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Purpose and Description 

Purpose 

These Fortran-77 subroutines provide tools for penalized likelihood estimation and model 

checking for generalized linear models (GLMs) in which the model has a semi-parametric form. 

The routines build on GCVPACK (Bates et al., 1987) and are designed to use the generalized 

cross-validation criteria (Craven and Wahba. 1979) to determine the degree of data smoothing. 

'Ihese problems include smoothed GLMs (O'Sullivan, YandeU and Raynor, 1986). iteratively 

reweighted least squares (Green, 1984), and general nonlinear problems. We present some of the 

problems PGLMPACK is designed for and describe the structure of the routines. 

General Problem: A variety of penalized nonlinear problems can be solved by an iterative 

scheme in which the inner step involves a linear model approximation. 

with J = bI. . . ,y.)T the working values. 8 = (el, - . . the linearized model and E = 

( E ~ ,  . . ,E,,)~ a random vector with zero mean and covariance w', which is often diagonal. 
m e  matrix W is referred to as the working weights.) In many situation, a semiparametric model 

is appropriate, such as 

in which si is a c -vector of covariales with corresponding parameter vector a, xi is a d-vector 

of variates and f (.) is some "smooth" function. Smoothness can be enforced by a "roughness 

Copyright @ 1988 by Marcel Dekker, Inc. 
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 296 YANDELL 

penalty". J U ) ,  with a common choice being the integrated squared rn th derivative (cf. Bates et 

al., 1987). The solution to such a penalized linear model minimizes 

for some fixed 1 ,  leading to a solution of the linear model as 6 = W ' A ( ~ ) W ~ ,  with A(1) the 
"hat" matrix. One can then iterate on the nonlinear problem to convergence. 

The choice of the tuning constant A has been a subject of considerable discussion (Rice, 
1984; Hiirdle and Marron, 1985 a,b). We limit discussion to choices based on minimizing the 
generalized cross validation (GCV) criterion (Craven and Wahba, 1979) 

However, our development could be easily modified for any datadriven criterion based on A(1). 

What we propose to do is to iterate on both 0 and 1 to find the which minimizes (1.3) with 6 
minimizing (1.2). It is not known whether such a procedure will converge, but we conjecture that, 

if the GCV minimizer is bounded away from 0 and - and the nonlinear problem is suitably con- 
vex, then it does converge. 

If the penalty is chosen so that the estimate of f is a member of a reproducing kernel Hil- 

bert space then the penalty, and hence (1.2). can be expressed in a quadratic form (Aronszajn, 

1950). Such a space can be partitioned into a "smooth" space which is defined by the penalty, 

and a "null" space which is annihilated by the penalty. The semiparametric model (1.1) can be 

written in matrix form as 

with S the n x c covariate matrix with rows $, T an n x  t matrix whose columns span the 

null space, and K an n x k  matrix spanning the smooth space. If J penalizes the integrated 

squared mth derivative, then the ith column of T contains the low order polynomials in xi of 

total or& at most m - 1 and the ijth entry of K is proportional to 11 xi -xi 11 zm -* (Cf. Bates rt 
al., 1987). 

Let Ku be the k  x k  matrix ~tTesp0ndiIIg to the quadratic penalty for J and let Tu be 

the k  X I  matrix spanning Ihc null space. Typically KU and Tu are either derived from the 
unique &sign points or from a set of user-supplied basis nodes (see Appendix 2 of Bates a al. 

(1987)). The objective function (1.2) can be expressed as 

subject to ~ 3 . ~ 0 .  We propose computational solutions when matrices and working vectors in 

(1.4) may depend on the unknown parameters. Some problems of interest include: (a) semi- 

parametric generalized linear models, in which the matrices S, T. K and Ku are constant while 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 297 

the working values W and y may change with each iteration; (b) iteratively reweighted least 

squares, in which only Ku remains constant; and (c) general nonlinear problems (remote sensing, 

for example), in which all matrices may change with each iteration. 

One would like to decompose any constant matrices exactly once and to keep decomposi- 

tions of the changing mairices as cheap as possible. The method proposed here combines the 

advantages of the singular value decomposition (SVD) (Dongam et al., 1979, chapter 10) in 

locating the GCV choice of h with Cholesky decompositions (CDs) (Dongarm et al., 1979, 

chapter 8) which are relatively cheap once h is fixed. While the decompositions suggested are not 

new, the combination of approaches appears to be an unexplored area. The basic strategy is as 

follows: 

(1) choose an initial guess of 1, e.g., h=-; 

(2) find estimates of (j3, a, 6) by iteration using CDs; 

(3) linearize the problem based on the iterated solution; 

(4) use SVD to diagonalize A@); 

(5) choose new h using GCV or another method; 

(6) interate through (2)-(5) until convergence. 

Convergence criteria can include absolute or relative convergence of the regularization functional 

andlor the parameter estimates, and absolute convergence of log(n h). The number of iterations in 
(2) may be restricted, leading to rough estimates which are fed into (3). 

We do not assume any special structure to the design or the mabices, except that we sup- 

pose that W is of full rank, symmetric and computationally invertible. In many cases, W is actu- 

ally diagonal, but this will not be explicitly used in the linear algebm The algorithms below are 

extensions of Bates et al. (1987). building on their Fortran77 package, GCVPACK. 

Semlparametrlc Generalized Llnear Models: Semiparametric generalized linear model 

parameter estimation can be formulated as the problem of minimizing, for fixed 1, 

in which 0 is of the form (1.1), L(8) is the log likelihood and J is the smoothing penalty (see 

O'Sullivan, Yandell and Raynor, 1986; Green and Yandell, 1985). If L(8) is suitably convex and 

J(0) has a quadratic form, then Ss(8) has a unique minimum for each A. These conditions appear 

to hold for many generalized linear models. 

The log likelihood can be written in an iterative form using the score vector II, the 

working-weights W and the working-values y, 
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YANDELL 

based on 0' from the previous iteration. Note that for the independent normal model, W-' is a 

diagonal matrix of the standard deviations and y is the vector of observed responses. The log 

likelihood is approximated by a quadratic based on a two-term Taylor series expansion (cf. Yan- 

dell and Hogg, 1987). 

This allows one to locally approximate the penalized likelihood by (1.2). It is well known (Green, 

1984) that under regularity conditions the iteratively reweighted least squares solution based on 

(1.2) is the same as the maximizer of (2.1). 

We first decompose the constant matrices. Locating the unique design points Tu and the 
corresponding unique covariates Slu (if any) we form a QR decomposition (Dongma et al.. 

1979, chapter 9) 

From this we construct the (unweighted) design 

and penalty 

We decompose Z using a pivoted Cholesky followed by a QR decomposition, 

and construct 

Note that i r : ~~ i r~  is of rank q < k  - t  , and LT, Q1, Rl and Z1 al l  have q columns. The ori- 

ginal parameters are transformed to 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 

with y of length q and co of length r + c . The objective function becomes 

At this point we have done all the "one-time" decompositions. The following steps must 

be redone each Lime W and y change. We form a QR decomposition of 

WZ2= FG = FIGl , 

and create 

with J, being (1 + c ) x q and J2 being (n - r - c)  x q . This leads to the final fonn of the objec- 

tive function, 

in which the first term can be made zero by solving for o  , with any given 7, 

G ~ @  = F:WY- J ~ Y  . (2.10) 

The latter two terms of (2.9) comprise a ridge regression (Golub, Heath, and Wahba, 1979), with 

the estimate of y found by solving 

MY=J?F?WY . 
where 

The "hat" matrix can be formally written as 

Naturally, one would iterate to new working-values and working-weights using (2.2) and repeat 

the minimization of the objective function (2.8). At convergence, one can obtain the estimates of 

the original parameters via (2.7). 

Singular Value or Cholesky Decomposltlon?: One may approach the solution of (2.11) 

for y and the hat maaix (2.12) in different ways, depending on whether one wishes to select a new 

X or whether one wishes to leave X fixed. One way to automate choice of a new X is based on 

GCV for the linearized problem (2.9). We can diagonalize A(k) with a singular value decompo- 
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YANDELL 

sition (SVD) to simplify the search (Golub, Heath, and Wahba, 1979). Decompose 

Jz = U D V ~  , 

where D is diagonal of size a -- min(q.n - t  -c )  and U and V are orthogonal of sizes 

(n - t - c ) x a and a x q , respectively. The parameter estimates are 

f = V@+R M)-~DU~F:W~ , 

with & determined by (2.10). The hat mauix is diagonalited as 

These leads to a rational polynomial representation of the GCV criterion (1.3), which can easily 

by minimized by a golden section search, as in GCVPACK. 

If instead k is fixed, one can take the cheaper approach of a Cholesky decomposition (CD) 

of 

u=cTc , 

leading to the estimate of y by solving 

cTc+ = J:F:W~ . 

The hat matrix becomes 

Diagnostics: The diagonal elements of the hat matrix have been used for diagnostics in GLMs 

(Pregibon, 1981) as well as in smoothing spline models (Eubank 1984,1985). Recently they have 

been extended to semiparametric GLMs (Yandell and Green, 1986). The diagonal elements of 

(2.12) can be computed formally as 

{A(k)lii = 11 ~ : e ~  11 + 11 M"AJ:F&~ II 

in which ei is the n -vector with a 1 in the i-rh position and 0's elsewhere. For the SVD approach 

this is simply 

= 11 F:ei 11 '+ 11 D@+nm-'*UTF:ei 11' , 

and for the Cholesky approach (cf. OO'Sullivan (1985)), 

2 
{ A ( ~ ) J ~  = II F&, 11 + II C-~J:F:C, II . 

The trace of A(k) can be quickly computed if one is not interested in the diagonal entries by not- 

ing that 

r r ( ~ ( h ) ) = t + c + t r ( ~ ~ ~ ~ - ' ) = ~ + i + c - n ~ ( M - ' )  . 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 

For the SVD approach (see Bates et al. (1987)) this is 

For the CD approach we have 

in which e, here is of length q .  

Covariance matices can be computed by noting that COVQ) = w-~ .  Considering first the 

linear model estimates of (1.1), we find from (2.12) that 

Hence, the variances are 

VAR (8;) = 11 F:wlei 11 2 +  11 J~M-'J:F:w-'~~ 11 . 

For the SVD approach, this becomes 

VAR (8,) = 11 P:w1ei 11 '+ 11 D ~ @ ~ + ~ ~ J ) - ~ U ~ F ~ W - ' ~ ,  [ I 2  . 

Noting that 

M-1 J ~ ~ M - '  = M-1 - n m-2 , 

the variances under the Cholesky approach can be written as 

VAR (8;) = 11 F;w1ei 11 2 +  11 c - ~ J : F ~ - ' ~ ~  11 

- n 1 11 C-'C-~J;F:W'~, 11 , 

The covariance among the coefficients can be derived, using (2.7). (2.10) and (2.1 1) as 

In many situations we may be only interested in COV(a). Further, if the penalty Z is of the 

proper rank, then (2.7) essentially perm& and rotates the coefficients a and j3 into a. Let Zli = 
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6 - 7  T T 
1 Qz E e, +i , i = 1,.  . . . c , be the transformed index for a, . For the SVD approach, 

VAR (R) = 11 ei I I  + 1 1  D(D'+ n XI)-'vT~& I I  ' . 
For the Cholesky approach, using (3.1), 

VAR(o;)= I l & i  II'+ IIc-~J:c~ I I ~ - ~ X I I C - ' C - ~ J : &  1 1 '  . 

Tests: One may test parameters using the covariance matrix given above. One can perform 

stepwise tests in nested semiparametric GLMs using score tests which are computationally more 

appealing than t e s ~  based on deviances (Regibon, 1982, Yandell and Green, 1986). One can also 
test whether the f is parametric using analogues to recent results of Cox et al. (1987). 

Consider testing a full model 

6, =s,Ta+s,T&+f (1,) 

against the reduced model 

In other words, one tests whether the r-vector &=o.  The score statistic is 

The score test for 6 is 

T = uTS(ST~S)-lSTm 

= ~ H S ( S ~ H S ) - ~ S ~ H ~  , 
(3.2) 

with s the n x r  matrix with rows 6:. This test is conjectured to have approximately a xZ dis- 

tribution with r degrees of freedom when a= 0. For the SVD approach define the q x r matrix 

B = (I + D' 1 (n ~I))-'*U~F;WS 

and transformed working values 

f = (I + D' I (n )c) ) -%uTFm . 
Form the QR decomposition of B = QR = Q,R]. The score test (3.2) can then be written as 

T = ~ B ( B ~ B ) - ~ B ~ ~ ~  = 1 1  Q T ~  1 1  . 

For the CD approach, 

H = WF2(I- J 2 C - 1 C - T ~ : ) ~ : ~  . 
Forming the Cholesky decomposition of 

S ~ H S  = LTL , 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 

the score test (3.2) becomes 

Note that when r = 1 ,  calculations for both the SVD and the CD approaches simplify greatly, 

obviating the need for the extra decomposition in either case. 

Cox and Koh (1986) proposed a test for f parametric in the simple spline model, which 

was later extended to partial and generalized spline models by Cox et al. (1987). One can readily 

show that the nonlinear analogue of that test is 

This can be easily computed after convergence is reached. In fact, the computation overlap with 

some of those needed for the score test, which can lead to some time savings. Unfortunately, the 

distribution of T is a weighted sum of x2 statistics which has no closed form (Cox and Koh, 

1986). 

Other Nonlinear Models: Iteratively reweighted least squares (IRLS) models differ from 

semiparametric GLMs in that only the penalty matrix remains fixed (Green, 1984). The likelihood 

parameter 8 can be locally linearid, but the S, T, and K matrices are no longer fixed. For 

instance, with a penalized likelihood of the form (2.1). 

which may depend on the unknown parameters. We still only need form and decompose C as in 

(2.4) and (2.5) exactly once. However, the (unweighted) design (2.3) may change with each itera- 

tion. Hence, the remaining computations need to be done at each iteration. One could proceed in 

the same manner as for the generalized linear models, but reconstructing X, and hence Z and J, 

each time. 

General nonlinear problems could proceed in the same manner as for IRLS, except that K, 
changes each time. Thus most computations need to be redone. It may be possible for some non- 

linear problems to reparameterize them as SGLM or IRLS problems to eliminate this difficulty. 

Description 

The package has one main driver, Qglm, for penalized general linear models. The subrou- 

tine dpglm calls d&x to make the penalty I: and the design manix X using GCVPACK rou- 

tines dmnket, dmakek and dctsx. The penalty Z is decomposed by a call to the GCVPACK rou- 

tine ukgdc. Then the matrix Z is created by the GCVPACK routine dcrtz. 

The routine dnrfs handles all computations for the iterations. The model is initialized by a 

call to dmodel, which is one of &in, dpois or dnorm, depending on the model selected: binomial, 

poisson or normal. This routine handles evaluation of the likelihood and updating of working- 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
20

:3
2 

29
 J

ul
y 

20
08

 
304 YANDELL 

values. The algorithms are set up for a diagonal W matrix, and would have to be slightly 

modified for more generalaworking-weights. At each iteration for either the CD or the SVD 

approach, dmodel is called to update working values, and dcheck is called at the end to check the 

convergence criteria For the SVD approach, the GCVPACK routines dzdc and dgcv are called to 

decompose Z and to locate a new X by GCV. For the CD approach, Z is decomposed in the 

routine &hrr. 

Once convergence is established, dnrfs computes the predictive MSE (if requested) and 

back-mnsforms the predicted values to the original units. It computes the diagonal of the hat 

matrix (if requested) by dcdiag for the CD approach or by the GCVPACK routine ddiag for the 

SVD approach. The variances of the parameter estimates (if requested) are computed in dvar for 

both the SVD and the CD approaches. The test statistic for parametric f is then computed by 

dnrfs. If score tests are requested, then dsvst or &hrt computes the overall test of &=o,  along 

with single tests for for each of the r elements of a. Once dnrfs returns, dpglm does some final 

cleanup using LINPACK routines. 

The user can control whether 1 is to be considered fixed or to be automatically chosen, how 

many CD iterations are done each loop, and how many over CD and SVD iterations are per- 

formed. 

Related Algorithms 

The numerical linear algebra in our routines is performed using the LINPACK (Dongam et 

al., 1979) routines. The linear algebra for generalized cross validation is performed using 

GCVPACK (Bales et al., 1987). The introductory comments of each PGLMPACK routine list 

which GCVPACK, L W A C K  and BLAS (Basic Linear Algebra Subroutines) routines are called 

directly or indirectly. There is one machinedependent constant, the relative machine precision, 

which is used in these routines to determine error conditions caused by ill-conditioning, but that 

constant is computed each time it is needed. 

The present work generalizes GCVPACK algorithms for linear models of Bates et al. 

(1987) and references therein. It would also be possible to take advantage of block diagonal 

forms (Yandell, 1987) to realize furher savings of time and storage space. 

O'Sullivan. Yandell and Raynor (1986) developed algorithms for smooth generalized linear 

models based on the Cholesky decomposition. Green (1985) and Green and Yandell (1985) 

presented algorithms for penalized likelihood schemes which include generalized linear models 

and other iteratively reweighted least squares methods. Green and Yandell (1985) present a one- 

dimensional algorithm based on Reinsch (1967) and a general algorithm based on the Cholesky 

decomposition. See also O'Sullivan (1985). Yandell (1985) developed an earlier version of the 

present multidimensional algorithms. Hastie and Tibshirani (1986) and Buja, Hastie, and 

Tibshirani (1987) developed algorithms for generalized additive models using the "back6tting 

algorithm" pioneered by Friedman and Stuetzle (1981). 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 305 

If one follows Elden (1984) to stop the singular value decomposition after the bidiagonali- 

d o n ,  considerable h e  can be saveA since the effort to diagonalize is magnified by the number 

of iterations. Earlier work on GCVPACK (Bates et al., 1987) indicated that half of the singular 

value decomposition time may be spent on bidiagonalization. Of course, once convergence is 

reached, one could complete the diagonalization, doing this only once, to easily derive the 

diagonal of the "hat" matrix. Such a savings in computation would further reduce the advantage 

of iterating via Cholesky with fixed )c (see Test Results section). 

Test Results 

The package and drivers have been tested for internal consistency and for accuracy against 

other known algorithms. Here we present some timing results to show that the methods are feasi- 

ble for relatively large data sets and to offer insight into which portions of the code should be 

improved, if possible. 

All timing runs were performed on a Vax-11 fl5O computer with a Boating point accelerator 

and running the 4.2 BSD U N P  operating system. All timing was performed using GCVPACK 

with the standard BLAS of LINPACK @ongarra et al., 1979). 

We focus our investigations upon the Poisson and binomial special cases of the serni- 

parametric generalized linear model as these are potentially of wide interest and easy to formulate. 

We allowed up to c initial iterations of the Cholesky decomposition (CD) for A=-  (perfectly 

smooth case), and up to c CDS following each SVD, where c was 1,2, or 10. No case required 

more than 7 CD following an SVD, or more than 7 SVD overall. 

We simulated data which we thought might be "cumbersome" for the numerical algo- 

rithms. Simulations were conducted for n =50 and 100. The simulations were Poisson with a 

normal shaped c w e  of 0 = log(mean value), with peak height of between 0= 1.5 and 20. Bino- 

mial simulations used a similar normal shaped curve for 0 = logit(mean value), with peak height 

of between 8= logit(.05) and logit(.3) for n = 50 and between. 0 = logit(.005) and logit(.3) for 

n=100. 

The simulations showed that when the Wgnal" is small relative to the "noise", the CDs 

seem to stabilize the minimization problem, reducing the number of SVDs required and cutting 

the run time. Table l(a) present the combined CD and SVD run times, while Table l(c) present 

the numbers of SVDs and CDs. As the height of the Poisson peak rises, the CD iterations have a 

reduced impact on convergence. However, note that on several occassions iteration with only one 

CD increased the number of SVDs required. Allowing more than 2 CD steps only seemed to 

increase the overall run time; the number of SVDs was reduced in only a few instances. In addi- 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
20

:3
2 

29
 J

ul
y 

20
08

 
YANDELL 

Table l(aL Poisson Ron Times I 

Table 2(a). Binomial Run Times 

Table l(b). Poisson Decomposition Count (SVD.CD) 
n = 50 n = 100 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f W
is

co
ns

in
 M

ad
is

on
] A

t: 
20

:3
2 

29
 J

ul
y 

20
08

 ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 

size prob 
10 .3 

.2 

.1 

.05 

.o 1 
20 .3 

.2 

.1 

.05 

.o 1 

.005 

tion, a few simulations, not shown here, converged when up to 2 CDs p e ? ~ ~ ~  were allowed, but 

did not converge when 0 or up to 10 were allowed. Similar statements can be made about the 

binomial simulations (Table 2). 

Table 2(b). Binomial Decomposition Coont (SVD.CD) 

Since we know that the estimates converge for fixed X (O'Sullivan, Yandell, and 

Raynor, Jr., 1986). a few iterations for fixed 1 may guard against nonlinearity in the penalized 

likelihood. It is not known at this time wha~ conditions are required on the penalized likelihood, 

as a function of 1, to insure convergence in the SVD-only approach. 

n = 50 
I C = O  c=i c=2 c=io 

5.0 4.4 3.5 3.8 
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YANDELL 

Comments for Driver Routine 

subroutine dpglm(des,lddes,cov,ldcov,node,ldnode,reap,ldresp,ivec, 
adiag,avar,pred,lamlim,dvec,coef,svals,tbl,ldtbl,auxtbl,score, 
ldscor,stest,work,lwa,iwork,liwa,job,info) 
integer lddes, ldcov, ldnode, ldresp, ivec (13), ldtbl, ldscor, lwa, 

* liwa, iwork (liwa) , job,info 
double precision des(lddes,*),cov(ldcov,*),node(ldnode,*), 
resp(ldresp, 2) ,adiag(*) ,avar(*) ,pred(*),lamlirn(Z) ,dvec(8), 

* coef ( * )  , svals ( * )  , tbl (ldtbl, 3) ,auxtb1(3,3), score (ldscor, * )  , 
* stest ( * )  ,work (lwa) 

C 
c Purpose: determine the generalized cross validation estimate of the 
c smoothing parameter and fit model parameters for a penalized 
c general linear model. 
C 

c On Entrv: 
des(lhdes,dim) design for the variables to be splined 
lddes leading dimension of des as declared in the 

calling program 
cov (ldcov, ncovl+ncov2) design for the covariates 

first ncovl columns contain covariates which 
duplicate the replication structure of des 

next ncov2 columns contain covariates which 
do not duplicate the replication structure of 
de s 

ldcov leading dimension of cov as declared in the 
calling program 

node(ldnode,dim+ncov1) nodes for basis splines 
or unique design points and covariates 

ldnode leading dimension of node as declared in the 
calling program 

reap (ldresp, 2) response vector, weight vector 
ldresp leading dimension of reap as declared in the 

calling program 
ivec (13) contains : 

1 nobs number of observations 
2 dim number of columns in des 
3 m order of the derivatives in penalty 
4 ncovl number of covariates which duplicate 

the replication structure of des - 0 if using basis splines 
5 ncov2 number of covariates which do not 

duplicate the replication structure 
of des 

6 nuobs number of nodes if using basis splines 
or number of unique design points 

7 ntbl number of evenly spaced values for 
ln(nobs*lambda) to be used in the 
initial grid search for lambda hat 
if ntbl - 0 only a golden ratio search 
will be done and tbl is not referenced 
if ntbl > 0 tbl will have ntbl rows 

8-10 (not used) 
11 maxin maximum iterations for inner loop 
12 maxout maximum iterations for outer loop 
13 nscor number of covariables for score test 

adiag (nobs) "true" y values on entry if predictive mse is 
requested 

lamlim (2) limits on lambda hat search if user input limits 
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ALGORITHMS FOR MULTIDIMENSIONAL SEMIPARAMETRIC GLM'S 

c  On Ex i t :  

a r e  requested 
i f  lamlim(1) - lamlim(2) then lamhat i s  s e t  t o  
lamlim (1) 

dvec (8)  con ta ins  : 
1 lambda f i r s t  guess f o r  lamhat 

( required i n  except f o r  normal job) - -1.0 f o r  lambda - i n f i n i t y  
2-6 re turned on e x i t  
7 mint01 minimum to le rence  f o r  convergence 
8 minlam minimum d i f f e rence  i n  l o g  (lamhat) 

l d t b l  leading dimension of t b l  a s  declared i n  t h e  
c a l l i n g  program 

score  ( ld sco r ,  nscor)  covar iables  f o r  score  t e s t  (des t royed)  
ld sco r  leading dimension of score  
job i n t e g e r  with decimal expansion abcdef 

i f  a  i s  nonzero then compute p r e d i c t i v e  mse 
us ing adiag a s  t r u e  y  

i f  b  i s  nonzero then use r  input  l i m i t s  on 
search f o r  min lambda ha t  a r e  used 

i f  c  i s  odd then diagonal of t h e  h a t  
matr ix  i s  ca l cu la t ed  

c  > 1 compute var iance  of (beta :a lpha)  
i f  d  i s  nonzero then use svd 

d  - 0 only use  cholesky ( f ixed  lambda) 
i f  e  - 0 use  l i n e a r  model (normal) 

e  - 1 use l o g i s t i c  model (binomial) 
e  - 2 use log - l inea r  model (poisson)  

i f  f  i s  nonzero then pred a l ready i n i t i a l i z e d  
f  - 0 then i n i t i a l i z e  pred 

des (lddes,dim) unique rows of des 
pred (nobs) p red ic t ed  values 
ad iag  (nobs) d iagonal  elements of t h e  h a t  ma t r ix  i f  requested 
ava r  ( (nnul l*  (nnu l l+ l )  /2)  covariance (a1pha:beta) 

l i m i t s  on lambda ha t  search lamlim(2) 
dvec (8) 

i v e c  (13) 

coef (npar)  

s v a l s  (npsing) 

t b l  ( l d t b l ,  3) 

conta ins  : 
1 lamhat genera l ized c ross  v a l i d a t i o n  

es t imate  of t h e  smoothing parameter 
2  pen l ty  smoothing penal ty  
3  r s s  r e s idua l  sum of squares 
4 tr(1-A) t r a c e  of I - A 
5 l i k e  log  l ike l ihood  
6 o b j  l ike+lamhat*penlty 
7  gcv general ized c ross  v a l i d a t i o n  
8 t e s t  t e s t  of lambda - i n f i n i t y  
con ta ins  : 
1-7 (same a s  on en t ry )  
8 npsing number of pos i t i ve  s i n g u l a r  values  
9 npar number of parameters 

(npar - nuobs t nnu l l )  
10 nnu l l  s i z e  of t h e  n u l l  space of sigma 
11 i t i n  i t e r a t i o n s  f o r  i nne r  loop 
12 i t o u t  i t e r a t i o n s  f o r  ou te r  loop 
13 (same a s  on en t ry )  

c o e f f i c i e n t  es t imates  [a lpha:beta :del ta]  
coef must have a  dimension of a t  l e a s t  
nuobs+nnulltncov2 
s ingu la r  values  
s v a l s  must have a  dimension of a t  l e a s t  
nuobs-nnull 
column con ta ins  

1  g r i d  of In  (nobstlambda) 

2  V(1ambda) 
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 YANDELL 

s t e a t  ( l t n s c o r )  
i n f o  

c  Working Storage: 
c  work(1wa) 
c  lwa 
C 

C 

C 

C 

C 

C 
c  iwork ( l iwa)  
c  l iwa 
C 

C 
C 

3  R(1ambda) i f  requested 
a u x i l i a r y  t a b l e  

1 s t  row conta ins :  
In  (nobs*lamhat), V(1amhat) and R(1amhat) i f  
requested 
where lamhat i s  t h e  gcv e s t ima te  of lambda 

2nd row conta ins :  
0, V(0) and R(0) i f  requested 

3rd row conta ins :  
0, V ( i n f i n i t y )  and R ( i n f i n i t y )  i f  requested 

o v e r a l l  and s i n g l e  sco re  t e s t  i f  nscor  > 0 
e r r o r  i n d i c a t o r  

0 :  
-1 : 
-2 : 
1 :  
2 :  
3 :  
4 :  
5 : 
6 :  
7 :  
8 :  
9 :  

10 : 
20 < 
30 < 

100 < 
200 < 

double 

successful  completion 
In (n*lambda h a t )  <- lamlim(1) (not f a t a l )  
ln(n*lambda h a t )  >- lamlim(2) (not f a t a l )  
dimension e r r o r  
lwa ( length  of work) i s  t o o  small  
l iwa ( length  of iwork) i s  t o o  small  
e r r o r  i n  dmaket ( i n  dmksx) 
sigma i s  rank d e f i c i e n t  ( i n  dsgdc) 
R i s  s ingu la r  ( d t r s l  e r r o r  i n  dxeqr) 
ldcaux ( length  of dcaux) i s  t o o  small  
e r r o r  i n  n t b l  
lamlim(1) > lamlim(2) 
weight ( r e s p ( , 2 ) )  i s  zero  
i n f o  < 30 : 20 + nonzero i n f o  from chol  
i n f o  < 40 : 30 + nonzero i n f o  from dzdc 
i n f o  < 140 : 100 + nonzero i n f o  from dgcv 
i n f o  < 210 : 200 + nonzero i n f o  from dchst  

p rec i s ion  work vector  
length  of work a s  declared i n  t h e  c a l l i n g  

program mubt be a t  l e a s t  lwal + lwa2 where 
lwal - n c t s l *  (nuobst l )  + nnu l l*  (nnull-1) 

+ 2*npar* (npa r -nnu l l t l )  
+ npar* (nobstmax (nobs, npar) ) 

lwa2 - (npar-nnull)  (nobs-nnull)  - nnu l l  
+ 2* (nobstnpar) 

i n t e g e r  work vec to r  
l eng th  of t h e  iwork a s  declared i n  t h e  c a l l i n g  
program 
must be a t  l e a s t  3  nobs - n c t s l  

c  Subprograms Called Di rec t ly :  
c Pglmpack - dbin dmksx dnorm d n r f s  dpois  
c Gcvpack - d c r t z  dsgdc 
c Linpack - d q r s l  
c Blas  - dcopy 
c Other - d s e t  
C 
c  Subprograms Called I n d i r e c t l y :  
c Pglmpack - dcdiag dcheck dchr r  dchst  dmodel(-dbin,dnom,dpois) 
c dsvs t  dvar 
c Gcvpack - dctsx  d c f c r  ddiag dgcv dmakek dmaket dpdcr dpmse 
c drsap dtsvdc dvl  dvlop dvmin dzdc mkpoly 
c Linpack - dchdc dposl dqrdc d q r s l  dsvdc d t r c o  d t r s l  
c Blas - daxpy &sum dcopy ddot dgemv dnrm2 d s c a l  dswap 
c Other - dcpmut dpnnut d s e t  d f tk f  f a c t  pcheck 
C 
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