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Abstract: Algorithms for generalized cross validation are modified to handle stratified nonparametric problems and 
generalized additive models. This is particularly useful when the smoothness penalties can be combined additively with only 
one tuning constant to determine. Specific changes are suggested to the package GCVPACK (Bates et al., 1987, Comm. 
Statist. B) for implementation. 
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1. Introduction 

We show that algorithms for generalized cross 
validation used for thin plate smoothing splines 
and related problems can be easily modified to 
handle problems with matrices of block-diagonal 
form. Taking advantage of block-diagonal forms 
where possible can lead to considerable savings of 
computing space and time. We present enhance- 
ments to GCVPAC K (Bates et al., 1987) which 
allow one to use most of this package of sub- 
routines unchanged. 

One example of a problem with a block-diago- 
nal design arises in the study of smooth functional 
relationships between predictors and response in 
which different "s t rata"  may require differehtly 
shaped smooth functions. As another example, 
one may have data on disconnected regions and 
not wish to impose continuity or smoothness be- 
tween regions, but may still wish to impose a 
global penalty for smoothness across all regions. 
Both of these can be depicted with the thin-plate 
spline model 

yiy=fi(xij)+eij, i = 1  . . . . .  r, j = l  . . . . .  ni, 
(1) 

with the (x~j, y,j) observed data, the f, unknown 

functions assumed ' to  be reasonably smooth, and 
the eij independent zero-mean random variables 
with finite variance o 2. Smoothness is imposed on 
f, by introducing a global penalty J~(f,). The 
penalized least squares solution minimizes the ob- 
jective function 

n i 

1 x: &(/)  = 

i = 1  j = l  

(2) 
i=l 

with N = ~n i and X and a, some constants. H~irdle 
and Marron (1986) considered tests of functional 
shape using model (1), while Yandell and Hogg 
(1988) considered penalized likelihood estimation 
in a generalized linear model analog of (2). The 
case in which the fi are parallel is a special case of 
the partial spline, or semi-parametric model. 

Generalized additive models (Stone, 1985) can 
sometimes fit within a block-diagonal framework 
(Chen, 1986). Consider the model 

yj= ~.,L(xj)+ej,  j = l  . . . . .  n, (3) 
i = 1  

in which one may wish to impose different penal- 
ties J, on different smooth functions f,. The objec- 
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tive function for this problem is 

( t 
1 ~  r 

& ( f )  = -a +=, YJ - ,=lE f,(xj) + x ~ ~,4(f,), 
i= l  

(4) 

with ~ and a s some constants. Still another exam- 
ple concerns solving a large system with a general 
design matrix and a general smoothing penalty. 
Here, computer storage space and processing time 
are critical, and some mild assumptions leading to 
a block-diagonal penalty or design matrix can save 
on both accounts. 

We enhance algorithms presented in Bates et al. 
(1987) (referred to below as GCVPACK) for the 
choice of ~ in (2) and (4) by generalized cross 
validation with a i fixed. Section 2 examines thin 
plate smoothing splines with no replicates while 
section 3 concerns the general design with a semi- 
norm penalty. Details of the use of GCVPACK 
subroutines for block diagonal matrices occur in 
section 4. 

2. Thin plate smoothing splines 

The minimizer of (2) can be represented as a 
member of a reproducing kernel Hilbert space, 
with the reproducing kernel implicitly defined by 
the penalities J,. Thus the model (1) can be writ- 
ten in matrix form 

y = Ts/3~ + KsS, + es, 

in which yT = ( Y i l  . . . . .  Yi.,)' T~ is an n i × t matrix 
whose columns span the null space, and K i is an 
n i × n s non-negative semi-definite matrix corre- 
sponding to the penalty. In many applications, 
and in the thin plate smoothing spline routine of 
GCVPACK, dtpss ,  the penalty is the integrated 
squared m-th derivative of fs. In the case where 
there are no replicated design points, which we 
consider here, the penalty can be written in matrix 
form as Js(fs) = 3TiKsBs • 

Define T and K as block-diagonal matrices 
with diagonal blocks T s and asKs, respectively, 
and off-block elements being 0. Define y T =  
(yT  . . . . .  yrT), and similarly fl and 3 are catena- 
tions of jS~ and a,71/23i, respectively. We can write 

the objective function (4) in matrix form as 

1 
& ( / 3 ,  8)  = ~ II y - Tfl - K3 II 2 + X3+K3. 

Natural choices for a i are o~ i = 1 or a i = n i / N .  

The constant ~ will be chosen by generalized cross 
validation, as outlined below. 

The linear algebra for the solution "of this 
quadratic problem can proceed for each i as in 
GCVPACK. In other words, we take a QR de- 
composition of T s as (Dongarra et al., 1979, 
Chapter 9) 

This is followed by a Cholesky decomposition 
(Dongarra et al., 1979, Chapter 8) of 

r, IK, e,~ = LTt,, 

with L s square upper triangular of size n ~ -  t. A 
singular value decomposition (Dongarra et al., 
1979, Chapter 10) of 

Li T = U D y  T 

leads to a convenient diagonal form, with D i being 
diagonal and U/ and ~ being orthogonal, all of 
size n i -  t. If one defines F<I), F<2), U and D as 
block diagonal matrices with diagonal blocks Fa, 
F/2 , U, and c~71/2Ds, and F = [FO): F<2)], then the 
function estimator is .13---A(k)y, with the "ha t "  
matrix of the form (2.7) of GCVPACK, namely 

l 
02(  D 2 + N x I  ) -  j [: o] 

X u T  F T. (5) 

The generalized cross validation (GCV) function, 
which can be minimized to approximately mini- 
mize the predictive mean square error (Craven 
and Wahba, 1979), can be written as 

a , /  ( N.,X ) ) N E I = ,  x - ' ' ' - '  2 [1  2 - 2  
Z.~ j=  l Z i j  ( --i- 

V(X)  = 
ni--t  2 - 2  
E (1 + di j / (  Noli)k ) 

i=1 j = l  

with z, = ( z a , . . . ,  zs , , )  T = UTF, Ty,. Note that while 
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one could optimize this over X and ai, this would 
be a time-consuming process. Fixing a~ allows a 
quick minimization, say by golden section on X as 
clone in GCVPACK. 

Once X is chosen, the estimates of/3,, and 6~ 
can proceed separately for each function f~ as 
detailed in GCVPACK. In other words, for each i, 

8ix -- F/2Ui (D 2 + UXot i l ) - lu iTFiTy i ,  

and fl, x can be found by solving 

3. General design matrix 

More generally, we have a model 

y = XO + e, (6) 

with 0 a p-dimensional vector, y an n-dimensional 
vector and X an n × p design matrix, subject to a 
penalty J (O)=OTZO,  with Z a p × p  positive 
semi-definite symmetric matrix. This model has 
the objective function 

Let E, Ro),  Qo) and Q(2) be block diagonal 
matrices composed respectively of E,, Ril  , Q~a 
and Qi2, with Qi = [Qil : Qi2] and Q = [Qo): Q(2)]- 
We proceed to the matrix 

At this point, no further savings accrue unless X 
is properly blocked. If X is block diagonal but not 
properly blocked, Z(1 ) and Z(2 ) need not be block 
diagonal and must be treated in a general way. If 
X is properly blocked, then Zo) and Z(2 ) are also 
block diagonal. Let the blocks be denoted Zji and 
Zj 2, j = 1 , - - . ,  q. For each j perform a QR de- 
composition of Zj2 = ~Gj ,  followed by a singular 
value decomposition of Fj~Zjl, as in GCVPACK. 
This leads to a block diagonal form for A(X) 
similar to (5). One can then proceed to choose 

by generalized cross validation and to find 
parameter estimates in an analogous fashion to 
Section 2. 

4. GCVPACK routines 

1 
Sx(0) : n II y - X0 I12 + xoTz0.  

We assume here that Z has a block-diagonal 
structure with diagonal blocks "~i of dimensionp~ 
×p, ,  i =  1 . . . . .  r. For convenience, let 0 T =  
(0 T . . . . .  0,T). The generalized additive model (3) 
can be placed in this form, with a 71Z~ the penalty 
matrix for fi. 

It is also possible to improve the algorithm if X 
has block diagonal form, in which the blocking of 
0 is a superset of that done for Z. That is, we have 
0 T=(q~T 1 . . . . .  q~), with q~<r and, for l~<j~<q, 
~ = ( 0 j ~  . . . . .  Off,) for some subset Ja . . . . .  J ,  of 
1 . . . . .  r. We shall call such an X properly blocked. 

The decomposition of the r block of a block-di- 
agonal Z can proceed separately. That is, we 
perform a pivoted Cholesky decomposition 
(Dongarra et al., 1979, Champer 8) followed by a 
QR decomposition, to arrive at the reparameteri- 
zation (cf. GCVPACK) 

In order to use GCVPACK for block diagonal 
problems, a few routines must be changed. For the 
thin plate smoothing splines, the driver dtpss must 
be modified to make r repeated calls to the sub- 
routines dsetup, dqrdc, dftkf and dsgdcl, which 
set up and manipulate the K i and T~ matrices. In 
addition, dtpss must keep track of the blocks g i 
and T,, and other ancillary information required 
for each call. The generalized cross validation 
routine dgcvl must be modified to call drsap 
repeatedly r times and to create long vectors of 
the d ' s  and the z 's. The vector of singular values 
should have dij replaced by dijotZ 1/2, allowing 
one to call dvlop without further modification. 
Once X is determined, dgcvl must call dcfcrl 
repeatedly r times to obtain the estimates of fl~ 
and 3 i. 

Modifications to the general driver dsnsm can 
allow blocks for 2~ and for X. Only minor modifi- 
cations are needed to dsnsm, to keep track of 
storage space. The routine ddcom has to be mod- 
ified to call dsgdc r times and dcrtz and dzdc q 
times. The routine dgcv must be changed in much 
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the same way as for the thin plate smoothing 
spline case. 

We note that with minor adjustments the other 
cases discussed in GCVPACK, replicated x val- 
ues and partial splines can be easily handled along 
the same lines. In addition, the same general ap- 
proach could be taken with the one-dimensional 
natural spline algorithms for generalized cross 
validation (Hutchinson and de Hoog, 1985). 
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