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Abstract

Locally adaptive smoothing splines combine features of variable kernels and smoothing
splines to allow for local adaptive fitting and for a minimization of integrated mean squared
error. Basically, one first adaptively fits a function with a local bandwidth kernel estimator,
followed by a global fit to the presmoothed data using a penalized likelihood. We present
some properties of the estimator and demonstrate its practical use through simulations and

data analysis,



1 Introduction

Suppose one obtains observations Yg, -, Y, _; of the form
Yi = f(zi) + e,

withz; =4/n,i=0,.-- ,n—1. It is assumed that the errors ¢; contaminating the observations
of f(z) are independent random variates with mean 0 and variance o2. Of interest is the
nonparametric estimation of the function f € C*[0,1],k > 4, such that f¥) € Lip,[0,1], by

a function from the Sobolev space of order two,
W3 = {glg,¢’ € C[0,1] and ¢'¥ € L,[0,1]}.

We propose a nonparametric estimate of a curve which is a hybrid of kernel smoothing [1]
and spline smoothing [2,3].

We combine the ideas of the computationally simple kernel estimator,
n—1 n—1 :
Fulz,b) :Zw( )}//Z (b}ﬁ)’ 0 He)<1/8 (1)

1=0 1=0

with the cubic smoothing spline [4]. The kernel estimator minimizes the following weighted

least squares criterion [5,6] at fixed z,

n—1

(nb) ™" 3" w (5E)[Y; - g(2)]? (2)

s

™

while the cubic smoothing spline minimizes the penalized least squares [7]

n L= @) 44 [ o) da ®)

among all g € W7, with A > 0 the smoothness constant. Our purpose is to show that the

minimizer of

“1Z[Wﬁ w(b(%)")(y; 9(z5)) } 2 [0k, @)
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where W; = Y1 w (W

), has smaller IMSE than that of the spline estimator of (3).
Thus a locally adaptive smoothing spline is proposed, which improves on the IMSE of the

global smoothing spline, using ideas and methods from adaptive kernel estimators.

2 Kernels and Splines

We consider kernel estimators of the form (1) where w(v) with k continuous derivatives is a

symmetric kernel of order k with compact support on [-1,1], satisfying the moment conditions

1 j=0

1

/_ﬁ“’w(v)dv: 0 j=1, k-1
Wit0 5=k

The bandwidth b € (0,1/2] is a function of n and z although the notation does not reflect
this. I b — 0 and nb — co as n — oo then f,(z,b) is a consistent estimator of f(z) [8].
The bias of the kernel estimator is proportional to & f(*)(z) and the variance is inversely
proportional to nb. Therefore, the bias of f,(z, b) can only be reduced at the cost of increasing
the variance.

9] proposed a method for estimating the optimal finite sample global bandwidth 5 which
minimizes the integrated squared error IMSE(b) of f,(z,b). The choice of the global band-
width # is governed largely by the peaks and troughs of f. This global bandwidth results
in a kernel estimate which tracks the observations Y¥; in the flat regions of f, rather than
averaging out the contaminating noise. [10] proposed a method for estimating the optimal
finite sample local bandwidth °(z) which minimizes the mean squared error MSE(z;b) of
fn(z,b). The local bandwidth b*(z) results in a kernel estimate with a small bandwidth near
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peaks of f (reducing bias) and a larger bandwidth in the flat regions of f (reducing variance).
Kernel estimators using data adaptive global and local bandwidth selection procedures have
been shown to exhibit these properties as well [10]. However, the local bandwidth can be
difficult to estimate in places where f*) has high curvature. Consequently, the greatest in-
centive to using a kernel estimator with a local bandwidth over a global bandwidth selection
procedure is in the reduction in variance realized in places where f(*) is very smooth.

The smoothing spline y,, » which minimizes (3) is a piecewise cubic polynomial with knots

at xq, -, 2, and two continuous derivatives satisfying the boundary conditions
pnnP(0) = g (1) =0 for i =2,3.

The smoothing parameter (A) can be chosen from the data by either cross validation or
maximum likelihood methods [11]. [12] and [13] showed that in the interior of (0,1), the cubic
smoothing spline is asymptotically equivalent to a kernel estimator with a global bandwidth

of h(A) = A/ and kernel of order 4 given by
S(u) = 27 exp(~|ul/V2) sin(|ul/v2 + 7/4).

[14] point out that it is desireable for A()) to depend on the local curvature of f.

The penalized weighted least squares criterion (4) combines features of the weighted least
squares criterion (2) and the penalized least squares criterion (3). When b(z;) < n™1, j =
0,---,n— 1, U(g) reduces to (3) whose minimizer is the cubic smoothing spline. On the
other hand, if A = 0 then U(g) reduces to (2) whose minimizer is the kernel estimator. The
following lemma shows that the minimizer of U(g) is simply the minimizer of the penalized
least squares criterion applied to the kernel-smoothed data. Its proof is a straightforward
algebraic manipulation which is not given here.
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Lemma 1 The unique minimizer of U(g) among g € W} is also the unique minimizer of

n—1 . 1
n™t Y [f(z) — B2 + A / [/®(2))de
1=0 0
among all = e e o=l o (2T x e
g all g € W3, where ¥; = W' Si3 w (5" Vs

Let fn(.’ﬂ;)\,b) denote the minimizer of U(g), then f, is a smoothing spline fit to the

presmoothed data (z;,Y;), 1=0,---,n — 1.

3 Asymptotic Bias and Variance

Of interest are conditions under which the asymptotic IMSE is smaller for f,(z;\,b) than
for pya(2). In order to get some insight into how to select the bandwidth b(z) to achieve

this, asymptotic expressions are derived for

B (A) = [[Bfa(i\,b) - f(2)da
and
V(3) = [ Blfal@; \,6) — Bfala A, b)d |
where b = b(z). Set
BY2) = [1Buna(e) - f(2)de
and
Vo(3) = [ Eluna(z) = Bpnp(2)da

It is of interest to select b(z) in such a way that

V(A) £ W(A) forall >0



without suffering a large increase in B%(\) relative to B2()).

Lemma 1 of [15] showed that if f(0) = f(1) and fM(0) = f()(1), then

Vo(A) = n~ JQZ/\

where
et (i) (N ) =1, ,n—1
A2 =
1 ;7=0
with X' = A(27)* and r; = 132 _ (7 +sn)~%. The following theorem provides an asymptotic

expression for V().

Theorem 1 . If f(0) = f(1) and fM(0) = fM)(1), then V(\) =n~lo? Yi20 giA?, where

= ST S woawrt % ‘mf’) w ("’““,;(;i;’*') cosf2mj(m — )fn]

=0 m=0 I=0

forj=0,---,n—1.

The g; are converging to cos(0) = 1 as n — oo. Furthermore, from the bias properties
of kernel estimators [16], for large n, 0 < g,y < .-+ < go < 1. Therefore, for large n the
expected result that V(X) < V4(A) follows.

The following theorem allows us to compare B%()\) with B2(}). lthe proof is in the

Appendix.

Theorem 2

B(3) = B3 + [mal@)Pde +2 [ Bluns(e) — f(@)lvna(a)de

where vq A () is the smoothing spline with smoothing parameter A which is fit to (z;, Bias(z;))

)

t=0,---,n—1. Here Bias(z) = E[f.(z,b)] — f(z).



The optimal rate of convergence for IMSE of a kernel estimator with a kernel of order
: = 4 is O(n=%°). For general f € C*[0,1], i.e., f that does not necessarily satisfy the
boundary conditions
FREY = FNT) =D for =28, (5)
the optimal rate of convergence for the IMSE of p,\(z) is slower than n=8/° [17]. If the
above boundary conditions are satisfied, then the IMSE of y, x(z) can attain the optimal
rate n=8/°,
If b(z) is O[n~"/(2*+1)] the optimal rate for minimizing MSE of the kernel estimator, then

vna(z) = O[n=* M) I f satisfies the boundary conditions (5), then & > 4 ensures that

B*(A) = B3(A). If f does not satisfy (5), then k > 4 is sufficient for B2()) = Bi()).

4 Simulations and Data Analysis

4.1 Simulations

The simulations were performed on the Statistics Research VAX at the University of Wisconsin-
Madison. The purpose was to convincingly demonstrate that the locally adaptive smoothing
spline has smaller IMSE that the global smoothing spline. A rescaled version of the function

used by [3] was selected for the simulations
f(l’) s 4_26[6—3.255 _ 46—6.55:' e 36-—9.75:.::[.

Independent identically distributed N(0,0?%), o = .1f(0), contaminating errors for n = 50
were generated with the public domain random number generator RNOR. Noisy observations
of f on [-1,2] were used by the kernel smoother in order to avoid boundary modifications to
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the kernel [18]. The spline fit to the presmoothed data (the LASS) and the global spline fit
used only the region [0,1].

One hundred independent realizations of size 50 of the locally adaptive smoothing spline
(LASS) and the global spline smoother were generated. The LASS were created by generating
raw data, presmoothing with the local bandwidth kernel smoother of [10], and then applying
a cubic spline smoother. The LASS was applied with the kernels of [19].

As described earlier, the advantage to using a locally adaptive spline smoother over a
global spline smoother is the reduction in variance where the underlying curve f is very
smooth. The function used in the simulation is a paradigm of the undesireable *wiggliness’
which can result from locally undersmoothing the noisy data. Figure 1 is a realization of
the two locally adaptive spline smoothers and the global spline smoother for this mixture of
exponentials.

The mean squared error of the locally adaptive spline smoother and the global spline
smoother were estimated from these one hundred realizations. Figure 2 presents the ratio
of local to global MSE. Note the reduction in MSE achieved by the local spline smoother
over the global spline smoother, particularly for the kernel of order 6. The average (over x)
estimated MSE for the locally adaptive spline smoother are .0063 and .0050 for & = 4 and 6,
respectively. The average estimated MSE for the global spline smoother is .0097. Smoothing
the data with higher order kernels allows the locally adaptive smoothing spline to enjoy a

large decrease in variance without a subsequent increase in bias.



4.2 Data Analysis

The voltage drop data in Ch. 3 (ex. 14) of [20] was analysed. Figure 3 is a plot of the locally
adaptive spline smoother for k& = 4, 6 and 8 and the global spline smoother superimposed
on the data. The curve f was assumed to be periodic on [0,20] in order to avoid boundary
modifications to the kernel [18]. Again, it is evident that the higher order kernels relieve the
bias problem of the locally adaptive spline smoother while allowing for a decrease in variance

over the global spline smoother.

5 Conclusion

In practice, the LASS smoother is indistinguishable from the locally adaptive kernel estima-
tor. This is due to the fact that the cross-validated A which is estimated from the kernel-
smoothed data is very close to zero. A natural problem to consider next is a "weighted”
least squares cubic spline with k << n knotts which minimize equation (2) with respect to
g. The TURBO smoother of [21] would probably benefit from this presmoothing of the data,

allowing for a numerically stable algorithm.



6 Appendix

6.1 Proof of Theorem 1

Represent both the spline f,, fit to the presmoothed data and the smooth function f in terms

of a Fourler series expansion:
)\ b 2misx
(a2 Cs€
S=—00

and

o0 .
- Z GSGZTHI.

S=—00

For computational convenience, let f,(z; A, b) be the minimizer of

1
-2 Z Vi — fz:)? + XN(2m)" / (fD(2))2de , N = A(2r)*.
0
Referring back to the results and methods of [15], it can be shown that

0 when s # 0

Con =
n=1/2Y, when s =0
and
Cigon = (F +sn) 2N + 7)) 0" V2Y, ,j=1,.-- ,n—1.

A

Here Yy,---,Y,_y are the discrete Fourier coefficients of Yg,---,Y,_1; i.e.,

& n—1 N
Y;=n"1? > Y, exp(—2rijt/n)

t=0

= U;(WY),



where U; = {exp(2wijt/n)}_ 0, Wy = Wﬁ_lw(%), 5,j = 0,---y,n~1,and ¥ =

(Yo, -+, Ya_1)T. Tt follows that var(}:" ] &= O'QU*VVDVTU and V=52

§=—00

var(cs) by Parse-
val’s Theorem. Therefore
V = o*n~'trace( AU"WWTUA)
= o*n~race( WWTUA?U)
where A = diag(Xo, -, Auo1) and U = [Up - - Upy].

The elements of A = UA?U* are of the form

n—1

Ajp=n"1)" Mexp(2mit(j — U)/n) .
=0
Thus
n—1n-1
no vV = Z WWTA), =3 S (w
=0 I1=0 j=0
n—1n-1 |n-1 Ty — T T, — ; & n-1 5 o
= ¥ Z WiW;)~ ( )w n' > Mexp(2mit(j — 1)/n)
[=0 7=0 | g=0 bl b.:' t=0
n—1
= ’\tz(j’t
=0

with ¢, defined accordingly. Note that ¢ is real valued since w is symmetric and ¢, is

symmetric in z;, ;.

6.2 Proof of Theorem 2

Using Parseval’s theorem, we can express

- i Bias*(c,) .

s§=—00

As in Lemma 1 of [15],

BY(\) =

2

n—-1 oo
Z Jsa3+d)_aj+sn )
j=0 s=—o0

10



where

dj = n~1? 1) Bias(xi) exp(—2nijl/n)

~ o0 3 L
aj:Zsz—ooaj+sﬂ) j—O,"',n—].,

Ajis =(F+sn)™ (N +r;), j=1,---,n—1, oo = 1 and Ay, = 0 for s # 0. Here Bias(z)
is the bias of the kernel estimator of f(z) which uses the kernel w and the bandwidth b(z).

From Parseval’s theorem, we recognize that

B () = [{[Buna(e) — f(@)] + v (@)} de

where v, 5 is the smoothing spline fit to (z;, Bias(z;)) and where g, ) is the smoothing spline

fit to (24,Y:)),i=0,-+-,n — 1. Therefore,

BY(3) = B3 + [lna(@)Pde +2 [[Bunn(@) — f(@)pmn(e)da
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8 Figure Captions

1. Realizations of the LASS and Global Spline Smoothers for Data Simulated from a Mixture
of Exponentials. Solid line is true f; dotted line is LASS with k=4; short dashed line is LASS
with k=6; long dashed line is global spline smoother.

2. Estimated MSE of LASS Relative to Estimated MSE of Global Spline Smoother. Solid
line is k=4; dotted line is k=6.

3. Raw Data, LASS, and the Global Spline Smoother for Voltage Data. Solid line is
LASS with k=4; dotted line is LASS with k=6; short dashed line is LASS with k=8; long

dashed line is global spline smoother.
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April 10, 1990

Joan G. Staniswalis, Ph.D.
Department of Biostatistics
Medical College of Virginia
Virginia Commonwealth University
P.O0. Box 32

Richmond, Virginia 23298-0032

Dear Dr. Staniswalis: RE: CSDA #89-465

The reviewing process for your manuscript is now
complete.

The Associate Editor received two detailed reviews which
I am enclosing for your review. Generally speaking, the
notion of adaptive smoothing splines is appealing, but
it was not obvious that the proposed method is really an
improvement on either spline smoothing or adaptive
kernel estimation. One referee was not sure of the
"bottom 1l1line" recommendation. A second referee was
concerned with the overly restrictive nature of your
design (e.g., equally spaced data), and felt that the
general case could be easily derived. Additional
detailed comments are enclosed.

On the basis of the reviews, and the recommendation of
the Associate Editor, we are unable to publish you
manuscript in its current form. We do, however,
enccurage you to resubmit a greatly revised manuscript,
taking into account the referees’ comments. If you
choose to revise, please indicate in a covering letter
the nature of your changes. This will expedite the re-
reviewing process.

Thagk you for considering CSDA.

ely,

Stanley P. Aﬁr?,yLPh.D.

Editor-in-Chief




Comments for the authors of
“Locally adaptive smoothing splines”

This is an interesting manuscript that seems to leave some questions unan-
swered. The notion of adaptive smoothing splines is appealing. Somehow,
though, I'm not sure that the proposed method is really an improvement,
on either spline smoothing or adaptive kernel estimation. After reading the
entire article, I get the impression that adaptive kernel estimation by itself
may be the best method. (Perhaps this is what the authors have in mind!) I
think the paper would be strengthened by making a convincing case for LASS
over adaptive kernel estimation alone. I also had difficulty understanding the
application of the Theorems. My apologies if I missed something important
and obvious. I have outlined several questions and suggestions below, and I
look forward to further comment and development.

1. In the argument following Theorem 2, I had difficulty with the state-
ment “. .. for large n,0 < gu—1 < --- < go < 1.” It’s not clear to me how
this follows from bias calculations. This point needs clarification. One
possible way to demonstrate the desired result would be to note that
g; = UJ?I'VPVTUj, so the ¢; are bounded above by the eigenvalues of
WWT. Can you prove that these eigenvalues are all bounded above by
one? Suppose you let S denote the smoothing spline matrix satisfying

(Jun./\(ml)a ey }In1A($l))T = Sy

Does the argument now depend on the specific form of the U; or would
1t apply to any smoother matrix S? Can one instead extend to arbitrary
S via the principal value decomposition S = PAQT where P and Q
are both orthogonal?

2. Thisis probably my slowness, but I didn’t understand the application of
Theorem 2 on bias either. In particular, what does the last paragraph of
section 3 mean? Does “B*(\) & B}(A)” mean “B*(\)/B2()\) — 17" If
s0, wouldn’t I want B*(A)/B3(\) < 17 Or are you arguing that ) could
be decreased some without increasing the variance too much. Although
I understand the difficulties, some of the confusion is perhaps caused
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by the ambiguous use of the O(n~*/(k+1)) notation. Do you sometimes
mean exact order? Presumably the spline smoother in the two-stage
estimator should have a different smoothing parameter than when used
by itself. -How is this fact used in the estimates of mse? Any help you
could give in showing how the bias would actually be decreased would

be helpful.

 As T mentioned above, I have difficulty understanding the benefit of
the second smoothing. Intuition suggests that further smoothing will
reduce the variance, so I believe the application of Theorem 1 even if
the proof is not entirely clear. However, smoothing induces bias by
filling in valleys and cutting off peaks. My intuition suggests that a
second global smoother will make the bias worse. If the presmoother
underfits, there could be some benefit to additional smoothing. But in
this case would shouldn’t you simply use a better presmoother? Why
perform the smoothing spline component at all? The comments in the
conclusion appear to hint at this as I read “... the LASS smoother is
indistinguishable from the locally adaptive kernel estimator.” It seems
clear that there will be hardly any roughness left after the presmooth- -
ing. Perhaps you can clarify the matter.

Minor points

. You might mention that bias and variance calculations assume fixed b
and A throughout.

. (p. 512) What is the role of periodicity in the variance of the smoothing
spline? I thought it only affected the bias.

. Do you assume equally spaced points throughout?
. (p. 10 1) Should U; be multiplied by n~1/27

. This is only a matter of taste, but I think Theorem 2 is clearer with
matrix notation (the L, norm can he replaced by the Euclidean norm

in R,):

B*()) = |IsWf-fI’




ISf—f+SWf—Sf|?
ISS =117 + IS(Wf = A
+2(Sf = ) (S(Wf - f)).

This is also more general.

6. (Figure 1) It would be interesting to see the presmoother plotted along
with the LASS and global smoothing spline.




Referee’s report on ““Locally Adaptive Smoothing Splines™ by Staniswalis and Yandell

The authors propose a hybrid of kernel and spline smoothing to create a computationally
simple way of computing smoothing splines with locally adaptive levels of smoothing. The proposed

technique is quite interesting and the paper is well written overall.

There are two basic problems with this paper. First, it is written for a journal concerned with
computation but the computational side of the methodology is almost totally ignored. Secondly, the
asymptotics deal only with the case of periodic smoothing splines and equally spaced data. This is
overly restrictive and the same essential results can be derived in the general case. Some ways to

correct these two problems are discussed below.

Computational aspects.

At the very least all the essential details of the computation of the estimator should be
discussed. This includes the locally adaptive bandwidth selection method of Staniswalis and the method
of selecting A for the presmoothed data. I feel that the computations should be done using -ordinary
smoothing splines and boundary kernels as well. The authors should discuss the creation of code for
their estimator. Presumably this can be done by combining code from Staniswalis’ work with widely

available code for spline smoothing.
Asymptotics.

The essential conclusions you reach in your asymptotics can be reached for gencral smoothing
splines. In fact, the case of general designs and higher than second derivative penalties can also be
handled. One can show

1
V(A) < (J lw(u)]*du)Vo(A)(1 + o(1)) (1)
21
and, if k > 2,
B2(3) < By(A)(1 + o(1)), )
under your same conditions, with all this pertaining to the general non-periodic smoothing spline. The
details are actually simpler. I therefore suggest that the asymptotics for the general case be given and

the space that is saved by doing this be used for elaboration on the computational aspects of the

estimator.

Note that (1) is but one of several bounds that can be used here. It gives V(A) < Vy(A) for n



sufficiently large and the Epanechnikov kernel. This is an improvement, in some sense, over the

result presented in the present paper.

P8- 2. i) You show that the IMSE of your estimator is no larger, asymptotically, than that of the
ordinary smoothing spline. You do not show that it is smaller,

ii) Strictly speaking the Rice reference [9] deals with a damped Fourier series estimator not a kerpel
estimator. There are many other references for global bandwidth selection methods for kernel

estimators. Some of these should probably be mentioned here.

Pg. 3. 1) The second paragraph is a waste of space and should be eliminated.

ii) The proof should be given for the lemma.

Pg-4.3lg — f

pg. 7. How was ) selected in the simulation and data analysis.

pg. 8. 1) Unfortunately, the assumption of periodicity is not really valid for this data, One can show

that there is a significant edge effect. This is all the more reason to use a regular smoothing spline and

boundary kernels,

ii) There is no reference [21].

Pg- 11. If I'm wrong on this please ignore this comment, but I have never seen a journal that does not

require the references to be alphabetized,

Figure 2. i) The axes need to be labeled.

1i) Why not break this into two (or even three) plots of squared bias and variance (and maybe MSE). 1



think this would make your point that the estimator decreases variance much better and show that the

peak in the figure for k=4 is mostly due to bias.

Proof of (1) and (2). First we need some notation. Let H, be the matrix that transforms the data to
fitted values for a smoothing spline and let W be the matrix that does this for your kernel estimator

(this can include boundary corrections). If f)\b is the vector of fitted values for your estimator, then
n~'tr(Var(fy,)) = n~ 022 ,\Qt’jWW’tJ. < Vo)l W )3,

where the t; are the vectors of the values for the Demmler-Reinsch basis functions, the A; are the
eigenvalues of Hy, Vo(A) =n 1022)\2 and [ - [| is the Euclidean matrix norm, i.e., | W > = largest

eigenvalue of WW' = Aoy (WW' )

We require a bound for || W ||. By the Gershgorin circle Theorem we know that

_x’.

Amax(WW')Sm?XZZr:WFIW """(b.( ))w(b( ))l

By various quadrature arguments one can then show that this will be bounded asymptotically by

11 1
Jl_fllw(Y)w(u - ¥)ldydu < _flw(Uszu ;

assuming boundary corréctions have been made and that the data is equally spaced. Explicit evaluation
of the first bound may give better results, although fw(u) 2du is quite satisfactory for a kernel of order

2. This argument can be extended to unequally spaced data by assuming the x; are the n-tiles of some

positive, continuous density on [0, 1].

Concerning the bias, we have
B*(A) = n~'Y(f(x,) - Ef(x;; A, b))? = f(I- HyW)'(I- H,W)f/n
= Bi(X) + 2f'(I- W)'H Z- Hy)/n + £(1- W)'H3 A(I - W)i/n
< B3(A) + O(By(M)By) + O(BY) ,

where BZ, = /(I - W)'(I - W)f/n. Now B2, is the average squared bias of the kernel estimator and will
- O(n-zk/(:)k-n

continuously differentiable but can attain the n~2/° rate only if f has four derivatives and satisfies the

) so the bound (2) holds using the fact that B3 will decay at the n™*®rate if f is twice

natural boundary conditions (cf. Speckman,1981 and Rice and Rosenblatt,1983, Ann. Statist.).



