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1. Introduction. Efron (1979) introduced the bootstrap method of

constructing confidence intervals for a real valued population parameter

B(F). Given independent observations X "Xn from F , this method

1f°"

consists of approximating the sampling distribution of an appropriate

parameter estimator ﬁn én(xl,...,xn) of 6(F) by means of the

sampling distribution of the quantities 8 =6 X ,...,i ), where the
m,n m 1 m

~

m > 1 observations il""’xm are sampled independently with distribution
function Fn(x} = n*l#{k :1 <k <n, Xk < x}, - < ¥ < w, For a clear
account of the method and its relationship to other resampling methods
we refer to Efron (1982). Bickel and Freedman (1981) showed that the
bootstrap approximation is asymptotically wvalid for many statistics of
interest such as the sample mean and variance, t-statistics, general
U-statistics or even more general von Mises functicnals of Fn , and for
certain types of L-statistics. Singh (1981) studied the accuracy of the
bootstrap approximation for the sample mean and sample guantiles.

Bickel and Freedman (1981) also established the weak convergence
of the bootstrapped version of the empirical prccess and the same for
the bootstrapped general guantile process on a restricted interval.
From these results they were able to deduce the asymptotic validity of

the bootstrap metheod of forming confidence bands for the true distribution

function F , and also for its quantile function
(1.1) Q(s) = inf{x : F(x) > s}, 0 < s <1, Q(0) = Q(0+),

on a proper subinterval of [0,1] not containing the endpoints. Shorack
(1982) gave a simple proof of the weak convergence of the bootstrapped

empirical process.



In the present paper we pursue further the second line of the Bickel
and Freedman (1981) study and consider the validity of the bootstrap
for general empirical functions containing as special cases the empiri-
cal distribution function and the empirical quantile function. We now

introduce some notations.

Let RF(-) be a statistical function of interest defined on an
interval I C R, and let Rn(-) = Rn(-;Xl,...,Xn) be an appropriate
estimator of RF(-) on I (see the examples below). Typically, for

the process

% = o) = -))

(1.29 rn( ) n (Rn( ) RF( ))
one can find a sequence of copies G;n)(.) of a Gaussian process GF(.)
on I, i.e. {G(“)(t) : & BETXY 2 {G.(t) : t € I} for each n > 1

7 I F F iy ’
such that

3

(1.3) sup }rn(t) - G;n‘(t)} + 0 in probability as n - o,

tel
(Here and in what follows 2 stands for the equality of all finite
dimensicnal distributions of the stochastic processes on the two sides.)

Consequently, given 0O < g < 1, we have

1 -1
<R (t) <R (t) +cn ’, t € I} »1-a, as n + o

P{Rn (t)-cn . <R p

provided that GF(c} = 1l-a and c¢ = c(o,F) 1is a continuity point of

the distribution function

(1.4) G (x) = P{sup [GF(t)l <x}, x >0.
tel
-1
This means that {Rn(t) +cn ¢, t € I} is an asymptotically correct

(1-)100% confidence band for the statistical function RF'



It is rare that this methed of forming asymptotically correct
confidence bands is feasible, since there are only a few cases when
¢ = cla,F) is independent of F and its analytical form is known.
The most well-known case when this is true is the choice RF = F,
R = Fn and F 1is continuous. In this case GF is the distribution

n

function of

(1.5) sup |B(F(x)}| = sup lB(s)l,
—oo<K <o OiSil

where B 1s a Brownian bridge.
Consider the bootstrapped version of the empirical function Rn(-)

given by

R .1: .
R () =R (-5 Xp,euu X)),

Suppose we were able to show that there is a sequence of Gaussian

processes such that {é;m)(t) : t e I} = {GF(t) : t € I} for each m
and
(1.6) sup |mi (R (t)-R_(t)) - G ()] = o_(1)

- fiT m,n n ’ F P

as n + © , where m = m(n) + «® at an appropriate rate. From (1.6)

we can conclude that whenever x 1is a continuity point of G in

F
(1.4) then
(L.7) G (x) = P{sup m%|§ (t) - R _(t)]| < x} —> 6_(x)
m,n m,n ’ i TR N F
tel
for the same m = m(n) sequence as n + «® . Now fix 0 <o < 1 and

suppose we can show that

(1.8) c = cla,F) = inf {x : GF(X) o 1-0} is a continuity point of GF'



Generating now the bootstrapped ﬁm " function N times independently:
r

ﬁ(i)

1
m,n '

[ A

i < N , on using the Glivenko-Cantelli theorem it can be

easily verified that

(1.9) c: (x) =-§#{1 < i< N:m® sup IJR(l (£)-R_(t)| < x]

uniformly in x as N =+ « and n,m are fixed. We define

c = ¢ () = inf{x:GN . n(x} > 1l-a}.

v ’

By (1.7) and (1.9} one easily obtains

(1.10) P{sup n’|R_(t) - RL(E)] < C

ey T
N,m,n} %y
teT

as N,m,n - c

The purpose of this paper is to provide some techniques that should
prove useful in establishing (1.6) for a variety of empirical functions
of statistical interest. We will demonstrate how to apply our techniques
by showing the wvalidity of (1.6) for the empirical total time on test
transform, the empirical mean residual life function, and the empirical
Lorenz curve. The first two play important roles in reliability and
;urvival analysis and the third is a basic empirical tool in economic
concentration theory.

The philosophy of the bootstrap principle includes the appealing
heuristic idea that bootstrapped versions rm,n of processes r behave

asymptotically the same way as the original processes ro- This is

indeed the case for the three examples we consider. The validity of



of the bootstrap will be proven under exactly the same optimal conditions
under which the weak convergence result in (1.3) has been previously
established by M. CsSrg8, S. Csdrgd and L. Horvath [Cs-Cs-H]

(1986) for the three processes r. corresponding to these empirical
functions.

Our results for these fhree empirical functions are stated as theorems
in the next section. In Section 3 we apply these results for constructing
confidence bands for the total time on test transform of tractor rear
brakes and present a simulation study of the accurary of the bootstrap.

The necessary technical tools are detailed and proven in Section 4, and

the proofs for the theorems in Section 2 are provided in Section 5.

2. Bootstrapped mean residual life, total time on test, and

Lorenz processes. Throughout this section and Section 5 we assume that
the random variable (rv) X, for which F(x) = Pr{x E_x}, - < x < o,
is nonnegative, i.e., F(0) = 0.

2.1. Our first example of a statistical function RF is the

mean residual 1life function

M (t) = E(X-t | X >t)
co
= [ -F(x))dx/(1-F(t)), 0 <t<e
:al
Given the sample Xl,._.,xn , i1ts empirical counterpart is
o0
M_(t) = { (1-F_ (x))ax/(1-F (£)), 0 <t <X,

and the corresponding r ~ process is



- r
z (€)= n" (M (t)-M_(t))
(2.1)
(o] 1 1
= {—{ n“(Fn(%)—F(x))dx+MF(t)n2(Fn(t)—F{t))}/(l—Fn(t}).
Theorem 4.1 of Cs~Cs-H (1986) concludes that there exists a sequence

of Brownian bridges Bn(y), 0 <y <1, such that for the sequence of

identically distributed Gaussian processes

[e0]
(n) _
Zg (£} = {—{ B_ (F(x))dx +M_(t)B_(F(t))}/ (1-F (t))
we have the following: If EX2 < w and T < TF = inf {t : F(t) =1} 5 s g
then
(n) _
(2.2) sup |z, (£)-Z; ' (£)| = o (1),

0<t<T

if EX2 < o , then for vn(t) = (l-Fn(tJ)zn(t), 0 <t <

n)

(
(2.3) sup  |v, (£)=(L-F(£))2Z, " (£} | = o, (1)
O<t<oo
and, moreover, if EX < ®@ and T < TF , then
(2.4 sup M (£)-M_(t)| = o(1) a.s.

0<t<T

Here and in what follows all convergence and order relations are
meant as n -+ c« if not specified otherwise. The statements in (2.2},
(2.3) and (2.4) are improvements over results of Yang (1978) and Hall
and Wellner (1979).

Now we introduce the bootstrapped empirical process. Let m be

a resampling size. Given xl""’xn , let Xl""'gm be conditionally

independent rv's with common distribution function Fn' Let ﬁm & be
7

the bootstrapped empirical distribution function, i.e., F (t) =



-1 > ; :
m “#{k: 1 <k <m, X <t} given F ~ fixed by X -+X_ . The boot-

k

strapped empirical process is then

(2.5)  Jiss
m {F_ _(£)-F (£)}, -w=<t <,

F

Accordingly, the bootstrapped empirical mean residual life

processes are

- 1~ ~ o ”
O mz{Mm'n(t]uMn(t)} and v (t) = (I-F  ())z (¢),
where
0
M U = { (1-F, [ (x))ax/(1-F (£)).

(Wherever a denominator is zero, we define the corresponding process
to be zero.) Our first theorem contains the bootstrapped versions of

the results in (2.2) and (2.3).

THEOREM 1. Suppose that EX? < o and let m = m(n) be a sequence

of positive integers such that for two positive constants c, <¢,

(2.6) g, m < n<iem ., nsEl,Zocas

Then we can define a sequence of Brownian bridges {ﬁm(y): 0 <y f-l}m—l'
co

independent of the sequence {Xn}n=l' such that for the identically

distributed Gaussian processes

20 (&) = {-] B_(FGx))ax + M_(0)B_(F(£)) /(1-F(t))
t



whenever T < Ty 2 and

{m)

(2.8) sup |v ik = (1~F(t)}EF

0<t <o !

(£)] = op(1).

2.2. 1In the present subsection we assume that the lower endpoint
of the support of F is the o;igin, i.e., ©Q(0) =0, where Q is
the quantile function of F given in (1.1). The second example of
a statistical function RF is the total time on test (ttt) function
)

= Q{u -1
H (y) = [ (1-F(t))}at, 0 <u <1, H. (1) = U,
F 4 - F

where we assume that | = EX < «© and that ¢ is continuous on [0,1).

Given the sample Xl,...,xn , the empirical ttt function is
-1 Op (1)
H (u) = | (1-F_(t)dt
n n
0
-1 [(nu]]
= -i - < <

n izl (n+l l](xi,n Xi—l,n}’ 0 <u L

where for a nonnegative number x we denote by [[x]] the smallest
positive integer > x (cf. (6.1) in Cs-Cs-H (1986) . Here H; (1)
is the sample mean ﬁh. Sometimes scaled versions of these functions
are used, i.e., the scaled ttt transform and the scaled empirical ttt

transform:

-l T I
Dp (w) = Hp (u) /U, D (w) = H_ (u)/Xn, 0 <u <1.

Let us introduce the empirical ttt and scaled ttt processes

1 - - =
£ =0t @R W) and s (W = n’ (B (@)-b ), 0 <u < 1.



For a bibliography of literature on these processes we refer to

Cs-Cs-H (1986 ). Using the same Brownian bridges Bn as in Z;n),

we consider the sequence of identically distributed Gaussian processes,

defined by continuity at 0 and 1,

u
(u) = —é Bn{s)dQ(S) = %"E:E—_ B (u), 0<uc<l,

(n)
T Q) °n

(2.9) F

where f is the density function of F, and consider also the identic-

ally distributed Gaussian processes

(n) . =1,_(n) B -2 -1 « . (n)
(20107 SF (u) = p T (u) = u HF (u) TF

® (u) , 0 <u< 1.

Let ( denote the class of positive functions g defined on
(0,1) such that for any q € Q there existsa 0 < § < 1/2 and an
€ >0 such that g{s) > € for all § < s < 1-§6 and both qg(s) and
g (l-s) are nondecreasing on (0,81. A function g € ¢ will be called

a Chibisov-0'Reilly function if and only if

, 1/2 2 1/2 2
(211} f sl (2.4 ds < ® and [ s Lemea eglre ds < @
0 0
for all ¢ > 0. By Theorems 6.2 and 7.2 of Cs-Cs-H (L986 ) we know

that if the density function £ = F' is continuous and positive on
2 ] i .
the open support of F , EX < @ , and there exists a Chibisov-0'Reilly

function g such that

gu) (1-w)

(2:+12) sup F Q) :

O<u<l

then



-10~-

(n)
F

(2.13) sup |t (u)_T;n)(u)I=op(l) and sup |s_(u)-S

. () | = o (1).
O<u<l O<u<l

(In Cs-Cs-H (1986 ) it is assumed that g is continuous. It follows
from results in Cs-Cs-H (1986 ) that this assumption can be dropped.)

Let

(2.14) Q_ _(s) = inf {t: F

m, m,n(t} ks S}u 0<s <1, 5 (0) = 5m,n(o+)'

m,n

be the bootstrapped empirical quantile function, where F - is as in

m,
(2.5). Then the bootstrapped empirical ttt and scaled ttt processes
are
3ol -1 = 3 -1
- = = Yol )
tm’n(u} m {Hm’n(u) H (W} and s ' (u) m’ {D ’n(u, D ()},
where
. Qm’n(u)
) = (1 - F__(t))at
m,n r
0
_p [[mul] N
= m Yomel-i) (X X, ),
i=1
where X € es XK are the order statistics of X ,...,§ and
l,m — — m,m 1 m

the last equation holds uniformly almost surely, and

m
~-1 ~-1 1 ~

= = ¥ x wng % I
D ’n(u) H ,n(u)/(m izl i) , 0O u 1

(m)

Let %F (u), 0 <u <1, denote the Gaussian process obtained upon

(m)

replacing B_  in (2.9) by ﬁm of Theorem 1 and let §F be the

~ (m)
Gaussian process obtained upon replacing T;n) in (2.10) by Tém'.

The bootstrapped versions of the results in (2.13) are the following.



=1]=

THEOREM 2. Suppose that the density function £ = F' s continuous
and positive on the open. support of F , EX2<1W, and that there exists
a Chibisov-0'Reilly function q such that (2.12) holds. If m = m(n)

is a sequence of positive integers that satisfies condition (2.6), then

(2.15) sup [t (u) - Ném}(u)| = o, (1)
O<ux<l !

and

(2.16) sup |§m n(u) - §;m)(u)i = op(l)
O<u<l !

2.3. We again assume that @ is continuous on [0,1) and that
Y = EX < » , however 0Q(0) > 0 can be positive. Our third example of

the statistical function RF is the Lorenz curve

1 AW 1 "
= — = — z < ) =
Ly (u) u,£ xdF (x) = 3 é Olsids, 0 <u €1, L, @) =1
Given the sample Xl,...,Xn , we define the empirical Lorenz curve as
Q_(u)
L () = - / . xdF _ (x)
Xn 0
([null
= ot %— ] X .. 0<uxl
Xn i=1 *

The empirical Lorenz process (cf. Goldie (1977) and Cs-Cs-H (1986 )

for bibliographies on applications) is then
%
£ (u) = n*(L_(u)-L_(u)), 0 <u<l.
n F =B

Now we consider the following sequence of identically distributed
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Gaussian processes

u 1
(n) _ 1
(2.17) Mg () =& {-Cj) B, (5)dQ(s) + L (u) ({Bn(s)dg(s)}, bimw g L.
Theorem 11.2 of Cs-Cs=-H (1986 ) concludes that if Ex2 < o , then
(n)
(2.18) sup  [9_(u) - A7 () ]= o (1)
0<u<l P
Let again F be as in (2.5) and é is as in (2.14). The
m,n m,n
bootstrapped Lorenz process is then
~ 1~
= = )
L@ =m {Lm’n{u) L W}, 0<uc<l,
where
0 (u) m
Eo) o= [ xdF w/E YR
m,n m,n m i
0 i=1
(mall 1 m
=& xi’m)/(—ra'fxi), 0<u<l.
i=1l i=1l

Also, let N(m)(u) i @ < < Ly denote the Gaussian process obtained
upon replacing B in (2.17) by gm of Theorems 1 and 2. The

bootstrapped version of (2.18) is the following.

2 3 sy
THEOREM 3. If EX” < » gnd m = m(n) <is a sequence of positive

integers such that condition (2.6) holds, then

(£+19) sup !E (u) - A
0<u<l m,n F

In order to form asymptotically correct bootstrapped confidence

bands as described in the introduction for the above statistical



=] H=

=], -1 ; . . ; o
H D and LF , one ingredient is still missing.

functi
ions MF’ F ' Pp

We need to know that the distribution functions of the absoclute suprema
of the corresponding Gaussian processes are continuocus. This fact is

an immediate consequence of a result if Tsirel'son (1975).

LEMMA 1. Let G be a separable Gaussian process defined on a
closed interval la,bl. Assume that G <is almost surely bounded on
la,b] and wvar G(s) > 0 for some s € (a,b). Then the distribution
function

G(y) = Pr{ sup |G(s)|‘i y} for 0 <y < o,
a<s<b

18 continuous on (0,%).

3. A simulation study and an example. Cs=Cs-H (1986 ) proved

that if F 1is the exponential distribution function then the scaled
ttt process {sn(u}: 0] g s 1} converges weakly to a Brownian bridge
process. Thus in this case

lim P{ sup lsn(u)l < x} = K(x)
n+e  0<u<l

1 [e's]
=1 = Z (-1}k+l exp(—2k2x2) = (2m °*x . E exp(—W2(2k—l)2/(8x2)),
k#0 k=1

and we have also

#{Lﬁ;ﬁN: m% sup |5—l(i}{u} - D;l{u)l f_x} —> K(x) a.s.,

O<u<l T

=2
=]
=t
Z |

as N,m,n » ®© . Simulations were carried out for exponential data with



b=

sample sizes of n = 10, 20, 50, 100 and 200, each repeated 100 times.
Bootstrap samples of size m = n were drawn N = 1000 times and the

deviation of critical values lK_l(a)—K—l

) . , -
N,m,n(a)] is reported in Table 1

We note that the difference between the bands using the limit distribu-
tion and the bootstrap procedure is about D.Zn_% for these moderate
sample sizes.

As an example we examined 107 failure times for right rear brakes
on D9G-66A Caterpillar tractors. These data are available in Barlow
and Campo (1975) and Doksum and Yandell (1984), where total time on test
and other tests of exponentiality are investigated. Here we present
asymptotically 90% bootstrap confidence bands for the ttt transform
H;l , the scaled ttt transform D;l and the Lorenz curve LF of these
data (Figure 1). Bootstrap samples of size m = 107 were drawn N = 1000
times.

The bands on Figure 1 have constant width. In some statistical
applications it may be useful to have the width of the bands depend
on the variance of the underlying process at time t. It is easy to

get this type of bands with a minor modification of (1.10). Returning

to (1.3), let

2

2
) = - )
o” (t) E{GF(t) EGF(t,,
and assume that

(341 inf o(t)} > 0.
tel

If we can find an estimator Un(t) of o(t) , which satisfies
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(3.2) sup |o_ () - o(t)| = o (1),
tel
then
~ -
) _ 2
(3.3) P{R_(t) °N,m, 0" o, (t) < R(t) <R (E)
& -4
t o L om O (E) s e I} » 1-a

as N,m,n - « , where

~ 1 . % o~ (1)
= = <i<N : - R <
Gy m,n ) = § [1<i<N : m® sup IRm' (t) L(e) /o (8) < x]
tel
and
o = G =
CN,m,n If {x N,m,n(x’ > 1 a}.
Cs=Cs~H (1986 ) showed that the limit processes of the empirical
ttt, scaled ttt and Lorenz processes satisfy (3.1) when I = [a,bl,

0 <a <b <1l. They also gave estimators for the variances of the

limit processes for which (3.2) holds. Figure 2 shows confidence
bands of the form (3.3) for H;l, D;l and LF on [0.1, 0.9] using

the rear breaks data. The bootstrap samples of size m = 107 were

drawvn N = 1000 times again.

4. Technical tools. In the previous sections we assumed that our

probability space (Q,A,P) 1is so rich that it accommodates all the
rv's and processes intrcduced up to now or later on. This can be done
by results of M. Csorg8 and Révész (1981), Berkes and Philipp (1979)

and De Acosta (1982), without loss of generality. Let Ul’U2"" be



=1 B=

a sequence of independent uniform-(0,1) rv's and define the uniform

empirical and quantile processes

1
&n(s} = nz(Gn(s}us) and BD(S) = nz(S~Un(5)), 0<s<1,

where G_(s) = n"l#{k :1<k<n,u

e 575} and, with U < e <

L I1 =

Un a denoting the order statistics of Ul""’U B

n

U i T (k-1}/n < s <k/n, k=1,...,n,

We can and will assume that Xi = Q(Ui), 1 <i < n, holds. Cs-Cs-H-M

(1986 ) constructed a sequence of Brownian bridges {Bn(s): 0 <s < 1}

such that
lo_ (s)-B*(s) | -V I8 (s)-B_(s) | -V
n n € n n
(4.1) sup = 0_(n ) and = 0_(n
1/2-v P iy 1/2-v P
0<s<l (s(1-s)) 1 A/n<s<l-A/n (s(1-5)) 2
for all 0 <XA<® and 0 <V <1/4, 0<v,<1/2, where B;(S) =

Bn{s} if 1/n < s <£1-1/n and zero otherwise.

Let gl,gz,... be a sequence of independent uniform (0,1) rv's,
[eo] o0
1 ) s = & 5 i i
independent from {Ui}i=l U {Bi(s, 0 <s m-l}i=l We define again

the corresponding empirical and quantile processes
} 3
em(s) = m (Em(s)—s) and km(s) =m (s-gm(s}), 0<s <1,

=] ;
Y = .
where Em(s, m #{k : 1 <k <m, gkAi 5} , and, with gl,m [N, < gm’m

denoting the order statistics of gl,...,gm i



N i o

F:k ’ (k_l‘/m <8 i k/ml k=1, 1,
£, (8) =
El,m' s =0

By Cs-Cs-H-M (1986 ) we can define another sequence of Brownian bridges

oo [ee] [ee]

, such that {Ui}i=l U {Bi(s): 0<s<x l}izl

2]

and {E'}1=l U {Bi(s}: 0<s E-l}i=l are independent and we also have,
as m -+ @,
|em(s)~§;(5)| =N Ikm(S)—ﬁm(sﬂ
(4.2) sup g OP(m } and sup T OP(m
<s< i _ o
0<s<l (s (1-5)) 1 A/m<s<l-A/m (s(1-8)) 2

for all 0 <A <® and 0 < v, <1/4, O < v, <1/2, where ﬁ;(s) =

1 2

B (s) if 1/m < s < 1-1/m and zero otherwise.
For convenient reference later on we list a number of facts on

the linearity of the uniform empirical distribution and quantile

functions:
(4.3) sup G _(s)/s + sup (1-G_(s))/(l-s) = O_(1) ,
n n P
0<s<l 0<s<l
(4.4) sup s/Gn(s) +  sup (l—s)/(l~Gn(s)) = OP(l),
u <s<1l 0<s<U
L,n—— n,n
(4.5) sup S/Un(s) + sup  (1-s)/(1-U_(s)) = O, (1),
0<s<l 0<s<1
and for any 0 < p < =
(4.6) sup Un(s)/s + sup (l-Un(S))/(l"S) = OP(l)-

p/n<s<1 0<s<1l-p/n

All these follcw from Remark 1 of Wellner (1978). Of course, all these
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statements hold also for the empirical distribution and quantile functions

Em(-) and Em(-) of the {gi} sequence.

Introduce

(4.7) Gm,n(s) = Em(Gn(s)) and Um (s) = U0 (£ (s)), O

and the quantile function

Q (s) = inf {x: F_(x) > s}, 0 < s <1, Q(0) = Q(0+)

of the original sample. It is easy to show that

won @8 [ (8),F (), (£)): —e<x, y<e 0<s, t <1}
L ’
(4.8)

on (804G (F(¥)),Q(U (£))): —w<x,y<e , 0<s,t<l}.

(This distributional equivalence was used implicitly by Bickel and

Freedman (198l1) and by Sherack (1982).) For this reason we shall

sometimes refer to the processes

1
- P _ 2 !
(4.9) Otm’n(s} = m (Gm'n(S) G (s)) and Bm,n(S) =m” (U_(s) Um’n{s)), 0<s<1,

as the bootstrapped uniform empirical and quantile processes, respectively.

For these processes we need the "bootstrapped" versions of (4.1) and

(4.2).

PROPOSITION 1. For any sequence m =

m(n) + ®© of positive integers
and for each 0 < v < 1/4

(4.10) sup o n(s)—§;(5)|/(s(l—s))%Fv =0 -
U, <s<u '
l,n~-"—"n,n
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and whenever m = m(n) satisfies condition (2.6), for all 0 < )\ < o

and 0 < v <1/4

I-v )

(4.11) sup 18 (s)-B_(s)]/(s(1-8))*"" = O, (m

AMm<s<l-p/m "

Proof. First we consider (4.10). Choose any 0 < v < 1/4.

Since (4.3) implies that

sup Gn(s)(l—Gn(s))/(s(l—s)) = OP(l),
0<s<1
it is sufficient to prove that
(4.12) S(v; 1= sup A(v;(s) = OP((HI\ m)_v),
e U, <s<U e
l,]’]‘_ r
where
AV (8) = |o _(s)-B*(s) |/ (G (s) (1-G_(s))) 7.
m,n m,n  ~ Tm n "’ n
Observe that
S(v) < su A(V)(S) A S A(v)( )
m,n — 1 SYP 1, ®m,n o 1 “m,n'®
U VvV =< s5<U A (1l ==) U < s<U vV = 4
l1,n m-— o (M o m 1,n— 1,n m
+ 1. Sup A(v)
B Al=Zj<cgzy Sl
n,n m — fi ;
(v) (v) (V)
2 + +
Sm,n,l Sm,n,2 m,n,3 '
where S(v) is defined to be zero if U v (1/m) = U and
m,n,2 1l,n 1.xi
(v) ; y :
is defined to be zero if U A (1 -1/m) =1U ;
myh,3 n,n n,n

Notice that
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) * v
g sup o (s)=B (G_(s))]/(G_(s)(1-G_(s)))"
gl 4] vV—=<s5<U A(l—l) - men o o
1,1 n,n m
+ 18_(c_(s))-B_(s)|/(G (s)(1-G (s))) "
sup G (s))-B_(s s - s
U V=<s<U A{l—i) men " " "
l,n m n,n m

~ "
< sup |e (s)—B;(s}‘/(s(l—s))2 v
0<s<l
+ sup |8, (G, (sN-B_(s)]/ (6 (s)(1-6 ()"
U <s5<U
0 n,n

By (4.2) the first term on the right side is OP{m"v), while the second

term is

~ ~ %_\)
< 2 max sup IEm(i/n)—Bm(s)‘/(i/n)
1<i<n~-1 U, <s <U,
e i,n o i, 50 o1

~ A~ LI
+ 2 max sup le(i/n)—Bm(s)|/(l—i/n)2 v,
1<i<n-1 U, & R
i n— R B o)

r

In the proof of Theorem 2.2 of Cs-Cs-H-M (1986 ) it was shown that

these last two terms are Op(n—v). Hence we have
(V)
L13) - A \
(4.13) Sm,n,l OP((m n)
Next we consider S;v; 5 Note that since B (s) = 0 for
0 <s <1l/m,
(V) -y
= - 3
Spom.2 sup i l“m,n(S)l/(Gn‘S)(l G_(s)))
U <8<y AV
10—~ 1,n m

< sup le_(s)|/(s1-5)) 2",

o 0<s<G_(1/m)
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Choose any p > 1. Notice that whenever Gn(l/m) < p/m , this last

expression is

< sup e (s)|/(s(1-s))* TV

O<s<p/m

3 -
e wup  qms)? Vfl-sh TV

O<s<p/m

hl=

&
2

+m mE_(o/m) }/{tmg, )* 7V (1-p/m)* TV}

L.

-V -V
< 2m 4+ OP(m )mEm{D/m)

for large enough m and by (4.5). Since E(mEm(p/m)) = p , the last

two terms are OP(m—v}. On the other hand, by Markov's inequality

P{G_(1/m) < p/m} > 1-1/p

for all p > 1 and m > 1 , and therefore an elementary argument now

establishes that

SaaR e

m,n,2 P
An analogous procf shows that we also have
-V
=0, (m ).

The last two relations and (4.13) imply (4.12) and hence the first
statement of the proposition.

To prove (4.11), first we observe that
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|Bm,n(5)_§m(s)| |k (s)-B_(s) | + {%)%]Bn(gm(s))—Bn(gm(s)){

| A

L 1
+ OB _(E_(s))-B_(s)| + (F[B_(s)-B_(s) ]|

=x T gl b T By,

m m
Choose any 0 < v < 1/4. By (4.2) we have

sup V;l)

A/m<s<1-A/m

i_ =
(8)/(s(1=5))°"" = 0, (m %),

and by (4.1) along with assumption (2.6) we obtain

3 - -
sup v;4)(s)/(s(1us))2 Vo m"Y).

A/m<s<l-A/m 5

Choose any 1 < p < e« and set

Agk}(p) = {S/p<£m(s) and Em(s)nil-(l—s)/p for k/nhis_il—k/m}.

)
Notice that on the event Aék'(p)

- = 1
sup vV 1/ s@-sn iV < oV sup 8 (£)=B_(£)]/ (e (1)

A/m<s<l-A/m A/ (pm) <t<1-\/ ( pm)

-y

which by (4.1) and (2.6) is OP(n—v) = op(m"v). But (4.5) as applied to
Em(-) implies that
lim liminf P{A(A)(p)} = 1
pree m > e m
Hence
(2) -v -V
sup Vm (s)/(s(l-8)) = Op(m )

A/mis <1-A/m
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Finally, to establish that

v(3) $=4 K

sup (s)/ (8(1l-8)) = 0, (m

A/m<s <1-A/m

one requires a routine, though very lengthy, modification of the corres-
ponding part of the proof of Theorem 2.2 of Cs-Cs-H-M (1986 ). For the
sake of brevity these details are omitted.

We note that if (2.6) holds, then we can replace B; by Bm in
(3.10).

Next we state the Chibisov-0'Reilly theorem for the bootstrapped
uniform empirical and quantile processes. These results can be deduced
from Proposition 1 in exactly the same way as the corresponding results
for the oridinary processes were derived from (4.1) and (4.2) (cf. the

first proof of Theorem 4.2.1 and Corcllary 4.3.1 in Cs-Cs-H-M (1986 )).

Recall the definiticn of the class ( from Section 2 (cf. (2.11)).

PROPOSITION 2. Let m = m(n) be any sequence of positive integers

converging to infinity. For any gq € Q

sup |am n

(s) - B_(s)|/a(s) = o (1)
0<e<l !

P

if and only if q <8 a Chibisov-0'Reilly function, i.e., 1f and only
if the integrals in (2.11) converge for all c > 0. Also, if q € Q

is a Chibisov-0'Reilly function and if condition (2.6) is satisfied then
for any 0 < A < o«

sup B _(s)-B_(s)|/q(s) = o_(1).
A/m <s < 1-A/m it L



s

We note that the second statement is in fact true under the weaker
assumption that ¢q € Q is such that both q(s)/s% and q(l—s)/sth
converge to infinity as s ¥ O,

Our final technical proposition gives the analogues of the linearity

statements in (4.3)-(4.6) for G and U in (4.7).
m,n m,n

r r
PROPOSITION 3. Let m = m(n) denote any sequence of positive

integers converging to infinity. Then

(4.14) sup G (s)/s + sup (1-G (s))/(1-s) = O_(1),
O<s<1 ™M O<s<l Bt 3
(4.15) sup s/G (s)+ sup (1-s)/(1-G (s)) = O_(L),
8] (0)<s<l T 0<s<U (1) Mt P
2t - m,Il
(4.16) sup s/U (s) + sup (1-s)/(1-U (s)y = O (1),
0<s<l et 0<s<1 el P

and whenever there exists a constant 0 < C < o guch that m/n_i e

for all n > 1, then for any 0 < A < «

(4.17) sup U (s)/s + sup (1-U (s))/(1-s) = O_(1).
A/m<s<1 okt 0<s<l-A/m s P

Proof. Combining (4.7) and (4.3)-(4.5) we immediately obtain

the results.

5. Proofs of Theorems 1,2,3. Recall that in Section 2 we assumed

that our underlying rv X is nonnegative. This will be assumed in the
present section without further mention. Before starting the proofs

we introduce further processes. Let
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2 n () = {—g O F AR + o (FE)M (0) )/ (A-G (F(E)))
1
= {—g(t)am,n(S)dQ(S) oo (FENM QE))) ]/ Q-G | (F(E))),

where the second inequality is obtained by the change of variables

F{x) = s. Also we define
R g QM (s)) Q(u_(s))
ton(s =m {g (-G, (FE)))ax - g (1-G_ (F (x)))dx
1 U n(S) Un(s)
= m {g . (1-G (s))30(s) - é (1-G_(s))daQ(s) }
el -1
=: m {Hm,n(s) H " (s)}
again by the change of variables F(x) = s , along with the assumption

that here Q(0) = 0 and both F and Q are continuous. Finally, let

Q(Um n(S)) =
' xdG_ _(F(x))/[ xde_ _(F(x)))
0 Hr Tt A

=

g ts) = m{(f

m,n

Q(u_(s)) o
- (f xdG_(F (x))/] xd6_(F (x)))}
0 = 0 !

" Um n(s) 1
=m {é ' Q(t)dGm,n(t)/é Q(eyag . (t)
U_(s) 1

-7 omas_ (0)/] grrds (8 }.
0 0

Using the representations for z , t = and £, given in Cs-Cs-H (1986)

and (4.8), one can easily check that
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5 D -
(5.1) {z (s), Z_ (t) 0<s,t<w} = {z (s), 2_ (t) Ogs,t<o}

r

for each m,n > 1, and also

(5.2) Az (), £ ), R )0 B (0), € (@), B (v): 0<s,t<e, O<x,y,u,v<l]

Q ~ ~ ~ .
¥ {zn(s),tn(x},Rn(y),zm'n(t),tm R R (V) 0<s, e, 0<x,y,u,v<l}

’ r

for each m,n > 1, if F and Q are continuous.
The following lemma in Cs-Cs-H (1986 ) is a basic ingredient in
the proofs of (2.2), (2.3), (2.13) and (2.19). It is Lemma 3.2 there

and for easy access for later use we guote it here.

LEMMA 2. If EX2 < o, then

3

(5. 2 sup | f {B (s)-o_(s)}do(s)| = o (1).
O<y<l 0

We need the analogous result for the bootstrapped uniform empirical
process with the correspending sequence {ﬁé of Brownian bridges. In
what follows C will denote a generic constant, not necessarily the

same at each appearance.

LEMMA 3. If EX2 < » gnd condition (2.6) is satisfied, then

Y
AT = sup |f {B (s)-a_ (s)}dQ(s)| = o (1).
0<y<l 0 m m,I B

Proof. By simple manipulation

(1) Y o
A < sup | {BY(s)-o_ _(s)}aQ(s) |
m O<y<l 0 m m,n
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Y
+ sup |[ {B (s)-B*(s)}an(s) |
o<y<t o ™ .

1,n 5 1 R
+ f |B;(s)|dQ(s) + f |B;(s)|dQ(s)
u

n,n

Y g
+ sup |f §m(s)dQ(s)1 + sup |f Bm(s)dQ(s)|
0<y<l/m O 1-1/m<y<l 1-1/m

(1)
m, L

(1)

m,5

=: A +...4+ A

In the proof of Lemma 4 (Lemma 3.2 in Cs-Cs-H (1986 )) we have shown
that the condition EX2 < o implies via the Birnbaum-Marshall inequality

that

4 A(l) = i R
m

(1)
. +5 P

£S5 m,4

For any A > 1 consider the event

- 1 1 _A -1
Qn(k) B {nk f‘Ul,n b el . i, = Un,n 2 & nk}
On Qn(k) we have
A$l; <[ 1B |agts)
! 1-2/n

Using condition (2.6) we obtain

l 1
E [ |BX(s) |ap(s) < ¢ n *{o(1-A/n) + Q(l-c /m)},
1-A/n

and this bound goes to zero since
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(5.6) EX2 < o jimplies 1lim S%Q(l—s) =0 .
st0

Since by (4.5) and (4.6)

(5.7) lim liminf P{Q (M)} = 1,
Ad0 n -roo o

we obtain

(Ly _
(5.8) Am y = oP(l).

Similarly, on Qn(K) #

A/n

(1) ~
ALy S £ B (s) |aQ(s)
and
A/n o A/m L
E [ B_(s)|do(s) < |[  s7a(s)|
0 1/m
# g n_li sup Q(s)

0<s<(A/n) v(C, /n)

by condition (2.6). Since this bound goes to zero, (5.7) again

implies that

(1) _
(5.9) Am 5 = oP(l)

r
Finally, choose any 0 < v < 1/4. Then by Proposition 1

U

= 0 ((n am)~Yy [T (s(1-5)) 7 ag(s) .
u

i o

(1)
Am,l

Therefore, for any fixed € > 0, on QD(A) we have
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L1
(1) - J a Ly
Am,l < OP((H Am) ) ! (1-s) dQ(s)
1
l e
nA l-¢
= OP((n Am) ){J (l—s)%—v dQ(s) + f (l—s)%—v dQ(s)}
l- 0
1o
-V, 1 %-v 1 1 —Loy
= 0 ((n A m) ) | o Q(1 —Eij +(5 - V) {_E (1-s) ° 0(s)ds}
+ op(l)

upon integrating by parts. Therefore, using (5.6) we see that on Qn(l)

1
1-2x
1 o _ . L
AI’E‘E :)L = OP((n Am} \)) {O{n \))O(l} e sup SIQ(l""S) j (1_1:) 1 \)dt}
, O<s<e 0
+ OP(l)
- 3,
= 0,(1) + 0, ((nAm I’  sup s70(1-s).
O<s§§
Since € > 0 is arbitrarily small, (5.6) again gives that A;li _ OP(l)
on the event QH(A). But (5.7) then implies that A;li chP(l) i =

relation, (5.4), (5.5), (5.8) and (5.9) imply the lemma.

Proof of Theorem 1. First we define the sequence of Gaussian

processes
~ (m) v oa X
2y (t) = {- [ B _(s)dQ(s)+M_(Q(F(£)))B_(F(t))}/(1-F(t)).
F(t) m m

We get from Lemma 3, the first statement of Proposition 2 (applied with

g = 1) and the Glivenko-Cantelli theorem that

~ -'\(m)
(5.10) sup |z o () =2

(t)| = o (1), E(T) < 1.
o<t<r ™ F
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An elementary calculation yields
sup | (1-G_ _(F())Z_ _(8) - il-F(t))%ém)(t)l
<L m,n m,
1

< swp |[] (B (s) - o _(s))dQ(s)]
o<t<e F(t) e

+ sup M_(Q(F(t))) |a_  (F(t)) - B (F(t)) ]
05_11<°° m,n m

+ osup o (F(E)) | [M_(QF(E))-ML(QF())) .
Q<20 m,n n
Here the first term converges to zero in probability by Lemma 3. The
second term is not greater than

sup M _(Q(s))]o_  (s)-B_(s)].
0<s<1 F m,n m

In the proof of (2.3) (Theorem 4.1 in Cs-Cs-H (1986 )) it is shown
that if EX2 < o then the function MF(Q(S)) = l/qo(s) is nondecreasing
and square integrable on (0,1). This implies that qo(s) is a
Chibisov-0'Reilly function, and hence Proposition 2 ensures that the
last expression goes to zero in probability.

Finally, let 0 < T < 1 be any fixed number. Then for large
enough n the third term is almost surely less than or equal to

o§;§¢ lum,n(S)]IMH(Q(S))—MF(Q(S))|

M (Q(s))

n
+ sup la {S)WMF(Q(S))Iﬁ;]EﬂEST_— 1]

m,n
T<s<U d
== n;n
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Here the first term goes to zero in probability by (2.4) and Proposition
2 for any 0 < T < 1. On the other hand, it is easy to show by (4.3)

and (4.4) that

Q(Un n)
" (1-G (F(x)))dx
My 1-F(0(s)) 0(s) n
Tiulzu M_(0(s)) TquU 1-6 (F(Q(s))) .
2P n,n F Qs o n,n - f (1-F (%)) dx
0(s)
= OP(l)
We know that qo{s) = l/MF(Q(s)) is square integrable on (0,1), therefore
for any € > 0
lim limsup P{ sup MF(Q(S))Ium n(s)| > E} = 0.
T+1 n = T<s<U !
— "n,n
We proved that
~ 5 (m) _
{5.11) sup |z (£)-Z7 (8)| = o (1).

< <o oy

Using now Lemma 4.4.4 of M. Csorg8 and Révész (1981) (cf. also De Acosta

(1982)), (5.1) and (5.11) imply Theorem 1.

Proof of Theorem 2. By a simple rearrangement we see that

- s 3 o oo (3) (4)
t  (s) = - o _(£)dQ(t) +m” [ 7' (1-t)dQ(t)-A_ "' (s)=A_ " (s),
m,n 0 m,n U (s) m m
n
where
(3) 'S (4) Un,nS)
AT(s)y = [T q (v)dQ(t) and A C(s) = [T o (t)dQ(t).
m 5 m,n m U (s) 35
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Therefore, if

u

~{m) _ ~ _ 1-u1, %
T, {u) = é B (s)4Q(s) = Frorgyy Bp{Wr 0 <uw<l,
then
(5.1 A = suwp |t ()-8 (o) | <2l 4w alD
0<s<1 m,n il m
where
(1) %
(5.13) AT = sup | {B (t)-a _(t)}d0(s)| = o_(1)
m 0<s<l 0 m m,n P
by Lemma 3,
Un n(s)
(2) -5 2 5 !
A = sup |=—=>—B (s) -m’ [ (1-s)dg(s) | ,
. 0<s<1 #lasl) T Un(s)
and
A;i) = gup lﬁéi)(s)l i i= 3;4
0<s<1
First we consider A$4). By Lemma 2 we have

(4) Um n(s)
b7 2 swp | J B_(£)AQ(t) | + o (1).
0<s<l U (s)
—— n
In Lemma 5.1 of Cs-Cs-H (1986 ) it is proved that if EX2 <o and Q
is continuous on [O,l)r and if B denotes any Brownian bridge, then
the stochastic process
S
[ B(t)ap(t)
0

is almost surely continuous on [O,l]. Therefore,
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t
lim limsup P{ sup |f B (u)dQ(u)] > E}
h¥0 n e |s-t|<h s "

t
= 1im Pr{ sup |/ B(u)dg(u) | > e} =0
h¥0 |s-t|<h s

for any € > 0. Since by the Glivenko-Cantelli theorem

sup |U (s)-U (5)| =o_(1),
0<s<1 N n B

this implies that
(4) _
(5.14) Am = oP(l).

Using Lemma 4 instead of Lemma 2, exactly the same argument gives

(5.15) A(3) = o_(1).
m P

Relations (5.12), (5.13), (5.14) and (5.15) show that we only need

to prove that
{2y .
(5.16) Am = oP(l).

Pick € such that 0 < g < 1l-¢ < 1. We have

(2) 1l-s ~
A < sup | ===+ B_(s) |
™7 o<s<g,l-e<s<l sleiell
) U n(S)
+ sup !m f . (l—t)dQ(t)l
0<s<g,l-e<s<1 u (s)
(5.17)
l 1-s A 5 fUm n(s) |
+ sup ————— B (s)-m" ' (1-t)daQ(t)
e<s<l-€ f(Q(s)) m Un(s)
A AT I N T e
m, 1l m, 2 m,n
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In the course of the proof of (2.13) (Theorem 6.2 in Cs-Cs-H

(1986 )) it was shown that

(2) _
(5.18) Am,l = OP(l}.

A simple manipulation results in

(2) T -1
62 < sup lm*{1_ " (0 (s))-H_"(s)}
! 0<s<g,l-e<s<1l !
-1 5 -1 -1
& S sup 1m€{HF (Un(S))-HF (S)}|
0<s<g,l-e<s<1
2
=22 ey + 2P e,
m,n n
where, in the last step, we used condition (2.6). Again, in the proof

of (2.13) it was shown, using the linearity properties in (4.6) and
condition (2.12), that

lim limsup P{A(z)(s) > 6} = 0
n
£E40 n >

for any ¢ > 0. We emphasize that this is the place where we require
condition (2.12). Using now (4.17) instead of (4.6), exactly the same
proof shows that under conditions (2.6) and (2.12) we have

lim limsup P{Aizi
€40 n - :

() » 8} =4q
for any & > 0. Therefore,

(5..1:9) A = op(l).

Finally we consider A (e,1-£). DNoting that

r



-35-

., U s) "
3 m,n _ -1 .
m° [ (1-£)dQ(t) = m {H_“(U_ (s))-H_ ~(U_ (s))}

U (s) !
n

and that dH;l(s)/ds = (1-s)/£(Q(s)), a one-term Taylor expansion

gives
l—Tm n(s) l-s -
A _(e,1-g) < sup . B. _(s) ===+ B (s)
m,n = e<s<l-c f(Q(Tm,n(S)” m,n £(Q(s)) "m
1l-s e
< sup Zrmotmee SHD |B (s)-B_(s) |
e<s<l-€ Bl s o Wt "
{5209
l—Tm n(s) 1-s } ]
+ sup ! - sup |B (s) |,
e<s<l-€ f(Q(Tm,n{S))) £(Q(s)) e<s<l-€ m,n
where

U (s) AU (s) <1
m,n n — m

(s) < U
’ 21 -

(s) v U (s).
m,n n

The latter inequalities imply via the Glivenko-Cantelli theorem that

o = o_(1).
o_j;il R
Thus, since £(Q(-)) is uniformly continuous on [E,l—E] and since
by Proposition 2, sup{|6m (s)l: € < s j_l—e} has a limiting distri-
bution, the second term on the right side of (5.20) converges to zero
in probability. The first term goes to zero in probability by Proposi-
tion 2 for any fixed € such that 0 < € < l-g < 1. This, together
with (5.17), (5.18) and (5.19) implies that Am = o_(1), and therefore

P
(2.15) follows from (5.2) and Lemma 4.4.4 of M. Csorgd and Révész (1981).
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To prove the second statement in (2.16), we note that

~ -1 ~ -2 -1 ~
Sm,n(y) = U tm’n(y) - M OHp (v) tm'n(l)

~ ~=1 —l
b e {a/E (00~ 8, ()

4 r

s Ny e (o {am ) -am )

r

for any 0 <y < 1. Hence the second statement is immediate.

Proof of Theorem 3. The proofs of Theorems 1 and 2 followed the

general outlines of the proofs of (2.2), (2.3) and (2.13) given in
Cs-Cs~H (1986 ). In a similar manner, the proof of Theorem 3 is
obtained by performing steps very much like those carried out by Cs-Cs-H
(1986 ) (cf. the proofs of Theorems 10.2 and 11.2) to establish (2.18),
but now basing our proof on the techniques just developed for the

bootstrapped uniform empirical and guantile processes.
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Table 1. Average deviation in Critical Value

size 10 20 50 100 200
level
.20 .189 191 167 175 178

(018) (.037) (.019) (.009) (.007)
10 206 213 190 196 .197
(.024)  (044) (024) (012) (.011)

.05 215 250 209 215 214

(.027) (.046) (.031) (.015) (.015)

FIGURE CAPTIONS

Figure 1. Tractor brakes with constant width bands: (a) total time on test transform, (b) scaled

total time on test, and (b) Lorenz curve. Dash = curve estimate, solid = 90% bootstrapped

confidence bands, dot = curve for exponential.

Figure 2. Tractor brakes with variable width bands based on estimated standard error. (a) total
time on test transform, (b) scaled total time on test, and (b) Lorenz curve. Dash = curve esti-

mate, solid = 90% bootstrapped confidence bands on [0.1,0.9], dot = curve for exponential.



Figure 1. Tractor Brakes with Constant Bands
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Figure 2. Tractor Brakes with Variable Bands
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