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ABSTRACT

Smart farming concepts have made significant contributions to increase food production and
sustainability in the 21st century. These systems combine software and hardware that allows
farmers to measure, monitor and control certain agronomic parameters. Smart farming
technologies are becoming more prominent with technological advances in farming in fields of
automation, ICT (information and communication technology), and robotics. Several applications
of artificial intelligence (Al) are already developed for use in agriculture and farming purposes
and it is anticipated that use of “Al farming” will assist the agriculture sector in the future to drive

more efficient production.

To understand how to leverage the advantages of smart farming system in developing
innovative farming applications, the following questions need to be answered: (1) What kinds of
sensors should be used and data collected considering the cost and efficiency? (2) How do we
seamlessly transfer new Al technologies from other industries to agricultural problems which have
different requirements in terms of accuracy, scalability, operation, environment, etc. (3) What
customized and innovative method should be developed dedicated to agriculture on the top of

current general Al technologies? and (4) How should we leverage the advantages of smart farming?

Motivated by these questions, this research focuses on creating a modular farm mapping
system. This system presents work regarding three specific studies: (i) Fundamentally creating
advanced field mapping and navigation algorithms based on computer vision techniques. (ii)

Profitably augmenting the mapping module by a sensing approach with a variety of sensors and



xi
data fusion. (iii) Precisely augmenting agriculture objects perceiving ability for the map using

transfer learning and computer vision techniques.

The automated mapping and navigation system investigated in study 1 could be a cornerstone
of most autonomous agricultural system. Accordingly, we propose a ground-level mapping and
navigating system based on computer vision technology (Mesh Simultaneous Localization and
Mapping algorithm, Mesh-SLAM) and Internet of Things (IoT), to generate a 3D farm map on
both the edge side and cloud. Our evaluation indicates that: 1) this Mesh-SLAM algorithm
outperforms in mapping and localization precision, accuracy, and yield prediction error (resolution
at centimeter); and 2) The scalability and flexibility of the IoT architecture make the system
modularized, easy adding/removing new functional modules or IoT sensors. We conclude the
trade-off between cost and performance widely augments the feasibility and practical

implementation of this system in real farms.

In study 2 we present a sensing algorithm, a low-cost, robot-mounted, multidimensional map
augmentation method that can track robot movements, monitor the surrounding environment, and
link all the factors to the 3D map, thereby providing useful analytics to task planning, route
planning and robot operators. The method leverages IMU sensors to gather mobility data for every
individual robot. The ability to detect obstacles allows us to further augment the insight of the
mapping method as a 4D or even higher dimension map rather easily. In this chapter, we attempted
to provide analytics and data fusion from several specific aspects of the robot working environment.
We believe that our farmland sensing approach has many more interesting and useful applications

in similar agriculture environments.
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In study 3, we further develop computer vision-based crop detection with unmanned aerial
vehicle (UAV) acquired images. This is a critical tool for precision agriculture, but object detection
using deep learning algorithms rely on a significant amount of manually prelabeled training
datasets as ground truths. Field object detection such as bales is especially difficult because of 1)
long-period images acquisitions under different illumination conditions and seasons, 2) limited
existing prelabeled data, and 3) few pretrained model and research as reference. This work
augments the bale detection accuracy only using limited data collection and labeling, by building
an innovative algorithms pipeline. From the work we can conclude the algorithm pipeline
improves the bale detecting performance including the recall, mAP, and F1 score with diverse
illumination, seasons, and weather conditions images. This approach has strong scalability on

many other crops and field objects and will significantly enable precision agriculture techniques.

Combining all the created systems, we construct an agriculture Al system with multiple
innovative algorithms. This large scope of system and pieces of algorithms fill in needed gaps for
creating maps to enable smart agriculture, while also providing a valuable dataset and algorithms

for future researchers.



Chapter 1 Introduction

1.1 Motivation

1.1.1 Population Growing

The conflict between global population growing and low efficiency of food production:
In recent decades agriculture systems have faced both agriculture labor shortage due to the nature
of the work and the need to increase production with minimized inputs. The trend is expected to
continue with climate change and increasing population further adding stress to these systems. The
U.S. National Agricultural Statistics show that the number of farms and ranches has decreased by
3% from 2012 to 2017, and the land for agriculture has decreased by 2% (14.3 million acres) [1].
This decrease occurred while the United States population increased by 11.2 million from 2012 to
2017 [2], with similarly changes occurring globally [3]. Other stresses on agricultural production
such as drought, political issues, pandemics, such as the recent COVID-19 outbreak, can also cause
worldwide intermittent shortage of farm products. Additionally, agronomic producers face
growing concerns of the high cost of management, limited ability of crop monitoring, pressures to

minimize environmental impact.



1.1.2 Requirements of AI Technology and Digital Workforce

Seeding and Planting: Precision agriculture technologies have developed yield monitoring
maps, seeding and soil maps to improve farming profits as crop yield shows a curvilineal result
when the density of seeding is under-optimized. This is an emerging area of research with several
recent research studies that link precision agriculture and crop yield data together. For example,
Massey et al. [4] built a yield data map with the several years’ GPS data from a farm in Missouri.
They also overlaid the real cost in farm-level when they transferred the yield maps into profitability
maps. Breaking a large field into segments using an index like poor topsoil routinely fails may be
a way to lower seeding rates, decrease chemical use, or change the conservation uses. Additionally,
Van Raij et al. [5] showed another evidence that soil maps built based on guidance systems can
alter fertilizer applications with a good fitting for soil’s characteristics. A study [6] by the United
States Department of Agriculture demonstrated that leveraging results of applying precision
agriculture technologies based on combining both farm level practice data and operator financial
data from a nationally representative sample of corn farms. The conclusions suggested there could
be cost saving in seeding and planting operation by demonstrating the cost versus the yield gains
on different-sized of fields. Also, with future development of precision agriculture technologies,

it is likely that farmers will be able to further increase profits and environmental benefits.

Site-specific and chemical application: With the help of precision agriculture (site-specific
applications), farmers can take advantage of localized data about the soil status, growing status,
and other site-specific data to optimize the management of the farm. Evert et al. [7] showed in

their study that crop spectral reflectance made be used as a vegetation index to determine crop



health and amount. The development of site-specific variable-rate devices — precise spreaders,
sprayers, on-board rate controllers, etc. — make the field work easier than before. Basso et al. [§]
created a simulation approach that can conduct quantify studies on N-leaching and field yields
under various environment, chemical usage and soil conditions. This method helps manage N-
fertilizer-rate related to precipitation-based water availability and radiation. The other study by
Basso et al. [9] also showed the advantage of SALUS-model on economics and environment when
using site-specific fertilizer applications on segmented field with year as data collection unit.
Besides the studies around using N-fertilizer to enhance crop yield, recent studies have also
considered the environmental impact related to N-fertilization, including nitrate leaching and
nitrous oxide emissions. This precision agriculture technique can offer insights to management
strategy on crops [10] under various environments and soil conditions.

Real-Time Monitoring: A number of research studies have investigated the application of
computer vision in different key steps in agriculture, including observing crop growing, detecting
diseases, and facilitating crop harvest [11]. Computer vision techniques have been used to collect
nutritional status of plants. For example, Romualdo et al. [12] conducted a research on maize plants
to diagnose plant’s nitrogen nutritional status by implementing computer vision technique at
different development stages. Compared to the traditional method which relies on human
observations, the computer vision technique improves the detection efficiency and accuracy.
Another study by Pérez-Zavala et al. [13] proposed a computer vision approach to detect the grape
bunches in vineyard scenes relying on the shape, texture descriptors and bunch separation strategy

to realize automatic monitoring of grapevine growth.
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With the reduction of equipment costs, increase of computing power, and availability of non-
destructive food assessment methods, the efforts of many researchers and practitioners to improve
the crop quality and yields have focused on computer vision and machining learning [14].
Computer vision helps with object detection and machine learning allows useful information that
can be extracted from the collected data to be available, showing tremendous advantages over the

traditional methods applied in agriculture [15].

Several research efforts have shown that the combination of computer vision and machine
learning techniques on the multiple periods of crop production and harvesting are promising [16].
Computer vision in agriculture can be applied easily to analyze digital images collected from the
fields and to provide high-level understandable information to the users [17]. For example,
computer vision not only detects the weeds fast and effortlessly, but also accurately applies
treatment with the help of ground robot [18]. In addition, computer vision can detect the diseases

on the crops and inform users to take action [19, 20].

During the harvest process, the logistics of biomass aggregation and transportation is essential.
For example, the United States has significant lignocellulosic biomass [21] resources that could
be used for emerging industries like biofuels. However, converting the biomass to renewable
energy is not currently economically feasible with more efficient collection methods needed [22].
With the application of computer vision and machine learning, baled biomass can be detected
quickly and accurately, benefiting the harvest process by allowing for improved collection routes
and yield determination. Although this is just one example it demonstrates how this technology

can play a significant role in the crop harvest process.
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Image Acquisitions: To collect the images as inputs for the computer vision, using
Unmanned Aerial Vehicle (UAV) is an efficient approach, which has been widely used in precision
agriculture as well as many other fields, such as path planning, design, and livestock monitoring
[23,24]. UAV combined with computer vision can also contribute to remote sensing to help inform
farmers about the geo-specific crop yield and identify crop diseases [25, 26]. Sometimes, decisions
are required to be made off-board once the data have been collected and processed by the UAV,
based on the information provided by the images processed from the computer vision technique
[27]. For example, UAVs can be used to detect a potential issue, and then obtain high-resolution

images or inspect and apply treatments correspondingly.

Disease detection: Computer vision techniques can help with disease detection in agriculture.
Oberti et al. [28] implemented computer vision to detect powdery mildew on grapevine leaves and
the accuracy has been improved significantly by adjusting the view angles to 40 to 60 degrees and
hence improve the overall quality of the plants. Pourreza et al. [29] explored the application of
computer vision technique to detect Huanglongbing disease on trees infected by a citrus psyllid.
To analyze the performance of the model, laboratory and field experiments were taken and the
results showed that the new method improve the target disease detection accuracy to 95.5% to
98.5%. Instead of identifying single disease, computer vision technique also contributes to the
classification of multiple diseases of crops. Maharlooei et al. [30] applied image processing
technology on detecting and counting soybean aphids to achieve the identification and
enumeration of mites with lower costs and high accuracy in the strong light condition. Toseef and

Khan [31] used fuzzy inference system to generate an intelligent mobile application to help rural
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farmers diagnose diseases commonly occur on wheat and cotton crops with a 99% accuracy,

reducing the loss of farmers due to crop diseases and dramatically improve the crop yields.

Crop harvest: is another aspect that benefits from the computer vision techniques. Barnea et
al. [32] developed crop harvesting robots by using color-agnostic shape-based 3D fruit detection
technique on registered image and depth to address the localization issue in precision agriculture
due to shape variations and occlusions. Lehnert et al. [33] designed an approach based on effective
vision algorithms for harvesting sweet pepper and protect the cropping system, which was
demonstrated to be successive by the experiments of harvesting sweet peppers from modified crop

and unmodified crop.

How biomass is managed after crop harvesting is essential to balance economic and
environmental impacts. Residual biomass does not have to be removed after harvesting, rather it
can be incorporated into the ground to increase soil carbon. However, it can be removed in some
situations with the amount taken out impacting the economics and field fertility. Biomass
collection can provide economic and in certain cases may also benefit future crops. Residual
biomass collected from crop fields are usually baled to a compact form before collection and
transportation. In addition, stacking the bales to utilize the efficient bale-hauling equipment is
sometimes desired. There are some other benefits of forming the bales into stacks. These include
efficiently clearing the crop field for next grow cycle, avoiding bales troubling crop management

operations, and shortening the time costs between harvest and planting.



1.2 Al Technology Aided Solution

A potential solution to mitigate some of the issues outlined in the previous section are
autonomous and precision agricultural systems. The International Society of Precision Agriculture
[34] adopted the following definition of precision agriculture in 2019: “Precision Agriculture is a
management strategy that gathers, processes and analyzes temporal, spatial and individual data
and combines it with other information to support management decisions according to estimated
variability for improved resource use efficiency, productivity, quality, profitability and
sustainability of agricultural production.” Precision agriculture includes precise irrigation quantity,
correct and appropriate application of chemicals, weed cleaning, where topological characteristics
of the crop field is a key component needs to be considered. For instance, quantity of irrigation
varies drastically due to the change of terrain slops. Hussnain et al. [35] pointed out that low areas
of crop field are likely to collect more water from either the irrigation and rainfall, meaning that
irrigation for those areas are better to be less compared to other areas with high slopes. Mareeles
et al. [36] concluded that precision agriculture in terms of irrigation system relies heavily on the

topological characteristics of the crop field.

An autonomous system is build based on precise maps created with path, terrain, crops, and
other objects. Crop monitoring is also essential to allow robots to distinguish the crop from weeds,
monitor plant health, and determine crop maturity. Computer vision implemented via low-cost
visual sensors provides strong support for both local navigation and crop monitoring. However,
there are certain related technical challenges in rural fields including data transmission with high

bandwidth and high speed, system scalability in different sizes of land, mapping and localization
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accuracy, updating and maintenance, etc. Rapid advancements in computer vision, mapping, and

the Internet of Things (IoT) have provided some solutions as follows.

A guidance system capable of being scalable to the spatial range of the agriculture
applications, specifically large farmlands, is the key step to achieve high agricultural efficiency. A
three-dimensional (3D) navigation system, which can guide a robot autonomously, is a necessary
step to enable plant monitoring. Thus, mobile robotics should have precious information about

their position and be connected with the other robotics via IoT architecture.

Al
Farmer
Monitoring &
Management

Farm-level
e Crop-level
= = e e e e e
Work 2 Sensing Work 3 Perceiving
(IMU sensor & (Individual

c:) Statue sensor)

% Crop) \\%

Work 1 Mapping
(Computer vision —3D)

Figure 1 The architecture of the completed system

These systems are hoped to reduce labor issues for the most dangerous and tedious agronomic

tasks, improve efficiency, and reduce environmental impacts through better utilization of crop
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inputs. Mapping, sensing, and precise perception are key technologies for enabling autonomous
navigation systems which in turn will enable agricultural Al system. To lay a solid foundation, a
high-level overview of the system design could be divided into three modules as is shown in Fig.
1, in which the mapping system and the sensing approach are based on farm level. These two
approaches could be applied to any farm with different landscapes because of the comprehensive
dimensions’ information. The perceiving algorithm identifies single plants, which also could be

deployed in different fields with common agriculture objects.

1.3 Related AI Technologies for Precision Agriculture

1.3.1 Mapping Approach in Agriculture

Computer vision methods have been highly involved in automated plant monitoring
approaches, with representative approaches summarized in Table 1. More recent approaches have

utilized ground-level image data over overhead distant images from satellites or UAVs.

3D-Mapping for farms Geometrically mapping between scenarios with changing visual
features is a significant step of 3D-Map reconstruction. This data association has been recently
utilized in other studies including developing a technique to map varying scenarios by key visual
features in different seasons [41]; work done to provide mapping with high robustness under
illumination and seasonal variation using scene recognition and localization [42], [43]; a spatial-
temporal map that was highly robust to seasonal variations [44]; and a LIDAR system that was

adopted to obtain the information in a vertical direction [45]. But these approaches are highly
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dependent on the prior information of the plant shape, which constrains them from a wide

application.
Table 1 Some of the representative approaches
Temporal
Approach Strength Weakness
categories
Early Satellite imagery Costly, low special and
Large landscape coverage )
approach [37] temporal resolution
Unmanned Aerial | The capability of collecting
Vehicles (UAVs) | big data of high special and
[38] temporal resolution
: : Traditional SfM and MVS
Inexpensive Scanning plants and make ) )
Recent . o ' failed to process dynamic
1mage sensors estimations with computer )
approaches o . scenes, €.g. growing
[39] vision techniques
plants.
Multi-View The capability of getting
Stereo (MVS) condensed and fine-grained
[40] 3D reconstruction

Smart-Farming with IoT Farm data are increasingly being collected and with the data

increasing in size. This collection of farm data to make decision leaks to the concept which we is

called Smart Farming, where farming parctices are more data-driven and data-enabled. This new

concept of Smart Farming [46] is the outcome of the rapid development of the Internet of Things

(IoT) and cloud computing services. Smart Farming is surpassing precision agriculture because it

is depending on both the location and data, improved by environment consciousness, and prompted

by real-time instances [47]. It is vital to enhance the spatial farmland surveillance capacity to

enlarge the agriculture productivity. Tse-Chuan et. al. [48] presented a creative loT agriculture
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platform leveraging cloud and fog computing. With the help of fog and cloud, the proposed system
can be applied to large-area data collection and analysis, allowing farmland with limited network
information resources to be integrated and automated with agricultural monitoring automation, and
other related analysis in large areas. Existing work also outlines the challenges and constraints
when deploying the [oT in the domain of food and agriculture [49], [50]. Plant monitoring is a key
step in navigation where a robot is guided safely and autonomously even in an unknown
environment. Thus, mobile robotics should have precise information about their position and be
connected with the other robotics via [oT architecture. Muangprathub [51] monitored temperature,
humidity, and soil moisture over a large area using wireless sensor networks. Jirapond et at. [52]
applied the concept of [oTs with wireless sensor networks to observe the moisture condition of the
crop soil as well as other key factors reflecting the crop growth condition, such as and smartly
controlled the quantity of watering as needed. According to the observation, the system smartly
waters the crop to control the water resources and maintains the field product. In addition to
monitor plant growth, IoT sensors are also deployed in the dairy industries for animal health

monitoring and analysis.

Mohit et al. [53] built a platform named SmartHerd based on the IoT application to monitor
dairy farming and analyze animal behaviors. The system overcame the constrained internet
accessibility of remote farm by using a fog computing paradigm. The case study with a 6-month
field deployment resulted in an 84% reduction in data transferred to the cloud. Mohit et al. [54]
extended their previous platform to leverage the fog computing paradigm for the purpose of smart
dairy farming. The system has been tested in the field where has a full dairy herd of 150 cows. The

results showed that early lameness detection could be achieve before the existence of visual sign
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with 87% accuracy by implementing blended clustering and classification machine learning
methods. Smart farming can also contribute to the protection of environmentally sensitive regions
adversely impacted by farming animals. Tim et al. [55] developed a system based on wireless
sensor networks to form a virtual fencing to constraint cattle movement in a certain area to avoid
the interference with adjacent protected lands. Different from physical fencing method, this system

is more easily to be implemented and cost efficient.

1.3.2 Advanced Sensors and Data Fusion in Agriculture

Adverse topological characteristics detection in crop field for the precision agriculture is
another key opportunity. Large machines for crop watering, applying pesticide to control diseases,
and harvesting are commonly used for scaling crop production. When the terrain is uneven, large
autonomous machines need a detailed topography map, otherwise they could become stuck in the
crop fields which would cause economic loss from loss in time or field damage. If the topography
is extreme, lack of proper map could risk damage to the machinery, as navigated routes could

cause machinery rollovers on steep slopes.

Advanced sensors and computer vision techniques provide an opportunity to collect
topological characteristics from the environment required by precision agriculture. Sensors are
becoming smaller and more powerful (Nandurkar et al. [56]). In addition, as the costs of sensors
decrease, a greater deployment in practice is enabled. The development of computer vision
technique is rapidly reaching the level that users can efficiently process collected data for decision

making.
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However, collecting all information from the crop field not only increase the burden of
memory needed by the equipment, but also add more useless computing tasks. A method to extract
critical and useful information from the field is needed. We propose a method that combines the
advanced sensors and IMU as well as the algorithm to monitor and crop field in real time at a low
cost and in a practical manner. In addition, the automated monitor system also performs at field
analysis of the relationship between the topological characteristics and crop growth to provide

useful information for farmers to adjust their crop management strategies accordingly and timely.

Remote monitoring Agriculture industries traditionally implements optical and multispectral
techniques to the images collected by satellites to analyze and evaluate the plant growth condition
and yields. The concentration of chlorophyll, for instance, could be revealed by the light absorption
from the leaf and hence determines the plant health. It is of importance since decisions, such as
fertilizing the soil and spreading insecticide or fungicide, should be consider the health of the plant.
The treatments should be applied in time to ensure their functionality, requiring the filed
information to be collected and analyzed frequently, which challenges the traditional method. In

addition, traditional monitoring methods are expensive to implement regarding time efficiency.

Motion sensor With the advancement of precise GPS equipment and cameras detecting
structures, various autonomous machines are employed in the agriculture sector [57]. The QUAD-
AV project tested the performance of using microwave radar, stereo vision, LiDAR, and
thermography to detect obstacles in the context of agriculture [58]. The project concluded that
stereo vision outstands for its accuracy of ground and non-ground classification. Zhao et al. [59]
proposes a method to gather road information on a large scale through the combination of phase

cameras and motion sensors. An environment map was developed by [60] for detecting the relative
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positions of nearby objects with multiple phone cameras. In addition, the turning movement of
vehicles is captured by comparing the centrifugal force with a reference point. Beall et al. [60]
extended this work by designing an efficient algorithm to reduce the computing time. Non-vision
sensors are utilized in Hergt’s study [61] to realize the detection of vehicle maneuvers, including
lane changing, turning, and moving on a curvy path. Abrams et al. [62] proposes to utilize the front
and rear-mounted cameras in a phone to identify dangerous road conditions. Estes et al. [63]
develops a multi-view 3D network to detect objects on the road, combined with a sensory-fusion

framework to analyze data collected by LIDAR and cameras.

Mobile phones have been applied for driving safety in recent research. In the past study,
experimental vehicles with mobile phone sensors are used to record driving data or test for
potential crashes. Smartphone sensors data is commonly used to collect and evaluate the traffic
prediction model and estimate the freeway traffic status [64]. A mobile device was also used to
obtain vehicle location information and process received data. Then the route information was
shared with a mobile phone to test the traffic-monitoring system [65]. Dai et al. [66] developed a
technique to detect the driving behavior of drunk drivers. Driving performance was used by the
proposed system to judge whether the drivers were intoxicated. Mantouka et al. [67] also collected
driving motion data using sensors embedded in mobile phones. A two-stage clustering approach
is developed for detecting dangers events, acceleration profile, and speeding. A larger samples
experiment including 100 drivers’ IMU sensor data was explained in [68]. This research took
advantage of both smartphone sensors and back-end server, exploring the performance of the
model on predicting phone usage in different road-types/length trips. Furthermore, Kanarachos

[69] and Kang [70] argued the existing drawbacks of using smartphone sensors inters of sensors
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hardware, experiment methods, and data analytic algorithms. Cybernetics model and machine

learning methods were applied to enhance the capability of precise driving monitoring.

Vehicle motion detection is a primary focus of transportation research, with most of the
concepts and methods based on high-end sensors. Multiple external sensors, like microphones,
accelerometers, and radios, are used to detect the motion and status of traffic. The driving status
associated with crashes are analyzed with real-time trip data to recognize a potential accident [71].
Microsoft has designed a system to detect traffic honking, road bumps, and brakes with external
sensors [72]. Several studies have used external accelerometers [73,74] to detecting potholes and
other road surfaces and conditions. A recent study by Dang-Nhac et al. [75] detected driving
activity and driving events through a new approach to optimize data window size and overlapping

ratio for every single vehicle for training model purpose.

As a conclusion, motion sensors are wildly and deeply applied in a lot of real-world scenarios
like autonomous vehicles and smartphones with mature fundamental technologies. These methods
are great supplements to improve the common GPS performance. However, the implementations
of motion sensors are still at primary level with simple sensor data analytic methods. The
advantages of motion sensors include low energy cost, low price, portability to all kind of hardware
platforms and accuracy. These advantages improve the feasibility for agriculture machines

tracking and localization.

Robots applied in agriculture Robots are gaining interests in production agriculture due to
the potential capability to automatically remove weeds and minimize the usage of pesticides and
herbicides in crop production. Different from the traditional methods that treats the whole field

uniformly, robots apply resources to the target plants individually and therefore improve the
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resource efficiency. Thus datasets that focus on providing field data to those who design automatic
systems with robots should be very helpful to plan activities, such as navigation and mapping in

modern agriculture.

Sensor data fusion in agriculture Fusion of sensor data has enormous potential for
agriculture with the need to consider multiple sensor data from the environment. Fusion of GPS
and machine vision is leading the way to improve the applications of machine guidance systems
in agriculture. Plants cultivated in patterns facilitates the usage of autonomous machine systems
with satisfying accuracy. However, adverse environments exist in agricultural applications, where
the environment (hills or trees) might disable the signal of GPS negatively impact the system
efficiency. Acceleration data provided by the IMU devices compensate the impact of signal loss
of GPS and ensure the accuracy of guidance systems. Therefore, the combination of GPS and IMU

sensors should be considered.

1.3.3 Computer Vision-based Agriculture Object Detection

Transfer Learning and Domain Adaptation. Transfer learning is a popular machine
learning technique that aims to help with repetitive tasks by using an existing model. When it
comes to situations where labelled data are only available in a source domain, Domain Adaption
(DA), is a common technique to transfer learning as shown in Fig. 2. A small change or domain
shift, due to illumination, pose, and image quality, between the source and target domains can lead
to the degrading performance of machine learning models. Domain adaption (DA) provides an

opportunity to mimic the human vision system which allows it to perform new tasks in a target
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domain by using the labelled data from a or more relevant source domains. Several research studies

have recently addressed the issue of domain shift [76-80].
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Figure 2 Relationship between Transfer learning and Domain Adaptation

To implement CNN techniques, a large images dataset with manually labeled targets are

required, which is expensive and challenging [76]. However, synthesizing images through use of
the DA techniques can reduce the images need to be collected from the field and solve the problem
when the labeled data cannot be acquired from the target domain [77]. Various research studies
have been conducted on this concept, and have achieved promising results. Othman et al. [78]
designed a domain adaption network to overcome the issues of domain shift in classification

scenarios where the labeled images from the source domain and unlabeled ones from the target
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have different geographical features. Overall, when it comes to the problems of domain shift
between source and target domains, the DA technique can not only reduce the costs of data

preparation, but also improve image recognition [79, 80].

1.3.4 Al Techniques from Other Industries

Note: This section was published in my publication "Augmenting self-driving with remote
control: Challenges and directions." and “Real-Time Vehicle Motion Detection and Motion
Altering for Connected Vehicle: Algorithm Design and Practical Applications” before finishing

the thesis.

Al techniques are widely applied in many industries. In which, self-driving or autonomous
vehicle has a significant connection with autonomous agriculture since the overlap of the core
techniques between these two areas. Autonomous vehicle systems are being designed over the
world with increasing success in recent years. This development makes autonomous farm system

be realizable.

A self-driving vehicle is one that is capable of sensing its environment and navigating itself
without human input [81]. It uses a variety of techniques to sense its surroundings, such as LIDAR,
RADAR, odometry, and computer vision. It uses these different sensor inputs to understand its
environment, recognize various road conditions, traffic lights, road signs, lane boundaries, and
track surrounding vehicles. The potential benefits of self-driving vehicles include increased safety,
increased mobility and lower costs. It is estimated that self-driving vehicles can reduce 90% of the
accidents and prevent up to $190 billion in damages and health-costs annually [82]. Many

commercial and academic endeavors are putting significant resources for the development and
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tests of such self-driving systems [83, 84, 85]. For example, Google started its self-driving project
in 2009, and has spent more than $1 billion in building and testing fully self-driving vehicles [86].
While legal and political challenges remain in its widespread adoption, there are also some
technical bottlenecks on the way of developing completely reliable self-driving systems. All self-
driving systems make decisions based on the perception of the environment and predefined traffic
rules. However, there has been occasional failures of these systems when they have encountered
scenarios that were hitherto unseen. For instance, based on the situation in a construction zone,
human drivers would realize that it is permissible to cross over a double yellow line by following
the appropriately placed cones (which otherwise is illegal to cross in the US), while a self-driving
vehicle may not be able to do so, and therefore be unable to move forward. Similarly, in poor
weather conditions or due to traffic light malfunctions, the cues from different sensors may

contradict each other leading to confusion in decision making.

Self-Driving Systems: Corporations like Waymo, Mercedes-Benz and AutoX are trying to
develop fully self-driving vehicles [83, 84, 85]. Waymo uses LIDAR as the primary input for
object detection [85]. AutoX proposes camera-first self-driving solution to reduce the cost to build
a self-driving vehicle [83]. [87] presents a sensory-fusion perception framework that combines
LIDAR point cloud and RGB images as input and predicts oriented 3D bounding boxes. Leonard
et al. [88] describes the architecture and implementation of an autonomous vehicle designed to
navigate using locally perceived information in preference to potentially inaccurate or incomplete
map data. Eun-Kyu et al. [89] presents networked self-driving vehicles to coordinate and form an
edge computing platform. We believe remote control system can act as a safe backup for such self-

driving systems.
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Network technology: Reducing network latency is an active area of research. Ankit et al.

[83] investigates the causes of latency inflation in the Internet and proposes a grand challenge for
the networking research community: a speed-of-light Internet. Mamta and Zhang [91, 92] propose
various architectures and techniques for high capacity and low latency 5" generation mobile
networks. Stonebraker et al. [93] discusses the requirements of system design for real-time
streaming. Song et al. [94] presents a Wi-Fi based roadside hotspot network to operate at vehicular
speeds with meter-sized picocells. Kyungmin et al. [95] uses speculation to predict future frames
to reduce latency for mobile cloud gaming. Huang et al. [96] develops a passive measurement tool
to study the inefficiency in today’s LTE networks. Najah et al. [97] presents the features to improve
quality of service in LTE networks. Tu et al. [98] presents the inefficiencies of current VoLTE
architectures. These studies can inspire the design of remote-control systems for self-driving

vehicles.

Another commonly seen Al technique is the advanced usage of Smartphone sensors for
autonomous vehicle. Smartphone sensors data is commonly used to collect and evaluate the traffic
prediction model and estimate the freeway traffic status [99]. A mobile device was also used to
obtain vehicle location information and process received data. Then the route information was
shared with a mobile phone in order to test the traffic-monitoring system [100]. A study [101]
developed a technique to detect the driving behavior of drunk drivers. Driving performance was
used by the proposed system to judge whether the drivers were intoxicated. Mantouka et al. [102]
also collected driving motion data using sensors embedded in mobile phones. A two-stage
clustering approach is developed for detecting dangers events, acceleration profile, and speeding.

A larger samples experiment including 100 drivers’ IMU sensor data was explained [103]. This
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research took advantage of both smartphone sensors and back-end server, exploring the
performance of the model on predicting phone usage in different road-types/length trips.
Furthermore, the existing drawbacks of using smartphone sensors inters of sensors hardware,
experiment methods, and data analytic algorithms are argued in [104,105]. Cybernetics model and

machine learning methods were applied to enhance the capability of precise driving monitoring.

Vehicle motion detection is always the focus of transportation research. Most of the
conceptive methods are based on high-end sensors. Multiple external sensors, like microphone,
accelerometer, and radio, are demonstrated to detect the motion and status of traffic. The driving
status associated with crash is analyzed with real-time trip data to recognize a potential accident
[106]. Microsoft has designed a system to detect traffic honking, road bumps, and brakes with
external sensors [107]. With the help of external accelerometers, studies [108,109] developed
pothole patrol system for detecting road conditions, e.g. recognizing bumpy road surfaces. Dang-
Nhac et al. [95] focus on driving activity detection and driving events recognition via addressing
a new approach to optimize data window size and overlapping ratio for every single vehicle for

training model purpose.

Various techniques and methods of detecting overtaking have been researched. Hao and Zhu
[110,111] have promoted a system that used GPS and phones to detect acceleration and
deceleration to estimate the congestion. A mixed algorithm was created to detect the acceleration
combining dynamic planning with robust information [112]. A wireless sensor networks layout
was designed to monitor vehicles [113]. Moreover, the future motion was predicted using dynamic
and kinematic models making certain control inputs, vehicle capabilities, and external situation

related to the updating status of vehicles [114].
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Any connected safety applications are less meaningful without widely applied in most
vehicles. However, full-scaled vehicle motion detection is a challenging task and a long-term issue
in mixed traffic of automated and manual vehicles. First, there is hardly a common standard device
that was approved as an accurate detector. Second, as a result of diverse car manufactories and
cost of communication devices, it will take a long time to make an agreement on the popularization
of the same model device. For example, the most common devices are loop detectors, magnetic
sensors, acoustic sensors, and computer vision techniques. However, these techniques require
special hardware to be installed either on the infrastructures or in vehicles. This also limits the

wide application and scalability because of the high cost [115].

1.4 Contribution

To accomplish a comprehensive task with a agriculture robot, a major challenge is to acquire
enough context information, e.g. 3D map, landscape information, and the perception of agriculture
objects. Current mapping solutions can either accurately build a partial map using high-cost
devices or by constructing a 2D map with a UAV (unmanned aerial vehicle). These methods fail
to provide a comprehensive mapping method that is low-cost, general, accurate, and extensible at
the same time for collecting both the plants and the surrounding context information. The chapters

of this thesis, provide solutions to these issues and are organized as follows:
1. A Mesh-mapping algorithm

This chapter describes a vision-based mapping algorithm involving edge computing to
overcome the difficulties faced by the current methods as is shown in Fig. 3. It is precise,

inexpensive, and mobile-robot-friendly in agriculture scenarios. It leverages high computation-
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force edge nodes that supply the Wi-Fi access points (Aps) to users and provides computation
power to localization algorithms. This scheme works out the problem that a user device doesn’t
have sufficient computation power to do visual-based tasks. Also, it solves the problem that a
centralized server fails to support large quantities of concurrent robots. The edge nodes are
managed by a cloud server. And this design has two advantages. One is that confidential
information could be filtered by edge nodes before uploading. Another one is that multiple nodes
could be regulated by the cloud server to implement navigation among multiple nodes. The study
proposes the weakness of SLAM can be solved to become robust to environment variations by

deep network methods.

(1) A precise and expandable image-based mapping and navigation algorithm which contains

edge nodes and a cloud server.

(2) A mesh-based method to convert a SLAM map into a proper coordinate for

implementation convenience.

(3) Flexibility on any plant ground shape but not limited to row-shaped plants. The map could

adapt to any shaped area.

(4) An 10T framework to keep sufficient frame rate data are sent to edge node using UDP
protocol. Reduce the feature data size by applying Each Node layer image processes before

transmitting data to cloud server.
2. Advanced sensors usage and data fusion algorithm

IMU sensors [115] (a gyroscope, and an accelerometer for measuring the attitude) were used

as the main tool for data collection. Many existing solutions for motion tracking and gesture
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recognition rely on the IMU sensors built-in mobile devices [116]. Magnetic sensor [117] readings
were used to determine device orientation changes, and future applied to detect the detailed
environment. Additional frames [118] are captured by the camera mounting in the front of the

robot for future analytics.

The use of multiple sensors, such as a gyroscope [119] and an accelerometer [120], is
advantageous because the low cost and easy combination, which makes it possible to collect
continuous motion data, implement a detection model for land surface condition, and link to an
individual location in the map built as described using the methodology in chapter 3. Additionally,
to guarantee the accuracy of land surface condition detection, a data fusion mechanism [121] was

developed that ensure the algorithm to offer accurately extended information to our SLAM map.
3. Augmenting agriculture object detection ability with transfer learning

This study tested a transfer learning method by collecting the data from the fields by the UAV
equipped with RGB cameras, including 243 captured with good illimitation conditions along with
150 images in other conditions. Manually labeling each baled biomass from these conditional

images was used to train the YOLOv3 model.

This study also applied the traditional background subtraction algorithm developed in [122]
with the same data. The results show that our method gained the best F scores, indicating that it
performs well when dealing with the discrepancy of domain distribution due to the different
outdoor environments. Part of the images was manually labeled, while the rest of the images with
different illumination contexts share the same labels by implementing CycleGAN for domain
transferring. The processed images were used as inputs for our YOLOv3 model to perform bale

detection. The goal was to show that our model, a combination of computer vision and domain
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adaption, could improve the accuracy and efficiency of baled detection. The essential contributions

of this part are listed in 3 key points:

(1) For bale detection under illumination condition, a YOLOv3 model was built. The
associate training dataset will be released with current work to fill the empty of the bale training

dataset with labels as ground truths.

(2) We constructed an innovative object detection approach (algorithms pipeline) including
YOLOvV3 and Domain Adaptation (DA). Additionally, this approach improves the capability of

bale detection.

(3) We augmented the labeled training data with more scenarios using Domain Adaptation.
Combining with our manually labeled data, we are able to provide a valuable training dataset of

over 1000 bale images.
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Chapter 2 Mapping: A Computer Vision-based

Ground-Level Mapping

This chapter has been accepted by the journal IEEE ACCESS entitled “Ground-level Mapping

and Navigating for Agriculture based on loT and Computer Vision.”

2.1 Introduction

An agricultural system robot navigation system is implemented by path planning on maps
created that monitors both terrain, crops, and other objects. Crop monitoring is also essential to
allow robots to distinguish between crops and weeds, monitor plant health, and determine crop
maturity. Computer vision on inexpensive visual sensors provides strong support for both local
navigation and crop monitoring. However, there are certain related technical challenges in rural
fields including data transmission with high bandwidth and high speed, system scalability in
different sizes of land, mapping and localization accuracy, updating and maintenance, etc. Rapid
advancements in computer vision, mapping, and the Internet of Things (IoT) have provided some

solutions as follows.

Being scalable of the spatial range of the agriculture applications, e.g. large farmlands, is the

key step to achieve high agricultural efficiency. A 3D reconstruction-based navigation, where a
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robot is localized and guided autonomously with secure even in an unknown scenario, is the
significant step of plant monitoring. So, mobile robotics should have precious information about

their position and be connected with the other robotics via IoT architecture.

2.2 Theoretical Background

2.2.1 SLAM

SLAM is a method to reconstruct the environment in three dimensions and track the
movement of the sensor in the environment [123]. The sensors could be inertial measurement unit
(IMU), RGB cameras, LIDAR, or GPS [124]. Visual SLAM (VSLAM) only relies on visual data,
e.g. photos and depth, and has been a hot topic for a while. It requires three inputs: monocular,
RGBD, and stereo, with the solution performed in one of two ways. The first is a feature-based
solution, where the inconsistency of image features in sequential image streams is used to
recognize camera movement, for example, Mono SLAM [125], PTAM [126] and ORB-SLAM
[127]. ORB-SLAM is the most recent technique with reported 1% error of map dimensions. A
second solution is a direct method which takes all the images as a unity, as described in DTAM
[128] and LSD-SLLAM [129]. The SLAM methods are ideal for applications that use smart devices.
DTAM requires GPU to become real-time, ORB-SLAM and LSD-SLAM require CPU. PTAM
could be real-time on mobile phones if the map is not large [126]. In agricultural systems the
outdoor navigation is for a larger area, with the paper looking at a large outdoor field. Thus, the

state-of-art SLAM methods would be taxing to the CPU and the device power supply.
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2.2.2 IoT and Edge Computing

In edge computing, the tasks are run at the edge of the network [130], which differs from
previous systems where the computation work is done by centralized cloud servers. But after the
evolution in IoT techniques, the data size has increased tremendously and data transmission and
processing have become more challenging. If the computation is finished at the edges and data is
kept locally, there are less delay, higher throughput and more confidential [131]. In Para-Drop
[132], Wi-Fi routers are treated as edge nodes that directly communicate with users. However,
there are very few edge computing applications through a lot of research effort has been reported
[133]. One example is using edge computing to performing video streaming [134], and another
example is applying edge computing to process big datasets on smart electronic grids [135]. This

paper would be another in-detailed contribution to this area.

2.2.3 Challenge

Considering the precise and performance of the mapping algorithm, the computer vision
method and cameras are the best options. A mono-camera tracking algorithm could achieve real-
time and accurate performance on a normal laptop with no GPU. For instance, ORB-SLAM reports
an error of 1% [136]. Also, the camera orientation is built in the SLAM output. This avoids the

difficulty of sensor binding. So, SLAM fits properly in the farm localization application.

However, there are several unavoidable challenges to utilize SLAM into agricultural

navigation:
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(1) The CPUs of smart devices are not as strong as laptops, which could easily fail from the

SLAM computation load.
(2) Power consumption of smart devices.

(3) Mobile robots do not have enough storage for the maps which are usually larger than

thousands of megabytes.
(4) Download times and battery life of mobile robots.

Ifthe SLAM is performed on a centralized cloud server, the computing power and the network
bandwidth is challenged if tremendous concurrent robots are doing the image streaming request.
Also, the SLAM is designed with a static environment, so it would be hard since the plants change

visually along with time.

2.3 Methodology

2.3.1 Initialization

SLAM map: Typically, localization and mapping are processed concurrently in SLAM. Here,
pre-constructed maps are used to re-localize the camera as shown in Fig. 5. These maps are built
by higher-accuracy devices, like stereo cameras, and they are uploaded to edge nodes. With the
assumption that switching between edge nodes is performed in the low-level mechanism when the
device is roaming, and the switching is opaque to users, the map scope allocated to an edge node

is designed to be bigger compared with the designed region to guarantee a seamless edge node
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switching in the situation that the next edge node is not connected yet while the user is already

outside of the map coverage of the original node.
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Meshing information: The alignment between the SLAM map and the mesh map is

implemented by mapping the horizontal and vertical unit vectors of the mesh algorithm into the

SLAM coordinates. The horizontal and vertical axis correspond to the column and the row

respectively, while their product is pointing in the upward normal direction. By deducting the

SLAM result of one camera location, and together with m and n, the number of columns and rows

in the mesh, are easily obtained.
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Destinations: In the process of constructing the map or performing re-location afterward, the
information of the destinations and their corresponding places in SLAM is recorded by a pair, as
shown in Fig.5-a. is the SLAM coordinates and is a unique string key. The pair will be transformed
into where is the corresponding mesh coordinator. These pairs are stored in a hash table for lookup

in the future.

2.3.2 mn-Scaled Meshing
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Figure 4 The Structure of the Edge Node Layer

SLAM algorithms typically are used for localization and motion tracking. Thus this use would
be limited in navigational maps. Only the keyframes and the features with large intensity gradients
in three-dimensional Euclidean space are recorded in a SLAM map [137]. The real-world scale
can’t be reflected by the map built by a monocular camera, but prior information of the landscape,
like barriers, feasible routes, and plants are stored for real-life mapping. In our implementation,
seamless inter-edge navigation was provided between neighboring edge nodes by the navigation

map [138], which is shown in Fig. 4.
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A mesh map expanding the horizontal farm landplane is especially proposed to serve the

requirements as shown in Fig. 5.

True cell Q Keyframe
False cell ® ® Feature

[><| Current camera pose

(a) (b)

Figure 5 a) A demonstration of mn-scaled meshing with SLAM map and b) real-time farm view

This is implemented by an mn-scaled meshing algorithm with each unit of the mesh taking a
Boolean value to show whether the corresponding area is accessible for robots. Keyframes from

SLAM are used to complete the matrix. Besides, this mesh algorithm is based on three assumptions:

(1) The land is continuous with no terrace.

(2) The keyframes are captured at a vertical height range with small variance.

(3) There should be no less than one keyframe captured for an area accessible to robots.

The meshing procedure includes surface matching onto the keyframe coordinates, projecting
the coordinates onto a mesh map, checking if each mesh has got at least one keyframe being

projected onto, and setting the mesh value to true if yes. Details are described in Algorithm 1 with
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an example in Fig. 6 using monocular ORBSLAM2 [139]. A redundant intermediate output is a
normal vector of the mapped plane, and it could be avoided by applying a mesh map that labels

the accessibility of areas. Thus, this method provides convenience to route planning.

In this research, we reduce the feature data size by a filtering algorithm - Mesh-SLAM.
Mesh-SLAM only keep the key features and corresponding mesh map. In this case, around 60% -
80% feature data is discarded depending on feature density in different frames. This Mesh-SLAM
is designed for specific situation — large area with significantly similar or redundant features, like
most agriculture scenarios. Finally, we are able to balance the trade-off between excessive feature
data of a large farm and bandwidth constrain by either hardware or Wi-Fi Communications

protocol.

2.3.3 Mesh Projection

The step of projecting SLAM coordinates to mesh coordinates involves projecting both the

position and orientation as shown in Fig. 6.
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The projection method for projecting position and keyframes onto the mesh coordinate is

Xgo Ve
identical, shown in Fig. 6. The cell for a SLAM coordinate p is ( )

Projecting SLAM orientation onto the mesh map is a necessary step to provide accurate
navigation. The three-dimensional orientation is converted onto a planer map. Since each unit in
the mesh is neighbored by 8 units, the neighboring units are numbered from 0 to 7. The forward

vector of the mesh map is Ve = R

Y given V is the forward vector of the camera of SLAM, as
described in Fig.6. Correspondingly, the orientation is calculated by the projection of the direction
and coordinate. After we built a Mesh-map using the algorithm described in Fig.6, a boolean matrix
of the viable cells/positions is created. Since the ratio between real-world scale and the size of each
unit in the Mash-map is known, we developed a route planning algorithm to address the undirected
weighted graph problem. Fig. 7 illustrates the details of the algorithm. As seen in the figure, a

Dijkstra or Bellman-Ford algorithm are good choices for this shortest path route planning problem

with OD (origin - destination).
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2.4 Experiment Design and Data Association

2.4.1 Test Location

The case study is conducted at the West Madison Agricultural Research Station (Madison,
WI, USA). The Research Station is about 2.75 acres and there are 34 kinds of plants. Fig. 8 shows
an aerial view of the station layout and Fig. 9 is an abstract map showing the testing areas. Fig. 10

gives a direct view for the real experiment scenario from the camera.

Figure 8 Map of the testing area.
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Figure 9 Abstract map of the testing area

2.4.2 Hardware Configuration

Camera: In this work, we choose an RGB camera as the monocular camera to collect data
from the farm and conduct various experiments. More specifically, we choose the Logitech-
(C922x-Pro USB camera in this work with frame rate of 15fps. Logitech C-series USB cameras are
widely chosen as monocular cameras when building prototype systems for SLAM and ROS [138§],
[139]. Also, the H.264 encoder in this camera offers high resolution and frame rate with a

reasonable price compared to general RGB cameras.

Besides, we decided to use monocular cameras for the proposed system based on the
following reasons. First, a monocular camera is cheaper than other types of cameras like stereo
and RGB-D cameras. As the system is mainly used in outdoor environments, it is possible that the
system needs to work under extreme weather conditions. So, we can easily replace any broken

parts for the system with a lower cost. Second, stereo and RGB-D usually require more computing
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and energy resources to process collected data. Farming robots have limited computing resources
and battery capacities. Moreover, since this camera is used in an outdoor environment which limits
the RGB-D camera because the lighting condition is not structured light. Last, machine vision
cameras and CCD cameras are overwhelming in terms of cost and performance for this system,
since our robot working scope is for mapping and navigation. Hence, it is important to use energy
efficient hardware and develop energy and computational efficient software. As discussed in our
previous work [140], current monocular-based SLAM systems are not suitable to run on portable

devices for our purpose.

Edge node and Server:

Table 2 System implementation hardware configuration

IoT Item | Description Item Description
CPU | Intel Core i7 8700K Bandwidth | ~500Mbps

Cloud Server | GPU | NVIDIA RTX 1080ti Network | Wi-Fi 802.11ac, UDP
RAM | 64GB System Ubuntul6.04, x86 64
CPU | Hexcore ARMv8 64-bit CPU | Bandwidth | ~500Mbps

Edge Node | GPU | 256-core Pascal GPU Network | Wi-Fi 802.11ac, UDP
RAM | 8GB System Ubuntul6.04, x86 64

In terms of computing hardware of this IoT system, different hardware configurations were
chosen for Cloud server and Edge nodes as shown in Table 2. Since we focus on leveraging the
advantages of edge computing platforms to design a system that can work in a large area. The
Cloud server is sufficient in terms of GPU and RAM in this test scenario. Meanwhile, the
bandwidth and CPU could be the restriction if the system need to scale up. Taking advantage of

this system, simply upgrading the hardware will solve it.
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2.4.3 Data Collection

Figure 10 Experiment farm real view

We collected the data across all seasons because one of the research questions is how the
plants' shape change may affect the mapping and localization results. The frequency of the
experiments is performed in accordance to the plants’ growth rate. The sample collection date is

shown in Table 3.

We summarized the total number of data capture and time duration for each capture in the
following table. It took around 6.5 hours creating the map for the first time and then the time
needed for updating maps became less and less. As the farm changes, the system only needs to
update corresponding features or missing features when necessary, so it needs less time than
creating the map. In other words, the system doesn’t need a significant amount of time to maintain

the map.
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Table 3 data collection time and context

Sample Date Measured Time cost(hour) Context
1 4/5/2018 6-7 Create the map
2 15/5/2018 4-5 Update the map
3 2/6/2018 3-4 Update the map
4 15/6/2018 2-3 Update the map
5 8/7/2018 2-3 Update the map

2.4.4 System Design

The mapping system is designed with three components including: mobile robots, edge nodes,
and a cloud server. In Fig. 3, a cloud server controls the edge nodes, and the presented area is

managed by four edge nodes. The mobile robot is controlled by the edge node.

In our work, the cloud server is running on a machine located in our lab. And our cloud
services can be easily migrated to other cloud servers, e.g., AWS, Digital Ocean, and so on. For
the edge node, we use an existing framework, the edge-box is designed based on the Docker
container technology, which means it can be run on any device that supports Docker. Hence, we
can update and upgrade edge nodes whenever needed. Lastly, we use a commercial-off-the-shelf
USB camera for video collection on mobile robots, it is a plug-and-play design. There are no
specific requirements on the robot, so any robot with a good mileage and power supply can be the
robot in our system. In terms of system software, there are three major modules, including data
collection, data transmission, and data analysis. Different modules are responsible for different
tasks, each module can be changed or updated without interrupting other modules. Additionally,

each module can be updated over the air as long as a suitable internet connection is maintained.
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Robot vehicles: Only two tasks are designed for robot vehicles and no complex computation
is involved. One of the tasks is to transfer the message of destination and its surrounding scenarios
captured by its camera to the “region-manager” edge node. The other task is to get the feedback

from the edge node with guidance to the destination.

We use a commercial-off-the-shelf USB camera for video collection on robot vehicles, it is a
plug-and-play design. There are no specific requirements on the robot vehicle, so any form of

mobile vehicle with a good mileage can be the robot vehicle in our system.

The robot needs the map of the farm for the first time building the SLAM mesh map. After
that, it uses a controllable itinerary plan to update the map when necessary. The purpose of having
an itinerary plan to make sure all the paths in the farm have been covered. If the system collects
enough features to build the SLAM mesh map, then the process is finished. Otherwise, the system
will find out which points on the map don't have enough features, and design an itinerary plan to

collect data until we have enough features to build the mesh map.

Edge nodes: The procedure of processing a navigation task by edge nodes is shown in Fig.
4. Once the edge node is activated, a mobile robot sends a navigation request and a sequence of
frames with surrounding environment to the connected edge node. Each image is processed by
SLAM to calibrate the coordinate and projected onto a mesh map. The mesh location is utilized
for navigation. A cloud server is required if the destination is not in the “managing region” of the

connected edge node. The last step was to send back the planned route to robots.

Cloud server: The cloud server provides two services: global navigation and map
maintenance. The global navigation task was synchronized with the edge node request, but the

map maintenance has to be asynchronous because the growing status change of the plants was
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involved which requires a high computation tracking algorithm and appropriate hardware to

process such tasks (e.g., GPU).

Existing cloud-based applications execute computation tasks on the centralized cloud servers.
All the data need to be uploaded to the cloud for further analysis. With the increasing number of
IoT devices, a large volume of data is produced every second and it is hard to upload and process
such data on the cloud server. Edge computing is a newly proposed concept that computation is
done at the edge of the network, close to where the data is being generated. Raw data can be
processed locally and only update necessary data to the cloud. Hence, network bandwidth can be
saved and applications can have a better response time. To sum up, we focus on the scalability and
flexibility when designing the system from both hardware and software aspects. We believe our

proposed design make it easy to adapt most future needs.

2.4.5 System Implementation

A SLAM implementation, ORB-SLAM?2 [141], was chosen to build this system due to its
advantage of engineering convenience. ORB-SLAM?2 uses the Boost Serialization library [142] to
save and read maps. Other monocular SLAM implementations are also applicable in this system
if properly adjusted. The details of the measurement for each section are described in the

corresponding paragraphs.

Our system costs depend on the size of the farmland and the service/application scenarios.
Since this system is easily scalable, people can calculate cost according to this brief explanation

of the cost for each component.
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Throughput: The bandwidth between the local area network (LAN) and the cloud server is
likely the bottleneck for the number of clients to scale up. Hence the traditional client-cloud server
paradigm is not suitable for our purpose. For example Zhu et al. [143] claimed that Network
heterogeneity: As different networks, such as Internet, wireless local area network (LAN), and
third generation wireless network, have different network characteristics, such as bandwidth, delay,
and jitter, the cloud shall adapt multimedia contents for optimal delivery to various types of devices
with different network bandwidths and latencies. As a result, we proposed the client-edge-cloud
architecture in this work. In our design, each robot is configured to stream captured images
(640*480) at a frame rate of 6. The robot first streams images to the edge and then to the cloud.
With the help of the edge, we can achieve a higher throughput than traditional setups as images
can be preprocessed at the edge, which could significantly reduce the size of data that is needed to

be uploaded to the cloud.

Load Testing: We have conducted an experiment, with smartphones mimicking the robot
streaming, to study the system performances under different loads. As shown in Fig. 12, we have
studied how the system performs when there are multiple edge nodes and different numbers of
users. Our evaluation results show that the more working robots (more than 16), the lower CPU
usage, and the CPU usage of the centralized server setting decreases more rapidly. The CPU usages
of both edge node settings increase at first and decrease when there are more than 26 working
robots. Hence, we could achieve a good performance of 2 edge nodes. If the system needs to

support more robots, we could add more edge nodes to the system.
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Reliability: As mentioned previously, the map needs to be updated as the crop grows or farm
changes. Updating the map periodically can significantly improve the reliability and robustness of

the system. We draw a figure to illustrates how to maintain the map in Fig. 11.

Eventually, we design an automatic map maintenance mechanism as demonstrated in Fig. 11.
As the mobile robot streams images to the edge node, if the SLAM localization is successful, the
edge node buffers the most recent images in a short period. When a localization failure occurs, the
edge node keeps collecting images for some time, and send these images along with the buffered
ones to the cloud server. Although the images with other dynamic objects can be leveraged to
perform future analysis, we abandon them as well, since we are interested in the environment
texture. The image sequence without dynamic objects is sent to SLAM with mapping mode
activated. The cloud server has copies of all the SLAM maps on the edge devices and can directly
load them to SLAM for map maintenance. The SLAM system handles the images with the normal

routine. If the map is successfully updated, it will be pushed to edge nodes.
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2.5 Results and Discussion

2.5.1 Accuracy

46

The accuracy performance of the mapping between SLAM and the Mesh is an important

criterion in this system. This accuracy is evaluated under various scenarios and mesh densities.

Experiment Setup The testing field is described in the experiment section. During the

process of calibrating the SLAM map onto the mesh map, the cameras were set to the space

boundary at which location keyframes were captured. And this step ensures the edges of the space,

the dimension, and the direction of the mesh map are consistent.
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Table 2 Results from the accuracy experiment

Cell length (approximate) (cm) 30 | 60

Localization success frequency (%) | 84.7 | 89.3

RMSE (cm) 1951 0
Maximal error (cm) 369 0
Orientation accuracy (cm) 100 | 100

Note: The GPS result is not listed here because the GPS is not well functional within 60 cm. Orientation

includes 8 directions separated by 45 degrees.

This effort ensures an accurate calibration and precise output. The ORBSLAM2 has a farm
accuracy below 5cm in the monocular mode [144]. The validity of a location within a mesh relies
on if a keyframe is captured in that mesh unit. Therefore, the mesh unit size should not be too
small to guarantee a keyframe is associated especially when the density of keyframes is unknown.
A small-scale preliminary experiment was designed with the mesh unit dimension set to be 30 cm,
which is empirically safe for this application. The final experiment sets the mesh unit with 30 cm

and 60 cm respectively as shown in Fig. 12.

The mesh is perfectly square due to the aspect ratio of the ground, so the actual dimension is
considered. Both experiments (30 cm and 60 cm) are conducted with the same route. An edge node
is set up and connected with the robot. The OpenCV camera calibration model [145], [146] is used
to set up the conversion between the robot and the camera. Each experiment was repeated three
times, and in each execution, the robot moves towards the next grid along the path (red line shown
in Fig. 12), and the edge node computes the mesh coordinates and the ground truth. Fig. 13 shows
the real-time path merging results when building the map. Correspondingly, these merged paths
could possibly be assigned into different grids when we scale cell size. Additional real-time

mapping construction screen shot images are in Appendix 2.
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Result Table 4 shows the results under both settings. The accuracy is calculated based on the
localization success frequency. In both experiments, a same path is selected. And we marked this
path on the grass as the ground truth for future loss calculation. When we finished building the
map as a closed loop. We repeat this process with the same path for several times until the map is
built. It is the ratio of the recordings of a correct localization. Another measurement is the accurate
localization frequency, which is the proportion of the localization records over the correct
localization records. The difference between the computed mesh coordinates and the ground truth
is calculated by the Root-Mean-Square (RMSE) metric, which is shown below. Accurate

localization is defined if the error is acceptable depending on plant size and farm scale.

[EL )

RMSE= m (1)

Here, the width and height of a unit of mesh are W and 7% . The coordinates of the server

X . (g) (&) . .
computation result are (%5%:) | while (:5) shows the ground truth. " is the quantity of
successful localization records. A maximal error happens if it is measured from the center of the

localization output to the actual location using Euclidean distance.

The table shows 84.7% correct localization for the 30 cm group, and with 89.3% correct for
the 60 cm group. The RMSA is 19.5 cm and 0 cm for 30 cm and 60 cm group respectively. The
maximum error is 36.9 cm in the 30 cm group and 0 for the 60 cm group. Because there are unflat
surfaces, so individual frame localizatio error can be as large as 36.9, which is in the wrong grid.
However, this kind of errors happen less than 20% as shown in Table 4. During passing by each

grid, several frames are captured and sent to be processed, which means the final localization is
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still accuracy with each grid as a unit as long as most frames are accurately locoalized. The

calculated orientation has been verified that they both are constant with the ground truth.

Analysis This experiment was carried out with two goals: to show the accuracy of the
algorithm, and to understand the sensitivity of the Mesh map parameters. The results show the
localization success frequencies of both groups are similar. Hence, SLAM is the only key to decide
the success of localization. A unit in the mash position could always be calculated if the given
SLAM could provide the SLAM map coordinates. Thus, localization failures are mostly caused

by SLAM, which is further discussed in the next section.

In terms of accuracy, the 60 cm group shows the results are matching with the ground truth
better. Even with the 30 cm dimension, the maximum error is located at the neighbor of the actual
value. There are two possible reasons for the error: SLAM localization failures, and errors of
mapping projection between SLAM and mesh. In the aspect of direction, the results are 100%
correct for both groups in the 8-direction system. Overall, the experiment shows the algorithm

obtains a high accuracy in localization with a 60 cm unit and high performance with 8 directions.
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2.5.1 IoT - Scalability and Feasibility for Farm

The capacity of the edge computing framework was evaluated by testing the time gap between
neighboring responses on the robot side when the volume of the simultaneous requests from the
robots is enlarged step-by-step. This experiment was constructed on a centralized cloud server with

one or two edge nodes. The results are shown in Fig.14.

The cumulative distribution function of time intervals between successive responses from the

server and the edge node(s) with different numbers of concurrent users is shown in Fig. 14.

These time intervals can be treated as user waiting time. To calculate the user waiting time,
each response’s timestamp is subtracted by the previous one. When there are two working edge
nodes, the configuration yields much smaller waiting time than other settings. In general, the
system can gain more advantages when more edge nodes are available. What’s more, the waiting
time is smaller than that under the centralized settings when only a single edge node is available.
With the number of users increasing from 26 to 36, the centralized service has a significant
deterioration. For about 14.8% of cases, a robot needs to wait for at least 2 seconds and even needs
to wait for more than 3 seconds for around 5% of cases. If there is one edge node available, 2-
second waiting time appears in 8.7% of cases and 1.6% for ~3-second waiting time. Less than 0.5%
of cases experienced a more than 2 second waiting time when there are two edge nodes available.
Fig. 12 summarizes the minimal, maximal and average CPU usages. CPU usages for 6-robot group
is about 193.7%, 201.2% and 124.3% for the single, double edge node and central server
respectively. When there are 16 robots (we used multiple smart phone to mimic more robots

scenarios), the CPU usages reach to the highest (266.5% and 263.8%) for both edge and centralized
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settings. The more working robots (more than 16), the lower CPU usage, and the CPU usage of
the centralized server setting decreases more rapidly. The CPU usages of both edge node settings

increase at first and decrease when there are more than 26 working robots.
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Figure 14 The CDF of the time intervals between responses. Note: User means a working robot

Results Here, a user means a working robot. The time gap can be treated as the user waiting
time as well. It is the time interval between the timestamps of each neighboring response. For each
experimented user volume, the user waiting time produced by two nodes is much smaller than that
of other settings. It suggests that the more the nodes were used, the better the performance, with
the time gap of using one node smaller than that with the centralized cloud setting. When the
quantity of the robots grows from 10 to 26, the centralized service setting demonstrates a
significant performance decrease, wherein 14.8% of cases a robot would have to wait for no less
than two seconds, and the cases to stand by for longer than three seconds is 5.0%. For comparison,
chances are 8.7% and 1.6% for one-node setting, and the probability is less than 0.5% for the two-

node setting. The CPU usage distribution concerning the number of robots is shown in Fig.15.
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Because the CPU has multiple cores, so the CPU usage can be large than 100%. With 6 robots, the
CPU usage is 193.7% for the one-node setting, 201.2% for the two-node setting, and 124.3% for
the central cloud server setting. And it is 266.5% and 263.8% for the one-node and centralized
cloud server setting with 16 robots. The CPU usage of the one-node and centralized cloud server

setting decreases as the robots’ number increases.

01 Edge Node

6 —t 02 Edge Node

Centralized
Server

16

Number of concurrent robots

0 50 100 150 200 250 300 350
CPU usage(%)

Figure 15 CPU usages in each experiment configuration

Analysis A longer robot waiting time corresponds to worse performance of remote control
and processing time. The experiment shows a user would have a higher chance to wait for more
than 5 seconds to get the following response if the volume of concurrent working robots increases.

There are two possible reasons for this downgraded performance: 1) low computation power, 2)
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missing packets in the network. However, the experiment shows that the CPU usage decreases
when the robot volume increases to 16 and above, which is contradictory. This suggests the longer
waiting time is caused by missing packets that deliver images and requests when the robot volume
is large. This also explains why the centralized cloud server setting performs worse than edge
settings. All users send out UDP packets at about the same frequency. So, if the number of
concurrent users becomes larger, the possibility that a communication backlog happens becomes
higher. This results in more requests and less responses, and thus longer user waiting time. The
poor performance of the centralized cloud server setting is because the centralized setting is
designed with an extra hop in the connection between the Wi-Fi router and the user, leading to a

higher probability of missing packets and longer traveling distances.

The experiment also reveals that under a two-node setting, the system service area could be
enlarged under the same request-response criteria. This conclusion relies on the premise that the
number of robots connected to each node is equal, as the performance decreases if the distribution
is not even. However, even in the worst-case scenario, where all robots are connected to a single
node, the performance of the one-node setting is still higher than that of a centralized server setting,
though only by a small amount. Thus, we conclude that the edge computing scheme proposed in
this paper is capable of providing a better concurrency than the traditional centralized cloud server

setting.

2.6 Conclusions

In this chapter, a mapping algorithm and a vision-based farm navigation scheme have been

addressed. A cloud-assisted architecture was utilized to disperse the computation load and network
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communication between multiple edge nodes and a single cloud server. Additionally, a mesh map
was presented which avoids the prior information of the testing land. The experiment shows 1)
The maximum of localization error is 60 cm, which is among the top performance with other
systems 2) This scheme allows larger capacity than the centralized server setting 3) The map could
be more frequently updated with different scenarios by taking advantage of this [oT architecture’s

clever network distribution.
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Chapter 3 Sensing: Augmenting Map Insight

based on Advanced Sensors Data Fusion

This chapter has been submitted to journal Sustainability entitled “Terrain Analytics for Precision

Agriculture with Automated Vehicle Sensors and Data Fusion”.

3.1 Introduction

Precision agriculture includes precise irrigation quantity, correct and appropriate application
of chemicals, weed cleaning, where topological characteristics of the crop field is a key component
needs to be considered. For instance, quantity of irrigation varies drastically due to the change of
terrain slops. Hussnain et al. [35] pointed out that low areas of crop field are likely to collect more
water from either the irrigation and rainfall, meaning that irrigation for those areas are better to be
less compared to other areas with high slopes. Mareeles et al. [36] concluded that precision
agriculture in terms of irrigation system relies heavily on the topological characteristics of the crop

field.

Topological terrain attributes also influence the efficiency of implementing large agriculture

machines. Machine and tractor fleet used in agriculture improve the efficiency of farming process,
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while they also require appropriate terrain attributes to be able to perform and maneuver (Myalo
et al., [147]). Without much information about the specific topological characteristics of the crop
field needed to use large farming tractors could make the machines stuck in the field and reduce
the farming speed, resulting in huge loss for farmers. Therefore, information collection for detail

topological characteristics is essential in precision agriculture.

Adverse topological characteristics detection in crop field for the precision agriculture is
another key factor. Large machine for crop watering, applying pesticide to control diseases, and
harvesting are commonly used for scaling crop production. When the terrain is not even, large
machines need a way to know if they can be applied smoothly. Otherwise, the stuck machines in
the crop fields could cause serious economic loss either from the machines unable to maneuver
shortly or delay the crop production process and hence prevent the implementing of precision

agriculture.

Advanced sensors and computer vision techniques provide an opportunity to collect
topological characteristics from the environment required by precision agriculture. Sensors are
becoming smaller and more powerful (Nandurkar et al., [56]). In addition, the costs of sensors are
decreased, enabling the widespread deployment in practice. The development of computer vision

technique reaches the level that users can efficiently process collected data for decision making.

However, collecting all information from the crop field not only increase the burden of
memory needed by the equipment, but also add more useless computing tasks. A method to extract
critical and useful information from the field is needed. We propose a method that combines the

advanced sensors and IMU as well as the algorithm to monitor and crop field in real time at a low
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cost and in a practical manner. In addition, the automated monitoring system also performs at field
analysis of the relationship between the topological characteristics and crop growth to provide
useful information for farmers to adjust their crop management strategies accordingly and in a

timely manner.

In addition to the 3D map that we can build, additional information like the landform and
more accurate topography is still requisite. The terrain will not only affect the growth of plants but
also the management processing by robot farmers. For example, it significantly increases the
processing time and fuel cost for a large machine if there is a lot of turning, and the unbalanced
landform could result in different soil and water conservation. Also, the algorithms for map
maintenance [148] are susceptible to adverse surface conditions, like unexpected pits, washouts
from precipitation, steep slopes, or barriers. These drawbacks can limit the ability of our
autonomous algorithms and further lead to the failure of localization. As a result, high-quality map
building is challenged when attempting to include all these details [149]. Moreover, different
landforms may result in various growing status, [150] for example, steep slopes are exposed to

further and more severe erosion processes, such as gullies or mass movements.

Remote sensing plays a critical role in precision agriculture by allowing farmers to collect
various types of information to help improve the quality and yields of crops. Optical remote
sensing collects images with both visible and near infrared sensors. This sensing technology has
been utilized in many aspects of crop production. Frolking et al. [151] developed new maps by
combining the optical remote sensing and ground census data to investigate the diversity of rice

production in China. Hall et al. [152] reviewed the applications of optical remoting sensing in
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viticulture by taking advantage of the information, such as soil structure and vine shape and size,

from the collected images to ensure the quality and yields.

3.2 Methodology

3.2.1 IMU Sensors Data Collection Approach

Two IMU sensors, a gyroscope, and an accelerometer were used to measure the attitude of a
robot vehicle [153]. Inertial sensors come with intrinsic noises. To improve their usability and
accuracy, we designed a coordinate alignment algorithm on both slope surface and flat surface to
detect sensor orientation changes and model stability. The proposed slope-aware algorithm first
conduct coordinate alignment and estimate linear acceleration via dynamically withdrawing the
gravity effect on recorded accelerometer readings. Then, it uses a clustering technique to identify

relative orientation changes.

A gyroscope is an inertial sensor for measuring orientation based on the principles of angular
momentum. However, because of noise jamming, temperature variation, and unstable force
moment, algorithm drift error will occur and increase with time. Therefore, a gyroscope cannot be
reliably used for a long time. A different option is to use an accelerometer is a device that measures
proper acceleration. When the accelerometer is motionless, the attitude angles can be calculated

based on the acceleration of gravity component in every axis via trigonometric functions.

Slope-Aware Alignment. The accuracy of coordinate alignment is mainly affected by the

slope of the field. Hence, we develop a slope-aware coordinate alignment method to reduce or
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eliminate the negative effects caused by the slope. Traditional approaches fail to consider the slope,
because they assume that all the motion data is through the origin motion data point, and calculate
the fit curve based on all motion data [115]. However, these approaches could encounter chaos
with a random rough surface. Therefore, our slope-aware approach dynamically segments the
whole path into pieces and use each piece of the path as an independent input. Due to forces created
by slopes, readings from each path deviate from the origin point. If we combine all the paths, we
can estimate the slope and further improve the alignment accuracy. A rotation matrix will be
derived by combining sensor readings from all paths. To derive the rotation matrix, we fitted the
curve toe find the direction unit vector. Different from traditional approaches, we trained the
horizontal unit vector for each segment and combined them by assigning different weights for each
segment. One segment will be selected if the recorded data indicates the car is in motion. The more
data points we can include in this segment, we can likely increase the statistical power of the

measurement.

As shown in Fig. 16, the Vector[Vl’ £ V3]represents the orientation of a gyroscope sensor and

!

[Vl'aVz Y, R=[R.R.R,]

!
}represents the orientation of a robot vehicle. The rotation matrix can

be estimated during the coordinate alignment process. In the rotation matrix R, R, , R.f and &

are the unit coordinate conversion vectors along each demission, such that

VL )RR R ]
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Figure 16 Robot motion detection

Different land surfaces can lead to various accelerations and further affect the moving speed
and motion patterns. Hence, recognizing motion patterns can help us understand the running
environment of the robot. In this work, we use the Dynamic Time Warping (DTW) algorithm to
identify similar robot’s motions with varying speeds and further detecting running environments.
The DTW algorithm is well known for evaluating the similarity between two temporal sequences.
To measure the similarity, temporal sequences are “warped” by shrinking or stretching in the time
domain. To achieve the best performance, the training set should be carefully prepared and include

representatives of different types of events as much as possible.

In order to improve detection accuracy, we choose to loosen some of the constraints of the
DTW matching algorithms during the training process and also when conduction evaluations. As
a result, our DTW algorithm can identify most of the motions, however, there will be some false

positives. We think it is ok to have false positives as we can use other techniques to evaluate
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detected motions and further eliminate false positives, we leave this as future work. There are five
categories of motion patterns in our research as are shown from Fig. 17-21.

(1) Flat

Figure 17 Motion sensor pattern moving on flat land

(2) Single slope

Figure 18 Motion sensor pattern moving over a slope

(3) Continuous hills
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Figure 19 Motion sensor pattern moving over continuous hills

(4) Depression or Soil Erosion

Figure 20 Motion sensor pattern moving across a depression

(5) Muddy



Figure 21 Motion sensor pattern moving on muddy land

3.2.2 Data Fusion Approach
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Figure 22 Architecture of multiple-sensor based sensing algorithm
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The sensor fusion method avoids measurement limitations by using only a camera. An

advanced data fusion method was used to integrate data from the camera, accelerometer, and

gyroscope. In this study, two methods were discussed and compared. One is a self-adaptive

complimentary PCA and the other one is the DTW.
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Data collected from different sensors need to be synchronized as the clock on each device is
different. After clock synchronization, we use Principal Component Analysis (PCA) to speed up
the data analysis process and detect various activities promptly. PCA can extract the most
important features from the collected dataset and convert high dimensional dataset to lower
dimensions. PCA simplifies the dataset by discarding the least important features while

maintaining the interpretability of variables.

Additionally, PCA also combines original variables in a way that only the most valuable
features are retained. Hence, we extract features from our accelerometer & gyroscope dataset using
the PCA algorithm. The algorithm is described as follows.

(1) Data Normalization

o )

Where # isthe mean and O is the standard deviation of all data.

(2) Covariance Matrix Calculation

Var[Xl] Cov[Xl,Xz]

Matrix(C ] =
atrix(Covariance) Cov[Xz,Xl] Var[Xz]

3)

Where X, is the accelerometer readings and X, is the gyroscope reading.

Note that Var[Xl]:Cov[Xl,Xl] and Var[Xz]:Cov[Xz,Xz].
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Matrix(Covariance) is the covariance matrix, which is a ¢ x ¢ matrix. The covariance

matrix stores the covariance between two features. Once the covariance is established, PCA will
perform the eigen decomposition on it. The covariance matrix can be calculated using equations

below:

1 - -
—Z(XU _xj)(xik —%).

Conl X, X, ]= n-li (4)

Matrix(Covariance) = L ((X - )_()T (X - D_())
n-1 (%)

Where . represents the mean vector, and it can be calculated using the following equation:

— 1 n
X=—2X,.
ni-l

The mean vector (d-dimensional vector) stores the mean of each feature column in the dataset.

(3) Eigenvalues and Eigenvectors Calculation

Next, we need to calculate the eigenvalues and eigenvectors for the covariance matrix.
Covariance matrix is a square matrix, so the eigenvalue can be calculated using the characteristic

equation below:
a’et(D]-A):O (6)

Where, D represents the eigenvalue for matrix 4, [ is an identity matrix which has the

same dimension as 4 to satisfy the requirement of matrix subtraction. 'det' is the determinant of
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the matrix. We can find a corresponding vector ¥ for each eigenvalue D by solving the following

equation:

(DI - A ) y=0 (7)
(4) Principal Components Selection

Eigenvalues are sorted in descending order such that it reflects the significance of the
components. The eigenvector that has the highest eigenvalue is the principal component of the
dataset. Given that our dataset contains two variables (accelerometer and gyroscope), we should

have 2 eigenvalues and 2 eigenvectors. We use a feature vector .y

1 2

) to store the 2 eigenvectors.

(5) Principle Components Formation

The eigenvectors represent the direction of the principal components. The original data needs
to be re-oriented to the new coordinate system using the eigenvectors. To re-orient the data, the
original data was multiplied by the feature vector. And the re-oriented dataset is called a score (as

shown in the following equation).
Sc =[Orig.data]x[V] (8)

As discussed in previous sections, we build an event library using motion data collected by
different robots. The motion data contains all the typical events. When a new event is detected, the
corresponding motion data will be processed using the PCA algorithm and compared with all the
pre-defined events in the event library. We use the DTW algorithm to evaluate the distance
between the new event temporal sequence and all temporal sequences in the library. Based on the

derived distance, a k-Nearest Neighbor algorithm is used to predict a label for the new event.
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Algorithm 1: Pseudo-code of the algorithm for forming principle components.

DIW (a, o) {
// where the vectors A = (a1, ..., an), G= (g1, ... , gm) are the time series data collected from accelerometer and
gyroscope with n and m data points, respectively.
Define M [0, .., n, 0, ..., m] as a two-dimensional data matrix. It stores the similarity measures between
two time series.
// Data matrix initialization
MI0,0]: =0
Fori=0tom Step 1 Do:
M [0, i]: = Infinity
End
Fori: = 1 ton Step 1 Do
M i, 0]: = Infinity
End
// Compute the similarity measures between the two time series and store them in M [n,m]
Fori:=1ton Step 1 Do:
Forj: =1tom Step 1 Do:
// Evaluate the similarity of the two points
diff := dpn (A(i), G(j))
M, j] := diff +Min (M[i-1, j], M [i, j-1], M [i-1, j-1])
End
End
Return M [n, m]

To evaluate the distance between two vectors, we have used the following distance metrics.

Euclidean Distance — the root sum of squared differences:

K
dmn(XﬂY) = \/kz:l (xk,m _yk,n)*(xk,m _yk,n) (9)

Manhattan Distance — the sum of absolute differences, also known as the Manhattan, city

block, taxicab, or 1, metric:
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K
dmn (X’Y) = kz—:l|Xk’m _yk,n

= 2 G = V) * K = Vi) (10)

Squared Distance — the square of the Euclidean metric:

K
dmn (X’ Y) = kz:l (xk,m - yk,n) * (xk,m _yk,n) (1 1)

Symmetric Kullback — Leibler Metric Distance — Only valid when X and Y are real and

positive numbers:

d, (X.Y)= é(xk)m —y,,)(ogx, , —logy,,) (12)
3.2.3 Sensing Algorithm Design and Implementation

Using inertial sensors to detect various types of events is accurately and energy efficient.
Given the fact that a robot machine should have minimal operations if the machine is expected to
do long term work because of the battery limitation. Hence, it is better not to use the camera
monitoring the machine during the whole trip, we only need to focus on some unusual objects
when an unusual environment is recognized. Based on this fact, our algorithm leverages inertial
sensors to detect robot movements and save corresponding video clips only when an unusual
motion pattern is detected. Doing this can reduce the computing overhead of the whole algorithm

and decrease the energy consumption for the whole system.

The system is always activate to detect “evens” in near real-time, however, there is a small

latency since the time series sensor data is analyzed per segment. This segment size is determind
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when we train the pattern recgnization model. In another word, the segment size varys depending

on different robot vehile sizes and speeds. For example,

3.3 Experiment Design and Data Association

3.3.1 Experiment Scenario

In this study, we want to test our proposed algorithms and have precise control on knowing
the terrain. So a simulation was built using a sand table that could easily create different terrain
conditions using a 1:18 scale. The sand table is a narrow rectangle which is like a downscaled
racing track. During the data collection, we counted each run from one end of the sand table to the
other end as one instance. To augment the datasets, we collected data with both ends as starting
points and the other ends correspondingly as end point. The different setups for each kind of terrain
conditions as shown in Table 5 were chosen for the experimental tests. These simulated field
conditions were mainly including dry flat path, slope, continuous hills, depression and muddy path.
Each scenario was set up on the sand table. The distance of these five experiment scenarios were

approximately 2-3 m. Table 5 shows detailed information about each scenario.
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Table 3 Indoor experiment scenarios

Category Distance (m) Description
Flat 2 Flat board with a layer of soil
Single slope 2 Wood chip covered; Angle 30 degree
Continuous hills 3 Wood chip covered; Angles range from 15-45
Depression 2.5 5-8cm irregular shapes
Muddy 2.5 With small water pit and mud

3.3.2 Hardware Configuration

System implementation: Processing motion sensor data in real-time is very important for our
method. Additionally, capture the associated environment images in time also offers accurate
reference data for future analysis. Last, we also plan to add a real-time image processing function
in future research. To achieve the best performance and extensibility, we choose an embedded
computing platform and optimize the inference engine as the hardware container. Our inference
engine is optimized to run on this specific embedded computing platform.

Data processing platform: In this work, we choose the Nvidia Jetson TX2 embedded
computer as the embedded computing platform. Because we leverage the system with a scale-
down prototype environment, we use an external wire as power supply. The Jetson TX2 has a
hexcore ARMvS8 64-bit CPU complex and a 256-core Pascal GPU. Our system is built upon the
multi-thread framework, written in C and C++. We use independent pipelines to manage different
tasks, e.g., we create a pipeline to collect data from motion sensors and monitor various events and
implement another pipeline to collect environment images. Each pipeline consists of a series of

elements. The element is where a data stream is processed. The hardware platform for small
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agricultural machine development, size and price are the two main parameters that must be
considered in the design idea. In this study, we use a small-sized and low-cost IMU sensor to
capture acceleration and angular speed change.

IMU sensor selection: We applied a 6-axis IMU and environmental sensor during our data
collection. This sensor named MetaTracker (MTR) is a precise device that offers real-time and
continuous monitoring of motion and environmental sensor data. A waterproof and shock
absorbent case can be mounted to walls, ceilings or dropped in a package. The sensors are ideal
for vibration detection, object movement, and robotics. The sample rates are 0.001Hz — 100Hz

stream — 800Hz log for both gyroscope and accelerometer.

Camera selection: Specifically, we choose the Logitech-C922x-Pro USB camera in this
work with frame rate of 15fps. Logitech C-series USB cameras are widely chosen as monocular

cameras when building prototype systems.

3.3.3 Data Collection

Data collection system design: A robot machine usually has limited battery capacities, so it
is important to reduce unnecessary operations as much as possible if the machine is expected to do
long-term work. Hence, it is better not to use the camera monitoring the machine during the whole
trip, we only need to focus on some specific environmental images when an unusual topography
is detected. Keeping this in mind, our algorithm leverages inertial sensors to continuously detect
robot vehicle movement and only collecting corresponding camera data once an unusual motion

pattern is detected. Given the facts that IMU sensors consume much less power than of cameras,
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this in return can dramatically decrease the energy requirement and the computing overhead of the

whole algorithm.

Historical data collection: Because we need enough historical data which includes all kinds
of scenarios with different terrain changes, most data collection effort was spent in this part of data
collection. Also, the whole datasets were divided into two parts, one for training the pattern
detection model and the second part for use with the trained model to test its accuracy. The ratio
between training datasets and testing datasets is flexible and depends on the amount of data

collection. In our work, we used a ratio around 2:8 for training datasets and testing datasets.

Realtime data collection: After we build a confident algorithm with specific parameters, we
conducted additionally real-time testing. In this case, we also collected some additional data for
leveraging. A real-time data streaming was generated on a local machine and tested by the

algorithm.

3.4 Result and Discussion

We demonstrate and discuss the performance of our approach in recognizing dry flat surface
field, slope, continuous hills, depression and muddy field separately. In each scenario, a motion
pattern and corresponding topological feature are plotted and discussed together in the following
subsections. For different scenarios, we applied different speed setups for better quality data, and
we also made some data processing, like normalization, denoising and etc.

(1) Single Slope
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As is shown in Figure 23, the field slopes were estimated using a gyroscope via coordinates
alignment. The downslope, with a sharply increasing, and upslope, with a deep decrease, are also
marked. The derivative could easily address the gradient of the slope. If the gyroscope value climbs
up fast then drops down quickly, the slope is steep. While the slope has a minor gradient if the
gyroscope value waves not obvious. The results in Figure 23 give us an accordant pattern of slope
detection in practice to the theoretical pattern. If, in some cases, the collected data couldn’t
perfectly match the pattern. In those cases, the estimated linear acceleration was calculated using
the accelerometer to reduce noise in the sensor data as shown in Figure 24. However, in most cases,

this single slope can be recognized by only using the gyroscope data.
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Figure 23 Estimate path slopes with Gyroscope
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Figure 24 Estimated linear acceleration

(2) Continuous Hills (lunar landscape)
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Figure 25 The segmental Gyro data of continuously hill up/down
A continuous hills landscape was indicated by a continuous occurrence of small hills or lunar
landscape, which is commonly seen in the farmland. As is shown in Fig. 25, the readings of z-axis

have a sine or cosine wave pattern, and each upper peak wave is following a bottom peak wave,
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which indicated the robot going up and down hills. According to this pattern in this Fig. 26, there
are four complete uphill and downhills traversed.

(3) Depression or Soil Erosion

A depression can be identified from changes of values along z-axis as shown in Fig. 27. If
the z-axis readings approximately stable, then it should be a smooth path without bumps or
depressions. If the readings start fluctuating, that indicates there might exist a bump or depression.
If the magnitude of readings along z-axis changes from positive to negative, and readings of x and

y axis also changes, then it is very likely there is a depression.
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Figure 26 The segmental Gyro data with meeting a depression

(4) Rough Field

The rough field is indicated by a continuous occurrence of bumps or depressions as shown in

Fig. 28. If continuous peaks and valleys can be observed from z-axis values, then it is highly likely
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that there is a rough patch of the path. It can be divided into several depressions, which means the

pattern of the rough path is the combination of depression patterns.
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Figure 27 The segmental Gyro data of the rough field
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Figure 28 Deceleration happens with path surface change

(5) Flat Path vs Muddy Path

A muddy path could cause sudden deceleration as is shown in Fig. 28, where the muddy path

starts from 9ms. The deceleration can be inferred from changes in readings along the y-axis. As
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we can see from this example, there is a deep valley at around 12 seconds, and the readings of both

x and z axis are also fluctuating.

3.5 Conclusions

Although multiple sensors are used to augment the insight of the 3D map, while the algorithm
still uses a single camera, which is not sufficient for farm landscape measurement. One possible
improvement to our approach is to leverage distance sensors for gathering landscape information
for 3D map construction. This chapter presents the sensing algorithm, a low-cost, robot-mounted,
multidimensional map construction method that can track robot movements, monitor the
surrounding environment, and link all the factors to the 3D map, thereby providing useful analytics
to task planning, route planning and robot operators. The method leverages IMU sensors to gather
mobility data for every individual robot. In this work, we attempted to provide analytics and data
fusion from several specific aspects of the robot working environment. We believe our farmland
sensing approach has many more interesting and useful applications in similar agriculture

environments.
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Chapter 4. Perceiving: Agriculture Object

Detection based on Computer Vision

This chapter has been submitted to the journal Remote Sensing entitled “Augmenting Crop
Detection for Precision Agriculture with Deep Visual Transfer Learning — A Case Study of Bale

Detection.”

4.1 Introduction

According to the United Nations population estimates and projections, the growing world
population will be over 10 billion in 2050 [2]. Correspondingly by 2050, there will be an increase
in food demand by around 59% [154] since the significantly increased population. To increase
crop production while minimizing inputs, the adoption of advanced computing technologies,
including computer vision, machine learning, and big data analytics have recently gained interests
among researchers in the fields of agriculture. Smart agriculture takes advantage of advanced
computing technologies to minimize the inputs required, to improve the crop quality and to

increase yields.
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With the reduction of equipment costs, increase of computing power, and availability of non-
destructive food assessment methods, the efforts of many researchers and practitioners to improve
the crop quality and yields have focused on computer vision and machining learning [14].
Computer vision helps with object detection and machine learning allows useful information that
can be extracted from the collected data to be available, showing tremendous advantages over the

traditional methods applied in agriculture [15].

Other research efforts have shown that the combination of computer vision and machine
learning techniques on the multiple periods of crop production and harvesting are promising [16].
Computer vision in agriculture can be applied easily to analyze digital images collected from the
fields and to provide high-level understandable information to the users [17]. For example,
computer vision not only detects the weeds fast and effortlessly, but also accurately applies
treatment with the help of a ground robot [18]. In addition, computer vision can detect the diseases

on the crops and inform users for them to then take action [19, 20].

During the harvest process, the logistics of biomass aggregation and transportation is essential.
For example, the United States has significant lignocellulosic biomass [21] resources that could
be used for emerging industries like biofuels. However, converting the biomass to renewable
energy is not currently economically feasible with more efficient collection methods needed [22].
With the application of computer vision and machine learning, baled biomass can be detected
accurately and fast, benefiting the harvest process by allowing for improved collection routes and
yield determination. Although this is just one example it demonstrates how this technology can

play a significant role in the crop harvest process.
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Image Acquisitions. To collect the images as inputs for the computer vision, using
Unmanned Aerial Vehicle (UAV) is an efficient approach, which has been widely used in precision
agriculture as well as many other fields, such as path planning, design, and livestock detection
[23,24]. UAV combined with computer vision can also contribute to remote sensing to help inform
farmers about the geo-specific crop yield and identify crop diseases [25, 26]. Sometimes, decisions
are required to be made off-board once the data have been collected and processed by the UAV,
based on the information provided by the images processed from the computer vision technique
[27] For example, UAVs can be used to detect a potential issue, and then obtain high-resolution

images or inspect and apply treatments correspondingly.

Bale detection challenges. When it comes to object detection, associated methods are
commonly sensitive to the illumination, and object and background domain change. A non-robust
model can easily fail if it does not take into account the variation of the light condition [155, 156].
Because of the diversity of illumination situations, seasons, and weather conditions, object
detection in the outdoor environment is more complicated than that in the indoor environment

since humans can manipulate a consistent environment as is shown in Table 6.

To emphasize, the illumination and hue change are the most significant reasons that impact
the bale detection model performance. Illumination variation, including the change of light
conditions, and with/without shadow covering, plays a significant role in object detection in the
context of outdoor practices. Patricio and Rieder [17] suggested that consistent light conditions
between the source domain and target domain will decrease the difficulties of shaping accurate

classification models built on the deep learning architecture. A similar conclusion has been drawn
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by Hornberg [157] that adequate lighting in the environment can increase the reliability of the

performance of the models based on the collected images.

Hue change due to the season transition and variation of light conditions is another key factor
to be considered in precision agriculture. During growing season of vineyard when the lights are
not strong enough, Baweja et al. [158] added extra light when collecting images by using strobe
lighting mounted on a ground robot image capturing machine to compensate the hue variation to

build a reliable deep learning model.

Since the deep learning-based object detection model always needs a large number of images
labeled as the ground truths before training a supervised object detection model, the accuracy of
detecting performance is impacted by labeled data quality. One approach to improve the quality
of labeled data is to include balanced data to include various images from the target domains, listed
in Table 6. However, if we want to guarantee the quality, that means for each condition, the total
number of images required to be manually labeled could be large and take significant resources to

complete.

To reduce the task of labeling the objects manually, style transferring methods have been
developed. To minimize the discrepancy between the source domain and target domain regarding
the domain distribution, we propose a model by combining the Convolutional Neural Network
(CNN) based YOLOv3 model and domain adaption (DA), a representative method in transfer
learning. Domain adaption works very well where the tasks are similar except for the domain
distribution between the source domain and target domain [159]. Fig. 29 illustrates the proposed

biomass detection model on the basis of CNN and DA. Since it has strengths of accuracy and speed
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for object detection, the YOLOV3 was selected to build the CNN model [160]. To realize the DA,
the unpaired translation method, Cycle Generative Adversarial Networks (CycleGAN), was used

to tackle the image difference due to the illumination, hue and Clarity discrepancy.
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Table 4 Object detection challenges in complex unconstrained outdoor environments

Technical challenges for bale

Environment aq q q
diversity Conditions Example Agriculture Information detection
To gain the efficiency of . . .
‘ _0 gan e‘e S Decreasing the difficulties of
agriculture, different process . . .
Lighting routines are conducted fo shaping an accurate classification
condition . . models built on the deep learning
crops in morning, afternoon .
N . architecture.
IMlumination and night.
diversity
(Target
ctoietie=1) Shadow is commonly seen Shadows cross the objects
during daytime. This always decrease the accuracy of the
Shad happens in rain season. The  classification on these kinds of
adow images taken by UAV objects. Also, the scale of
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4.2 Methodology

Step 1
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Figure 29 Framework summary of proposed bale detection method pipeline
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Bale detection method pipeline summary

Fig. 29. shows the completed structure of the bale detection method, from image acquisition
to creating the model, then to augment the model, proposed in this work. We divide this pipeline
into 3 steps as follows. Step 1 trains a primary object detection model with the YOLOvV3 only
based on the manually labelled initial condition images. Step 2 demonstrates the method how we
use manually labelled ground truth images to generate more ground truth images with automatic
labels. Then in step 3, we augment the object detection model in step 1 with mixed labelled ground

truth images as training data.
Step 1: Primary Object detection

A YOLOvV3 model is trained for primary bale detection using 243 images captured with good
illumination conditions in fall. We define these labelled images as source domain. CNN based
object detection methods, such as Faster R-CNN, YOLO, and Mask R-CNN, gained the popularity
among researchers and have been proved to be efficient [160, 161, 143]. YOLOV3 was released
by Redmon and Farhadi in 2018, extended from the previous YOLO versions [162]. In this paper,
YOLOV3 is implemented in the baled detection process, taking advantages of its accuracy and fast
speed on object detection. Instead of using multiple networks for analysis, YOLOV3, indicated by
its name You Only Look Once, passes the input image once to a convolutional neural network,
lowering the costs and improving the performance significantly. In addition, the network splits the
input into multiple regions and works on each one with the bounding boxes and their classification
probabilities. By focusing on the global context of the image, YOLOv3 decreases the possibility

of making location classification error.
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To implement YOLOV3, we used PyTorch to train the model and to make inferences, based
on the Darknet-53 (an architecture consists of 53 convolutional neural networks). The initial
weights between layers were provided by the Darknet-53 backbone [162]. YOLOV3 relies on a
deeper architecture to extract features, the backbone here is “Darknet-53" with 53 convolutional
layers. Leaky ReLU activation as well as normalization are added to every layer. Instead of using
any form of pooling often contributing to loss of low-level features, we applied a stride of 2 in
convolutional layers to reduce the size of samples of the feature maps. Stride refers to the factor
between the applications of the filter to the input image. An image of size 416x416, for instance,
can be down-sampled to 13x13 by a stride of 32. The shape of input images is (m, 416, 416, 3).

The output consists of bounding boxes, representing the recognized classes. Each bounding box is

P.sb.,b,,by,b,c

defined by 6 numbers ( ). With augmenting cc (class) to an 80 dimensions vector,

85 numbers are used to describe every single bounding-box as shown in Fig. 30.

Similar to object detectors, features learned by the convolutional layers are filtered to predict
detection, such as the coordinates of the bounding boxes and the class label. YOLO v3 is based on
1 to 1 convolution to predict so the prediction map has the same size as the input. Each cell in the

prediction map represents a fixed number of bounding boxes as shown in Fig. 31.
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Figure 30 Explanation of encoding in YOLOV3 architecture
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Step 2: Augmenting training data with Domain Adaptation

Domain Adaptation as one kind of Transfer Learning is designed for augmenting the training
data scenarios with automatic labels. As shown in lower left in Fig. 31, more than two more
conditional images are list as Target domain 1, 2, etc. Traditionally, all the targeting objects in the
images need to be manually labelled. However, our proposed method, combining the YOLOV3
with DA, decreases the laborious manual identification work but also ensure the performance of

the model by applying style transferring.

We only labelled the inputs from the images with one condition and then we collected limited
more image with diverse illuminations, hues, and styles under different environments. Then we
built a domain transferring model to convert the images of initial condition to new images of the
other conditions. Instead of manually labelling all the inputs required by the model, only part of
the images was manually processed and the rest of the inputs shared the same label automatically
because of the style transfer. In this way, a more robust YOLOvV3 model which performs accurately

on augmented styles of images could be achieved.

The DA technique is applied to shape the translation mapping from the source-domain (S")
in the initial environment to the target domain 7" in the other environments, and vice versa.
Images from two different domains are not related in any way. CycleGAN [163] is implemented
to transfer the styles between two domains to synthesize target domain images from the source-

domain (S).
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Two GANSs are used for applying the CycleGAN in style transfer. Each one includes one

Gen
. . 8.1
generator and one adversarial discriminator. The generator, , in the first GAN translates

. .S . T . . ..
images from the source-domain () to the target-domain (= ), while the adversarial discriminator

D

outputs the likelihood that the images taken from the target-domain (T) are real images.

Gen 1,

Similarly, the generator ", in the other GAN translates images from the target-domain (T)

D

.S . . . N o 1.
to the source-domain (), and its adversarial discriminator outputs the likelihood that the

. .S . . .S
images taken from the source-domain ( ) is real images from the source-domain (). Is and I;

S T igely i€l
represents images from domain () and (~ ), respectively. Given and , 1s and it

. . .S T .
represents images in domain () and (~ ), respectively.

T represents the domains of images synthesized in Fig. 31. It represents the domain for the

diverse season and illuminations synthetic images generated from the real initial environment

images, while S denotes the initial synthetic images generated from the real other environment

A

Gen(&”, images is €1 is transferred to synthetic-images in 7', while the

images. By applying
corresponding adversarial discriminator improves model by encouraging the translated image
hardly distinguishable from the domain (7"). Ideally, when the translated image from the source-
domain ($) to the target-domain ( 77) is translated back from the target-domain ( 7") to the source-
domain ('), we should get identical images. However, learning models are not perfect and two
different images will be obtained. The difference between the two images is measured by cycle

consistency loss, which is defined as below by following (2):
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Lscy, (Gengg 1y, Genyy g, Dy, Dy, S,T ) = ALy, (Gengg gy Gengy ), S,T )+
Lsg,n (Gen(m),DS,T,S)Jr

LSGAN(Gen(S,T),DT,S,T) (13)

In Equation (13), 4 is the balance weight, LSCYC’e measures the cycle consistency loss,

Lsgay represents the loss function of the adversarial training. The cycle consistency loss used in

GAN training penalize Ls, in the cycle architecture, defined as:

LSy, (Gen(&r), Gen g, S,T) =E, [HGen(T,S) (Gen(”) (is )) — i H1 } +

E . [HGen(S’T) (Gen(T,S) (iT )) —1i,

J (14)

Equation (15) defines the loss in adversarial training:

Ls¢,, (Gen(S,T) ,Gen,, .S, T) =E, [log (DT (i ))} +E, [log (1 —Geng (i ))]

(15)
To train these generators and discriminators, we need to solve:
G5 _ argmi L Geng 1,.Gengy 5. Dy, D, ST
G * a'rg mlnGen(SI),Gen(T,S) rllla'XDS,DT SCycleGAN en(S,T) > en(T,S) SIS TTT O
eNr.s) (16)

Gradient descent is first applied to Equation 16, followed by backpropagation to allow the

Gen(

generator 5T) complete style transfer between real initial-style images and synthetic other-

style images without changing the spatial relationship between the biomass in the images.

Step 3: Optimize YOLOvV3 model with extended datasets from Step 2.
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There are two optional methods we can apply to optimize the performance of the model. One
is retraining the model, and other one is fine-tuning. Retraining a model using extended data with
a proper pre-processing is a straightforward and robust way, however it takes longer time than

fine-tuning.

A commonly used manner to transfer trained model to the new dataset is fine-tuning, which
is more efficient when the size of the new dataset is small. Fine-tuning trained models can not only
reduce the probability of overfitting, but also provides better generalization if the original dataset
and new dataset share similar domains. In this research, we applied both methods keeping the

better results of the two.

4.3 Experiment Design and Data Association

4.3.1 Experiment Equipment

The input data with baled housing biomass were collected from the fields by a drone from the
Arlington Research Station (Arlington, WI, USA) The drone, equipped with a 1-inch Exmor R
CMOS sensor and a gimbal stabilizer which handles the lateral and vertical vibration, allows us to
collect images from different heights as shown in Fig. 32. Through each campaign, the locations
of baled biomass are identified by a Global Navigation Satellite System (GNSS) and their
corresponding centers are surveyed by a Carlson Surveyor 2. These two additional systems are for

validation of the location accuracy and as a contribution to public database for future research.
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Figure 32 Zenmuse-X4S camera equipped DJI-Inspire-2 UAV.

4.3.1 Bales Data Collection and Description

All the following images collected in biomass bales fields are with this model of drone.
Images from two different heights, 200 ft and 400 ft, were captured through seven campaigns to
provide different resolutions to test our model performance. The size of the collected images is
5472 x 3648 pixels, corresponding to a 20-megapixel resolution as shown in Fig. 33. In addition,
we created a second dataset by rescaling the collected images to 1080 x 720 with 3:2 ratio,
simulating a camera with less than 1-megapixel resolution. The image numbers specifications used
in the experiments are shown in Table 7 as “Initial condition”. There are totally 300 images used
for training, validation, and testing. All these images were collected in the fall under good
illumination condition without shadow. We also collected 128 real images under the other
conditions as ground truths for both training CycleGAN model and testing performance. More

images under the other conditions were generated by CycleGAN model.
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Fig. 33 Example of drone collected images under good lighting condition in fall (Initial condition)

Table 5 Experiment data collection distributed under different environmental conditions (note: there are images

cross counted in different conditions)

Environment Condition Training | Validation | Testing
Initial condition Good llumination, fall, wio 243 27 30
shadow
Diverse [llumination w/ Lighting condition change 160 20 20
(Target domains-1) w/ Shadow 158 20 20
Seasons change Hue change (Summer) 185 19 19
(Target domains-2) Hue change (Early winter) 187 12 12
Adverse Weather w/ Haze 159 20 20
Condition

(Target domains-3) w/ Snow covered 150 19 19

Fig. 33 provides an example of the images used in the model. Baled biomass, and streets in
all collected images were annotated in both MS COCO and YOLO data formats by using the

Computer Vision Annotation Tools (CVATS) Labellmg and LabelMe [164, 165].
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4.4 Result and Discussion

4.4.1 Primary Bale Detection with YOLOvV3 Corresponding to Step 1

The YOLOV3 detector trained with only initial condition images in Step 1 was applied to
detect bales in the real images. Although the training processes don’t include images under
extended conditions, we still include these images in testing results for comparison with the
optimized detection model. The testing results, in terms of precision, recall, mAP, and F1 score
for each scenario, are presented in Table 8. The high value of precision indicates a low incidence
of false positives, meaning that the algorithm doesn’t detect a Bale where doesn’t exist. On the

other hand, the low recall means the algorithm fails to see some of the bales inside the image.

The prediction performance on initial condition images are excellent, all the precision, recall,
mAP, and F1 values are over 0.92. However, these four indices vary in the negative way for the
extended conditions. The precision values for all conditions except shadow are over 0.85, which
are good. As is shown in Fig. 34(b), bales are commonly failed to be detected inside or across the
shadow. The other three indices (recall, mAP, and F1) are all lower than expected for the extended
conditions (average values are less than 0.59, 0.7, 0.7 respectively). The F1 score is the harmonic
average between precision and recall. Since the last one was low, the F1 score also got low. The
mean average precision (mAP) was low and it varies through the different simulated scenarios.
However, mAP was high in the haze condition since all the images with haze condition are

collected with minor haze or fog, which may cause a significant blur on the background instead of
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bales. The general results are as expected since there are few image samples in the extended

conditions in the training datasets.

Table 6 YOLOvV3 model (Trained in Step 1) performance for detecting bales in different conditions without being

trained with synthetic images.

Data Images' Precision Recall mAP F1
All Conditions 148 0.859  0.599 0.780 0.746
Initial condition 30 0.929  0.993 0.987 0.960
[lumination 20 0.881 0.587 0.848 0.735
Shadow 20 0.675 0.456 0.622 0.621

Hue change (Summer) 19 0.917 0.644 0.853 0.783
Hue change (Early winter) 19 0.929  0.605 0.751 0.852
Haze 20 0910 0.871 0.975 0.931

Snow 19 0.874 0.456 0.584 0.621

Some examples of tested bale images under multiple environmental conditions using the
model trained in Step 1 are shown in Fig. 34. These typical results under different conditions
display the same trend with Table 8. There are some undetected bales and low confidence scores

listed in Fig. 34.
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Figure 34 Example of tested bale images under multiple environmental conditions using primary bale detection model

(trained in Step 1): (a) initial condition with good illumination and no shadow in fall; (b) extended condition — early

winter with shadow; (¢) summer with haze; (d) winter with snow covered; (¢) summer with good illumination

condition.

4.4.2 Augmenting Training Data with CycleGAN Corresponding to

Step 2

During step 2, we build a CycleGAN model to convert real images to synthetic/fake images

as shown in Fig. 35(a). Real A and real B are real images, fake B is the synthetic/fake image

from real A, and rec_A stands for reconstructed image A based on fake B. The second row has
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the same idea as the first one. With this CycleGAN model, 1200 synthetic images are generated

which will be used as extended training datasets in Step 3.

(a)

bale_train15_cyclegan loss over time

loss

(b)
Figure 35 Description of CycleGAN model: (a) examples of real images, fake images and reconstructed images; (b)

loss tracking during training CycleGAN model.
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Identity loss is the index when measuring the discrepancy due to translate one style images
to another style images, regulating the generator to generate images with high fidelity translated
from the real samples in the target domain. No extra change is needed for the images almost
distinguishable from the target domain. Generally, greater identity loss value will be applied for
unknown content. Fig. 36(b) shows a slight reduction of the loss, especially the cycle A in green
color, which fits our expectation. More results are displayed in Appendix 1. More information
about the model parameters and logic can be found in Zhu et al. [102]. Fig. 36 shows some example

of augmented bale images with multiple environmental conditions.

(a) (b)

(c) (d) (e)
Figure 36 Example of augmented bale images with multiple environmental conditions: (a) Summer w/ good

illumination; (b) Summer w/ shadow; (c) Winter w/ snow; (d) Early winter w/ haze; (¢) Summer w/ dark illumination
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4.4.3 Optimized YOLOv3 Model with Extended Datasets

Corresponding to Step 3

Table 7 YOLOV3 model (Trained in Step 3) performance for detecting bales in different conditions after being

trained with synthetic images from Step 2.

Data! Images’ Precision Recall mAP F1
All Conditions 148 0.869  0.927 0.941 0.892
Initial condition 30 0.913  0.980 0.990 0.945
Illumination 20 0.847 0.926 0.959 0.885
Shadow 20 0.847  0.933 0.854 0.888

Hue change (Summer) 19 0.836  0.933 0.954 0.882
Hue change (Early winter) 19 0.905 0.893 0.969 0.831
Haze 20 0.831 0.867 0.895 0.848

Snow 19 0.926 0.878 0.941 0.901

The optimized YOLOV3 detector trained with both real images and synthetic images in Step
3 is applied to the same testing datasets. Table 9 shows the testing results, which will be compared
with the performance of the primary YOLOv3 model in Step 1. YOLOV3 in Step 1 and 3 have a
similar performance for bale image detection under the initial condition as shown in the line “Initial
condition” in Table 8 and Table 9. The generic testing results, in terms of precision, recall, mAP,
and F1 score for each scenario, are presented in Table 9. In most cases, the recall, mAP, and F1
score, are obviously improved from average (0.59, 0.7, 0.7) to average (0.93, 0.94, 0.89)

respectively. All the significantly increased values are marked in green. The increment of recall



101

indicates that most of the bales that can’t be detected in Step 1 are detected in Step 3. Meanwhile,
the precision value keeps a similar level with occasional reduction because of the occasional
increased false positives and true positives. This result is a strong evidence that using synthetic
images from transfer learning is a reasonable approach to enhance the detection capability with

images under new conditions.

The same examples of tested bale images under multiple environmental conditions using the
model trained in Step 3 are shown in Fig. 37. These typical results under different conditions show

the improvement comparing to Fig. 37.

Bale 0.40Bale 0.74

(d)
Figure 37 Example of tested bale images under multiple environmental conditions using our framework
(YOLOV3+DA): (a) initial condition with good illumination and no shadow in fall; (b) extended condition — early
winter with shadow; (c¢) summer with haze; (d) winter with snow covered; (¢) summer with good illumination

condition.
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4.4.4 Comparison and Advantages
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Figure 38 F1 comparison between Step 1 (primary YOLOv3 model) and Step 3 (optimized YOLOv3+DA model)

under each condition and mixed all conditions.

To better understand the detecting improvement on images under different environmental
conditions, we plot the F1 value between Step 1 and Step 3 under each condition separately. It is
obviously discovered that under most conditions, the performance increases substantially except
initial condition, Hue change (early winter), and Haze. Because the optimization curve generally
slows down after the accuracy is over high value when improving the object detection
performance. What we aim is improving the detection accuracy of the conditions with lower

accuracy (less than 80%). So in our case, we expect to see the big jump for conditions like,
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illumination, shadow, Hue change (Summer) and snow which are all less than 75% accuracy. The
following results analysis show that we not only keep the original high performance but also

increased the performance of some conditions with originally low accuracy.

Firstly, the initial condition already has a high accuracy that over 93% with either model.
Similar, the Hue change (early winter) condition also keeps a relevantly high performance around
90% before and after our approach. This method maintains the high accuracy score with a slight
change during to the enhancement of training dataset volume and the false negative samples.
Meanwhile, this Haze images enlarge the base number when calculating F1 score. Although the
haze condition accuracy is high, we can still make improvement by collecting more better-quality
images season by season. But this is a long period and continuous collecting work for our lab, that
is not the core contribution of this algorithm research Secondly, for conditions like, illumination,
shadow, Hue change (Summer) and snow, our method significantly ameliorate the detection
accuracy by around 15%, 26%, 10% and 28% respectively. Generally, this YOLOv3+DA model

approves its advantages in augmenting detection ability.

Moreover, we estimated the time cost of manually labelling bales in all images as shown in
Table 10. Step 1 only need label images under the initial condition with around 90 hours. After
that, we have two options to augment the bale detection model. One is to label every new image
under all extended conditions with 260 extra hours of work, the other one is to train a CycleGAN
model without extra labelling other than the first 90 hours. Since the general F1 score, precision,
recall and mAP from the proposed approach are all over 0.9, this is sufficient for this specific task.

Thus, the proposed method provides additional advantages of saving time and labor.
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Table 8 Manually labelling cost for bales detection with different approaches.

Train Approach Time Cost (hours)
w/ initial condition images 90
w/ domain adaption images 90
w/ labeled all conditions 350
images!

! “labelled all conditions images” means manually label real images under all conditions then train a model with these labelled data.

4.5 Conclusion

A YOLOV3 bale detection model combining with the Domain Adaptation approach is
addressed in this paper, augmenting the ability for crop/bale detection in three seasons, different
illumination conditions, and diverse weather conditions. This method is advantageous as it needs
limited manually labelling task. In this work, only the images captured under initial condition need
to be manually labelled as source-domain data. Then the Domain Adaptation approach, CycleGAN
models, are trained to transfer source-domain images to target-domain (images under other
conditions) with the same labelled annotation file. We effectively have augmented the training
datasets under extended conditions but without extra manual labelling task. After these two steps,
we trained the YOLOV3 model again with augmented training datasets. The optimized YOLOv3
model shows a significant improvement in the general detecting performance. This approach
decreases the labor and time cost in the way of improving crop quality and yields. Also, it shows
strong scalability on many other crops and will significantly reduce the cost of precision

agriculture.
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Chapter 5 Summary and Future Plan

5.1 Summary

In this thesis, several innovative methods and associated system were created for agriculture
navigation, mapping and object detection. These were constructed as three studies, namely field
3D Mesh-mapping, advanced sensors and data fusion, and agriculture objects perceiving. The
studies have shown how to logically support the high-level agriculture Al system by (i)
Fundamentally creating advanced field mapping and navigation algorithms based on computer
vision techniques; (ii) Profitably augmenting the mapping module by a sensing approach with a
variety of sensors and data fusion; and (iii) Precisely augmenting agriculture objects perceiving

ability for the map using transfer learning and computer vision techniques.

Firstly, a 3D Mesh-mapping system is built assisted by an IoT architecture which is utilized
to disperse the computation load and network communication between multiple edge nodes and a
single cloud server. The experiment shows reasonable performance in term of accuracy, scalability,
data transmission and automation. Next, to improve the Mesh-mapping approach, we present a
sensing algorithm, a low-cost, robot-mounted, multidimensional map construction method which

gathers landscape information for 3D map construction. This method tracks robot movements,
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monitors the landscape environment, and links all the factors to the 3D map. The study also
provides analytics and data fusion from several specific aspects of the robot working environment.
The applications demonstrate the usefulness on task planning and route planning. Finally, diving
down to an agriculture object level, an object detection model hybrid with the Domain Adaptation
was addressed, augmenting the ability for crop detection in various environmental conditions. The
optimized object detection model shows a significant improvement in the general detecting

performance.

Based on the experiences with these applications, it is believed all the addressed Al
techniques will be useful to the development of future “smart farms.” Autonomous and precision
agricultural systems mitigate issues of current agriculture. This system is designed to reduce labor
issues for the most dangerous and tedious agronomic tasks, improve efficiency, and reduce
environmental impacts through better utilization of crop inputs. With the development of
computing infrastructure, hardware, and improving algorithms, this system can enable more

powerful applications in the future.

5.2 Future Research Directions

The utilization of SLAM and the assumption of the planar Mesh-map are based on the premise
that the testing land is planar. Thus, the adoption of SLAM to better serve the navigation problem
could still be improved. Other than IMU sensors, more growing status monitoring sensors could
be added to detect other context information to boost the performance. These are imagined making

SLAM a viable option for automated mapping and navigation systems to enable autonomous
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agricultural systems. Data association process could be improved in the future, which is
implemented in this proposed approach. Although these systems outperform existing methods,
they still failed to extract useful features from the images under adverse weather conditions during
the data collection process. There it is suggest to test using high accuracy RTK-GPS assistance in

the future.

Other applications of these should also be explored. For example, one could apply deep
learning techniques to detect obstacles in the field which could potentially cause blockages to farm
machines. The ability to detect obstacles allows us to further augment the insight of the mapping
method as a 4D or even higher dimension map rather easily. Although this paper targets on
reconstructing the 4D map, which helps analyzing crop growing environment, the analysis of crop
height point cloud is absent. Future work could be performed to analyze the point clouds with more

sophisticated methods.

Planned future work also includes collecting more real images under more specific conditions,
generating more synthetic images associate with these conditions, and combining the activate
learning method with the CycleGAN model, making the whole pipeline of the algorithm more
robust and easier for use. More images could be collected to improve the proposed method, such
as real-time images and patterns, image modalities, thermal images, soil maps, and topographic
maps. This would lead to “Agriculture-Vision” having a more standardized and inclusive dataset,
encouraging more research on improving visual recognition approaches in modern agriculture,

including large-scale, multi-channel aerial farmland semantic segmentation.
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The methods from this thesis can be applied in other domains other than agriculture. For
example, our system overcomes the limitations of existing IMU-based solutions. Combining with
the deep learning and object detection algorithms, we can provide fruitful contextual information
for driver behavior profiling in transportation domain. The future work will leverage mobile
sensing and computer vision techniques to extract various context information of the driver and
the surrounding environments. Further driving behaviour evaluation could be conducted using the
extracted information. Base on this work, one could build a low-cost embedded computer with
deep learning inference accelerator. The prototype can be deployed to a regular vehicle and tested
in real-world environments. This system can process data in real time and provide a good
understanding of each driving behaviour. It is believed such a real-time sensing and analysis

system can enable a wide range of applications.
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Appendix 1

Detailed CycleGAN result thumbnail images:

Corresponding generated
Real image fake image by transfer
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Reconstructed real image
using fake image
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Appendix 2

The sample frames from the video when building the SLAM map
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[[JFollow Camera
[CIShow Points
[[Ishow KeyFrames
PRB Extractor Parameter
of Featur [[show Graph
[Jiocalization Mode
Pause/Resune

[ Reset.

130



131

[[IFollow Camera
[CIshow Points.
[TIshow KeyFrames
[CIshow Graph
[iocalization Mode
Reset A

ORB-SLAM2: Current Frame

[[Follow Camera
[[Ishow Points.
[[Ishow KeyFrames
[CIshow Graph
[Jiocalization Mode

Pause/Resume

| Reset

e

i




ProQuest Number: 28262390

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest

ProQuest 28262390

Published by ProQuest LLC (2021). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M1 48106 - 1346




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


