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Abstract — There is increasing demand to integrate big data 
analytic systems using SQL. Given the vast ecosystem of SQL 
applications, enabling SQL capabilities allows big data platforms 
to expose their analytic potential to a wide variety of end users, 
accelerating discovery processes and providing significant 
business value. Most existing big data frameworks are based on 
one particular programming model such as MapReduce or Graph. 
However, data scientists are often forced to manually create ad-
hoc data pipelines to connect various big data tools and platforms 
to serve their analytic needs. When the analytic tasks change, 
these data pipelines may be costly to modify and maintain. 

In this paper we present SQL-SA, a polymorphic and 
parallelizable SQL scalar and aggregate infrastructure in Aster 
6.20. This infrastructure extends Aster 6’s MapReduce and Graph 
capabilities to support polymorphic user-defined scalar and 
aggregate functions using flexible SQL syntax. The 
implementation enhances main Aster components including query 
syntax, API, planning and execution extensively. Integrating these 
new user-defined scalar and aggregate functions with Aster 
MapReduce and Graph functions, Aster 6.20 enables data 
scientists to integrate diverse programming models in a single 
SQL statement. The statement is automatically converted to an 
optimal data pipeline and executed in parallel. Using a real world 
business problem and data, Aster 6.20 demonstrates a significant 
performance advantage (25%+) over Hadoop Pig and Hive. 

I. INTRODUCTION 
Big data analytics provide advanced methods to mine 

nuggets of value from massive datasets in various formats. They 
enable discovery of correlations and patterns hidden inside the 
data. Information from analyzing big data can assist executives 
in managing business more successfully, by performing tasks 
such as accurately predicting user loyalty, identifying the root 
causes of manufacturing defects and recommending highly 
interesting products to customers. 

The discovery procedure often exercises multi-genres of data 
processing and analytics techniques, e.g. MapReduce, Graph 
analysis, statistics, data mining and machine learning. To unveil 
hidden insights into business processes, data scientists need to 
analyze data from diverse sources collectively, such as 
analyzing well-structured transactional data along with multi-
structured data like sensor outputs, application logs, call center 
records and social network connections. Solving a single 

discovery problem may require applying diverse analytic 
techniques to many different data types. 

In the last decade, numerous diverse big data processing 
frameworks have emerged. Because of the unique volume, 
velocity and variety of big data [15], these frameworks develop 
three common features: 1) an extensible, scalable, distributed, 
highly fault-tolerant data store [22, 6]; 2) a parallel architecture 
optimized to support user-defined analytic functions as first-
class citizens [6, 8]; 3) a query language based on a high level 
algebra that offers simple abstractions to query and manipulate 
data and provide logical independence of applications [7, 8]. 

Although these frameworks are adept at solving big data 
problems, many of them have key limitations. One limitation is 
their inability to combine executions of different analytic 
computations. Analytic function interfaces are usually designed 
for one programming paradigm such as MapReduce or Graph. 
Data scientists often have to build data processing pipelines 
between frameworks to address problems that involve different 
analytic techniques. This implies extra development costs and 
fragility. Another limitation is their inability to optimize for 
global data movements. When different frameworks are 
pipelined, their internal details remain unknown to each other 
and data movements may be highly sub-optimal even though 
they share the same distributed storage. This can result in high 
I/O costs and bad overall performance, especially when the data 
volume is large. A third limitation is that some SQL 
implementations have constraints in how functions can be used. 
Functions cannot be used in the various SQL clauses and their 
input and output schemas are statically determined at compile 
time. This restricts connecting their capability to the rich 
ecosystems of business applications which use SQL. 

This paper describes SQL user-defined scalar and aggregate 
analytic function support in Teradata Aster 6.20 (SQL-SA). The 
solution exposes a parallel architecture that tightly integrates 
relational user-defined functions with MapReduce and Graph 
computation models. The system composes multiple analytic 
functions using SQL, implements a global planner to generate 
execution plans and optimizes overall data movements. It offers 
flexible SQL expression syntax to invoke user-defined scalar 
functions, aggregate functions, MapReduce table functions and 
Graph table functions within a single SQL statement. The 
functions are dynamic polymorphic and their input and output 
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schemas are determined at runtime. Our specific contributions in 
this paper are as follows: 

1) We design an analytic architecture in which polymorphic 
user-defined scalar and aggregate functions can be combined 
with MapReduce and Graph programming models in a single 
SQL query. 

2) We provide a full production-quality implementation of 
dynamic polymorphic programming interfaces and multi-
compute execution engines for user-defined scalar and 
aggregate functions in Java and C. 

3) We extend the Aster planner to optimize global data flows 
for combined execution of user-defined scalar functions, 
aggregate functions, MapReduce functions and Graph functions. 

4) We enable user-defined scalar and aggregate functions in 
different SQL clauses and extend the Aster SQL capability to 
connect with business applications. 

5) We create elaborate Java and C SDKs for users to develop 
and test user-defined scalar and aggregate functions to meet 
diverse analytic needs. 

6) We conduct a use case study using real world datasets and 
queries and show that Aster performs 25% to 552% better than 
Pig and Hive. Multi-compute, a key mechanism in our design, 
improves the function performance by more than 40%. 

The rest of the paper is organized as follows. Section II gives 
an overview of the Aster system. Section III outlines the SQL 
syntax and externals of the scalar and aggregate function APIs. 
Section IV details the design and implementation in Aster 6.20. 
Section V discusses a use scenario. Section VI compares related 
works. Conclusions are drawn in section VII. 

II. ASTER OVERVIEW 
Teradata Aster is a shared-nothing, massively-parallel 

processing database designed for online analytical processing 
(OLAP), data warehouse and big data tasks. It manages a cluster 
of commodity servers which can be scaled up to hundreds of 
nodes and analyze petabytes of data. 

 
Figure 1: Aster Components – Queen, Loaders and Workers. 

An Aster cluster contains a set of servers that play specific 
roles in query processing. Figure 1 shows the interactions 
between different components when data are processed. A 
queen node is responsible for query planning and metadata 
management. A loader node moves data into or out of the 
cluster. A worker node stores data and processes query 
execution plans. 

A typical Teradata Aster big data analytics appliance cabinet 
consists of 2 queen nodes (one as backup), 2 loader nodes and 2 
to 16 worker nodes. A queen node or worker node is typically 
configured with two 2.5GHz 10 core processors, 256 GB RAM 
and 6 x 900 GB drives disk capacity [31]. Nodes are connected 
with 40 Gb/s interconnect InfiniBand. An appliance cluster can 
be scaled to petabytes with expansion cabinets and network 
switches. Other configurations are allowed [10]. 

 
Figure 2: Aster Architecture – Function, Process and Store. 

The Aster architecture consists of three layers as shown in 
Figure 2. The Function layer provides a rich library to perform 
various analytic tasks through simple SQL queries and handy UI 
tools. The Store layer enables data storage in multiple formats. 
The Process layer is the core of the Aster architecture. Query 
processing is managed by an executor process in the queen 
node. The executor parses each client query and decomposes it 
to a sequence of atomic subtasks, driving worker processes in 
worker nodes running them. All relations are hash partitioned 
across the worker nodes to enable intra-query parallel 
processing. The executor optimizes the execution plan to 
minimize data movements. When required, a data movement 
fabric moves data between worker nodes and across the cluster. 

Besides query processing, Aster provides easy-to-use and 
interactive tools to monitor system statuses, add or remove 
nodes, load balance queries, split partitions, retry queries, and 
restore replication levels. These functions are essential to 
manage a large cluster of commodity servers where node 
failures occur regularly. 

A. Table Functions 
User-defined table functions are the defining feature in Aster 

to enable rich analytics in SQL [17, 16, 2]. The syntax of such 
functions is as follows: 

1. SELECT  … 
2. FROM    table-function ( 
3.         ON table-or-query 
4.         clause-name(arg, …) ) … 

The table function is treated as a table in the SQL query 
therefore appears in the FROM clause. Its input can be tables or 
sub-queries, appearing as multiple ON clauses. Arguments 
needed for the computation can be provided using additional 
custom key-value clauses [11]. Invocation of the table functions 
is flexible. The function can be nested or joined with other SQL 
functions and queries like a SQL table. 



Aster table functions encapsulate MapReduce and Graph 
processing models to support different styles of massively-
parallel processing via easy-to-implement APIs. The 
MapReduce table functions implement the row-based map 
operator through the RowFunction API or the partition-based 
reduce operator through the PartitionFunction API [17]. The 
Graph table functions implement the vertex-based Graph 
operator through the GraphFunction API [16]. 

Built on top of the MapReduce and Graph APIs, Aster  
provides more than 120 pre-built table functions to support 
pattern matching, text analysis, statistical analysis, data mining, 
machine learning and other analytics in scale [9]. 

III. EXTERNALS 
This section provides an external overview of Aster user-

defined scalar and aggregate functions. It describes the function 
definitions, the SQL interfaces, the programming interfaces and 
SDKs. A few SQL examples and a rich set of pre-built analytic 
functions are also discussed to illustrate the use cases. 

A. Scalar and Aggregate Functions 
User-defined scalar and aggregate functions are intuitive 

programming constructs that enable custom and non-typical 
operations in SQL. Both scalar and aggregate functions input 
and output tabular data. A user-defined scalar function is a 
SQL function with custom logic called once per row. Each time 
it is called, it takes a value or set of values from the row input 
data and returns one value. A user-defined aggregate function 
is a SQL function with custom logic called once per partition or 
group. Each time it is called, it takes all input rows and 
generates a single result. The user-defined aggregate and scalar 
functions are widely used in SQL queries. For example 95 out of 
99 queries in the TPC-DS benchmark [32] contain aggregate 
operations. 

Although other modern data management systems may have 
implemented similar features, Aster’s user-defined scalar and 
aggregate functions are unique in the following ways: 1) 
implemented in a distributed environment, Aster scalar and 
aggregate functions are executed in parallel to support large 
volumes of data; 2) Aster scalar and aggregate functions allow 
flexible input schema definition [17]. Input types are determined 
dynamically through contract negotiation, a mechanism that 
enables the system and the function to negotiate the output 
schemas at runtime; 3) Aster scalar and aggregate functions are 
seamlessly integrated with existing Aster MapReduce and 
Graph table functions. 

B. SQL Interfaces 
A key benefit of user-defined scalar and aggregate functions 

is the flexible SQL interfaces. Unlike table functions which have 
to be invoked in the FROM clause, user-defined scalar and 
aggregate functions can be placed in SELECT, HAVING, 
WHERE, ORDER BY and GROUP BY clauses. 

For both scalar and aggregate functions, two styles of input 
arguments are provided: positional and key-value arguments. 
Positional arguments are arguments labeled by their order. For 
example, argument 1 is passed at position 1, argument 2 at 

position 2 and so on. The arguments can be typed and would be 
provided to the function strictly at runtime. Key-value 
arguments are arguments labeled by keywords. They can only 
be literals and would be evaluated at planning time. Users are 
free to choose the style they feel convenient to pass arguments. 

1. -- SQL Positional Syntax for Scalar Function. 
2. SELECT … scalar-function (  
3.     [ expression ] [, …] [, arg1] [, arg2] [, …]) 
4.  
5. -- SQL Key-Value Syntax for Scalar Function. 
6. SELECT … scalar-function ( 
7.     ON ( [ expression ] [, …] ) 
8.     [ argument-clause-name ( literal [, …] ) ] 
9.     [ … ] ) 
10.  
11. -- SQL Positional Syntax for Aggregate Function. 
12. SELECT … aggregate-function ( 
13.     [ ALL | DISTINCT ] [ expression ] [, …]  
14.     [, arg1] [, arg2] [, …])) 
15.   
16. -- SQL Key-Value Syntax for Aggregate Function. 
17. SELECT … aggregate-function ( 
18.     [ ALL | DISTINCT ]  
19.     ON ( [ expression ] [, …] ) 
20.     [ argument-clause-name ( literal [, …] ) ] 
21.     [ … ] ) 

Figure 3: SQL positional and key-value syntax to invoke scalar and 
aggregate functions. 

Figure 3 shows the syntax for invoking user-defined scalar 
and aggregate functions by position and key-value. The function 
may take a column name, set of column names or an arbitrary 
expression formed from column values as inputs. The optional 
ALL or DISTINCT qualifiers apply only to aggregate function 
calls and not to scalar functions. When the DISTINCT qualifier 
is specified, only rows with distinct values would be passed to 
the function. The ALL qualifier is the default choice for 
aggregate functions. When it is used or no qualifier is present, 
all rows in the expression would be passed to the function. 

The flexibility of user-defined scalar and aggregate functions 
is also shown in multi-compute and nested functions. Multi-
compute is a mechanism to allow the engine to execute more 
than one function in a single data path. Its details are introduced 
in Section V B. Nested functions means a function may be called 
inside another function. These features enable users to invoke 
multiple functions in a single statement and the system provides 
full support to optimize the performance. SQL use cases of 
scalar and aggregate functions are presented in Section III D. 

Usually, user-defined scalar and aggregate functions can 
appear anywhere their corresponding native scalar and 
aggregate expressions can appear. However, the first release of 
the feature has several limitations. Expressions in MERGE, 
UPDATE and DELETE statements are not supported. We 
provide programming APIs in Java and C. Functions written in 
different languages cannot be used in a single statement. We 
hope to remove these restrictions and enable more use cases in 
upcoming releases. 

C. Programming Interfaces 
Three programming interfaces are provided to developers to 

compose user-defined scalar and aggregate functions in C and 
Java. 



 
Figure 4: Java programming interface for scalar, non-decomposable 
aggregate and decomposable aggregate functions. 

Figure 4 shows the programming interfaces in Java. To 
create a Java scalar function, the developer writes a class 
implementing the ScalarFunction interface. The class must 
implement a constructor handling contract negotiation and the 
computeValue method with the scalar computation logic. 
1.  public class Concatenate implements ScalarFunction { 
2.    private SqlType outputSqlType_; 
3.    private ValueHolder outputValue_; 
4. 
5.    public Concatenate(ScalarRuntimeContract contract) { 
6.      if (contract.getInputInfo().getColumnCount()<=1) 
7.         throw new IllegalUsageException( 
8.             "Requires at least one input column "); 
9. 
10.     outputSqlType_ = SqlType.getType( 
11.                        "character varying"); 
12.     ArrayList<ColumnDefinition> outputColumns = 
13.         new ArrayList<ColumnDefinition>(); 
14.     outputColumns.add( 
15.         new ColumnDefinition("concat", outputSqlType_)); 
16.     contract.setOutputInfo( 
17.         new OutputInfo(outputColumns)); 
18.     outputValue_ = new ValueHolder(outputSqlType_); 
19. 
20.     contract.complete(); 
21.   } // constructor 
22. 
23.   public ValueHolder computeValue(RowView arg0) {      
24.     String ret = ""; 
25.     for (int i=0; i<arg0.getColumnCount(); i++) {         
26.       if (!arg0.isNullAt(i)) ret += arg0.getStringAt(i);    
27.     } 
28.     outputValue_.setString(ret); 
29.     return outputValue_; 
30.   } 
31. } 

Figure 5: Function Concatenate implements the Java scalar function 
programming interface. 

Figure 5 gives an example to compose a Concatenate 
function using the Java Scalar function interface. The 
constructor specifies that the function requires at least one input 
column (lines 6-8). It sets the output column name as concat and 
the output column type as character varying (lines 10-18). Since 
the constructor does not define the input type, the function 
accepts inputs with arbitrary data types. The computeValue 

method concatenates all the not null values (lines 25-27) and 
sets the concatenated string as the function output value (lines 
28 and 29) for each input row. 

There are two choices for composing aggregate functions: 
NonDecomposableAggregatorFunction and Decomposable-
AggregatorFunction. An aggregate function is decomposable if 
it can be divided into smaller operations, at least some of which 
can be run independently for data in the same group or partition. 
An aggregate function is non-decomposable if it is not 
decomposable. These two interfaces are introduced to enable 
different level of parallelism and may only impact how the 
function is executed. From the user perspective, there is no 
difference in SQL invocations. From the function development 
perspective, a decomposable aggregate function can be 
implemented using either the DecomposableAggregator-
Function interface or the NonDecomposableAggregator-
Function interface where the decomposable implementation 
may perform better. A non-decomposable aggregate function 
can only be implemented using the NonDecomposable-
AggregatorFunction interface. 

1.  public class Count implements 
2.      DecomposableAggregatorFunction { 
3. 
4.    private RowHolder partialCountRow_; 
5.    private ValueHolder finalCountValue_; 
6.    private long count_; 
7.    private SqlType outputSqlType_; 
8.    private ArrayList<SqlType> partialSchema_ = null; 
9. 
10.   public Count(DecomposableAggregatorRuntimeContract 
11.                                             contract) { 
12.     reset(); 

13. 
14.     outputSqlType_ = SqlType.bigint(); 
15.     finalCountValue_ = new ValueHolder(outputSqlType_); 
16.     ArrayList<ColumnDefinition> outputColumns = 
17.         new ArrayList<ColumnDefinition>(); 
18.     outputColumns.add( 
19.         new ColumnDefinition("count", outputSqlType_)); 
20.     contract.setOutputInfo( 
21.         new OutputInfo(outputColumns)); 
22. 
23.     partialSchema_ = new ArrayList<SqlType>(); 
24.     partialSchema_.add(outputSqlType_); 
25.     contract.setPartialResultSchema( 
26.         ImmutableList.elementsOf(partialSchema_)); 
27.     partialCountRow_ = new RowHolder(partialSchema_); 
28. 
29.     contract.complete(); 
30.   } // constructor 
31. 
32.   public void reset() { count_ = 0; } 
33.   public void aggregateRow(RowView row) { count_++; } 
34.   public void aggregatePartialRow(RowView partialRow) { 
35.     count_ += partialRow.getLongAt(0); 
36.   } 
37. 
38.   public ValueHolder getFinalValue() { 
39.     finalCountValue_.setLong(count_); 
40.     return finalCountValue_.clone(); 
41.   } 
42. 
43.   public RowView getPartialRow() { 
44.     partialCountRow_.setLongAt(0, count_); 
45.     return partialCountRow_.clone(); 
46.   } 
47. } 

Figure 6: Function Count implements the Java decomposable 
aggregate function programming interface. 

Both DecomposableAggregatorFunction and Non-Decom-
posableAggregatorFunction interfaces inherit from the same 



parent interface and contain three methods: aggregateRow 
updates the aggregator state for each input row; getFinalValue 
returns the final form of the aggregated value at the end of a data 
partition and reset resets the aggregator to its initial state for a 
new data partition. To create an aggregator function, the 
developer must write an aggregator class implementing these 
three methods and a constructor which handles contract 
negotiation. 

As it supports a higher level of parallelism, Decomposable-
AggregatorFunction interface demands a little more imple-
mentation efforts compared to the non-decomposable case. Two 
additional methods, aggregatePartialRow and getPartialRow, 
must be implemented. AggregatePartialRow updates the 
aggregator partial state for each row input; getPartialRow 
returns the partial form of the aggregated value. To connect the 
partial and final operations, the constructor is required to set a 
partial schema, which is the output schema of the partial 
aggregate operation and the input schema of the final aggregate 
operation. Similar to the input schema, a partial schema may 
contain one or more columns. 

Figure 6 gives an example of a Count function that uses the 
Java decomposable aggregate function interface. The 
constructor defines both the partial and final output schema as 
one column in type bigint (lines 14-29). reset sets the counter to 
0 when the aggregator is called (lines 12 and 32). aggregateRow 
counts the number of rows when the aggregator is running 
independently at each worker (line 33). aggregatePartialRow 
sums the results of aggregateRow (lines 34-36). getPartialRow 
(lines 38-41) and getFinalValue (lines 43-46) return the partial 
and final count, respectively. This sample function can be easily 
converted to a non-decomposable aggregate function if we omit 
the partial fields and methods. 

SDKs are provided to develop user-defined scalar and 
aggregate functions. The Aster Developer Environment (ADE) 
[12] is extended to support Java scalar and aggregate functions. 
It provides design templates and test environments to develop 
Java scalar and aggregate functions. For instance, both functions 
of Figure 5 and Figure 6 are written using ADE templates. A 
SDK in C is also available to help write, build and test scalar 
and aggregate functions in C. Once the functions are completed, 
they are packaged into a ZIP file and deployed to the Aster 
cluster using the standard Aster INSTALL command. 

D. SQL Examples 
In this section, we present the basic features and usage of  

cluster-level user-defined scalar and aggregate functions, 
highlighting their implications on global optimization of the 
system performance. Unlike the MapReduce or Graph table 
functions, the scalar and aggregate functions allow multi-
compute SQL queries, allow in-place updates and loading of 
tuples from the output of scalar and aggregate functions, and 
allow scalar and aggregator functions within HAVING, WHERE, 
ORDER BY and GROUP BY clauses along with the SELECT 
clause. Similar to the Map and Reduce functions, the scalar and 
aggregate functions can be nested in a more efficient way, 
increasing the expressiveness and capabilities of SQL queries. 
We consider the following simple database schema from a retail 
sales application, and use it as the basis for the examples 

provided in the subsequent part of this section. Unless otherwise 
specified, all the functions used in the section are cluster-wide 
user-defined scalar and aggregate functions and should not be 
confused with Aster built-in functions. 

1. Sales (productId, storeId, quantity, price, discount, 
          grossProfit) 
2. Products (productId, storeId, retailPrice, unitCost, 
             rating) 
3. Promotion (productId, storeId, discount) 
4. Inventory (storeId, productId, quantity) 
5. Store (storeId, storeName, state, country) 

1) Multi-Compute SQL Queries  
The executor for scalar and aggregate functions allows, 

within a single SQL query, multiple functions over the attributes 
of the base relations. Such a multi-compute mechanism enables 
multiple functions to be processed over a relation without 
incurring additional scan overhead for the relation and data 
transfer (data shuffling) across the worker nodes. In an 
optimistic scenario, the scan and data transfer overhead are 
amortized over N functions, resulting in an almost N-fold 
performance gain (assuming that CPU cost for a function is 
negligible compared to the network transfer cost). 

The following query computes seven aggregate functions 
over the relation Sales. Such a query is common in an OLAP 
(Online Analytic Processing), a DS (Decision Support) or a DW 
(Data Warehouse) system. 

1. SELECT productId, AVG(quantity),  
2.        MIN(quantity), MAX(quantity),  
3.        MIN(price), MAX(price),  
4.        AVG(discount), SUM(grossProfit) 

5. FROM   Sales 
6. GROUP BY ProductId 

The next query processes scalar functions (ADJUST_PRICE and 
FINAL_TAX) over the join between two relations (Products and 
Store). The function ADJUST_PRICE takes as input four 
attributes (unitCost, rating, state and country) and one clause 
(V) giving the percentage value for the change (10%). The 
function returns a new value for the retailPrice using the proper 
business logic or rules inherent within the function. The 
FINAL_TAX function calculates the tax for a product using the  
three input attribute values (retailPrice, state and country) and a 
clause value (RATE). 

1. SELECT productId,  
2.        ADJUST_PRICE( ON(unitCost, rating, 
3.        state, country) V(0.1)),      
4.        FINAL_TAX(ON(retailPrice, state, 
5.        country) RATE(0.2)) 
6. FROM   Products, Store 
7. WHERE  Products.storeId = Store.storeId  

2) Increased Usability 
The scalar and aggregator functions can be used within the 

expressions in WHERE and HAVING clauses in the query. The 
query below shows the usage of an scalar function in the 
WHERE clause and an aggregator in the HAVING clause. The 
query returns, for all the stores, the total profit from products 
with a tax greater than 100, and shows only the stores with an 
average discount value of 10. Note that the first input column in 
the FINAL_TAX comes from Sales relation. The Scalar and 
Aggregator functions are polymorphic and work irrespective of 



their types as long as the input columns are semantically 
consistent, e.g., the first input column should be any taxable 
price value and can have any numeric type: INT, FLOAT, 
DOUBLE, etc. 

1. SELECT    storeId, SUM(grossProfit) 
2. FROM      Sales, Store 
3. WHERE     Products.storeId = Store.storeId  and 
4.           FINAL_TAX(ON(price, state, country) 
5.           RATE(0.2)) > 100.00 
6. GROUP BY  storeId 
7. HAVING    AVG(discount)>10 

3) Nested Execution 
The following query invokes three functions in a nested 

fashion. The query gives the total tax values for the stores, 
normalized to a common currency type, US dollars (USD). The 
scalar function CONVERT transforms the price to a common 
currency (USD); the aggregator function SUM finds the total for 
each group (i.e., storeId); the scalar function FINAL_TAX 
computes the tax value on the total price value. 

1. SELECT    FINAL_TAX( ON(SUM( CONVERT(price, country)), 
2.           state, country ) RATE(0.15) ) 
3. FROM      Products, Store 
4. WHERE     Products.storeId = Store.storeId 
5. GROUP BY  storeId 

4) In-Place Updates or Loading 
Unlike the MapReduce table functions, that logically  

represent tables, the user-defined scalar and aggregate functions 
represent a finer granularity at attribute levels; so, the latter ones 
can be used to initialize or update attribute values, and compose 
rows directly from the function output, simplifying the query. 
With MapReduce table functions, we need to write the output in 
a temporary table and then merge the temporary table with the 
target one. The following query updates the retailPrice in-place 
using the same ADJUST_PRICE scalar function used earlier. 
Note that the function takes the input attributes values from the 
output rows of a join operator (between Store and Products). 

1. UPDATE Products 
2. SET    retailPrice=ADJUST_PRICE( ON(unitCost,  
3.        rating, state, country), V(0.2) ) 
4. FROM   Store 
5. WHERE  Products.storeId = Store.storeId 

The following query computes the discount values for the 
products in the table Products, and loads the newly computed 
tuples to the Promotion table. The scalar function DISCOUNT 
produces a discount value taking the retailPrice, unitCost and 
rating as input attributes. If the Promotion table already has a 
tuple with the key (storeId, productId), the first part of the 
WHEN clause updates the discount value for the tuple. 
Otherwise, the second part (not matched) of the clause inserts 
the modified tuple. 

1. MERGE   Promotion Pm 
2. USING   Products  Pd 
3. ON      Pm.productId=Pd.productId and  
4.         Pm.storeId=Pd.storeId 
5. WHEN matched THEN 
6.      UPDATE SET Pm.discount=DISCOUNT( 
7.      ON(retailPrice, unitCost, rating)) 
8. WHEN not matched THEN 
9.      INSERT(Pm.productId, Pm.storeId,Pm.discount)  
10.     VALUES(Pd.productId,Pm.storeId, 
11.     DISCOUNT( ON(retailPrice,unitCost,rating)) ) 

This feature is not supported in Aster 6.20 but is in our 
development roadmap. 

E. Pre-Built Analytic Functions 
Teradata partners with Fuzzy Logix to offer a rich set of 

pre-built analytic functions using the Aster user-defined scalar 
and aggregate programming interfaces. DBLytix, a 
comprehensive library of over 800 mathematical and statistical 
functions, is provided for a variety of analytic applications [18]. 
More than 50 financial scalar functions focus on options, fixed 
income and corporate finance. More than 300 user-defined 
scalar and aggregate functions are for descriptive statistics, 
probability density, cumulative distribution, inverse cumulative 
distribution, univariate simulation, hypothesis testing and 
advanced mathematical and time computations.  

IV. IMPLEMENTATION 
We implemented a production-quality distributed infra-

structure to execute user-defined scalar and aggregate functions. 
The implementation is fully integrated with previous Aster 
infrastructure, achieving our design goal to support scalar and 
aggregate functions as first-class citizens in the Aster 
environment. In this section we provide an end-to-end overview 
of the infrastructure, including query planning and execution. 
We also describe details of the key features such as dynamic 
polymorphism, multi-compute and parallel execution. 

A. Query Planning 
Query planning of user-defined scalar functions and user-

defined aggregate functions are managed by an executor process 
in the queen node, following similar control flow for user-
defined table functions in Aster. The executor parses all client 
queries to abstract syntax trees. Each scalar or aggregate 
function is converted to a tree node as an atomic operator. Scalar 
and aggregate functions are both dynamically polymorphic. 
This means that its input and output schemas are determined by 
the output schemas of its child operators at runtime. This 
dynamic polymorphism is an Aster feature for user-defined table 
functions [17, 16], which we extend to support both scalar and 
aggregate functions. The implementation is described in more 
detailed in Section IV A1. 

To minimize data movements, the executor passes the query 
parse tree to an optimizer sub-routine to generate and optimize 
logical execution plans. The optimizer is a heuristic-based 
progressive optimization engine written in OCaml. Each node of 
the parse tree is an atomic operator such as a SQL operation, 
data transfer, user-defined table function, scalar function or 
aggregate function. The optimizer applies heuristic rules like 
column projection and limit pushdown to perform top-down and 
bottom up node transformations. When all the rules complete, it 
produces the final logical plans. Different from other existing 
Aster operators, scalar or aggregate functions have their unique 
opportunities in optimization. Some functions can be combined 
into one operator and executed in one local data path. Some 
embedded functions can be computed only through an 
additional join operation. The special handling and optimization 
are described in Section IV A2.  



After the optimizer produces the final logical plans, the 
executor concretizes them to physical plans which can be 
executed directly in worker processes. The existing executor 
contains a concretization routine for aggregators generated by 
the Graph table operator in Aster. To support user-defined scalar 
and aggregate functions, we create a new scalar concretization 
routine and extend the current aggregate routine to support 
aggregate functions from SQL directly. Additional setup and 
cleanup operations are added to the physical plans. After 
concretization, the scalar and aggregator functions are ready for 
execution in workers. 

 

Figure 7: Planning a SQL statement with user-defined scalar or 
aggregate functions. 

1) Dynamic Polymorphism 
User-defined scalar and aggregate functions extend the 

dynamic polymorphic feature of Aster table functions. This 
feature allows the input and output schemas of functions to be 
determined during runtime, providing more flexible invocation. 
We enable it through a metaphor called contract negotiation 
during query planning. Every user-defined scalar or aggregate 
function has a mandatory construct called the runtime contract. 
It specifies the input types this function may support and the 
corresponding output type for each input choice. During 
planning, the user query is transformed to a parse tree. A scalar 
or aggregate function is represented by a tree node and its input 
schema is the output schemas of its child nodes. When it has 
identified the input schemas, the planner calls the function to 
obtain the output schema based on the contract. With a small 
overhead of the runtime contract, dynamic polymorphism has 
made the management and use of user-defined scalar and 
aggregate functions easy. Schemas are taken care of by the 
system automatically. 

2) Normalization and Optimization 
Generating an optimal execution plan is a key design goal of 

query planning in a distributed system. There are two 
fundamental approaches to implementing a query optimizer in 
such environment: 

• Heuristic-based optimization applies a set of heuristic 
optimization rules to determine an efficient execution plan. 

• Cost-based optimization collects statistics about the tables, 
indexes and data distribution, computes execution costs of 
alternative plans and selects the cheapest one. 

Aster global optimizer is a heuristic-based progressive 
optimizer as it is straightforward to maintain and extend. During 
query pre-processing, the optimizer normalizes the query syntax 
tree to an executable logical plan and optimizes it based on a set 
of heuristic rules. To support user-defined scalar and aggregate 
functions in different SQL constructs with high performance, we 
apply a rich set of rules in normalization and optimization, 
summarized below: 

a) Separate built-in functions: Aster supports more than 160 
built-in functions, including some scalar and aggregate 
functions. When the query contains a mix of built-in and user-
defined functions, we separate built-in functions and user-
defined functions to ensure that the built-in and user-defined 
functions are executed in the appropriate engine. For user-
defined scalar functions, the built-in functions are either pulled 
above or pushed below the scalar operator (the operator that 
represents the scalar execution engine). For user-defined 
aggregate functions, the built-in and user-defined functions are 
placed into separate query plan fragments and then they are 
joined back together. 

b) Unnest: Nested user-defined functions are unnested and 
written into consecutive executable plan fragments. 

c) Consolidate: User-defined functions are merged to one 
plan fragment when they implement the same scalar or 
aggregate interface and share the same data input. This rule 
enables the multi-compute feature we describe in details in 
Section IV B3.  

d) Normalize: User-defined functions that appear in SQL 
clauses other than SELECT are rewritten to be in the SELECT 
clause to normalize the plan fragment for subsequent rules. 

e) Distinct support: When a user-defined aggregate contains 
the DISTINCT keyword, the optimizer adds a GROUP BY 
clause to ensure that the input rows are distinct. 

f) Multiple Distinct support: When there are multiple user-
defined aggregate functions that contain differing distinct 
columns, the optimizer separates each distinct column into 
separate query plan fragments, adds a GROUP BY clause to 
each fragment and then joins the fragments back together. 

g) Decomposable Aggregates: User-defined aggregates that 
support the decomposable interface are rewritten into two 
separate aggregates: partial and final. This minimizes data 
movements and improves parallelism by performing eager 
aggregation. Details are introduced in Section IV B3.  

h) Minimize transfer: We utilize existing rules to push down 
and pull up operators to minimize data movements between 
workers. For example, aggregate functions are pushed down to 
be executed first when possible to reduce data movements. 

i) Parallel execution: We enable parallel execution of user-
defined function for both scalar and aggregate functions. Details 
are introduced in Section IV B3. 

B. Query Execution 
Execution of user-defined scalar and aggregate functions is 

controlled by a routine called bridge in every worker. Bridge is a 
set returning function (SRF) implemented in the local database. 



The database acts as a relational engine for standard relational 
operations and the bridge controls highly specialized engines for 
user-defined computation. There are previously provided 
MapReduce engines for C and Java MapReduce functions, a 
Graph engine and an aggregate engine for Java Graph functions. 
We add a new C scalar engine, a new C aggregate engine, a new 
Java scalar engine and extend the Java aggregate engine to 
support scalar and aggregate functions in both C and Java 
invoked from SQL. 

Bridge executes user-defined scalar and aggregate engines in 
a separated process from the local database instance. This 
implementation provides a sandbox to effectively execute and 
control user-written functions. With low development costs, we 
utilize operating system mechanisms to provide resource 
allocation, task control, security, and so on. In Aster we have 
seen that this model of isolating user-code from system code is a 
key mechanism to protect the system health and manage server 
resources. 

 
Figure 8: Execution of user-defined scalar or aggregate functions. 

In addition to controlling their life cycles, bridge also 
manages scalar and aggregate engines’ data input and output. It 
fetches input data described in the physical execution plan from 
the local database and provides them to the engine and function 
through partition and row iterators. When the scalar or aggregate 
functions complete, bridge flushes the output to the database. 

Bridge also acts as data fabric end points and transfers data 
between workers. When external data are required to execute a 
scalar or aggregate function, the bridge at the data source 
worker connects with the bridge at the data destination worker 
to move data from source to destination. All data movements 
between nodes are completed in separated physical plan 
fragments before bridges invoke scalar or aggregate engines to 
execute user functions. 

1) Scalar Engine and Aggregate Engine 
Scalar and aggregate execution engines directly control 

invocations of user-defined functions and manage their data I/O. 
To support both query planning and execution, we provide a 
planning mode and one or more execution modes in each 
engine. In planning mode, the engine interacts with the planner 
and determines the output schema according to the input schema 
and the function runtime contract. In execution mode, the engine 
executes user functions. Each execution mode represents one 
procedure of scalar or aggregate functions. Based on the 
execution mode specified in the query physical plan, the engine 
executes user-defined functions corresponding to that procedure 

and manages the data input and output. The design of scalar and 
aggregate engine is highly extensible. For example, we can 
easily add a new mode to support collaborative planning which 
is an Aster optimization for query planning [2]. 

 
Figure 9: Scalar Engine Execution. An input iterator provides data to 
scalar functions to perform custom computation. 

Scalar Engine A scalar engine instance provides source data 
to scalar functions through a row iterator at runtime. It caches 
the function return value for each row, calling bridge services to 
flush the outputs to the local storage when the buffer is full or 
the computation is completed. As there is only one scalar 
procedure, computeValue, we support one execution mode in 
the scalar engine. 

1.   // Nondecomposable Aggregate 
2.   case RowToFinal:  
3.      aggFn.reset(); 
4.      while (inputIterator.advanceToNextRow()) { 
5.         aggFn.aggregateRow(inputIterator); 
6.      } 
7.      ret = aggFn.getFinalValue(); 
8.      break; 
9.   // Decomposable Aggregate 
10.  case RowToPartial: 
11.     aggFn.reset(); 
12.     while (inputIterator.advanceToNextRow()) { 
13.       aggFn.aggregateRow(inputIterator); 
14.     } 
15.     ret = aggFn.getPartialValue(); 
16.     break; 
17.  // Decomposable Aggregate 
18.  case PartialToFinal: 
19.     aggFn.reset(); 
20.     while (inputIterator.advanceToNextRow()) { 
21.       aggFn.aggregatePartialRow(inputIterator); 
22.     } 
23.     ret = aggFn.getFinalValue(); 
24.     break; 

Figure 10: Aggregate engine control flows for RowToFinal, 
RowToPartial and PartialToFinal procedures.  

Aggregate Engine The aggregate engine operates similar to 
the scalar engine and its execution choices are richer. An 
aggregate engine instance manages local data through data 
caches, partition iterators and other bridge services. To fully 
utilize Aster distributed environment, we separate aggregate 
functions into decomposable and non-decomposable aggregate 
functions, providing different execution modes and parallelism 
for each. Decomposable aggregate functions are decomposable 
tasks which we can separate into partial and final aggregations, 
enabling parallel computation for each source data partition. For 
example, sum is a decomposable aggregate that we can compute 
the partial sums at each worker in parallel and then aggregate 



the final result. Nondecomposable aggregate functions are tasks 
whose source data cannot be separated, such as finding the 
median. We call the decomposable procedures RowToPartial 
and PartialToFinal and the non-decomposable one RowToFinal, 
implementing the three corresponding execution modes in the 
engine. Each procedure is executed independently in a separated 
physical plan fragment. Their source data are moved to the 
destination worker in a different plan fragment in advance as 
described in previous sections. When a procedure is invoked, 
the engine executes the user aggregate functions accordingly. 

2) Multi-Compute 
Multi-compute is a mechanism which enables the engine to 

execute more than one function in each execution plan fragment 
and local input path. This is a key difference between the 
execution of user-defined scalar/aggregate functions and 
previous user-defined table function. For user-defined Map, 
Reduce or Graph table functions, a single function is executed. 
Different functions are in separate execution plan fragments and 
do not share input iterators even if their source data are the 
same. To improve the usage of local input, we support multi-
compute in both scalar and aggregate engines. This means the 
engines allow computing multiple functions in an iteration of 
source data, which may effectively reduce local I/O costs. 

1.  SELECT productId, adjustPrice, tax 
2.  FROM   FINAL_TAX_TABLE_FN ( 
3.         on ( 
4.            ADJUST_PRICE_TABLE_FN ( 
5.            on ( 
6.               SELECT productId, retailPrice, unitCost, 
7.                      rating, state, country 
8.               FROM   Products, Store 
9.               WHERE  Products.storeid = Store.storedId) 
10.           PERCENTAGEVALUE(0.1) 
11.           RESULT(‘adjustPrice’) )  
12.        RATE(0.2) 
13.        RESULT(‘tax’) ); 

Figure 11: Tables functions that compute adjust price and tax.  

The query in Figure 11 illustrates the power of multi-
compute. It is modified from the scalar function example in 
Section III D1, outputting the same result. This query processes 
table function (ADJUST_PRICE_TABLE_FN) over the join 
between two relations (Products and Store). It then processes 
another table function (FINAL_TAX_TABLE_FN) over the 
previous output. Its table functions ADJUST_PRICE_ 
TABLE_FN and FINAL_TAX_TABLE_FN are executed in two 
separate plan fragments and the output of ADJUST_PRICE_ 
TABLE_FN is the input of FINAL_TAX_TABLE_FN. In 
contrast, scalar functions ADJUST_PRICE and FINAL_TAX in 
Section III D1 are executed in the same plan fragment and share 
input iterators. As a result, the local I/O cost for the scalar 
computations is 1/2 of the table computations. The benefit of 
multi-compute is more significant when there are more user 
functions in the query. For instance, the aggregate example in 
Section III D1 has 7 user functions and its local I/O cost is 1/7 of 
the equivalent table functions. 

3) Parallel Execution 
Execution of scalar functions is fully parallel. Scalar 

functions are row functions and have no input dependency 
between source data. This freedom allows the scalar engine 
instances at each worker to execute them independently. 

User-defined aggregate functions are executed in parallel 
when possible. When the aggregate functions implement the 
decomposable interface, their physical execution plans consist 
of row-to-partial and partial-to-final aggregate plan fragments. 
In the first plan fragment aggregate engines at each worker of 
the cluster execute the function instances in parallel to compute 
the partial results. The second plan fragment can be executed in 
parallel if there are grouping columns, otherwise it will be done 
serially. The partial results from the first plan fragment are 
aggregated to compute the final results. Execution of non-
decomposable aggregate functions is similar to the partial-to-
final case. The system repartitions source data based on 
grouping columns and executes functions in parallel when there 
is more than one group.  

V. USE CASE AND RESULT 
In this section we examine a real world use case which 

combines the new user-defined function feature with existing 
Aster infrastructure to address a complex business analytic 
problem in a single Aster query. The business scenario is that a 
movie producer would like to conduct a marketing survey about 
audiences’ impression on their latest movie XYZ based on 
geography location in the United States. They collect large 
number of tweets with comments about the movie and the users’ 
locations. The survey is converted to solving an analytic 
problem containing four tasks: extract relevant data, perform 
sentiment analysis, perform geographic analysis and compute 
simple statistics based on the analysis results. Figure 12 shows 
an elegant solution that completes these analytic tasks in a single 
Aster SQL query. 

1. SELECT state, 
2.    AVG(sentiment_score) AS average, 
3.    COUNT(sentiment_score) AS count,  
4.    STDDEV(sentiment_score) as stddev, 
5.    MAX(sentiment_score) AS max, 
6.    MIN(sentiment_score) AS min 
7. FROM ( 
8.    SELECT tweet_id, 
9.       PointInPolygonScalarUDF( 
10.         on(coordinates_latitude, 
11.            coordinates_longitude) 
12.            Reference('stateCoordinates.csv') 
13.            Boundary('state_coordinates') 
14.            Tag('state_full_name') 
15.      ) AS state, 
16.      ExtractSentimentScalarUDF( 
17.         on(tweet_text) 
18.         Model('dictionary:dictionary.csv') 
19.         Type('integer') 
20.         Range(-2, 2) 
21.      ) AS sentiment_score, 
22.      tweet_text, 
23.      coordinates_latitude, 
24.      coordinates_longitude 
25.   FROM ( 
26.      SELECT *  
27.      FROM JsonTweetParserMapReduceTableUDF( 
28.             on tb_raw_tweets 
29.             Fields('id:tweet_id', 
30.               'text:tweet_text', 
31.               'latitude:coordinates_latitude', 
32.               'longitude:coordinates_longitude'   
33.             )) 
34.      ) AS tweets 
35. ) AS sentiment_geo 
36. GROUP BY state 
37. ORDER BY state; 

Figure 12: Aster query performs sentiment and geo analyses on tweets.  



JsonTweetParserMapReduceTableUDF (lines 27-33) is a 
custom MapReduce function that pulls the target fields, id, text, 
latitude and longitude from the JSON tweets and assigns the 
values into columns tweet_id, tweet_text, coordinates_latitude 
and coordinates_longitude in the output table, respectively. 

PointInPolygonScalarUDF (lines 9-15) and Extract-
SentimentScalarUDF (lines 16-21) are user-defined scalar 
functions. PointInPolygonScalarUDF finds the geographic 
region of the coordinates. It inputs coordinates_latitude and 
coordinates_longitude and outputs the full name of the state to 
which the coordinates belong. File stateCoordinates.csv is the 
geographic reference which outlines the boundary of each state 
in the United States. state_coordinates and state_full_name are 
key names in stateCoordinates.csv. state_coordinates marks the 
coordinates of the geographic region and state_full_name 
indicates what name to output. ExtractSentimentScalarUDF 
computes sentiment scores based on dictionary.csv, a sentiment 
dictionary containing common English words with positive and 
negative scores. Argument Type and Range set the function 
output to be integer and be in the adjusted range of [-2, 2]. 
PointInPolygonScalarUDF and ExtractSentimentScalarUDF 
are in the same statement so multi-compute is applied. 

After geo and sentiment analyses, built-in aggregate 
functions are applied to compute simple statistics such as 
average, count, standard deviation, maximum and minimum. 
We do not write user-defined aggregate functions because they 
are to complement aggregate computation when built-in 
functions are not available. Another reason is that built-in 
functions are native functions running inside the worker 
database and perform better than out-of-process user-defined 
aggregate functions. Finally and more importantly, we would 
like to show in the solution that the new user-defined functions 
are seamlessly integrated with existing Aster features such 
MapReduce table functions, database built-in functions and any 
SQL operations. 

 
Figure 13: Visualization of the sentiment and geo analyses. 

A visual representation of the insights gained in big data 
discovery is important to help draw conclusions and make 
decisions. We apply Aster 6’s free visualizations to visualize our 
analytic results (Figure 13). The results can also be easily 
visualized by 3rd party visualization tools because Aster supports 
standard SQL. 

A. Results 
The Aster query is evaluated in a commodity cluster using 

different sizes of input tweets and the results are compared with 

open source solution Hadoop Pig and Hive. The commodity 
cluster consists of 6 nodes, each of which has 12 2.8GHz cores 
and 94 GB RAM. The cluster is configured as 1 queen node and 
5 worker nodes for Aster and is reconfigured as 1 namenode and 
5 datanodes when running Hadoop. The numbers of input tweets 
are 1 million, 2 million, 4 million, 8 million, 16 million, 32 
million, 65 million, 131 million, 262 million, 524 million and 1 
billion. As the average size of a tweet is 2.7 KB, the data 
volumes we examine are 2.7 GB, 5.4 GB, 10.8 GB, 21.6 GB, 
43.2 GB, 86.4 GB, 172.8 GB, 345.6 GB, 691.2 GB, 1.35 TB and 
2.7 TB, respectively. 

In the Hadoop approach, we implement the same algorithms 
in Pig UDF to extract data and perform sentiment and geo 
analyses. Hive queries the average, count, standard deviation, 
maximum and minimum of the analysis results and sorts them 
by geographic locations. The code size and the development 
cost are both more than twice as Aster’s. The queries are about 
100 lines while the Aster SQL is 37. Changing languages and 
platforms introduces additional development costs. The Pig 
scripts are written in Pig Latin and tested in Pig. The Hive 
scripts are composed using HiveQL and examined in Hive. 
When completed, they are assembled in another script and being 
tested again as a complete data pipeline. The Aster script is 
developed in SQL and on a single platform, easier than the 
Hadoop ones. 

Table 1: Aster vs. Pig and Hive (in seconds) 

Tweet Num A P H PH PH/A 

1024000 10 105 52 157 15.700 

2048000 13 106 55 161 12.385 

4096000 25 111 52 163 6.520 

8192000 53 127 53 180 3.962 

16384000 77 172 55 227 2.948 

32768000 164 254 57 311 1.896 

65536000 319 429 62 491 1.539 

131072000 611 750 73 823 1.347 

262144000 1155 1414 126 1540 1.333 

524288000 2279 2750 199 2949 1.294 

1048576000 4594 5372 373 5745 1.251 

Table 1 shows the results of the experiments. The number of 
input tweets is shown in the leftmost column. Execution time in 
seconds for Aster 6.20 (A), Pig (P), Hive (H) and the sum of the 
Pig and Hive time (PH) are shown in the other columns. The 
rightmost column shows the ratio of the combined Pig and Hive 
times to the Aster 6.20 query time. Aster performs more than 5.5 
times faster than Pig and Hive when the workload is 4 million 
records or less, 1.9 times faster when the workload is 4-16 
million records, 25% faster when the workload is more than 16 
million records. 



The experiment results demonstrate that Aster performs 
better than Pig and Hive for all tested input data sizes. However, 
the performance advantage is less significant as the size of input 
data increases. One possible reason is that Hadoop engines are 
not good at processing small and medium data volumes. For 
example, Pig and Hive suffers from fixed overheads for inputs 
less than 16 million records or 43.2 GB data in this use case. In 
contrast, Aster’s fixed overhead is small and the system scales 
linearly from small to large workloads. 

It is also observed that Aster does not utilize data replicas in 
different workers like Hadoop MapReduce does. When the data 
size increases significantly, intra-cluster data transfers become 
the performance bottleneck. This shows us a potential 
opportunity that utilizing intra-cluster data replicas may further 
raise Aster’s performance advantage. 

1) Multi-Compute 
Multi-compute is a differentiating feature in the user-defined 

scalar and aggregate infrastructure. In this section we examine 
its impact on performance. We rewrite the scalar query (lines 8-
35) in Figure 12 to two embedded queries in Figure 14 and 
executed them using the same data and on the same hardware. 

1.    SELECT tweet_id, 
2.       PointInPolygonScalarUDF( 
3.          on(coordinates_latitude, 
4.             coordinates_longitude) 
5.             Reference('stateCoordinates.txt') 
6.             Boundary('state_coordinates') 
7.             Tag('state_full_name') 
8.       ) AS state, 
9.       sentiment_score, 
10.      tweet_text, 
11.      coordinates_latitude, 
12.      coordinates_longitude 
13.   FROM ( 
14.      SELECT tweet_id, 
15.         ExtractSentimentScalarUDF( 
16.            on(tweet_text) 
17.            Model('dictionary:dictionary.txt') 
18.            Type('integer') 
19.            Range(-2, 2) 
20.         ) AS sentiment_score, 
21.         tweet_text, 
22.         coordinates_latitude, 
23.         coordinates_longitude 
24.      FROM ( 
25.         -- Aster MapReduce json parser 
26.         ) AS tweets 
27.      ) AS tweets_sentiment 

Figure 14: Rewrite the multi-compute sentiment and geo query to two 
embedded queries. 

 
Figure 15: Comparison of multi-compute and embedded queries. 
Horizontal axis is the size of source data in million tweets. Vertical 
axis shows the ratio of multi-compute runtime vs. embedded query 
runtime in percentage. Multi-compute brings in 40% or more 
performance improvement for all tested input sizes. 

Table 2 shows the results of the experiments. The number of 
input tweets is shown in the leftmost column. Execution times in 
seconds for the multi-compute query (MC), the sentiment 
analysis query (S), the point-in-polygon analysis query (P) and 
the embedded queries (EQ) are shown in the other columns. 
Figure 15 compares the runtime of multi-compute and 
embedded queries in bar charts. Multi-compute brings in 40% or 
more performance improvement for all tested input sizes. 

Table 2: Multi-compute vs. Embedded queries (in second) 

Tweet Num MC S P EQ 

1024000 3 3 3 6 

2048000 4 3 4 7 

4096000 6 4 5 9 

8192000 10 7 9 16 

16384000 18 12 16 28 

32768000 34 21 30 51 

65536000 66 39 56 95 

131072000 128 79 111 190 

262144000 254 151 208 359 

524288000 492 302 417 719 

1048576000 997 574 870 1444 

VI. RELATED WORK 
User-defined scalar and aggregate functions are lasting 

database features. They extend the database capability through 
allowing customization of data processing [25, 24, 26]. Popular 
standalone relational database management systems (RDBMS) 
often offer extensive support to scalar and aggregate functions. 
E.g. MySQL [26] and PostgreSQL [24] both support static user-
defined scalar and aggregate functions in multiple programming 
languages. As the functions are static functions, the input and 
output schemas are pre-defined when they are composed.  

User-defined scalar and aggregate functions are also widely 
supported in parallel RDBMS’s [14, 3, 23, 33, 20, 21, 27, 28, 
29, 30, 1]. Many parallel RDBMS’s derived from MySQL or 
PostgreSQL support user-defined scalar and aggregate functions 
in the same static fashion in a distributed environment, e.g. [28, 
1]. Other widely used commercial parallel RDMBS’s such as 
Oracle [27], Microsoft SQL Server [30], IBM DB2 [21] and 
SAP Sybase [29], offer different level of support for user-
defined functions in different programming languages on 
parallel planning and execution. Aster 6.20 is unique from these 
systems in that the scalar and aggregate functions are 
polymorphic. The function schemas are determined at runtime 
instead of function composition time hence providing more 
flexibility. Furthermore, Aster 6.20 can integrate functions of 
multiple programming paradigms. 

In recent years, there has been widespread interest in the 
MapReduce and Graph processing frameworks [22, 6, 13, 8, 4, 
7, 18, 5]. Pig [13, 8] and Hive [4, 7] are platforms in the Hadoop 



[6] ecosystem that translate SQL-like high level algebras to 
MapReduce jobs executed in parallel. Like Aster 6.20, they 
provide a user-defined function interface for custom data 
processing. The advantage of these two systems is that they 
provide an access to the parallel MapReduce framework 
capability with the option to focus only on custom low level 
programming logic. The disadvantage is that their high level 
abstractions are not compatible with SQL hence it is hard to 
directly integrate them with SQL based applications.  

Graph analytics is another important big data discovery 
technique. Graph capabilities in Aster 6.20 are similar to 
distributed Graph processing frameworks like Pregel [19] and 
Giraph [5]. Aster 6.20 and these systems all employ bulk 
synchronous processing (BSP) execution and provide vertex-
oriented programming interfaces. Aster 6.20 differs from these 
MapReduce and Graph systems in that it abstracts scalar, 
aggregate, MapReduce and Graph programming paradigms in 
the standard SQL interface. This enables a general support of 
dataflow between different programming paradigms and 
seamless integrations with SQL application ecosystems. 

VII. CONCLUSIONS 
In this paper we have presented SQL-SA, Aster’s SQL user-

defined scalar and aggregate infrastructure for big data 
discovery. It extends existing Aster database’s capability to 
support polymorphic and parallelizable user-defined scalar and 
aggregate functions. The solution is tightly integrated with 
Aster’s MapReduce, Graph and SQL features. The users can 
easily perform diverse analytic tasks in SQL without switching 
between big data tools and platforms. Furthermore, the tight 
integration between user-defined scalar functions, aggregate 
functions, MapReduce functions, Graph functions and other 
SQL operations offer a complete global view to optimize and 
execute the analytic tasks and achieve better performance. 
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