure 43: Path Data for table 4

80

4.4 Relationship between Subproblems and Stripes

A stripe is defined by a begin-end row pair and direction of assignment. After an as-

signment is made, there will be components completely assigned within the stripe plus

possibly fractional parts of other components at both ends of the stripe (these compo-

nents are assigned to cells appearing in more than one stripe). For this discussion, there

can be at most two partial components appearing within the stripe. In particular, for

stripe i, these partial components would correspond to the overflow from stripe i-1 and

the component assigned partially within the U-turn region for stripe i.

As was stated earlier, (bi−1,ei−1,di−1) uniquely defines a subproblem. These three

quantities also define the U-turn region appearing within stripe i-1. By the same reason-

ing, (bi,ei,di) determines the U-turn region for stripe i. We now have a mechanism for

defining the cells to be included within an “appending” (partial) stripe: those cells that

would have to be appended to subproblem (bi−1,ei−1,di−1) in order to get subproblem

(bi,ei,di) (note: the cells in the U-turn region for stripe i are not included).

Those cells appearing within this “appending” stripe may be assigned independently

of all other cells. This follows from the fact that we have identified a group of cells that

an integral number of processors can be assigned and that the number of cells defined by

the subproblem (bi−1,ei−1,di−1) also allows for an integral number of components to be

assigned.

A feasible solution of the problem can then be thought of as a sequence of “appending”

stripes.

81

b_i-1

e_i-1

e_i
Stripe i

(b_i,e_i,d_i)

(b_i-1,e_i-1,d_i-1)

Figure 44: Two subproblems defining a stripe.

4.4.1 Construction of a Stripe-based Solution

Perimeter is computed in our approach incrementally, stripe-by-stripe as follows (see

figure 45): perimeter (in the first stripe (0,e1,d1) - U1) is computed, then the perimeter

for (b2,e2,d2) + U1 - U2, is added, etc. Figure 45 shows a fourth iteration of this process.

4.5 Properties of Subproblems

4.5.1 The Existence of Common Subproblems

Figure 46 shows two different sequences of stripe-heights used to partition the given grid.

Both cases contain the subproblem ending with the stripe (b5,e5,d5).

When the same subproblem appears in several other larger problems, the overall

problem is said to possess the property of common subproblems. With respect to the

graph viewpoint, a subproblem is a node and this node appears in multiple paths.

82

b_3

 b_4

e_4

U_3U_3

1

2

3

4

1

2

3

4

Figure 45: Incrementally processing a grid

83

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5
b_i

e_i

e_i

e_i+1’

6’ 6

Solution 1 Solution 2

Figure 46: Feasible solutions with the same subproblem (stripes 1-5).

84

4.5.2 Optimal Substructure within a Solution

Cormen, Leiserson, and Rivest [CLR90] state that a problem exhibits “optimal” sub-

structure if an optimal solution contains the optimal solutions for the corresponding

subproblems.

e_1

e_2

.

e_t

O
p
t
i
m
a
l

P
a
r
t
i
t
i
o
n

Optimal partition
for the subproblem
defined by rows

.

.

.

e_i

 e_i-1

(e_i-1 + 1,e_i,d_i)

 e_i-2

Figure 47: Optimal Substructure

Given a grid, assume that the sequence of end-rows (e1,e2, ... et−1, et) produces an

optimal solution. Now look at the subproblem ending at stripe (bi,ei,di) (see figure 47).

For this subproblem, if the subsequence (e1,e2, ... ei−1, ei) of the original sequence didn’t

produce an optimal solution within the corresponding subproblem, assuming that the

last stripe was (bi,ei,di)), then the optimal solution for this subproblem could be

85

substituted into the larger solution. This new sequence would produce a better overall

solution, which would contradict the fact that we previously had an optimal solution.

From a graph viewpoint, the shortest path has the property that each sub-path (beginning

at the the start node) is also a shortest path.

4.6 Grid Partitioning as a Shortest-Path Problem

Constructing a sequence of end-rows that partitions a grid is equivalent to determining

reachability from a source to a sink by a certain path within a graph. For a given sequence

of end-rows (0, r1, r2, ... ,rn), we know for any consecutive end-rows, ri, ri+1, that ri+1

is reachable from ri if and only if the begin-end-row pair (ri + 1, ri+1) is a valid stripe.

For the previous methods, the state graph for a particular grid has |V| equal to

the number of valid end-row sequences for lengths 1 to M. Two vertices would have a

connecting edge if and only if for vertices (0, r1, r2, ... ,ri) and (0, r1, r2, ... ,ri, ri+1)

(ri + 1, ri+1) is a valid stripe.

Figure 48 contains a portion of a graph constructed using a naive approach.

In the next chapter, it will be proved that under very limited assumptions that the

number of vertices in this graph is super-polynomial. What the Donaldson-Meyer (DM)

method does is to eliminate certain redundant vertices in the state graph.

Figure 49 contains a graph for the same original grid graph, except that this graph

was constructed using the DM algorithm. In figure 48, there are three paths for which the

corresponding end-row sequences share final subsequences. What DM does is to collapse

down those common parts of the graph. As will be shown in the next chapter, the graph

for DM will have a polynomial number of vertices.

86

(0) (0,r1) (0,r1,r2) (0,r1,r2,r3) (0,r1,r2,r3,r4) (0,r1,r2,r3,r4,r5)

(0.r1,r2,r3,r4,r5)

 (0,r1,r2,r3,r4,r5,r6)

(0) (0,s1) (0,s1,s2) (0,s1,s2,s3) (0,s1,s2,s3,s4,s5)

(0,s1,s2,s3,s4)

(0) (0,t1) (0,t1,t2) (0,t1,t2,t3) (0.t1.t2.t3.t4) (0,t1,t2,t3,t4,t5,t6)

(0,t1,t2,t3,t4,t5)

t3 = s2 = r4

t4 = s3 = r5

t5 = s4 = r6

t6 = s5 = r7

Figure 48: A naive state-graph construction.

87

 Each node is labeled by a valid sequence of end-rows.

(0) (0,r1) (r1,r2) (r2,r3)

(r3,r4)

 (s3,s4)

(0) (0,s1) (s1,s2) (s2,s3) (s4,s5)

(0) (0,t1) (t1,t2) (t2,t3)

r4 = s2 = t3

Figure 49: The Donaldson-Meyer state-graph construction.

In the next chapter, weights are added to the graph. It will then be proved that a

shortest path through this weighted graph corresponds to an optimal partition of the

original grid graph.

4.7 Summary

The ability to uniquely define a subproblem by a begin-end row pair and direction of

assignment will allow for the comparison of performances for multiple sequences of stripe

heights. This follows from the fact that the last stripe may be assigned independently of

how the subproblem to which it was appended was partitioned.

An optimal partition can be constructed by incrementally appending a stripe to a

subproblem. An optimal partition possesses the qualities of common subproblems and

88

optimal substructure.

The qualities of common subproblems and optimal substructure must be present for

dynamic programming to be applicable ([CLR90], p.309). In chapter 5, both a dynamic-

programming algorithm and a greedy algorithm will be presented for identifying the

sequence of stripe heights that produce an optimal partition. (The methods only differ

in how the data for subproblems are organized.)

The Donaldson-Meyer approach for organizing the results for subproblems eliminates

redundant calculations. Figure 50 shows what happens when constructing a state graph

when the property of common subproblem is not used.

(e_i, e_2, ..., e_i) (e_1, e_2, ..., e_i, e_i+1)

(e_i, e_2, ..., e_i) (e_1, e_2, ..., e_i, e_i+1’)

Figure 50: An example of redundant states (calculations)

To not use the common subproblem property is fatal when trying to determine the

optimal sequence of stripe heights in polynomial time. In Chapter 5 it will be shown

that the number of feasible stripe-height sequences is super-polynomial.

89

Chapter 5

Optimal Partitioning Algorithms

5.1 Introduction

From the previous section, we know that an optimal solution for a given stripe assign-

ment possesses the properties of common subproblem and optimal substructure. Using

these two properties, both a greedy algorithm and a dynamic-programming algorithm

for obtaining a best stripe-based solution are presented.

The greedy algorithm is actually Dijkstra’s algorithm applied to a transformed graph.

It will be shown that the shortest path in this graph corresponds to an optimal solution

in the original problem.

The dynamic-programming approach was the procedure used to solve the problem.

The dynamic-programming recurrence models the action of stripping off the last stripe

and solving a smaller, but similar, problem.

These two approaches only differ in how the solution is constructed. The greedy

algorithm works bottom-up. At each step, the best new stripe is added. Eventually, all

stripes containing the last row in the original grid will be considered, thus solving the

problem.

The dynamic-programming algorithm works top-down, but the implementation ac-

tually is bottom-up. The dynamic-programming approach looks at all the possible final

90

stripes and associated subproblems and selects the pair that produces an optimal solu-

tion, after recursively solving all the subproblems.

For the remainder of the chapter, it will be shown that an “brute-force” exhaustive

search of feasible solutions is not practical. Then both the shortest-path and dynamic-

programming approaches will be analyzed.

5.2 Stripe-Height Selection

In the earlier work of Martin [Mar98] and Christou-Meyer [CM96], selection of stripe

heights was the critical factor in determining the best solution possible when using a

stripe-based algorithm.

Given a rectangular grid, Martin [Mar98] converts the original problem into a knap-

sack problem and uses knapsack software [MT90] for solving the reformulated problem.

This algorithm will produce the best stripe-based solution, under the following assump-

tions. In addition to the rectangular grid assumption Martin [Mar98] assumes that

there exists a stripe partition in which each stripe contains exactly an integral num-

ber of components. Martin [Mar98] also assumes that MN/P is an integer and that

a column-wise assignment procedure is used. Under these constraints, the perimeter in

each stripe is independent of the perimeter in any other stripe, and the perimeter of a

stripe is independent of position within the grid.

Therefore, for a stripe of a given stripe height, there will be a unique perimeter

associated with that height. The problem can then be thought of as the selection of

a set of heights totaling to M with minimum total perimeter. With respect to the

knapsack problem, the heights correspond to the weights and the perimeters correspond

to the objective values of the associated weights. Optimal solutions of the knapsack

91

h

h

Sequence of components in stripe 2.

Sequence of components in stripe 1.

Figure 51: The same sequence of components appearing in different stripes.

92

problem correspond to optimal stripe partitions (assuming column-wise assignment and

independent stripes).

For CM, the authors relax many of the restrictions (integral number of components per

stripe and rectangular grids). CM doesn’t in general produce optimal stripe partitions,

but does generate high-quality partitions through the use of genetic-algorithm techniques.

The running time for CM can be made to be polynomial. The number of different

feasible solutions that are tried can be limited to guarantee a polynomial running time.

Since Martin [Mar98] only considered rectangular domains, M, N, and P are all that

are required for describing the graph. The length of the input is then O(ln M + ln N

+ ln P). Because Martin restricts the class of inputs to the Knapsack problems that he

studied, it is not known if the resulting problem class is NP-Hard.

Whereas the type of problem that Martin [Mar98] studied could be represented with

three numbers, it is assumed that a full adjacency matrix or adjacency list is required

to represent a general grid graph. This assumption guarantees that that the length of

input is bounded below by (V + E). Since E is O(V), we have that the length of input

Ω(V) = Ω(number of cells in the grid).

That raises the question of whether or not it is possible, in a reasonable amount of

time (i.e. polynomial time), to evaluate the perimeter for all the different stripe-height

sequences? In this and later sections, it is assumed that the stripes will run perpendicular

to the major axis of the grid. By making this assumption, bounds are then expressed in

terms of the size of the original problem. Also, a result from [CM96] is needed.

The Christou-Meyer algorithm [CM96] uses the notion of base heights. The base

height, k, for a given grid is equal to the floor of the square root of the area to be assigned

to a processor. For this discussion, we will make the following assumptions:

93

1. The number of rows in the grid, M, is greater than (k+1)2.

2. k ≥ 2.

3. Stripes are perpendicular to the major axis of the grid.

4. Any set of consecutive k-1 rows contains at least one divider cell.

The first assumption is stronger than what Christou-Meyer [CM96] needed. This

stronger assumption was made so that a certain inequality in the proof that follows

would be easier to manipulate. Christou-Meyer [CM96] only assumed that M ≥ k(k-1).

The second assumption is required to guarantee a valid range of stripe heights in the

proof. The third assumption is needed to bound the cells in the grid by a function of

M. The fourth assumption is required so that we are only counting realistic stripes. This

says that there will always be enough cells within stripe i+1 to assign any overflow from

stripe i. This guarantees that components will only appear in at most two stripes, which

is in keeping with the spirit of the striping algorithm.

If we define the number of rows in the grid to be M and the base height for each

stripe to be k with the above assumptions, [CM96] showed that there exist non-negative

integers α and β st.

M = α(k) + β(k+1)

This sequence of α k’s and β (k+1)’s will now be called a base feasible solution.

In order to discover a lower bound on the total number of valid stripe-height sequences,

we need only consider sequences for which every stripe height falls within the following

range:

[k-1, k, k+1, k+2].

With these assumptions, we now have the following theorem:

94

Theorem 5.1 The number of feasible solutions is Ω (3M0.5/4).

Proof

In order to prove this result, we will only look at those feasible solutions that contain

S = α + β stripes. There could be feasible solutions that use a different number of

stripes, but these solutions will only add to the overall count, and would only increase

the lower bound.

Assume that α > β (if β > α a similar argument with β replacing α can be given).

The stripes associated with α are of height k. Let’s further divide the α stripes into two

approximately equal groups, so that the smallest group is of size at least α/2 - 1. Call

this group of stripes the independent stripes. The remaining α stripes along with all

the β stripes will be called the dependent stripes.

For any stripe within the set of independent stripes, the height may increased/decreased

by one or may remain the same, with respect to the base height, provided the opposite

change is made to the corresponding dependent stripe. If the heights for the remaining

β stripes are held constant, then we have that there are at least

3α/2/3 ≥ 3S/4/3 ≥ 3M/(k+1)4/3 ≥ 3M0.5/4/3

The second inequality follows from the fact that we have:

M = α(k) + β(k+1)

M/(k+1) = α(k)/(k+1) + β(k+1)/(k+1)

= α(k)/(k+1) + β

≤ S

The third inequality follows from the assumption that M ≥ (k+1)2

2

95

To convert this bound into the units of the input. If M equals the height of the major

axis of the rectangle that encloses the grid, we have that

M ≤ (number of cells in grid) ≤ M 2

If the grid were a single row of cells, then M would equal the number of cells. If

the grid were a square, then the number of cells equals M 2. Regardless, the number of

stripes is super polynomial with respect to the number of cells in the grid.

3M0.5/4/3 ≥ 3(no.ofcells)0.25/4/3

From this result, we know that there are at least an super polynomial number of

feasible solutions and that an exhaustive search it is not practical.

On page 71 of [Chr96] a bound on the total number of ways that the rows of a grid

can be partitioned is calculated. What Christou [Chr96] counts and what is counted in

theorem 5.1 of this dissertation are not the same thing. Included in Christou’s result are

non-feasible partitions, with respect to striping.

In [Chr96], given M rows, the 2M−1 figure contains stripes that may not contain

enough cells to assign one processor. That means that a component could appear in

three “stripes”. It is not clear to the author if these are stripes that really should be

considered. Theorem 5.1 discriminates as to what stripes may be considered and alters

the count accordingly.

5.3 A Detailed Example

The following example will be used to demonstrate both the the shortest-path approach

and the dynamic-programming approach. For the sake of constructing an example, we

96

consider only a small number of possible stripe heights. The results presented here

were generated using an implementation that differed slightly from the the algorithms to

be presented. A more sophisticated approach was taken to handle U-turn regions (see

Chapter 6) . Restricting the total number of stripe heights also makes presenting the

shortest-path problem on one page feasible.

In chapter 4, a diamond shaped grid (see figure 39) was presented, but was not

partitioned optimally. The partition in figure 52 is thought to be fairly close to the

optimal partition based on striping.

The only possible improvement would come from expanding the set of valid stripe

heights (Later, all valid stripes were considered. The perimeter for the partition in

figure 52 is optimal, with respect to the given fill procedure. It is also easy to see that

it is locally optimal. However, it is not globally optimal, since the order in the central

column of 1’s and 2’s may be interchanged to improve the total perimeter. This illustrates

the potential for even more sophisticated fill procedures.). Increasing the number of stripe

heights can be done, but this introduces the possibility of violating assumptions about

the number of components within a stripe. More will be said about this in Chapter 6.

In the sections to follow, it is assumed that:

1. Every stripe contains at least one divider cell.

2. For the chosen stripe assignment, the U-turn region for a given stripe is independent

of the height of the previous stripe.

97

6 6 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3
6 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3

6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3
6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3

6 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3
6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3

6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8
6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8

6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8
6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

7 7 7 7 7 7 7 7 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 8

9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9

9 9 9 9 9 9
9 9 9 9

9

1 1 1 1 1 1 1 1 2 4 4 4 4 4 3 3 3 3
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2
1 1 1 1 2 2 2 2

1 1 1 2 2 2
1 1 2 2

1

Figure 52: An optimal partition for a given set of stripe heights

98

(0,8,0)

(0,8,1)

0,9,0)

(0,9,1)

(0,10,0)

(0,10,1)

(9,14,1)

(9,14,0)

(10,14,0)

(10,14,1)

(15,18,0)

(15,18,1)

(15,19,0)

(15,19,1)

(19,25,0)

(19,25,1)

(20,25,0)

(20,25,1)

(11,19,0) (11,19,1)

Unassigned

Grid

Assigned

Grid

Figure 53: Partial state-graph

99

Subproblem Data Previous Subproblem
Stripe Total

bi ei di Perim Perim bi−1 ei−1

0 8 0 34 34 0 0
0 8 1 36 36 0 0
0 9 0 36 36 0 0
0 9 1 36 36 0 0
0 10 0 68 68 0 0
0 10 1 68 68 0 0
9 14 0 118 154 0 8
9 14 1 120 154 0 8
10 14 0 124 160 0 9
10 14 1 124 160 0 9
11 19 0 124 192 0 10
11 19 1 124 192 0 10
15 18 0 34 188 9 14
15 18 1 34 188 9 14
15 19 0 34 188 9 14
15 19 1 34 188 9 14
19 25 0 98 286 15 18
19 25 1 98 286 15 18
20 25 0 94 282 15 19
20 25 1 94 282 15 19

Table 5: Subset of perimeter data for stripe partitioning the grid in figure 52

5.4 A State-Graph Representation of Grid Graph

Partitioning

5.4.1 Background

An optimal partition of a grid graph can be thought of as a sequence of valid stripes, where

each stripe is added incrementally. After each stripe is added, a new valid subproblem

is generated. The discovery of an optimal solution can be thought of as going from the

initial unassigned state to the final fully assigned state in an optimal fashion.

Figure 53 contains the state graph for the data in table 5.

100

If an optimal solution for a (sub)problem is represented by the sequence of stripe-

defining end-rows (r1, r2, ...,rn), the previous theorem showed that the number of states is

super polynomial. To define an optimal solution, are all elements in an end-row sequence

needed? No.

In chapter 4, it was shown that a begin-end-row pair and direction of assignment

define a subproblem. With the sequence (r1, r2, ...,rn) a lot of redundant information is

carried along. The length of the sequence determines the direction of assignment. Instead

of carrying along all the elements of the sequence, all that is really required is a pointer

to the subproblem that the last stripe was appended to. When this is done, the size of

the state graph becomes polynomial.

Figure 53 contains the state graph for the data contained in table 5 (this is the

stripe information for the diamond). When the grid graph is completely unassigned, the

graph is in the state corresponding to the source node, titled “unassigned grid”. The

source node is connected to all nodes that correspond to a valid stripe height. Each of

these nodes is connected to nodes whose corresponding subproblems are just the original

problem plus a valid stripe extension. Because the graph is finite, eventually the node

corresponding to the entire grid graph will be found. The path containing the cross-

hatched edges corresponds to an optimal partition of the original grid graph.

For the remainder of this section, the transformation from the original grid graph to

the state graph will be presented. It must be shown that for this state graph, a directed

and weighted graph, the shortest path corresponds to an optimal partition of the original

graph.

101

5.4.2 Description of a State Graph

For a state graph, the number of vertices equals the total number of valid subproblems.

An edge connects two vertices vi and vi+1 if and only if a valid stripe can be appended

to the subproblem defined by vi to get the subproblem defined by vi+1.

Each node in the graph represents a unique subproblem. From the discussion on

defining subproblems, three variables are required to determine a vertex. Let the ordered

triple (bi, ei, dik) represent a given subproblem(vertex). At most, there are M different

choices for bi. Once bi has been determined, the total number of valid stripe heights (call

this number h, where h ≤ M, and the range of the valid stripe heights is from 1 to h) is

an upper bound on the number of different possible values that ei may assume. For any

given stripe, there are only two directions that an assignment may be made. We get the

following:

total number of vertices(subproblems) ≤ 2Mh

The inequality comes from the fact that under certain circumstances not all M rows

may be beginning rows and not all begin-end-row pairs, (bi, bi+k), k = 0,..,h-1, represent a

valid subproblem. These situations can occur for irregularly shaped objects that contain

blocks of rows that don’t contain enough cells to satisfy all the assumptions. In the

shortest-path problem, there will be two additional vertices: a “source” (unassigned

grid) and a “sink” (assigned grid).

For a given subproblem, an upper bound on the number of different stripes that may

be appended to that subproblem equals the total number of valid stripe heights, h. It

follows that:

total number of edges ≤ the total number of vertices * h

≤ 2Mh2

102

For a given problem, bi, ei, and di define a subproblem. Separate this subproblem

from the entire problem. Within this reduced problem, define another subproblem by

bi−1, ei−1, and di−1. The stripe of the grid that is defined by bi−1, bi, ei, and di may be

assigned independently of how the subproblem defined by bi−1, ei−1, and di−1 is assigned.

Figure 54 gives an example of this construction.

The perimeter for the components assigned to the cells defined by bi−1, bi, ei, and di

becomes the weight of the edge connecting vertices (bi−1, ei−1,di−1) and (bi, ei, di). Call

this weight perim(bi−1, bi, ei, di).

c_i

c_i-1

b_i

e_i

b_i-1

Defined AreaDefined Area

Figure 54: Area defined by bi−1, bi, ei, and di

Figure 55 contains a partial example of a transformed graph. This graph will contain

103

one source node (corresponding to an unassigned grid graph), one sink node (correspond-

ing to an assigned grid graph) and a node for each valid subproblem. For the proofs in

this dissertation, it was assumed that the initial stripe always had to be assigned left to

right. For the results in table 5, the first stripe was assigned in both directions. The

one-direction assumption is made to reduce the complexity of the proofs.

0

0

 0

0

(*,M,*)

(*,M,*)

(*,M,*)

(*,M,*)Perim(*,*,M,*)

Perim(*,*,M,*)

Perim(*,*,M,*)

Perim(*,*,M,*)

Perim(0,0,h_n,0)

Perim(0,0,h1,0)

Perim(0,0,h2,0)

Perim(0,0,h_n-1,0)

(0,h1,0)

First Stripe Final Stripe

(o,h2,0)

(0,h_n,0)

(0,h_n-1,0)

Intermediate

 Stripes

Unassigned
Grid

Assigned
 Grid

Figure 55: Transformed shortest-path graph.

5.4.3 Proof of Optimality

We must now show that the path corresponding to an optimal striping is contained within

the graph.

104

Theorem 5.2 The previously defined graph contains a path corresponding to every fea-

sible sequence of end-rows. Conversely, every path beginning at node 0 corresponds to a

feasible sequence of end-rows.

Proof - (by induction)

Base Case - A sequence of length one. Given that (E) is a feasible sequence, (0,E) is

a valid stripe. It follows that vertex (0,E,0) and the corresponding edge (source vertex)-

(0,E,0) exists within the graph.

Induction Hypothesis - Given a sequence of end-rows of length n, there exists a path

in the graph from the unassigned grid node to the node corresponding to the last stripe

in the sequence.

Induction Step - Given a sequence of n+1 valid stripes, by the induction hypothesis,

there exists a path from the unassigned grid node to the node corresponding to the nth

stripe. Since all the n+1 stripe heights are valid, there must be an edge from the node

corresponding to the nth stripe to the node corresponding to the last stripe.

The converse follows directly from the way the shortest path problem was constructed.

2

Lemma 5.1 The shortest path in the transformed graph corresponds to an optimal stripe-

based solution.

Proof (by contradiction) - From theorem 5.2 , we know that transformed graph

contains the path for an optimal solution. The value of the perimeter for the optimal

striping must equal the shortest path in the graph. For if this were not the case, then

the stripe heights corresponding to the shorter path would produce a better solution in

the original grid graph, which would be a contradiction.

2

105

5.5 A Dynamic-Programming Approach

5.5.1 Background

In Chapter 4 it was shown that an optimal stripe-based partition of a grid graph possessed

two qualities: optimal substructure and common subproblems. These are two properties

that are present when dynamic programming is applicable. For the remainder of this this

section, an optimal solution will be dissected to provide intuition as to why a recurrence

can model the optimal stripe-based solution.

Table 5 contains the striping information for an optimal solution for a given small set

of stripe heights and a stripe assignment process. There are four different ways that the

last stripe may be assigned. The optimal solution is a minimum of these four different

outcomes. An optimal solution is:

optimal solution = perimeter of last stripe in an optimal solution

+ perimeter for corresponding subproblem (last stripe

removed)

Perim(20, 25, 1) = 94 + Perim(15,19,0)

Notice that the value of Perim(15,19,0) must also be optimal, or else the optimal

solution could be substituted, and this would be a better total perimeter than Perim(20,

25, 1), which is a contradiction.

Although the shape of the configuration corresponding to the subproblem defined by

Perim(15,19,0) is no longer a diamond, the same techniques may still be applied. Again,

all the different final-stripe-and-corresponding-subproblem pairs are considered, and the

perimeter for the final stripe-corresponding subproblem pair that produces the best total

perimeter is the value of Perim(15,19,0). It was this observation that lead to the discovery

of the recurrence to be presented.

106

The remainder of this section will be devoted to formally defining a recurrence that

models the optimal solution and to prove that the recurrence actually calculates an

optimal stripe-based solution.

5.5.2 A Recurrence Relation for Grid-Graph Partitioning

We will now define a recurrence that may be used to obtain the perimeter for subproblem

defined by (i,j,d), given the perimeter of smaller subproblems. This value will be stored

in an array at position P(i,j,d). We need the following definitions when defining the

recurrence.

Definitions

d = direction of assignment

V = number of cells in the grid

VALID-STRIPE = the set of begin-end-row pairs, (bi, ei), such that (ei - bi + 1)

is less than or equal to h (the maximum allowable stripe height) and the corresponding

rows contain a divider cell.

perim(prev,i,j,d) = this is the same quantity as defined in the discussion of the shortest-

path material.

In the description that follows, it is assumed that all row subscripts are positive and

that ei is alway greater than or equal to bi.

The actual recurrence is:

P (i, j, d) =



















































5V if (i,j) is not in VALID-STRIPE

5V if (i = 0) and ((i,j) is in VALID-STRIPE) and (d = 1)

perim(0, i, j, d) if (i = 0) and ((i,j) is in VALID-STRIPE) and (d = 0)

minb(f(b, i, j, d))+

P (b, i− 1, (d + 1)mod2) ∀ b s.t. (b-1,i) is in VALID-STRIPE

107

where

f(b, i, j, d) =











1 if P(b,i-1,(d+1) mod 2) ≥ 5 * V

perim(b, i, j, d) otherwise

(Note: This recurrence was designed to have the first stripe to always be assigned left

to right. It is easy to generalize the recurrence to allow the first stripe to be assigned in

either direction.)

Now it must be shown that this alternate formulation will produce an overall perimeter

equal to the optimal perimeter generated by the shortest-path approach. It may be

that there is not a unique shortest path through the graph. In that case, the set of

stripe heights produced by the dynamic-programming algorithm may differ from those

generated using the shortest path approach.

Lemma 5.2 For a sequence of end-rows, r1, r2, ..., rn, and the corresponding array

entries, P(0,r1,0), P(r1+1, r2,1), ..., P(rn−1+1,rn,(n-1) mod 2)),

P(rn−1+1,rn,d)) ≤ Perim(r1, r2,...rn)

where Perim(r1, r2,...ri) equals the perimeter of the subproblem with ri−1+1, ri as its last

stripe.

Proof by Induction

(Note: In the following arguments, by default r0 = -1. This allows the first row to

begin at 0 (a holdover from programming in C)).

Base Cases - Sequences of length 1 and 2.

Looking at position P(0,r1,0), the recurrence would have considered stripe (0,r1). So

we know that P(0,r1,0) has to be less than or equal to the perimeter generated by the

sequence (r1), so P(0,r1,0) ≤ Perim(r1).

108

At position P(r1+1,r2,1), since (r1+1, r2) is a valid stripe, the algorithm would have

considered P(0,r1,0) + perim(0,r1+1, r2,1). We now have that :

P(r1 + 1,r2,1) ≤ P(0,r1,1) + perim(0,r1+1,r2,1)

≤ Perim(r1) + perim(0,r1+1, r2, 1)

= Perim(r1, r2)

Where Perim(r1, r2) equals the perimeter for the sequence (r1,r2).

Induction Hypothesis

For a given sequence of end-rows of length n and the last two elements being rn−1

and rn, the corresponding position in the array P(rn−1 + 1, rn,(n-1) mod 2) will contain

a perimeter no greater than the perimeter generated by the subproblem defined by the

n stripes.

Inductive Step

Now assume that we have a sequence of n+1 stripes. Divide the sequence into two

parts. The first part consists of the first n stripes. The second part is the last stripe. We

then have the following:

P(rn+1,rn+1,n mod 2) ≤ P(rn−1+1,rn,(n-1) mod 2)+

perim(rn−1+1,rn+1,rn+1, n mod 2)

(by Induction Hypothesis) ≤ Perim(r1,...,rn) + perim(rn−1+1,rn,rn+1, n mod 2)

= Perim(r1,...,rn,rn+1)

Where Perim(r1,...,rn+1,rn+1) equals the perimeter generated by the given set of

stripes.

109

2

Theorem 5.3 There exists a cell in the last column of the matrix that contains the

optimal perimeter using a striping fill procedure.

Proof - For a given problem, we know that there exists a sequence of end-rows that

produces an optimal filling. Define this sequence to be:

r1,...,rt−1,rt where t ≥ 1.

From the previous lemma, we know that P(rt−1+1,rt,(t-1) mod 2) is less than or equal

to the perimeter generated by this sequence of end-rows(or end-row if t = 1). Since this

sequence produces an optimal filling, we know that P(rt−1+1,rt,(t-1) mod 2) must equal

the optimal filling.

2

Lemma 5.3 For a cell in the last column that contains the minimum perimeter, the

corresponding stripes generated form a feasible solution.

Proof - by contradiction

From the previous theorem, we know that the algorithm will correctly calculate the

minimum perimeter when using a striping technique. Also, the minimum perimeter must

be less than or equal to 4V (this would only occur if for each cell, all of its neighbors

were assigned to different processors).

Given an optimal sequence of end-rows, if the solution contained an invalid stripe

height, then for some consecutive pair of end-rows, the corresponding stripe would not

valid and the value of in the P matrix for that invalid subproblem would be 5V. All

110

subsequent stripes appended to this invalid subproblem would have perimeters greater

than or equal to 5V (equality would occur if additional invalid stripes were selected).

Since the minimum perimeter is less than 5V, there can be no invalid stripe heights

chosen.

2

Time Analysis -

The dynamic-programming array, P, is M x M, where M is the number of rows in the

grid. For this structure, certain facts follow:

1. For each row of P, the number of cells that contain non-trivial stripe data is

less than or equal to the number of valid stripe heights.

2. For the entire array P, it then follows that the total number of cells which

will contain non-trivial stripe data is less than or equal to (number of valid

stripe heights)M.

For irregularly-shaped grids, not much can be said about the number of cells within

a stripe except that this number must be less than or equal to V. Each cell in the

dynamic-programming array represents a unique subproblem within the grid. In order

to determine the corresponding entry in the dynamic-programming array the following

work must be done (This time analysis is geared for the actual implementation. The nine

in the following expressions comes from the nine different assignments that are made per

stripe, see Chapter 6 for more details.):

111

1. Creating the array of cells to be assigned when appending a

stripe. There will be a different array for each allowed bi−1.

(Where bi−1 is the begin-row for the previous stripe.)

Time = O((no. of valid stripe heights)V)

2. For each stripe-subproblem combination, make the nine different

assignments.

Time = O(9(no. of valid stripe heights)V)

3. For each stripe-subproblem and each stripe assignment, calculate

the total perimeter. (This can be done by looking at each assigned

cell and adding this amount to the perimeter for the subproblem.)

Time = O(9(no. of valid stripe heights)V)

The total work for each cell is O((no. of valid stripe heights)V).

The total amount of work to fill in the non-trivial cells for the dynamic-programming

array is O(M(no.of valid stripe heights)2V). The amount of time to initialize the dynamic-

programming array is O(M 2), which is contained within O(M(no.of valid stripe heights)2V).

How does this relate to the length of input?

It was assumed that to represent this problem that an adjacency matrix or list is

required. This would force the length of input to be at least equal to the number of

vertices in the grid. Assuming a binary representation, that would force the length of

input to be Ω(V).

This point was only mentioned because for the special case that Martin [Mar98]

looked at, only three numbers are required to state the problem: the number of rows,

the number of columns, and the number of components.

112

5.6 Summary

In polynomial time, an optimal stripe-based solution can be found, for a given stripe

assignment procedure. A shortest-path approach and a dynamic-programming based

method have been proven to find this solution. These discoveries are the main contribu-

tion of the research.

In previous work, the bottleneck to finding good solutions was the size of the feasi-

ble set of stripe heights. Martin was able to find an optimal stripe-based solution for

rectangular grids, but the range of possible input problems was limited. Christou-Meyer

produced very good results through the use of genetic algorithms. The drawback is that

a solution produced Christou-Meyer was not provably optimal.

The results of this chapter combine the best of both Christou-Meyer and Martin. Both

the shortest-path approach and the dynamic-programming algorithm produce provably

optimal stripe-based solutions in polynomial time.

113

Chapter 6

Implementation and Results

6.1 Introduction

In this chapter the results of a dynamic-programming based implementation are pre-

sented. When assigning a U-turn region, nine different assignment processes are evalu-

ated, and because of the independence of the stripe, the best stripe-assignment is kept

and used in computing perimeter increment. Each of the nine stripe-assignments is a

variant of the Improved U-turn algorithm (IU) that was described in Chapter 3.

For our experiments, we only consider feasible solutions such that every stripe contains

a divider cell (i.e., when stripe-assigning the grid, there exist enough cells within the stripe

to define a subproblem). This ensures a solution that can be modelled by a variant of

the recurrence relation presented in Chapter 5.

For a rectangular grid, if a subproblem is defined by a divider cell, then the Basic

U-turn algorithm can be used to produce a locally optimal solution. If the number of

components within a stripe is great enough, then the Improved U-turn algorithm may

be applied.

An algorithm very close to the original IU was implemented, but the results from

this pilot study were not as good as expected. The idea of a U-turn region was kept,

but several different stripe assignments were explored (and in the end nine assignment

procedures were kept). This led to significant improvement in the computational results.

114

The results of Christou-Meyer (CM) showed that stripe-based algorithms seem to

outperform other more well-known algorithms for grid graphs (see Chapter 1). To demon-

strate the contributions of this research, we only need to compare against CM.

When comparing the results from this research with those of CM there are two factors

at work. The first factor is the effect of expanding the set of feasible solutions that are

considered (the dynamic-programming approach considers all possible stripe partitions).

The second factor is the effectiveness of the nine different stripe-assignments evaluated

per U-turn region.

One of the stripe-assignments is an approximation of CM’s method. Because an exact

CM algorithm was not implemented, CM actually performed better when the number of

cells assigned to each processor was large compared to the total area of the grid. As the

relative area for a component decreased, the methodology described in this dissertation

(Donaldson-Meyer (DM)) did substantially better than CM.

6.2 Implementation

6.2.1 Subproblem Definition

In chapter 5, it was proved under certain conditions that the best stripe-height sequence

could be determined. For these conditions to hold, when given a begin-end row pair and

direction of assignment, a stripe assignment has to be independent of how the previous

rows had been partitioned.

A stripe assignment must be able to partition the grid into two parts, each containing

an integral number of components. Therefore, a stripe assignment must be able to assign

an integral number of components within a stripe.

115

By assumption, we know that there must be a last component that can be completely

assigned within the stripe (i.e. every stripe has a divider cell). Therefore, a termination

point always exists within the stripe, and it is possible to ensure that the same cells within

a stripe always get assigned in a certain order. We now have a means for identifying a

subproblem. If the number of components within a stripe is great enough, then the Basic

U-turn algorithm and the Improved U-turn algorithm can be used. Otherwise, a simple

default assignment procedure can be used for the U-turn region.

At this point, we have now shown that there exists a stripe assignment that will allow

for the implementation of the methodology of chapters 4 and 5.

B
C

3L

M

Figure 56: An Improved U-turn assignment

Theoretically, it is possible to determine an optimal stripe-height sequence that pro-

duces a locally optimal solution (either using the Improved U-turn algorithm or the Ba-

sic U-turn algorithm) for a rectangular grid (the same can’t be said for non-rectangular

grids). An implementation that closely resembled the Improved U-turn algorithm (except

slider swaps were not made) did not produce very good results. This led to the decision

to try multiple assignments per U-turn region.

116

6.2.2 Software and Hardware Issues

All coding was done using the C programming language, which was compiled using g++,

which is a GNU project C++ compiler [ANO]. All software development was done on a

Pentium Pro 200Mhz machine with 64MB of RAM. All results were generated using this

Pentium machine and an Ultra Enterprise 6000 Server.

6.3 Stripe Assignments

The Improved U-turn algorithm can produce component-assignments with perimeters

far from optimal. Peninsulas are still a possibility. For the stripe assignments that were

examined during the course of this research, there are cases for which any single stripe

assignment will do poorly. Instead of being limited by a single stripe assignment, we

allowed for multiple assignments of a stripe. Figures 57 and 59 show the nine different

assignment patterns that were used to assign the U-turn region. Component C is the last

component that may be completely assigned to the upper stripe. In effect, by considering

nine assignments, we have slightly altered the original recurrence that was presented in

Chapter 5. The new recurrence is:

P(i,j,d) = minb,stripe assignment(perimstripe assignment(b,i,j,d) + P(b,i-1,(d-1) mod 2))

We have now introduced two factors for improving the quality for stripe-based solu-

tions: choice of stripe assignment process and best stripe-height sequence.

This multiple-assignment algorithm, which is modelled by the the previous recurrence,

was implemented. The only fact about the stripe that we may use is that there are

enough cells to complete an assignment for at least one component. The previously

defined stripe assignment processes involve multiple components in the U-turn region. If

117

Assignment scheme 0 Assignment scheme 1

Assignment scheme 4

C

M L 3

C

L

M L 3

C

L

L 3

M

C

 3

M L 3

C

3

M L

Assignment scheme 2 Assigment scheme 3

Figure 57: Stripe assignment patterns 0 - 4 (see figure 58)

118

For all of the assignments in this table, the C component is
assigned row-wise in the upper stripe.

Number Assignment Description
0. All other components assigned column-wise across both stripes.
1. All components but L and M are assigned column-wise across both

stripes. In the upper stripe, L is assigned to all remaining cells
and then column-wise assigned in the bottom stripe. The M component
is then column-wise assigned within the bottom stripe.

2. Same as 1 except that the L component in the bottom stripe will be
assigned row-wise.

3. 3’s are assigned to all remaining cells in the upper stripe. Any
remaining 3’s are assigned column-wise in the bottom stripe. All
remaining components are assigned column-wise within the bottom stripe.

4. 3’s are row-wise assigned, extending into the bottom stripe. All other
components are assigned column-wise within the bottom stripe.

Figure 58: Striping assignments when proc C is assigned row-wise

there are not enough cells to accommodate the required number of components, then this

U-turn methodology may not be applied. In this case, a default assignment was made.

At this point, the reader should understand that this modified stripe-assignment

phase has no affect on the best stripe-height sequence result from the previous chapter.

This is because the recurrence is suitably modified. The argument follows the along the

same lines as the proof of optimality of the original shortest-path approach or dynamic-

programming algorithm.

6.4 Results

The above procedure (allowing nine methods for assigning the U-turn region) was im-

plemented. Table 6 contains the results for several non-rectangular grids comparing

METIS/Pmetis/Kmetis (see Chapter 2), CM (the genetic algorithm version, again see

Chapter 2), and the DM algorithm. For one of the grids partitioned into 16 components,

119

Assignment scheme 5 Assignment scheme 6

Assignment scheme 7 Assignment scheme 8

C 3

M L 3 M L 3 C

C 3

M L 3

C 3

M L 3

Figure 59: Stripe assignment patterns 5 - 8 (see figure 60)

Number Assignment Description
5. C is assigned column-wise in the upper stripe. All remaining components are

assigned column-wise across both stripes.
6. All assignments are made column-wise across both stripes in the

direction that the future assignments in the bottom stripe are
to be made.

7. C is assigned column-wise in the upper stripe. The next component fills out
the upper stripe, and any overflow is assigned column-wise in the bottom stripe.
All remaining components are column-wise assigned in the bottom stripe.

8. C is column-wise assigned in the upper stripe. The next component fills out
the upper stripe, and any overflow is row-wise assigned in the bottom stripe.
All remaining components are column-wise assigned in the bottom stripe.

Figure 60: Striping assignments when proc C is assigned column-wise

120

Shape Cells Comps METIS CM DM CM/DM
(max stripe height, Relative

max observed height) Improvement(%)
Diamond 4019 16 25.98 16.40 17.19 (30,20) -4.82
Diamond 4019 64 22.07 13.37 10.25 (20,15) 23.34
Ellipse 823 16 14.58 8.33 8.33 (20,7) 0
Ellipse 823 64 5.37 5.36 3.58 (20,4) 33.21
Torus 7696 16 30.97 11.50 10.51 (40,28) 8.61
Torus 7696 64 22.59 11.00 8.38 (20,14) 23.82

Table 6: Percent above lower bound:DM, CM and METIS.

CM actually did better. There are two reasons for this.

First, CM does not require a divider cell within a stripe. That means that the size

of the set of possible stripe-height sequences is greater for CM than for DM. Also, under

certain conditions, CM handles overflow differently that the implementation used by DM.

When dealing with a small number of components, a poor perimeter for even one

component can significantly affect the results. DM tended to have problems with the

initial stripe for non-rectangular grids. As the number of components increased, the

effect of a single component is reduced. To see the actual partitions produced by the DM

methodology, see figures 61, 62, and 63.

Upper bounds on stripe heights were made to reduce the amount of computing. More

on this is presented in the ”Error Gaps” section.

As a further demonstration of the two effects, stripe-height selection and multiple

assignments of the U-turn region, CMR, a non-GA version of Christou-Meyer, using the

above discussed CM stripe assignment method and 100 randomly generated sets of stripe

heights, was used to partition an additional set of problems. These same problems were

then partitioned using the Donaldson-Meyer algorithm. Table 7 contains the results

for some larger variants of the problems in Table 6. For all problems, the number of

partitions was 64.

121

Figure 61: The DM partition of the 823-cell ellipse into 64 parts.

Figure 62: The DM partition of the 7696-cell torus into 64 parts.

122

Figure 63: The DM partition of the 4019-cell diamond into 64 parts.

123

Perimeters
Shape Cells CM DM Lower Bound

(max. stripe height,
max. observed height)

Ellipse 1083 1198 1188(20,5) 1142
Ellipse 3305 2038 2016(20,9) 1920
Ellipse 4329 2340 2300(20,12) 2176

Diamond 3279 2112 2076(20,12) 1920
Diamond 5099 2608 2542(20,13) 2304
Diamond 12959 4100 4058(25,20) 3712

Torus 4952 2532 2468(20,13) 2304
Torus 7536 3098 3052(25,12) 2816
Torus 10980 3740 3650(25,16) 3456

Table 7: CMR versus Donaldson-Meyer

In all cases, DM outperformed CMR. However, DM took much longer than CMR for

producing a result. CMR produces a solution very quickly. For a small problem (the

Ellipse problem with 1083 cells) CMR took less than 8 secs, while DM took three and

one-half minutes. For a big problem (the Diamond problem with 12959 cells), CM took

9 seconds; DM took about 3.7 hours.

One example that demonstrates the benefits of using the DM algorithm would be if

the same inter-processor-communication intensive process were to be run many times. If

the number of runs were great enough, then the additional time used by DM would be

made up by reduced total run-times for the process that used the DM partition.

As was shown earlier (Chapter 2), the GA methodology of Christou-Meyer did very

well when partitioning rectangular grids. As a check, the Donaldson-Meyer algorithm

was applied to the 100x100 grid with 8-way partition and the 128x128 grid with 128

components. The results of Donaldson-Meyer matched those of Christou-Meyer.

Because of the complexity of the assignments to the the U-turn region, if the number

124

of cells within a stripe is small it is not obvious if the common subproblem assumption

is valid. It then follows that different assigning patterns could produce different U-turn

regions.

To get around this problem, one could alter the assigning patterns to get a common

U-turn region. To ensure this common substructure the following steps could be taken.

1. Apply Assignment process 0 and determine the U-turn region.

The cells that are assigned during this phase will determine the U-turn

region for the remaining eight assignments.

2. Make the other eight assignments.

3. Save the best assignment.

The process in step 1 guarantees that each assignment technique deals with exactly

the same U-turn region.

6.5 Error Gaps

Since an approximation of Christou’s stripe-assignment pattern is one of the nine that is

tried, it is expected that CM’s error gap (distance to lower bound) should in general be

greater than those of DM.

To keep the running times down to reasonable levels, not all possible stripe heights

were considered for many of the problems presented in this dissertation. Theoretically,

if each component is to be assigned A cells, then under certain conditions, stripe heights

between 1 and A (actually, stripe heights between A and M, the total number of rows,

could also be considered) can be used to produce a feasible solution. But some stripe

heights were thought to not produce good solutions and were not considered.

125

A shape for a given area A that has optimal perimeter is a square with sides of length

A0.5. The shape of the enclosing rectangle for a given area can vary and still have optimal

perimeter. For the given problems the upper bounds on stripe heights were set so as to

fall outside of the range of stripe heights that would produce an optimal perimeter. It

is hoped that these choices for upper-bounds on stripe-heights are great enough so as to

not exclude desired results. Determination of stripe-height ranges is an area of future

research.

6.6 Summary

The numerical results presented in this section represent the best that can be achieved

using a stripe-based algorithm, for a given set of allowable stripe heights. These results

also confirm the effectiveness of the ideas of Yackel-Meyer (YM) and CM. CM, in par-

ticular, can produce a very good solution in a short amount of time (when considering

rectangular grids Martin [Mar96] also does an outstanding job).

The techniques described here could also be applied recursively to the U-turn re-

gion for a given stripe and the associated overflow cells in the next stripe. The U-turn

region and the associated overflow area form a grid graph with an integral number of

components.

The run-time of the software developed for this research is dependent on problem

parameters. For some of the bigger non-rectangular grids, the run-times were in the

minutes (and hours for big problems). In the future (see Chapter 7, section “Stripe-

height Range”), we plan to study the dependence of solution quality on the range of

stripe heights used.

There are three main data structures used in the implementation. The first is an

126

array containing the begin-end-row pairs that are valid stripes. The second is the actual

grid to be partitioned (also blocks of this overall grid, corresponding to stripes, must be

dynamically allocated). The third is the array used to store the dynamic-programming

results. The first data structure can easily be eliminated. It is not obvious how to get

around having in memory the entire grid to be partitioned, without depending on a fast

file system (i.e. reading from the hard disk just those parts of the grid that are to be

considered). Therefore, to work on problems of the size that Martin [Mar96] studied

(e.g. rectangular 1000 x 1000 grids) would probably require a substantial amount of

computing time.

Memory management is a major bottleneck in the current implementation. Using

the performance measuring tool Paradyn [MCC+95] on a moderately sized problem, it

appears that dynamically allocating some of the data structures may have the effect of

doubling the running time. In the future, we will explore the possibility of using static,

rather than dynamic, data structures.

127

Chapter 7

Conclusions, Contributions and

Future Work

7.1 Conclusions

For a large class of problems, stripe-based methodology has proven to be a very effective

approach for partitioning a grid graph. Intuitively, it is not hard to understand why

these algorithms perform well. These algorithms use a greedy approach to maximize the

number of components that have optimal or near-optimal perimeters. As long as the

components with non-optimal perimeters are not numerous (in a relative sense), overall

performance will be very good. In fact, total perimeter will approach the optimal value.

As a result of this research, we have shown that, under limited assumptions, that a

rectangular grid can be assigned so as to produce a locally optimal solution.

Previous methods used a simple approach for handling those components appearing

in two stripes. These methods could produce components that were far from optimal

and could easily be improved by swaps, resulting in a reduction of the total perimeter

for the overall assignment. This dissertation presented assignment techniques that would

reduce the occurrence of these bad assignments.

In the past, it was not feasible to determine the best set of stripe heights for gen-

eral domains. Under certain conditions, including rectangularity, of the domain, Martin

128

[Mar98] determines the best set of stripe heights, via a knapsack approach. (Because

of these limitations, it is not known if the problem that Martin solved was NP-Hard.)

Martin’s algorithm also did not allow overflow from one stripe to the next. By using

genetic algorithms, Yackel-Meyer [Yac93] and Christou-Meyer [CM96] find good sets

of stripe heights, without the restrictions imposed by Martin, but their solutions do not

guarantee an optimal set of stripe heights.

As a result of this research, it has been shown that there are a super polynomial

number of possible sets stripe heights; and for a given stripe assignment process, a

provably optimal set of stripe heights can be determined in a polynomial amount of

time.

7.2 Contributions

7.2.1 Improved Stripe Assignments and Local Optimality

For the case that an integral number of components are assigned to a stripe, as a result of

this research, it was shown that the assignment resulting from column-wise assignment

was locally optimal. Although these assignments were not always provably globally

optimal, the distance from the lower bound was guaranteed to be very small under

reasonable assumptions.

If stripe heights were chosen that did not allow an integral number of components,

then under the previous methodology, solutions contained assignments that could ob-

viously be improved. The previous algorithms only allowed for a single processor to

spillover across stripes. This led to the creation of peninsulas (a single row or column

of cells extending from the main body of cells assigned to the component), that could

129

be improved through a series of two-cell swaps, with the resulting assignment having a

better total perimeter. This dissertation presents algorithms that do not generate such

non-locally-optimal peninsulas.

The driving force behind these algorithms was the U-turn region. The U-turn re-

gion contains components that are assigned in more than one stripe and that also may

have an irregular shape that forces large perimeter values. So a balance must be struck

between the number of components assigned (in non U-turn regions) to near optimal con-

figurations and the components that will be assigned (in the U-turn region) to possibly

far-from-optimal configurations.

As a result of this research, nine basic assignment processes for the U-turn regions

For each single process, there exist configurations of unassigned cells that will lead to

poor results. However, in our experience, at least one of the nine performed relatively

well in every instance.

7.2.2 Exhaustive Searches are not Feasible

Before this research, the size of the set of feasible stripe-height sequences was not es-

tablished. It is now known that the size is at least super-polynomial in the number of

vertices. A brute-force exhaustive search is not feasible.

7.2.3 Defining Subproblems

The driving force behind all the breakthroughs in the second half of this dissertation is

the idea of defining subproblems that can be assigned independently of the remainder of

the domain. Through the use of three variables and a fixed stripe assignment process, a

subproblem can be uniquely defined and independently assigned. The remaining part of

130

the original domain is also assigned independently.

This idea is actually taken one step further. Individual stripes can be identified and

assigned independently of the rest of the grid. From this decomposition, two concepts

have emerged. The first is the idea of a stripe-quasi-independent (SQI) fill procedure.

For a given SQI fill procedure and a valid partial end-row sequence, the perimeter value

for subproblem (ei−1, ei, di) equals the perimeter value for the subproblem (ei−2, ei−1, (di

+ 1) mod 2) plus the perimeter for the components appearing before the corresponding

U-turn region for stripe i

The second concept is a stripe-fill optimal solution (SF). A SF solution is optimal

with respect to a set of feasible solutions obtained by:

1) specifying valid sequences of end-rows and

2) applying a SQI fill procedure.

7.2.4 Improved Stripe-Height Selection

The construction of a stripe-based partition can be thought of as incrementally append-

ing a stripe to one subproblem and producing another subproblem. Partitions of this

type posses the qualities of common subproblem and optimal substructure. These are

two qualities that are present in problems for which dynamic programming and greedy

algorithms are applicable. By being able to consider appropriate subproblems, both of

these algorithms exploit these qualities and organize the results in such a way as to

eliminate redundant and a potentially super-polynomial number of calculations.

For the greedy algorithm approach, the original problem is transformed into a state

graph, with one source node (corresponding to an unassigned grid) and one sink node

(corresponding to an assigned grid). Each node in the graph corresponds to a subproblem.

An edge exists between node (b,e,d) and (b’,e’,d’) if and only if a valid stripe can be

131

appended to the subproblem defined by (b,e,d) to get (b’,e’,d’). The shortest path from

the source to a node corresponds to an optimal partition of the corresponding subproblem.

The shortest path from the source to the sink corresponds to an optimal partition in the

original grid.

An optimal solution can be represented as a sequence of stripe heights and fill direc-

tions. Consider the last stripe. There are a finite number of possible final stripes. We

know that the stripe height for the optimal solution must come from this set. If the final

stripe corresponding to the optimal partition is stripped away, the problem remaining is

a smaller version of the original problem. The partition for this smaller problem must

also be optimal, or else the optimal partition could be added to the final stripe to produce

a better overall solution.

This mechanism is contained in the following recurrence:

P(i,j,d) = minb(perim(b,i,j,d) + P(b,i-1,(d+1) mod 2))

Taking into account the termination conditions and multiple stripe-assignment pro-

cesses, this is the recurrence that our implementation uses.

7.3 Future Work

7.3.1 Post-Processing

As was mentioned earlier, a locally optimal solution can be improved if multi-cell (more

than 2) swaps are allowed. The partition in figure 52 is locally optimal, but is not globally

optimal. The key is trying to identify the expanded sets of cells to be swapped.

One method of post processing would be to use the Kernighan-Lin heuristic that

allows for a sequence of swaps, in which any individual swap in the sequence may not

132

necessarily improve the solution, but taken as a whole, the sequence of swaps does.(A

worsening swap may perturb the assignments enough to create several other improv-

ing swaps) Swap-cell selections would be based on priorities determined by perimeter

contributions.

Another post-processing technique to be studied will be border swapping. In figure 52,

the borders for the 1’s and 2’s could be reassigned to get a better solution. Also, the

assignment processes will be used to post-process poor quality U-turn regions and any

stripes whose components are not of good quality.

7.3.2 Stripe-Height Range

The range of heights that a stripe may assume plays a major role in the amount of time

required to generate an optimal set of stripe heights. As was mentioned earlier, for some

of the bigger problems it took hours to generate the optimal set of stripe heights. Further

study is needed on how total perimeter is affected by reductions in the set of heights that

a stripe may assume.

7.3.3 Extension to the 3-D case

To extend the stripe-selection process to the 3-D grid graphs only requires a modification

as to how a subproblem is to be defined. Figure 64 shows how a a 3-D graph might be

divided into four “slices”.

To make the diagrams a little easier to construct and to follow, only parallel pipettes

will be considered. If some other type of 3-D grid were to be examined, the slicing would

be done on the enclosing parallel pipette for the graph. The first two variables in any

recurrence would then be the beginning and ending rows for the slice.

133

Within these slices, configurations approximating cubes will be packed in columns.

Figure 64 shows the first column of near-cubes assigned within a stripe. This packing

of cubes will continue in a manner similar to the striping done in the 2-D case. There

are several different sequences of column widths that would have to be examined and

organized just like in the 2-D case.

As in the 2-D case, if the last row within a 3-D subproblem is known, then the total

number of complete components that may be assigned within the corresponding volume

can be determined. By knowing the height of the last slice, the width and direction of

assignment of the last groups of cubes packed within the slice, the configuration of cells

to be assigned becomes independent of the how the previous slices were assigned.

For handling overflow from one slice to the next see figures 65 and 66

7.3.4 Parallel Computing

For all of the methodology concerning stripe selection, it was assumed that (although

unstated) we had chosen the best orientation for the 2-D grid; this may not be the

case. If the grid is not symmetric about both axes, then it might actually be better to

use another corner as the starting point. Since there are a constant number of different

starting points (four corners, when considering the enclosing frame), this type of problem

lends itself to parallel computing. One way to divide up the problem is to assign each

starting corner-point to a different processor. A more sophisticated variant would add a

pool of post-processing tasks that could be processed in parallel. This type of distribution

of work could also be extended to the 3-D case, where 24 processors could be used.

134

 A

B

C

D

A

B

C

D

Figure 64: Slicing a 3-D grid

135

Unassigned cells

1 2 3

1
2
3

View of top from above

Figure 65: Assigning columns within a slice

136

Figure 66: A configuration of unassigned cells

137

7.4 Summary

As a result of this research, both phases of stripe-based partitioning algorithms have

been improved. The method of stripe assignment has been improved to guarantee locally

optimal solutions in the rectangular case, and high-quality solutions in the general case.

Previous research focussed on heuristics or restrictive approaches to select sequences of

stripe heights. As a result of this research, there now exist efficient polynomial algorithms

that produce the best sequence of stripe heights.

138

Bibliography

[ANO] ANONYMOUS. A manpage provided through the operating system used at

the University of Wisconsin-Madison.

[Chr96] I. Christou. Distributed Genetic Algorithms for Partitioning Uniform Grids.

PhD thesis, University of Wisconsin - Madison, August 1996.

[CLR90] T. H. Cormen, C. E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. McGraw-Hill, New York, 1990.

[CM95] I. T. Christou and R. R. Meyer. Optimal and Asymtotically Optimal Equi-

partition of Rectangular Domains via Stripe Decomposition. University of

Wisconsin Mathematical Programming Technical Report, 95-19, 1995.

[CM96] I. T. Christou and R. R. Meyer. Optimal equi-partition of rectangular do-

mains for parallel computation. Journal of Global Optimization, 8:15–34,

January 1996.

[DM99] W.W. Donaldson and R.R. Meyer. A Dynamic-Programming Approach for

Grid-Graph Partitioning. 1999. Manuscript.

[Don97] W.W. Donaldson. Locally Optimal Striping for Rectangular Grids.

Manuscript, 1997.

[FGK93] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language

for Mathematical Programming. The Scientific Press, 1993.

[Fra99] ILOG SA France. CPLEX Linear Optimizer 6.5.1. 1997-1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H. Freeman, 1979.

[GMSJ93] S. Ghandeharizadeh, R.R. Meyer, G. Schultz, and J.Yackel. Optimal balanced

partitions and a parallel database application. ORSA Journal on Computing,

4:151–167, 1993.

139

[GMT95] J. R. Gilbert, G. L. Miller, and S. H. Teng. Geometric mesh partitioning:

Implementation and experiments. In Proceedings of the 9th International

Symposium on Parallel Processing, pages 418–427, 1995.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison–Wesley, Reading MA, 1989.

[HL95a] B. Hendrickson and R. Leland. The Chaco User’s Guide Version 2.0. Sandia

National Laboratories, July 1995.

[HL95b] B. Hendrickson and R. Leland. An improved spectral graph partitioning

algorithm for mapping parallel computations. SIAM J. on Sci. Comput.,

16:452–469, 1995.

[Hol92] John Holland. Adaptation in Natural and Artificial Systems. MIT Press,

1992.

[KK95a] G Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. Technical Report TR 95-037, Dept. of Computer

Science, Univ. of Minnesota, 1995.

[KK95b] G Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. Technical Report TR 95-035, Dept. of Computer

Science, Univ. of Minnesota, 1995.

[KK95c] G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse

matrix ordering system. 1995.

[KK95d] G Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Technical Report TR 95-064, Dept. of Computer Science, Univ. of

Minnesota, 1995.

[KL70] B. W. Kernighan and S. Lin. An effective heuristic procedure for partitioning

graphs. Bell Systems Tech. Journal, pages 291–308, February 1970.

[Mar96] W. Martin. Fast equi-partitioning of rectangular domains using stripe decom-

position. Technical Report MP-TR-96-2, University of Wisconsin - Madison,

February 1996. to appear in Discrete Applied Mathematics.

140

[Mar98] W. Martin. Fast equi-partitioning of rectangular domains using stripe de-

composition. Discrete Applied Mathematics, 82:193–207, 1998.

[MCC+95] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.

Irvin, Karen L. Karavanic, K. Kunchithapadam, and T. Newhall. The para-

dyn parallel performance measurement tools. IEEE Computer 28, 11:37–46,

November,1995.

[Mey99] R.R. Meyer. Class notes for CS 720 at the University of Wisconsin-Madison.

1999.

[Mic94] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1994.

[MT90] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer

Implementations. Wiley, 1990.

[MTTV93] G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh

partitioning. In A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph

Theory and Sparse Matrix Computation, pages 57–84. Springer-Verlag, 1993.

[NW85] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1985.

[Sch89] R. J. Schalkoff. Digital Image Processing and Computer Vision. John Wiley

& Sons, 1989.

[ST93] H. D. Simon and S. H. Teng. How Good is Recursive Bisection. 1993.

[Str89] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations.

Wadsworth & Brooks, 1989.

[Yac93] J. Yackel. Minimum Perimeter Tiling in Parallel Computation. PhD thesis,

University of Wisconsin - Madison, August 1993.

[YMC97] J. Yackel, R. R. Meyer, and I. Christou. Minimum-perimeter domain assign-

ment. Mathematical Programming, 78:283–303, 1997.

