
Information Extraction Challenges
in Managing Unstructured Data

AnHai Doan, Jeffrey F. Naughton, Raghu Ramakrishnan,

Akanksha Baid, Xiaoyong Chai, Fei Chen, Ting Chen, Eric Chu, Pedro DeRose,

Byron Gao, Chaitanya Gokhale, Jiansheng Huang, Warren Shen, Ba-Quy Vuong

University of Wisconsin-Madison

ABSTRACT
Over the past few years, we have been trying to build
an end-to-end system at Wisconsin to manage unstruc-
tured data, using extraction, integration, and user in-
teraction. This paper describes the key information
extraction (IE) challenges that we have run into, and
sketches our solutions. We discuss in particular de-
veloping a declarative IE language, optimizing for this
language, generating IE provenance, incorporating user
feedback into the IE process, developing a novel wiki-
based user interface for feedback, best-effort IE, pushing
IE into RDBMSs, and more. Our work suggests that IE
in managing unstructured data can open up many in-
teresting research challenges, and that these challenges
can greatly benefit from the wealth of work on man-
aging structured data that has been carried out by the
database community.

1. INTRODUCTION
Unstructured data, such as text, Web pages, emails,

blogs, and memos, is becoming increasingly pervasive.
Hence, it is important that we develop solutions to man-
age such data. In a recent CIDR-09 paper [12] we have
outlined an approach to such a solution. Specifically,
we propose building unstructured data management sys-
tems (UDMSs). Such systems extract structures (e.g.,
person names, locations) from the raw text data, inte-
grate the structures (e.g., matching “David Smith”with
“D. Smith”) to build a structured database, then lever-
age the database to provide a host of user services (e.g.,
keyword search and structured querying). Such systems
can also solicit user interaction to improve the extrac-
tion and integration methods, the quality of the result-
ing database, and the user services.

Over the past few years at Wisconsin we have been
attempting to build exactly such a UDMS. Building it
has raised many difficult challenges in information ex-
traction, information integration, and user interaction.
In this paper we briefly describe the key challenges in in-
formation extraction (IE) that we have faced, sketch our
solutions, and discuss future directions (see [11, 10] for
a discussion of non-IE challenges). Our work suggests

.

that managing unstructured data can open up many
interesting IE directions for database researchers. It
further suggests that these directions can greatly bene-
fit from the vast body of work on managing structured
data that has been carried out in our community, such
as work on data storage, query optimization, and con-
currency control.

The work described here has been carried out in the
context of the Cimple project. Cimple started out trying
to build community information management systems:
those that manage data for online communities, using
extraction, integration, and user interaction [13]. Over
time, however, it became clear that such systems can be
used to manage unstructured data in many contexts be-
yond just online communities. Hence, Cimple now seeks
to build such a general-purpose unstructured data man-
agement system, then apply it to a broad variety of ap-
plications, including community information manage-
ment [13], personal information management [3], best-
effort/on-the-fly data integration [17], and dataspaces
[14] (see www.cs.wisc.edu/~anhai/projects/cimple
for more detail on the Cimple project).

The rest of this paper is organized as follows. In Sec-
tions 2-4 we describe key IE challenges in developing
IE programs, interacting with users during the IE pro-
cess, and leveraging RDBMS technology for IE. Then in
Section 5 we discuss how the above individual IE tech-
nologies can be integrated and combined with non-IE
technologies to build an end-to-end UDMS. We con-
clude in Section 6.

2. DEVELOPING IE PROGRAMS
To extract structures from the raw data, developers

often must create and then execute one or more IE pro-
grams. Today, developers typically create such IE pro-
grams by “stitching together” smaller IE modules (ob-
tained externally or written by the developers them-
selves), using, for example, C++, Perl, or Java. While
powerful, this procedural approach generates large IE
programs that are difficult to develop, understand, de-
bug, modify, and optimize. To address this problem, we
have developed xlog, a declarative language in which
to write IE programs. We now briefly describe xlog
and then techniques to optimize xlog programs for both
static and dynamic data.

(a)

�
approxMatch(d,“relevance feedback”)

extractAbstract(d,abstract)

�
approxMatch(abstract, “relevance feedback”)�

immBefore(title,abstract)

extractTitle(d,title)

docs(d)docs(d)

�
approxMatch(d,“relevance feedback”)

(c)

extractAbstract(d,abstract)

�
approxMatch(abstract, “relevance feedback”)�

immBefore(title,abstract)

extractTitle(d,title)

docs(d)docs(d)

(b)

titles(d,title) :- docs(d), extractTitle(d,title).
abstracts(d,abstract) :- docs(d), extractAbstract(d,abstract).
talks(d,title,abstract):- titles(d,title), abstracts(d,abstract),

immBefore(title,abstract), approxMatch(abstract,“relevance feedback”).

Figure 1: (a) An IE program in xlog, and (b)-(c) two

possible execution plans for the program.

The xlog Declarative Language: xlog is a Data-
log extension. Each xlog program consists of multiple
Datalog-like rules, except that these rules can also con-
tain user-defined procedural predicates that are pieces of
procedural code (e.g., in Perl, Java).

Figure 1.a shows a tiny such xlog program with three
rules, which extracts titles and abstracts of those talks
whose abstracts contain “relevance feedback.” Consider
the first rule. Here docs(d) is an extensional predicate
(in the usual Datalog sense) that represents a set of text
documents, whereas the term extractT itle(d, title) is a
procedural predicate, i.e., a piece of code that takes as
input a document d, and produces as output a set of tu-
ples (d, title), where title is a talk title in document d.
The first rule thus extracts all talk titles from the docu-
ments in docs(d). Similarly, the second rule extracts all
talk abstracts from the same documents. Finally, the
third rule pairs the titles and abstracts, then retains
only those where the title is immediately before the ab-
stract and the abstract contains “relevance feedback”
(allowing for misspellings and synonym matching).

The language xlog therefore allows developers to write
IE programs by stitching together multiple IE “black-
boxes” (e.g., extractT itle, extractAbstract, etc.) using
declarative rules instead of procedural code. Such an
IE program can then be converted into an execution
plan and evaluated by the UDMS. For example, Fig-
ure 1.b shows a straightforward execution plan for the
IE program in Figure 1.a. This plan extracts titles and
abstracts, selects only those (title,abstract) pairs where
the title is immediately before the abstract, then selects
further only those pairs where the abstract contains“rel-
evance feedback.” In general, such a plan can contain
both relational operators (e.g., 1) and user-defined op-
erators (e.g., extractT itle).

Optimizing xlog Programs: A key advantage of
IE programs in xlog, compared to those in procedural
languages, is that they are highly amenable to query op-
timization techniques. For example, consider again the
execution plan in Figure 1.b. Recall that this plan re-
tains only those (title,abstract) pairs where the abstract
contains “relevance feedback.” Intuitively, an abstract
in a document d cannot possibly contain“relevance feed-
back” unless d itself also contains “relevance feedback.”
This suggests that we can “optimize” the above plan by
discarding a document d as soon as we find out that

d does not contain “relevance feedback” (a technique
reminiscent of pushing down selection in relational con-
texts). Figure 1.c shows the resulting plan.

Of course, whether this plan is more efficient than the
first plan depends on the selectivity of the selection op-
erator σapproxMatch(d,′′relevance feedback′′) and the run-
time cost of approxMatch. If a data set mentions “rel-
evance feedback” frequently (as would be the case, for
example, in SIGIR proceedings), then the selection se-
lectivity will be low. Since approxMatch is expensive,
the second plan can end up being significantly worse
than the first one. On the other hand, if a data set
rarely mentions“relevance feedback”(as would likely be
the case, for example, in SIGMOD proceedings), then
the second plan can significantly outperform the first
one. One way to address this choice of plans is to per-
form cost-based optimization, like in relational query
optimization.

In [18] we have developed such a cost-based optimizer.
Given an xlog program P , the optimizer conceptually
generates an execution plan for P , employs a set of re-
writing rules (such as pushing down a selection, as de-
scribed above) to generate promising plan candidates,
then selects the candidate with the lowest estimated
cost, where the costs are estimated using a cost model
(in the same spirit as relational query optimization).
The work [18] describes the optimizer in detail, includ-
ing techniques to efficiently search for the best candi-
date in the often huge candidate space.

Optimizing for Evolving Data: So far we have
considered only static text corpora, over which we typ-
ically have to apply an xlog program only once. In
practice, however, text corpora often are dynamic, in
that documents are added, deleted, and modified. They
evolve over time, and to keep extracted information up
to date, we often must apply an xlog program repeat-
edly, to consecutive corpus snapshots. Consider, for
example, DBLife, a structured portal for the database
community that we have been developing [8, 9]. DBLife
operates over a text corpus of 10,000+ URLs. Each
day it recrawls these URLs to generate a 120+ MB cor-
pus snapshot, and then applies an IE program to this
snapshot to find the latest community information.

In such contexts, applying IE to each corpus snapshot
in isolation, from the scratch, as typically done today,
is very time consuming. To address this problem, in [5]
we have developed a set of techniques to efficiently exe-
cute an xlog program over an evolving text corpus. The
key idea underlying our solution is to recycle previous
IE results, given that consecutive snapshots of a text
corpus often contain much overlapping content. For ex-
ample, suppose that a corpus snapshot contains the text
fragment “the Cimple project will meet in room CS 105
at 3pm”, from which we have extracted “CS 105” as a
room number. Then when we see the above text frag-
ment again in a new snapshot, under certain conditions
(see [5]) we can immediately conclude that “CS 105” is
a room number, without re-applying the IE program to
the text fragment.

Overall, our work has suggested that xlog is highly

promising as an IE language. It can seamlessly combine
procedural IE code fragments with declarative ones.
In contrast to some other recent efforts in declarative
IE languages (e.g., UIMA at research.ibm.com/UIMA),
xlog builds on the well-founded semantics of Datalog.
As such, it can naturally and rigorously handle recur-
sion (which occurs quite commonly in IE [1, 2]). Fi-
nally, it can also leverage the wealth of execution and
optimization techniques already developed for Datalog.
Much work remains, however, as our current xlog ver-
sion is still rudimentary. We are currently examining
how to extend it to handle negation and recursion, and
to incorporate information integration procedures (see
Section 5), among others.

3. INTERACTING WITH USERS
Given that IE is an inherently imprecise process, user

interaction is important for improving the quality of
IE applications. Such interaction often can be solicited.
Many IE applications (e.g., DBLife) have a sizable devel-
opment team (e.g., 5-10 persons at any time). Just this
team of developers alone can already provide a consider-
able amount of feedback. Even more feedback can often
be solicited from the multitude of application users, in
a Web 2.0 style.

The goal then is to develop techniques to enable ef-
ficient user interaction (where by “user” we mean both
developers and application users). Toward this goal,
we have been pursuing four research directions: explain
query result provenance, incorporating user feedback,
developing novel user interfaces, and developing novel
interaction modes. We now briefly explain these direc-
tions.

Generating the Provenance of Query Result:
Much work has addressed the problem of generating
the provenance of query results [20]. But this work has
focused only on positive provenance: it seeks to explain
why an answer is produced.

In many cases, however, a user may be interested in
negative provenance, i.e., why a certain answer is not
produced. For example, suppose we have extracted two
tables TALKS(talk-title, talk-time, room) and LOCA-
TIONS(room,building) from text documents. Suppose
the user now asks for the titles of all talks that appear
at 3pm in Dayton Hall. This requires joining the above
two tables on “room”, then selecting those where “talk-
time”is 3pm and“building”is Dayton Hall. Suppose the
user expects a particular talk with title “Declarative IE”
to show up in the query result, and is surprised that it
does not. Then the user may want to ask the system
why this talk does not show up. We call such requests
“asking for the provenance of a non-answer”. Such non-
answer provenance is important because it can provide
more confidence in the answer for the user, and can help
developers debug the system.

In [15] we have developed an initial approach to pro-
viding the provenance of non-answers. In the above
example, for instance, our solution can explain that no
tuple with talk-title =“Declarative IE”and talk-time =
3pm has been extracted into the table TALKS, and that

if such a tuple were to be extracted, then the non-answer
will become an answer. Alternatively, our approach can
explain that such a tuple indeed has been extracted into
table TALKS, but that the tuple does not join with any
tuple in table LOCATIONS, and so forth.

Incorporate User Feedback: Consider again the
IE program P in Figure 1.b, which extracts titles and
abstracts, pairs them, then retains only those satisfying
certain conditions. Conceptually, this program can be
viewed as an execution tree (in the spirit of an RDBMS
execution tree), where the leaves specify input data (the
table docs(d) of text documents in this case), the inter-
nal nodes specify relational operations (e.g., join, se-
lect), IE operations (e.g., extractT itle), or procedures
(e.g., immBefore), and the root node specifies the out-
put (which is the table talks(d, title, abstract) in this
case).

Executing the above program then amounts to a bottom-
up execution of the above execution tree. After the ex-
ecution, a user may inspect and correct mistakes in the
output table talks(d, title, abstract). For example, he
or she can modify a title, remove a tuple that does not
correspond to a correct pair of title and abstract, or add
a tuple that the IE modules fail to extract.

But the user may go even further. If during the ex-
ecution we have materialized the intermediate tables
(that are produced at internal nodes of the above exe-
cution tree), then the user can also correct those. For
example, the user may try to correct the intermediate
table titles(d, title) (the output of the node associated
with the IE module extractT itle), then propagate these
corrections “up the tree”. Clearly, correcting a mistake
“early” can be highly beneficial as it can drastically re-
duce the number of incorrect tuples “further up the ex-
ecution tree”.

Consequently, in recent work [4] we have developed
an initial solution that allows users to correct mistakes
anywhere during the IE execution, and then propagate
such corrections up the execution tree. This raises many
interesting and difficult challenges, including (a) devel-
oping a way to quickly specify which parts of the data
are to be corrected and in what manner, (b) redefining
the semantics of the declarative program, in the pres-
ence of user corrections, (c) propagating corrections up
the tree, but figuring out how to reconcile them with
prior corrections, and (d) developing an efficient con-
currency control solution for the common case where
multiple users concurrently correct the data.

[4] addresses the above challenges in detail. Here, we
briefly focus on just the first challenge: how to quickly
specify which parts of the data are to be corrected and
in what manner. To address this challenge, our solution
allows developers to write declarative “human interac-
tion” (HI) rules. For example, after writing the IE pro-
gram in Figure 1.a, a developer may write the following
HI rule:

extracted-titles(d,title)#spreadsheet
:- titles(d,title), d > 200.

This rule states that during the program execution, a

view extracted-titles(d, title) over table titles(d, title)
(defined by the above rule to be those tuples in the
titles(d, title) table with the doc id d exceeding 200)
should be materialized, then exposed to users to edit
via a spreadsheet user interface (UI). Note that the sys-
tem comes pre-equipped already with a set of UIs. The
developer merely needs to specify in the HI rule that
which UI is to be used. The system will take care of
the rest: materialize the target data part, expose it in
the specified UI, incorporate user corrections, and prop-
agate such corrections “up the execution tree.”

Develop Novel User Interfaces: To correct the
extracted data, today users can only use a rather limited
set of UIs, such as spreadsheet interface, form interface,
and GUI. To maximize user interaction with the UDMS,
we believe it is important to develop a richer set of UIs,
because then a user is more likely to find an UI that he
or she is comfortable with, and thus is more likely to
participate in the interaction.

Toward this goal, we have recently developed a wiki-
based UI [7] (based on the observation that many users
increasingly use wikis to collect and correct data). This
UI exposes the data to be corrected in a set of wiki
pages. Users examine and correct these pages, then
propagate the correction to the underlying data. For
example, suppose the data to be corrected is the table
extracted-titles(d, title) mentioned earlier (which is a
view over table titles(d, title)). Then we can display the
tuples of this table in a wiki page. Once a user has cor-
rected, say, the first tuple of the table, we can propagate
the correction to the underlying table titles(d, title).

A distinguishing aspect of the wiki UI is that in ad-
dition to correcting structured data (e.g., relational tu-
ples), users can also easily add comments, questions, ex-
planations, etc. in text format. For example, after cor-
recting the first tuple of table extracted-titles(d, title),
a user can leave a comment (right next to this tuple in
the wiki page) stating why. Or another user may leave a
comment questioning the correctness of the second and
third tuples, such as “these two tuples seem contradic-
tory, so at least one of them is likely to be wrong”. Such
text comments are then stored in the system together
with the relational tables. The comments clearly can
also be accommodated in traditional UIs, but not as
easily or naturally as in a wiki-based UI.

Developing such a wiki-based UI turned out to raise
many interesting challenges. A major challenge is how
to display the structured data (e.g., relational tuples)
in a wiki page. The popular current solution of using
a natural-text or wiki-table format makes it easy for
users to edit the data, but very hard for the system to
figure out afterwards which pieces of structured data
have been edited. Another major challenge is that after
a user U has revised a wiki page P into a page P ′ and
has submitted P ′ to the system, how does the system
know which sequence of edit actions U actually intended
(as it is often the case that many different edit sequences
can transform P into P ′)?. Yet another challenge is that
once the system has found the intended edit sequence,
how can it efficiently propagate this sequence to the

underlying data? Our recent work [7] discusses these
challenges in detail and proposes initial solutions.

Develop Novel Modes of User Interaction: So
far we have discussed the following mode of user inter-
action for UDMSs: a developer U writes an IE program
P , the UDMS executes P , then U (and possibly other
users) interacts with the system to improve P ’s execu-
tion. We believe that this mode of user interaction is
not always appropriate, and hence we have been inter-
ested in exploring novel modes of user interaction.

In particular, we observe that in the above traditional
mode, developer U must produce a precise IE program
P (one that is fully “fleshed out”), before P can be ex-
ecuted and then exposed for user interaction. As such
this mode suffers from three limitations. First, it is of-
ten difficult to execute partially specified IE programs
and obtain meaningful results, thereby producing a long
“debug loop”. Second, it often takes a long time before
we can obtain the first meaningful result (by finishing
and running a precise IE program), thereby rendering
this mode impractical for time-sensitive IE applications.
Finally, by writing precise IE programs U may also
waste a significant amount of effort, because an approx-
imate result – one that can be produced quickly – may
already be satisfactory.

To address these limitations, in [17] we have devel-
oped a novel IE mode called best-effort IE that inter-
leaves IE execution with user interaction from the start.
In this mode, U uses an xlog extension called alog to
quickly write an initial approximate IE program P (with
a possible-worlds semantics). Then U evaluates P us-
ing an approximate query processor to quickly extract
an approximate result. Next, U examines the result,
and further refines P if necessary, to obtain increas-
ingly more precise results. To refine P , U can enlist a
next-effort assistant, which suggests refinements based
on the data and the current version of P .

To illustrate, suppose that given 500 Web pages, each
listing a house for sale, developer U wants to find all
houses whose price exceeds $500000. Then to start, U
can quickly write an initial approximate IE program P ,
by specifying what he or she knows about the target
attributes (i.e., price in this case). Suppose U specifies
only that price is numeric, and suppose further that
there are only nine house pages where each page con-
tains at least one number exceeding 500000. Then the
UDMS can immediately execute P to return these nine
pages as an “approximate superset” result for the ini-
tial extraction program. Since this result set is small,
U may already be able to sift through and find the de-
sired houses. Hence, U can already stop with the IE
program.

Now suppose that instead of nine, there are actually
120 house pages that contain at least one number ex-
ceeding 500000. Then the system will return these 120
pages. U realizes that the IE program P is “underspeci-
fied”, and hence will try to refine it further (to “narrow”
the result set). To do so, U can ask the next-effort as-
sistant to suggest what to focus on next. Suppose that
this module suggests to check if price is in bold font,

and that after checking, U adds to the IE program that
price is in bold font. Then the system can leverage this
“refinement” to reduce the result set to only 35 houses.
U now can stop, and sift through the 35 houses to find
the desired ones. Alternatively, U can try to refine the
IE program further, enlisting the next-effort assistant
whenever appropriate.

In [17] we describe in detail the challenges of best-
effort IE and proposes a set of possible solutions.

4. LEVERAGING RDBMS TECHNOLOGIES
So far we have discussed how to develop declarative

IE programs and effective user interaction tools. We
now turn our attention to efficiently implementing such
programs.

We begin by observing that most of today’s imple-
mentations perform their IE without the use of an RDBMS.
A very common method, for example, is to store text
data in files, write the IE program as a script, or in a
recently developed declarative language (e.g., xlog [18],
AQL of System-T [16], UIMA at research.ibm.com/UIMA),
then execute this program over these text files, using the
file system for all storage.

This method indeed offers a good start. But given
that IE programs fundamentally extract and manip-
ulate structured data, and that RDBMSs have had a
30-year history of managing structured data, a natural
question arises: Do RDBMSs offer any advantage over
file systems for IE applications? In recent work [6, 19],
we have explored this question, provided an affirma-
tive answer, and further explored the natural follow-on
questions of How can we best exploit current RDBMS
technology to support IE? and How can current RDBMS
technology be improved to better support IE?. For space
reasons, in what follows we will briefly describe only the
work in [19], our latest work on the topic.

We begin in [19] by showing that executing and man-
aging IE programs (such as those discussed so far in
this paper) indeed require many capabilities offered by
current RDBMSs. First, such programs often execute
many relational operations (e.g., joining two large tables
of extracted tuples). Second, the programs are often so
complex or run over so much data that they can signif-
icantly benefit from indexing and optimization. Third,
many such programs are long running, and hence crash
recovery can significantly assist in making program ex-
ecution more robust. Finally, many such programs and
their data (i.e., input, output, intermediate results) are
often edited concurrently by multiple users (as discussed
earlier), raising difficult concurrency control issues.

Given the above observations, in the file-based ap-
proach the developers of IE programs can certainly de-
velop all of the above capabilities. But such develop-
ment would be highly non-trivial, and could duplicate
substantial portions of the 30-year effort the DBMS
community has spent developing RDBMS capabilities.

Consequently, leveraging RDBMS for IE seems like an
idea that is worth exploring, and in [19] we outline a way
to do so. First, we identify a set of core operations on
text data that IE programs often perform. Examples of

core operations include retrieving the content of a text
span given its start and end positions in a document,
verifying a certain property of a text span (e.g., whether
it is in bold font, to support for instance best-effort IE
as discussed in Section 3), and locating all substrings
(of a given text span) that satisfy certain properties.

We then explore the issue of how to store text data in
an RDBMS in a way that is suitable for IE, and how to
build indexes over such data to speed up the core IE op-
erations. We show that if we divide text documents into
“chunks”, and making this “chunking” visible to the IE
operation implementations, we can exploit certain prop-
erties of these core operations to optimize data access.
Furthermore, if we have sufficiently general indexing fa-
cilities, we can use indexes both to speed the retrieval
of relevant text and to cache the results of function in-
vocations, thereby avoiding repeatedly inferring useful
properties of that text.

We then turn our attention to the issue of executing
and optimizing IE programs within RDBMS. We show
that IE programs can significantly benefit from tradi-
tional relational query optimization and show how to
leverage the RDBMS query optimizer to help optimize
IE programs. Finally, we show how to apply text-centric
optimization (as discussed in Section 2) in conjunction
with leveraging the RDBMS query optimizer. Overall,
our work suggests that exploiting RDBMSs for IE is a
highly promising direction in terms of possible practical
impacts as well as interesting research challenges for the
database community.

5. BUILDING AN END-TO-END UDMS
So far we have discussed the technologies to solve in-

dividual IE challenges. We now discuss how these tech-
nologies are being integrated to build an end-to-end pro-
totype UDMS, an ongoing effort at Wisconsin. In what
follows, our discussion will also involve information in-
tegration (II), as the UDMS often must perform both
extraction and integration over the raw text data.

Figure 2 shows the architecture of our planned UDMS
prototype. This architecture consists of four layers: the
physical layer, the data storage layer, the processing
layer, and the user layer. We now briefly discuss each
layer, highlighting in particular our ongoing IE efforts
and opportunities for further IE research.

The Physical Layer: This layer contains hardware
that runs all the steps of the system. Given that IE
and II are often very computation intensive and that
many applications involve a large amount of data, the
ultimate system will probably need parallel processing
in the physical layer. A popular way to achieve this is to
use a computer cluster (as shown in the figure) running
Map-Reduce-like processes.

For now, for simplicity we plan to build the UDMS
to run on a single machine. In the long run, however,
it would be an important and interesting research di-
rection to study how to run all steps of the system on
a cluster of machines, perhaps using a Map-Reduce-like
framework. This will require, among other tasks, de-

Physical Layer

Data Storage
Layer

Processing
Layer

User Layer

…

Intermediate structures

Subversion File system RDBMS MediaWiki

I

Declarative IE+II+HI language

II
Programs and triggers

III

Transaction manager

IV

Schema manager

V VI

Uncertainty manager

Provenance manager

Explanation manager

Semantic debugger

Alert monitor

Statistics monitor

Command-line interface

User Services

Keyword search Structured querying
BrowsingVisualization Alert Monitoring

Command-line interface

User Input

Form interface Questions and answers
Wiki GUIExcel-spreadsheet interface

Authentication

User Manager

Reputation manager
Incentive manager

Parser
Reformulator

Optimizer
Execution engine

Data model

Operator library
Crash recovery

Unstructured data

Final structures
User contributions

…

Figure 2: The architecture of our planned UDMS prototype.

composing a declarative IE/II program so that it can
run efficiently and correctly over a machine cluster.

The Data Storage Layer: This layer stores all forms
of data: the original data, intermediate structured data
(kept around, for example, for debugging, user feed-
back, or optimization purposes), the final structured
data, and user feedback. These different forms of data
have very different characteristics, and may best be kept
in different storage systems, as depicted in the figure (of
course, other choices are possible, such as developing a
single unifying storage system).

For example, if the original data is retrieved daily
from a collection of Web sites, then the daily snapshots
will overlap a lot, and hence may be best stored in a
system such as Subversion, which only stores the “diff”
across the snapshots, to save space. As another exam-
ple, the system often executes only sequential reads and
writes over intermediate structured data, in which case
such data can best be kept in a file system.

For the prototype system, we will utilize a variety of
storage systems, taking into account our work on storing
certain parts of the IE process in RDBMSs (Section 4).
Future research can then study what should be the best
storage solution under which condition.

The Processing Layer: This layer is responsible
for specifying and executing IE/II processes. At the
heart of this layer is a data model (which is the rela-
tional data model in our current work), a declarative
IE+II+HI language (over this data model), and a li-
brary of basic IE/II operators (see Part I of this layer
in the figure). We envision that the above IE+II+HI
declarative language will be a variant of xlog, extended
with certain II features, then with HI (i.e., human in-
teraction) rules such as those discussed in Section 3.

Developers can then use the language and operators
to write declarative IE/II programs that specify how
to extract and integrate the data and how users should
interact with the extraction/integration process. These
programs can be parsed, reformulated (to subprograms
that are executable over the storage systems in the data
storage layer), optimized, then executed (see Part II in

the figure). Note that developers may have to write
domain-specific operators, but the framework makes it
easy to use such operators in the programs.

The remaining four parts, Parts III-VI in the figure,
contain modules that provide support for the IE/II pro-
cess. Part III handles transaction management and
crash recovery. Part IV manages the schema of the
derived structure. Part V handles the uncertainty that
arise during the IE/II processes. It also provides the
provenance for the derived structured data.

Part VI contains an interesting module called the “se-
mantic debugger.” This module learns as much as pos-
sible about the application semantics. It then monitors
the data generation process, and alerts the developer
if the semantics of the resulting structure are not “in
sync” with the application semantics. For example, if
this module has learned that the monthly temperature
of a city cannot exceed 130 degrees, then it can flag an
extracted temperature of 135 as suspicious. This part
also contains modules to monitor the status of the en-
tire system and alert the system manager if something
appears to be wrong.

We are currently developing technical innovations for
Parts I-II of the processing layer, as discussed through-
out the paper. We are not working on the remaining
parts of this layer, opting instead to adapt current state-
of-the-art solutions.

The User Layer: This layer allows users (i.e., both
lay users and developers) to exploit the data as well as
provide feedback to the system. The part “User Ser-
vices” contains all common data exploitation modes,
such as command-line interface (for sophisticated users),
keyword search, structured querying, etc. The part
“User Input” contains a variety of UIs that can be used
to solicit user feedback, such as command-line interface,
form interface, question/answering, and wiki-based UI,
as discussed in Section 3 (see the figure).

We note that modules from both parts will often be
combined, so that the user can also conveniently pro-
vide feedback while querying the data, and vice versa.
Finally, this layer also contains modules that authenti-

cate users, manage incentive schemes for soliciting user
feedback, and manage user reputation data (e.g., for
mass collaboration).

For this part, we are developing several user services
based on keyword search and structured querying, as
well as several UIs, as discussed in Section 3. When
building the prototype system, we plan to develop other
modules for this layer only on an as-needed basis.

6. CONCLUDING REMARKS
Unstructured data has now permeated numerous real-

world applications, in all domains. Consequently, man-
aging such data is now an increasingly critical task, not
just to our community, but also to many others, such
as the Web, AI, KDD, and SIGIR communities.

Toward solving this task, in this paper we have briefly
discussed our ongoing effort at Wisconsin to develop an
end-to-end solution that manages unstructured data.
The discussion demonstrates that handling such data
can raise many information extraction challenges, and
that addressing these challenges requires building on
the wealth of data management principles and solutions
that have been developed in the database community.
Consequently, we believe that our community is well
positioned to play a major role in developing IE tech-
nologies in particular, and in managing unstructured
data in general.

Acknowledgment: This work is supported by NSF
grants SCI-0515491, Career IIS-0347943, an Alfred Sloan
fellowship, an IBM Faculty Award, a DARPA seedling
grant, and grants from Yahoo, Microsoft, and Google.

7. REFERENCES
[1] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova,

and A. Voskoboynik. Snowball: A prototype
system for extracting relations from large text
collections. In SIGMOD, 2001.

[2] S. Brin. Extracting patterns and relations from
the world wide web. In WebDB, 1998.

[3] Y. Cai, X. Dong, A. Y. Halevy, J. Liu, and
J. Madhavan. Personal information management
with semex. In SIGMOD, 2005.

[4] X. Chai, B. Vuong, A. Doan, and J. F. Naughton.
Efficiently incorporating user interaction into
extraction and integration programs. Technical
Report UW-CSE-2008, University of
Wisconsin-Madison, 2008.

[5] F. Chen, A. Doan, J. Yang, and
R. Ramakrishnan. Efficient information extraction
over evolving text data. In ICDE, 2008.

[6] E. Chu, A. Baid, T. Chen, A. Doan, and J. F.
Naughton. A relational approach to incrementally
extracting and querying structure in unstructured
data. In VLDB, 2007.

[7] P. DeRose, X. Chai, B. Gao, W. Shen, A. Doan,
P. Bohannon, and X. Zhu. Building community
wikipedias: A machine-human partnership
approach. In ICDE, 2008.

[8] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web
community portals: A top-down, compositional,
and incremental approach. In VLDB, 2007.

[9] P. DeRose, W. Shen, F. Chen, Y. Lee,
D. Burdick, A. Doan, and R. Ramakrishnan.
Dblife: A community information management
platform for the database research community
(demo). In CIDR, 2007.

[10] A. Doan. Data integration research challenges in
community information management systems,
2008. Keynote talk, Workshop on Information
Integration Methods, Architectures, and Systems
(IIMAS) at ICDE-08.

[11] A. Doan, P. Bohannon, R. Ramakrishnan,
X. Chai, P. DeRose, B. Gao, and W. Shen.
User-centric research challenges in community
information management systems. IEEE Data
Engineering Bulletin, 30(2):32–40, 2007.

[12] A. Doan, J. F. Naughton, A. Baid, X. Chai,
F. Chen, T. Chen, E. Chu, P. DeRose, B. Gao,
C. Gokhale, J. Huang, W. Shen, and B. Vuong.
The case for a structured approach to managing
unstructured data. In CIDR, 2009.

[13] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose,
Y. Lee, R. McCann, M. Sayyadian, and W. Shen.
Community information management. IEEE Data
Engineering Bulletin, 29(1):64–72, 2006.

[14] A. Y. Halevy, M. J. Franklin, and D. Maier.
Principles of dataspace systems. In PODS, 2006.

[15] J. Huang, T. Chen, A. Doan, and J. F. Naughton.
On the provenance of non-answers to queries over
extracted data. PVLDB, 1(1):736–747, 2008.

[16] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. Systemt: A system
for declarative information extraction, 2008.
SIGMOD Record, Special Issue on Managing
Information Extraction.

[17] W. Shen, P. DeRose, R. McCann, A. Doan, and
R. Ramakrishnan. Toward best-effort information
extraction. In SIGMOD, 2008.

[18] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information
extraction using datalog with embedded
extraction predicates. In VLDB, 2007.

[19] W. Shen, C. Gokhale, J. Patel, A. Doan, and J. F.
Naughton. Relational databases for information
extraction: Limitations and opportunities.
Technical Report UW-CSE-2008, University of
Wisconsin-Madison, 2008.

[20] W. C. Tan. Provenance in databases: Past,
current, and future. IEEE Data Eng. Bull.,
30(4):3–12, 2007.

