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Abstract

PARAMICS is a PARAllel MICroscopic Traffic Simulator
which is, to our knowledge, the most powerful of its type
in the world. The simulator can model around 200,000
vehicles on around 7,000 roads (taken from real road traffic
network data) at faster than ‘real-time’ rates, making use
of 16K processor TMC Connection Machine CM-200 for
the simulation aspect. The project aims to make avail-
able to road network planners a new range of tools, and
demonstrates that use of high performance computing in
real applications is possible and worthwhile, while yield-
ing important and interesting research results.

1 Introduction

This paper describes the PARAMICS microscopic traffic
simulation package, designed and written at the Edinburgh
Parallel Computing Centre (EPCC) in conjunction with
SIAS Ltd, and part funded by the Science and Engineering
Research Council (SERC) and the Department of Trans-
port.

PARAMICS is implemented making use of a Think-
ing Machines Corporation(TMC) CM-200,configured with
16K processors and a DataVault fast storage device. The
project aim is to implement a system whereby individual
vehicles can be simulated accurately on all the major trunk
roads in the Scottish road network, and updated at real
time rates. In this use, ‘real time’ means that the simulator
should be able to simulate the movement of vehicles in a
certain time, and that this time should be equal to (or less
than) the real time it would take the vehicles to progress
that distance. The ‘time-step’ for the simulator update is
one second of real ‘driver time’, so the simulator itself
should also take one second at most for each iteration. The
number of vehicles simulated is of the order of 200,000 on
around 7,000 road links, and to our knowledge, this is the
biggest simulation attempted at this complexity anywhere
in Europe. At time of writing, only one other group that
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we are aware of in the world is looking at such a problem
size([8]), although interest is growing in this area.

In particular, our own interest is in studying the conges-
tion problems in the Scottish trunk road network. However,
it should be noted that any network for which information
is available can be modelled (even if the network is in coun-
tries where people drive on ‘the other’ side of the road!).

2 Background

2.1 PARAMICS : What is it, and why ?

While traffic simulation programs have been in existence
for many years, they have all had to use simplified models
of traffic flow in order to produce results within practical
timescales. A typical assumption is to represent traffic
flow on a particular road as a single quantity, analogous
to electricity flowing though one link in a circuit. Such
models are generally classed as being macroscopic simu-
lations. Unfortunately, such models do not properly rep-
resent real traffic behaviour in congested situations, and
do not reproduce the inherently fluctuating nature of real
world situations.

PARAMICS[1, 2] is a microscopic simulator, as we are
interested in accurately modelling congestion formation
and dispersion, as well as maintaining an accurate pic-
ture of what is actually happening. It has been argued that
congestion formation is a phenomenon associated with the
chaotic, non–linear nature of road traffic and as such is
best modelled at the microscopic level [3], modelling indi-
vidual vehicles on each of the road links. Each time step
sees the vehicles shunted along the roads, and moved from
road to road if relevant, as in real-life. (Of course, micro-
scopic simulators can also gather statistics on flows through
roads, so these figures can be compared with results from
the macroscopic simulations — see � 9.)

2.2 Previous Work

The PARAMICS project is based on a sequential system
named MICSIM (Microscopic Simulator)[5], which was
developed as part of project IMAURO[6]. MICSIM could
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simulate an urban network of around 50 junctions and 200
vehicles at real-time speed. PARAMICS is required to
simulate around 200,000 vehicles at near real-time speeds,
needing a thousand-fold increase in processing speed on
the original simulator.

The timeliness of the PARAMICS project is evident
from the number of other projects attempting traffic sim-
ulation using parallel computers. Examples include the
TRANSIM project [7, 8], issues of traffic control being
studied using arrays of transputers [9] and the recent work
published by K. Nagel et al[10, 11, 12]. Many other groups
are just staring research in this area, and given the current
direction in road traffic policy in Scotland, the project is
seen as being particularly timely[4].

3 Parallel Environment

The machine used for the project was a 16K processor CM-
200 based at EPCC. An explanation of the SIMD paradigm
is outwith the scope of this article, but in such a model
of programming, performance is gained by utilising a very
high number of simple processors connected in a tightly
coupled network, executing the same code strictly in lock-
step (Single Instruction), but each having their own areas
of data on which to operate (Multiple Data).

The language chosen for implementation of the simu-
lator was C* [13], an extension of C which enables the
programmer to make use of the CM-200 by writing essen-
tially sequential-looking programs with instances of array-
type constructs, the elements of which can be distributed
on different processors, and operated on in parallel. These
arrays are usually of a size which is a multiple of the phys-
ical processor size of the machine (where the arrays are
larger, this is handled transparently by the machine). Each
single notional element is known as a virtual processor,
and operations occur in parallel on these virtual processors.

To aid in loading and saving data to/from the CM-200,
the DataVault fast storage device is used. This is a farm
of disks which ‘appears’ as a normal storage medium to
the SIMD program, the difference being that it is used to
store distributed data. That is, parallel variables present on
the CM-200 can be stored in a special format on this very
fast I/O device, so that they can be reread directly back on
to the machine without having to go first through the front
end. The CM-200’s only connection to the ‘outside world’
is through the front-end workstation(s).

4 Data Issues

4.1 Data Available

4.1.1 Network Data

Network data available consists of a graph description
(nodes and links) for the entire major Scottish trunk road
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Figure 1: PARAMICS network and traffic visualiser dis-
plays

network. Each node-to-node connection is a uni-directional
link, and there are two links (in opposing directions) for
each road. Each road has an associated type, which gives
information on attributes like the number of lanes, max-
imum speed allowed, length and curvature of the road etc.
The graph itself represents the connectivity of the road net-
work (Figure 1, diagram A).

The network has been refined during the PARAMICS
project to include more detail on specific junctions and
roundabouts � (this can be seen in Figure 1, diagram C).

4.1.2 Other Available Data

Other data to which we have access to, or have created,
includes:

� Routing Information from any given link in the network
graph to any of several destination zones (points where
vehicles leave the trunk road network). The routes are cal-
culated statically, and represent the ‘shortest paths’ in terms
of length of links, speed possible, etc;

�
Roundabouts, for the benefit of readers in countries that do not have

them, are simply a road layout allowing easy exit from a given link to
several others without needing complex junctions or flyovers - see Figure 1
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Figure 2: Traffic network extract

� Snapshot information in the form of flow figures on links
at typical times;

� Vehicle Release Ratesat points in the network;
� Vehicle Characteristicsdetailing classes of typical vehicle;
� Traffic Light Phasing representing the light sequencing at

certain locations.

All the information that we have access to, and wish
to model, has to be first translated into a microscopic form
suitable for use by a microscopic simulator (by, for example
mapping flow rates to actual numbers of vehicles - see � 5.1),
and then mapped into a parallel form that is suitable for use
on the CM(see � 5.2).

4.2 Parallelising the Data

The approach we settled on for building a parallel data
framework for the simulation process was to associate with
each of the uni–directional links (see � 4.1.1) a queue. The
queue is the parallel item of data on which we hope to
operate on the CM-200( � 3). Figure 2 shows an extract of
the network traffic, with the queues outlined using dashed
lines and numbered. Each of these segments exists on a
separate virtual processor, and, among other things, holds
details on the vehicles present on that segment. The bold
lines show the ‘real’ physical underlying network, which
is not needed by the simulator. The parallel array is a 1-D
array consisting of a large number of these queues.

4.2.1 Queues

Each queue can be thought of as first and foremost a con-
tainer class that contains a wealth of information, including:

� an array of vehicle slots, into which can be placed vehicles
currently on that queue, regardless of lane,

� connections detailing queues ahead,in all possible directions
(i.e. at junctions), and to queues behind,from which vehicles
will join,
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Figure 3: Queue segments in the network

� priorities at the junctions,
� routing information in the form of turn tables. These are

lookup tables which, given a vehicles’s destination zone
(see

�
4.1.2) can determine which direction the vehicle must

turn at the junction to help move towards its destination

The most important thing to remember is that each of
these queues is controlled by a different virtual processor
on the CM-200 , and so operations on these queues can
be performed in parallel. Another point to remember is
that each queue can control vehicles on all of the lanes that
comprise the link.

Forcing each link to having one queue is somewhat lim-
iting, as each and every queue in the simulation can then
only hold at most the same amount of vehicles as every
other queue, since the array of vehicle slots are the same
size on each processor. Hence, the speed of the simula-
tion will be limited by the number of vehicles held in each
queue, and each queue must have enough space to be able
to hold all the vehicles on its corresponding link. This
makes for extremely bad load-balancing, where many of
the queues will have slots for far more vehicles than they
have vehicles, hence will be idle a lot of the time.

It is obvious that many links (or roads) will have a far
greater capacity for vehicles than others, so we introduce
the concept of additional floating queues which join at vir-
tual junctions. Each queue in the simulation has the same
number of vehicle slots, but links are now allowed to have
more than one queue (Figure 3). The problem of where to
assign (extra) queues to links is covered in � 5.2 and � 6.5,
but in the meantime, there are three important points worth
making about queues :

1. The front queue is known as the head queue, and con-
nections out from this queue cross a physical junction.
Similarly, the last queue in a link is known as the tail
queue, and connections into this queue also cross a



physical junction. Note that each link needs at least
a head and a tail, but that the two can be one and the
same queue.

2. Connections into all queues that are not tail queues,
and out of all queues that are not head queues form
virtual junctions. These only occur when there is
more than one queue on a link, and the world ‘virtual’
is used to show that no real junction exists between
the non-head queue and the queue ahead (Figure 3).

3. Althoughqueues are associated with links in the traffic
network, in the cases where there is more than queue
on a link, the participating queues ‘float’ in space.
That is to say, each queue is not limited to looking
after a spatial portion of the link. Queues are simply
containers for vehicles, and it is the vehicles in the
vehicle slots of each queue that have a spatial pos-
ition. The only spatial queue enforcement made is
that vehicles in a given queue are spatially ahead of
vehicles in the queue behind on the same link.

In addition to the above, a wealth of other parallel data
is kept, stored within the queue structure. One of the most
important is the note kept at each non-head queue of the
distances ahead to tail vehicles in the queue in front. In-
formation is also held on: whether or not the queue has
been allocated and is being used (see � 6.5); the number
of vehicles currently controlled by the queue (see below);
statistics on how many vehicles of each type the queue has
controlled, and more.

4.2.2 Data Held on Vehicles

Every queue has �
�

vehicle slots into which vehicles can
be placed (Figure 5). Where the slots are not empty, a
vehicle exists, and each vehicle holds with it a wide variety
of information about itself. A slot is simply a temporary
container which can hold details on a vehicle, or be empty
where no vehicle is present. More specifically, each vehicle
in the simulation has information on:

� Vehicle type, which defines things such as physical
size, maximum speed, acceleration decceleration, ab-
solute target speed, vehicle class (e.g. bus, heavy
goods vehicle, domestic car, etc);

� Destination in the form of a zone;

� Dynamically changing valuessuch as current speed,
distance along link, current lane, etc.

As the simulation progresses, this information moves
around from slot-to-slot and queue-to-queue, representing
the vehicle itself moving through the traffic network.
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Figure 4: Diagram Showing Dataflow in the PARAMICS
Project

5 Software Components of PARAMICS

The PARAMICS project consists of four main software
components : Editor, Constructor, Simulator and Visual-
iser. Figure 4 shows the data flow relationships between
these pieces of code, along with details on how they inter-
act and share information. The following sections describe
the functions of two of the components, with the simu-
lator and visualiser being addressed in detail in � 6 and � 7
respectively.

5.1 Editor

The editor is used to transform data from the essentially
macroscopic information supplied by SIAS’s other simu-
lators and the network data supplied by The Scottish Office
(see � 4.1.1), into a microscopic form suitable for use by
the PARAMICS simulator. This data, once in microscopic
form, can be mapped onto the parallel data framework by
the constructor. The editor need typically be run once only
to set-up files for a given data network.

5.2 Constructor

The constructor is used to parse the sequential (micro-
scopic) data generated by the editor ( � 5.1), map this to
parallel variables, and store the results. This preparation
of data stage is time consuming (of the order of hours)
given that there is such a large amount of data to process.
Hence, the constructor is distinct from the simulator as it
need typically setup data only once.

The queue structure, as described in � 4.2.1 is built and
initialised by the constructor. It is the constructor that works
out how many queues each of the links in the network data
will get, based on average flows on the link (from census
and macroscopic flow data), and on the physical length of
the link. The constructor also decides on the number which
will define how many vehicles each queue can hold (i.e.



the number of vehicle slots in the queue structure). This
number especially, together with the total number of queues
that the constructor allocates will in part dictate the load
balancing and efficiency of the simulation.

Note that, since congestion is a moving phenomenon,
the initial distribution of queues to links should be later
updated, as the number of vehicles on links (and hence
queues) fluctuates. In addition, the heuristics utilised by
the constructor to allocate queues may result in the long
term in artificial congestion (where all the queues in a link
are full, even though physical space may exist on that link).
Since it is not feasible to allocate as many queues as to
completely saturate the network, of a size big enough to
cope (this would give horrendous load balancing), dynamic
queue reallocation and reshaping through time is necessary
to allow real traffic simulation to progress. This has been
addressed, and is detailed in � 6.5.

The constructor places vehicles initially on the network
according to snapshot data for the time of day of interest,
and once it has set up all the parallel data, this is written
to the DataVault, where it can be later quickly read by the
simulator, allowing the simulation process to commence
rapidly.

6 Simulator

6.1 Overview

The simulator component of PARAMICS comprises the
main parallel computational element. Its job is essentially
to move vehicles around the road network as realistically as
possible, taking account of other vehicles, crossing priorit-
ies, traffic lights, safe distances and so on, whilst potentially
communicating with the visualiser, and updating other dy-
namically changing features.

6.2 Main Simulator Functions

The following describes, in a simplified manner, the main
loop being executed in the simulator — remember that this
is being done on every virtual processor concurrently :

� Read in initial configuration of queues and vehicles from
DataVault, as set up by the constructor

� Loop (for required number of timesteps)

– Loop (over vehicles in each queue in parallel)
� Move vehicles along queue (

�
6.3)

– Rerank vehicles in queue

– Exchange vehicles between queues (
�
6.4)

– Perform dynamic queue reallocation (
�
6.5)

– (Listen/Send information to/from visualiser -
�
6.6)

– Update traffic lights (
�
6.7)

� Exit
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Figure 5: Mapping of vehicles to slots

6.3 Car Following

Car following is the most computationally intensive part
of the simulation process. In this stage, all vehicles in
the simulation are moved along the links with which the
containing queue is associated, and have their attributes
updated in accordance with any movement. Note that no
communications between queues needs to be done during
this phase, which is described below ( where �

�
is the num-

ber of slots in each vehicle queue, and �
�

is the maximum
number of lanes in a road) :
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Note that the loops are performed over all the slots in
a queue, so that on processors where not all the slots con-
tain vehicles, there will be some idle time while the loop
completes.

During the previous timestep of the simulation, vehicles
within slots were ranked by distance along the link. Hence,
slot 0 holds the vehicle nearest spatially to the end of the
current link, so the loops start with this vehicle and work
backwards. (see Figure 5)

6.3.1 Part A — Setting the lookahead structure

A running structure is kept of the statistics of vehicles in
each of the possible lanes (there are �

�
), and this is known



as the ahead structure. Using this structure, each vehicle
knows how much space there is ahead to the vehicle in front
(if any) in each of the lanes, and the characteristics of such
vehicles. Specifically, the ahead structure stores details for
each lane such as: current tailpoint of the vehicle ahead (if
any), type of the vehicle ahead, speed of vehicle ahead, etc.

This ahead structure is initialised to be empty for head
queues, for the first iteration. As each vehicle is looped
over, that vehicle adds its own details to what was there
already, thus keeping an updated view.

For non-head queues, the ahead structure is set to the
completed ahead structure for the previous timestep of the
queue in front, across the virtual junction. This means that
vehicles in non-head queues know the tail positions and
speeds of the trailing vehicles in the queue ahead, across
the virtual junction, so can still set their behaviours ac-
cordingly. This involves communication between queue
segments, and is done during the vehicle exchange phase.

6.3.2 Part B — Driver Behaviour and Attribute Up-
date

Each vehicle must evaluate what its target speed will be
for the current timestep, what acceleration or decelaration
it will have to apply to get to that target, and which lane it
should be in. It can make such decisions based, essentially,
on four factors :

� Details of distances to the vehicles ahead in each lane, and
their speeds and vehicle types, etc;

� Distance to the end of the road (and hence a physical junc-
tion);

� Priority at the end of the road;
� Details on the vehicle’s own current characteristics.

In the case of free flowing traffic, each vehicle will at-
tempt to travel at a speed closest to its outright target speed
(defined by type) but allowing a safe distance to vehicles
ahead. Vehicles will, by applying acceptable accelera-
tions and decelerations, reach a figure which determines
the speed for the next time step, where the process will
repeat. Hence, the speed of vehicles will change from step
to step, with each vehicle attempting to reach its outright
target speed.

In the case of slower moving traffic, or traffic approach-
ing a physical junction (marked by the approach of the end
of the link), speed is potentially tempered somewhat more.
In the case of a major priority junction, the vehicle need not
be slowed very much, but in the case of a barred junction
(for example the red phase of traffic lights) more decelera-
tion should be applied to slow the vehicle. Minor priority
junctions have a similar but less severe affect on the vehicle
speed. (Note that vehicles need not be slowed additionally
when merely approaching virtual junctions, which float in
space).

As far as lane changing is concerned, a vehicle will
attempt to change into an outside lane if that lane will allow
them to travel closer to their type’s target speed (i.e. faster),
and this is classed as overtaking. In addition, depending
on the turn that the vehicle wishes to make at the end of a
junction, it will aim to move into the ‘correct’ lane for that
turn.

6.3.3 Part C — Update vehicle position

After the first loop has completed, and all the vehicles are in
their required lanes, and have had their target speeds set, the
second loop moves all the vehicles along their link based
on the speed they were assigned. An additional check
is made to ensure that no ‘accidents’ have occurred(!),
through vehicles inadvertently overlapping. In such cases,
the speeds and positions are readjusted.

6.4 Vehicle Exchanges

When a vehicle reaches the head of a head queue, and the
end of a link, it is time for the vehicle to move onto a
different queue. This portion of the simulation involves
communication between queues, which must exchange de-
tails on vehicles.

In each timestep, vehicle exchanges are performed,
moving vehicles from original or source queues, to desired
target queues, by :

� Identifying those vehicles that wish to move onto another
queue (source queue perspective)

� Arbitrating amongst conflicting requests to join a queue (tar-
get queue perspective)

� Transferring vehicles that have been accepted (target queue
perspective)

� Removing successfully exchanged vehicles from their ori-
ginal queue (source queue perspective)

Note that in the simulation the identity of the ‘current’
queue being examined and operated on changes from being
the source queue when nominating vehicles, to the target
queue for arbitration and transfer, back to the source queue
when removing succesfully transferred vehicles, and that
at each timestep of the simulation, at most one vehicle can
leave any given queue.

6.4.1 Nominating vehicles for transfer

Any vehicle that has reached a head queue, and is in the first
slot of that queue, and has reached the junction, is nomin-
ated for transfer. The identity of the vehicle is sent to the
queue which the vehicle wishes to join. Each queue holds
with it a turn table detailing turns (left, right, straight ahead)
necessary to move vehicles onto their particular target des-
tination zone (see � 4.2.1). In addition, each queue also
knows which other queues lead out from it in each of the
three directions — left, right and straight ahead (Figure 3).



Vehicles waiting to move onto another queue can look
up the turn table to see which way they need to turn to get
to their destination (rather like looking at the road sign at
the side of the road). Using this information, the vehicle
can then determine which specific queue it wants to join,
moving from the original or source queue, to the desired
target queue.

In addition, all vehicles in the first slot of non-head
queues are nominated for transfer to the queue ahead, as
such vehicles are attempting to perform a virtual crossing
only.

6.4.2 Arbitration

After all the nominations from queues have been per-
formed, arbitration is done from the perspective of queues
which have vehicles waiting to join them. A vehicle is
accepted on the queue iff there are slots available in the
queue, and there is physical space between the tail vehicles
and the end of the link (or vehicles in the queue behind).

In addition, there may be more than one vehicle vying to
join the queue, and in such a case the vehicle that has major
priority across the junction is selected. In cases where this
is not clear or there is more than one vying vehicle with
major priority, one of those is chosen at random for transfer.

6.4.3 Vehicle Transfer

Target queues that are to accept vehicles ask for information
on the vehicle from the source queue, and update their own
statistics, as well as that of the vehicle they receive. Source
queues are informed that the vehicle they wished to transfer
has been accepted (or not, as the case may be).

6.4.4 Cleanup after vehicle exchange

After the vehicle transfers have been completed, source
queues that nominated vehicles for transfer have been in-
formed if the send was successful. If so, then details of the
vehicle are removed from the queue.

6.5 Dynamic Queue Reallocation

Since congestion is a dynamically changing phenomenon,
the distribution of queues to links, as done by the con-
structor (see � 5.2), is likely to be inadequate as time goes
on. This can lead to some undesirable behaviour such as
artificial congestion occuring where the simulator does not
have enough queues, and hence total vehicle slots, to hold
all the vehicles that can legitimately be on a link. The most
extreme case is where deadlock occurs in the network, as
congestion tails back over the entire system.

To try and remedy this situation, we have a devised
a scheme where a notional pool of ‘free’ queues is kept,
to which unused queues in the network are returned, and
from which queues can be taken to add to links that require
more capacity for vehicles. This pool is represented as a

tail
(full) head

1. Adding a Queue

The Queue Pool

tail
(empty) head

2. Returning a Queue

new
tail

new
tail

Figure 6: Dynamic Queue Reallocation using Queue Pool

list of queue identifiers (or qids) on the front-end, the qids
referring to queues that are currently unallocated and hence
available for reallocation, and the queue pool is initialised
to contain all those queues that are unallocated to links by
the constructor.

Every 10 timesteps, the network of queues is evaluated
to check where there are links that need extra queues, and
those available free queues are added to the links. In ad-
dition, every 10 timesteps, but offset by 5 from the check
for new allocation, unused queues are returned to the queue
pool.

6.5.1 Adding New Queues

A simple test is performed to see where new queues are
required. Where all the vehicle slots in a tail queue are
completely full, those queues request a new queue to be ad-
ded to the link, behind themselves. The front-end arbitrates
between requests for new queues, and the available queues
in the pool, and sends to each of the succesful requesting
tail queues the qid of the queue that is to be added at the
end of the link. This new queue will become the new tail.

The existing tail queue can then ‘pretend’ that it is the
new tail queue, by setting all the pointers in and out of
itself, and other attributes (whilst storing in temporaries the
old values). It can then send itself to the new queue, whose
qid it has received from the front-end, and then set itself
back to the values it had previously. This means that only
one general send needs to be done, and makes for efficient
use of the machine.

Finally, the queues which pointed to the old tail are
informed that they now point to the new added tail(Figure6,
diagram 1).

6.5.2 Returning Queues

The test for whether or not a queue is returned to a pool
depends on several factors. First, the queue, to be returned,
must be a tail queue and must have all its vehicle slots



empty. Second, there must be more than one queue asso-
ciated with the link on which it exists (otherwise we could
remove the one and only queue on a link, thus rendering
that path unpassable in future). Thirdly, the queue ahead
must also be less than half full of vehicles.

If all these criterion are met, the queue informs the front-
end of its qid, reinitialises all its fields, and marks itself as
being unallocated. The front-end then adds the qid to the
pool, marking it available for reallocation elsewhere.

Finally, the queues which pointed to the tail that has just
been removed are now set to point to the new tail, which
is the queue ahead of the one removed. (Figure 6, diagram
2).

6.5.3 Gains of Dynamic Reallocation

We observe that the performance penalty of adding code to
the simulator to do dynamic reallocation is minimal, and
that the gains, in terms of more accurate simulation, are
significant.

6.6 Communications with Visualiser

When the simulator is executing in tandem with the visu-
aliser, the two communicate via non-blocking message
passing, with an intermediate buffer space between the two,
allowing a certain degree of slackness.

The visualiser can request that the simulator stop and
start, and also ask for vehicles (or flows) from certain areas
of the network to be sent. In such a case, a parallel mask
is constructed to select queues within the area that is of
interest to the visualiser. Each timestep, vehicles which are
within this mask are gathered onto the front-end,placed into
messages, and despatched to the visualiser. The interaction
between simulator and visualiser can become somewhat
complex, but further discussion is outwith the scope of this
paper.

6.7 Traffic Light Update

At each timestep, the phasing on groups of traffic lights
is updated. These lights control exits from specific links
to other links, and when the light at a particular junction
changes phase/colour, the junction prioirities out from the
head queue on the relevant link must be updated. For
example, when a light goes red at junction, the outgoing
priorities from the link to the other links which the link
controls must be set to be barred, so that no vehicles can
‘run’ red lights !

7 Visualiser

Having a good means of showing what is happening is use-
ful for several reasons, including: browsing of data (static
and dynamic); watching the simulation process; debugging;

offline examination of data; controlling the simulator, and
so on.

The PARAMICS visualiser is a separate process, ex-
ecuting on a Silicon Graphics (SGI) workstation, which is
designed to run either concurrently with the simulator, or in
a standalone mode. The same code and program is execut-
ing in both cases, but when the simulator is also present,
data can be extracted and the simulatorcontrolled. In such a
case, the simulator and visualiser communicate making use
of EPCC’s multi-platformmessage passing library, CHIMP
[14]. When executing stand-alone, the visualiser can replay
simulation snapshots at leisure, extracting the same types
of data that were available when the data was produced.

Some of the features include: interactive display of net-
work, vehicles, annotation, text, flows and other informa-
tion; fast data navigation; control of the simulator; grabbing
and visualising data from the simulator; recording/playback
of vehicle snapshots from previous simulations; accurate
roads, junctions and vehicle motion; tracking of vehicles;
in-betweening of vehicle frames; image and PostScript sav-
ing of views; separate zoom and plan windows; support for
animation, video capture, and so on.

Figure 1 shows some sample output. A shows a general
overview of the network modelled, B shows the area of
specific interest in the study, and C displays one of the key
roundabouts with vehicles on the links. (The vehicles are
displayed with lines showing the direction of travel, and
intended turn at the end of the link). The last figure also
shows traffic lights on the roundabout, and examples of
some traced vehicles, marked T0, T1 and T2.

8 Performance

8.1 General Performance

One of the goals of the project was to produce a system
which could simulate traffic at real-time rates, on a 16K
node CM-200, and this has been met and exceeded result-
ing in a simulation process which can simulate the required
200,000 vehicles on 7,000 roads at faster than real-time.
Moreover, we can achieve this performance: executing the
visualiser in tandem with the simulator, grabbing informa-
tion as required; on half the Connection Machine i.e. 8K
nodes; on a typically loaded Ethernet; without recourse to
obscure machine-specific low-level coding.

8.2 Performance Improvement

Any comparison with existing serial simulators is bound to
be at best subjective, and at worst, misleading. However,
when compared to, for example, the original microscopic
simulator MICSIM[5], which made use of a DECstation,
we can observe a speedup factor of around 1,000.

In a sense, this is missing the point. PARAMICS was
designed to solve a very large problem, with a required per-



formance. Such performance would have been impossible
using a sequential machine, and we believe that the simula-
tion system we have designed is well suited to data parallel
architectures, and makes efficient use of the Connection
Machine. In addition, we had to expend relatively little ef-
fort to achieve such high performance, in terms of tweaking
the code to use low-level routines, and we believe that this
will make the code easily portable to other architectures
which support the data-parallel programming paradigm.

8.3 Performance Details

To aid in program development, debugging and profiling,
use was made of the TMC debugging tool PRISM. Profiling
code, and inspecting results within PRISM enabled us to
isolate portions of the code that were responsible for the
majority of the time, and improve performance.

As well as profiled timings, we could make measure-
ments based on wall clock timings — since we know how
long each timestep should take, we can observe the machine
performance by watching both the visualiser, and timestep
output.

8.3.1 Data Initialisation

Data initialisation is performed whenever the simulator is
started up, and accounts for a constant amount of time
(around 20 seconds). In this time, the simulator loads in and
verifies data from the DataVault, and sets up all structures
that need initialising. In addition, the visualiser must read in
data on initialisation, but when the tools operate in tandem,
the startup times are almost identical — when the visualiser
is ready for use, the simulator has loaded in all data from
the DataVault, setup all data, and is ready to simulate.

It should be noted that, without the use of the Con-
structor (see � 5.2), data reading and initialisation would
take several hours. In addition to data loading, much of
the initialisation process takes place on the front-end to the
Connection machine, and not on the CM itself.

8.3.2 Simulator Performance

The simulator itself seems to work extremely efficiently.
For example, using profiled code, on half the Connection
Machine (8K processors) and running for 50 timesteps, the
CM time is around 39 seconds of which over 35 seconds
are spent doing computation.

Allowing the simulation to proceed for around 4000
timesteps (or just over an hour), and subtracting the initial-
isaton time (which accounts for a a miniscule proportion
of the time on longer runs anyway), the general commu-
nications on the machine tend to take around 3-5 percent
of CM time only. In this time, all vehicle exchanges are
being done, all updates of lookahead structures are ex-
changed, and all CM communication in the dynamic queue
segmentation is being done.

Once the simulation process commences, wall clock tim-
ing show that the simulation process procedes faster than
real-time — managing around four timesteps every three
seconds.

8.3.3 Visualiser Performance

The visualiser tends to run at interactive rates (as can be
seen in the video), even when running in tandem with the
simulator, and even when displaying typical numbers of
vehicles and flows.

Non-blocking message passing is used between visual-
iser and simulator, and interaction on the visualiser always
takes precedence over communications.

8.3.4 Bottlenecks

The main bottlenecks seem to occur on the Connection
Machine front end. If this machine is heavily loaded, then
performance degrades. In addition, there is only one ‘wire’
between the front-end and the CM, and if other users are
using this path, or too much information is passed along
this wire, then performance also degrades.

Data initialisation on the front-end accounts for a large
proportion of the time on small runs of the simulator, but is
a constant startup cost.

When running in tandem with the visualiser, the per-
formance that can be observed on the visualiser is usually
highly interactive, but depends somewhat on the loading
on the Ethernet network used. In addition to simply sim-
ulating vehicles, the simulator has to strip off data to the
front-end, and package this up and send it across the Eth-
ernet. Note that this is not an issue when the simulator
executes stand-alone.

9 Verification

We are currently in the process of verifying the behaviour
of PARAMICS, by comparison with observed traffic pat-
terns, and results obtained on flow from existing, used,
macroscopic systems. Initial results have proved prom-
ising, and we are contintuing to improve the simulator with
this verification in mind.

10 Conclusions

The PARAMICS project has produced a system that can
perform extremely fast and detailed microscopic simulation
on a much larger scale than previously possible, and yielded
a suite of software tools that will be further developed in
future projects.

We believe that data parallel programming can be a
very effective way to solve such microscopic simulation
problems, and that good use can be made of machines such
as the CM-200 to such an end.



It is hoped that future work will lead both to tools that
can aid road network planners, and research into the various
issues surrounding parallelisation as well as into specific
areas such as driver behaviour.

Work continues on the PARAMICS project on the CM-
200, and areas being investigated include,

� Extension of the driver behavioural model, slotting in
behavioural ‘units’ [15].

� Integrating RTI information . Road Traffic Information
technologies range from signs placed on overhead gantries
informing drivers of road conditions ahead, to roadside
beacons which transmit information on congestion, acci-
dents, incidents and other traffic information to a receiver
sitting inside the vehicle [4].

� Environmental Modeling. Much interest is being shown,
[8], in modelling the impact of vehicles on the environment,
and microscopic modelling enables the likes of emissions to
be accurately modeled.

� Incident/Accident Modeling. More complex events such
as accidents, flooding, roadworks, temporary closures and
so forth could be handled.

� Dynamic Re-routing. Using a calculation strategy to allow
vehicles to dynamically change the way in which they will
traverse the road network to reach that destination is, of
course, essential for the modelling of RTI systems, incidents
and accidents, where the driver has information which may
enable them to alter their path.

� Feedback. Some prototype road devices are available for
obtaining actual real-time statistics on flows on roads, and
these devices may be able to feed directly into the simulator.

� Decreasing Time-Step. We are experimenting with differ-
ent smaller time steps – for example, half-second timesteps
seem to give more realistic results.

In addition to the above, at time of writing we have
just completed an initial MIMD version of the simulator
as part of a project primarily concerned with porting the
simulator to a Cray T3D. The redesign has resulted in a
portable message passing simulator implemented using the
MPI standard. It is hoped that using this version we can
attempt to gain extremely high performance (thus allowing
pre-emptive simulation in tandem with ‘real’ road systems),
and be able to run the simulator on a much wider range of
platforms.
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