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ABSTRACT 

Many applications of mixed linear 
statistical models for genetic evaluation 
of dairy cattle assume that genetic and 
residual components of variance are each 
constant across environments. However, 
this assumption is violated for produc- 
tion and conformation traits, which can 
reduce accuracy of selection and cause 
biases in the proportions of breeding 
animals chosen from each environment. 
Best linear unbiased prediction can ac- 
commodate heterogeneous variances if 
the appropriate variance components are 
known. Variance components may need 
to be estimated within individual herds 
using Bayesian or empirical Bayes 
methods, but such approaches may not 
yet be computationally feasible on a na- 
tional basis. For this study, a structural 
log-linear model for sire and residual 
variances was used to identify various 
management factors associated with 
differences in within-herd variance com- 
ponents. Increases of herd size and 
within-herd mean were associated with 
significant increases of within-herd 
residual variance for milk and fat yields, 
but residual variance of milk yield 
decreased slightly as the proportion of 
registered animals in the herd increased. 
Type of milking system, silage storage 
system, DHI testing program, use or 
nonuse of a TMR, and use or nonuse of 
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automatic milking machine removal 
devices also significantly affected 
residual variances. However, differences 
in sire variances across levels of 
management factors were not significant. 
(Key words: variance components, 
model) 

Abbreviation key: AM-PM = a.m.-p.m., 
DHIR = Dairy Herd Improvement Registry, 
PHR = proportion of herd that is registered, 
RHA = rolling herd average. 

INTRODUCTION 

Differences in within-herd variance compo- 
nents have been reported for economically im- 
portant traits of dairy cattle [e.g., (4, 22, 23, 
31)]. If not properly taken into account, heter- 
ogeneous variances across levels of classifica- 
tions of the data can cause biases in BLUP 
breeding value predictions for individuals per- 
forming in environments with above or below 
average variances. However, BLUP can 
properly account for differences in within- 
subclass variances if all necessary variance 
components are known [e.g., (lo)]. Unfor- 
tunately, this method may require estimation 
of a large number of variance components with 
very little information contributing to each 
component. In such a situation, likelihood- 
based methods, such as REML, which rely on 
an asymptotic justification, may fail to provide 
sufficiently accurate estimates (26, 3 1). 

Some authors (3, 5) advocated stratification 
of the data by within-herd means and estima- 
tion of variance components within each stra- 
tum. Although this strategy increases the 
amount of information available for variance 
estimation, any heterogeneity that is due to 
effects other than the association between the 
mean and variance will be concealed. Famula 
(7) cautioned that estimates of genetic vari- 
ances obtained in this manner may be biased 
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by selection, because the strategy used to clas- 
sify herds into groups is analogous to selection 
on sire progeny group means if sires are non- 
randomly used across herds. Visscher (24) 
contended that such biases will likely be small, 
particularly if considerable environmental vari- 
ation exists among herds. 

Recent developments have focused on three 
topics. First, because phenotypic variances can 
be estimated more accurately than genetic vari- 
ances with limited data, methods have been 
developed to pool within- and across-subclass 
phenotypic variance estimates (4, 12, 13, 29, 
30). Estimates obtained in this manner have 
been used to standardize records in national 
genetic evaluations (13, 30). However, these 
methods do not properly model the covariance 
structure of the data, and differences in herita- 
bility or repeatability across environments can- 
not be detected. 

Second, Gianola et al. (11) presented an 
empirical Bayes method for estimating within- 
herd genetic and residual components of vari- 
ance using across-herd REML estimates as 
priors. Accuracy of resulting within-herd vari- 
ance component estimates was improved 
greatly by incorporating across-herd informa- 
tion, particularly for the genetic component 
(28). Although this method could be im- 
plemented on an individual herd basis (28), it 
would be computationally taxing if relation- 
ships across a large number of herds were 
considered. 

Third, Foulley et al. (8, 9) and San 
Cristobal et al. (20, 21) derived a procedure 
based on a generalized linear model (1, 16) 
that allows construction of a log-linear model 
for variance components (15) such that factors 
causing heterogeneity of genetic and residual 
variances can be identified and their effects 
quantified. Their (8,9, 20, 21) method offers a 
potential computational advantage relative to 
procedures for within-herd variance estimation 
because it can be applied to a random subset of 
the data. Resulting estimates of effects of herd 
management factors on within-herd compo- 
nents of variance can be used to standardize 
records from other herds with similar manage- 
ment practices. 

Keown (14) conducted an extensive survey 
of management practices on midwestern dairy 
farms, and phenotypic variation of herd mean 
milk yield was significantly associated with 

differences in nutritional programs, manage- 
ment practices, and facilities (2, 14). In addi- 
tion, Padilla (18) and Padilla and Keown (19) 
reported differences in heritability estimates 
when the data were stratified by levels of herd 
management factors. 

The objective of this study was to apply the 
structural log-linear model approach of Foulley 
et al. (8, 9) and San Cristobal et al. (20, 21) to 
the production and management data of 
Keown (14) 1) to identify management factors 
causing heterogeneity of within-herd genetic 
and residual variances for first lactation milk 
and fat yields and 2) to assess implications for 
breeding value prediction and selection as- 
sociated with this method of accounting for 
heterogeneous within-herd variances. 

MATERIALS AND METHODS 

Management Data 

A dairy management survey was conducted 
in 1985 and 1986 by Keown (14) using herds 
enrolled in DHI testing programs in Arkansas, 
Illinois, Iowa, Kansas, Missouri, Nebraska, 
North Dakota, Oklahoma, and South Dakota. 
Seven aspects of the dairy operation were as- 
sessed (14): 1) housing and facilities; 2) milk- 
ing operation; 3) types of grains and forages 
fed and methods for storing and dispensing 
feed; 4) feeding of newborn calves; 5 )  addi- 
tives and supplements fed to heifers and cows; 
6) management practices, such as grouping of 
heifers and milking cows, computer usage, 
veterinary programs, estrus detection, mastitis 
control, and DHI usage; and 7) AI and 
methods of sire selection. 

Padilla (18) and Padilla and Keown (19) 
found significant differences in within-herd 
phenotypic variances across levels of housing 
system, type of silage fed in the summer, and 
use or nonuse of a TMR or a buffer supple- 
ment. In addition to these factors, various other 
management characteristics were considered 
for the present study as possible causes of 
heterogeneous genetic and residual variances, 
including frequency of concentrate and rough- 
age feeding, use or nonuse of AI, type of 
storage system for silage, type of milking sys- 
tem, type of DHI test, enrollment or nonenroll- 
ment in a veterinarian-supervised herd health 
program, type of dry hay fed in summer and 
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winter, presence or absence of automatic take- 
off (milking machine removal) devices, DHI 
rolling herd average (RHA) for milk or fat 
yield (depending on the trait under considera- 
tion), state, herd size, and proportion of cattle 
in the herd that were registered (PHR). These 
management factors were described in detail 
by Keown (14). 

Production Data 

Production data, consisting of mature 
equivalent, twice daily milking, 305-d DHI 
milk and fat records from first lactation Hol- 
stein cows calving between June 1, 1984 and 
December 31, 1985 in the nine Midwestern 
states listed previously, were merged with the 
management data. Records of cows <18 mo or 
>40 mo of age at first calving were deleted. In 
addition, records ~ 2 5 0 0  kg of milk or 100 kg 
of fat or >18,000 kg of milk or 900 kg of fat, 
as well as records less than 40 d in length, 
were eliminated. Only herds containing 210 
cows and sires having 25 progeny were con- 
sidered. Data from 6503 progeny of 385 sires 
in 465 herds remained for the analysis. Year- 
season subclasses were assigned by date of 
calving using a 5-mo summer season (May 
through September) and a 7-mo winter season 
(October through April). 

Statistical Analysis 

The structural log-linear model approach of 
San Cristobal et ai. (20, 21), which is an 
extension to genetic components of the proce- 
dure of Foulley et al. (8, 9) for modeling 
residual variances, was used to assess the ef- 
fects of various herd management factors on 
within-herd genetic and residual variances of 
first lactation milk and fat yields. Because the 
methods were presented in detail by San 
Cristobal et a]. (21), only a brief summary is 
given herein. 

Following the notation of San Cristobal et 
al. (21), the data were assumed to arise from 
an overall population stratified into I herds, 
such that 

yi = Xi@ + Ziui + ei 
i = 1, 2, . . .  , I [I1 

where 

yi = data vector for herd i, 
Xi = ni x p incidence matrix for fixed 

effects, 
0 = p x 1 vector of fixed effects, 
Z, = ni x qi incidence matrix for ran- 

dom effects, 
ui = qi x I vector of additive genetic 

effects (random) for herd i, and 
q = ni x 1 vector of residuals. 

Further, we assumed that 

and 

[31 

where 

Ai = qi x qi additive genetic rela- 
tionship matrix for herd i; 

Ii = ni x ni identity matrix; 
&L and <i = variance components cor- 

responding to genetic and 
residual effects, respec- 
tively, in herd i; and 

'i 

cov(ui,ej) = 0 for all i, j. 

Now, let the vector of genetic values cor- 
responding to herd i be written as 

Ul = UUiSiU* 

where 

Si = qi x q incidence matrix mapping 
the Q animals in herd i (or sires 
used in herd i, for a sire model) 
to the q animals (sires) present in 
the population, and 

u* = q x 1 vector of standardized 
genetic effects (random) for all 
animals present in the population, 

assuming 

U* - N(0, A) [51 
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where marginal likelihood of y after integration of @ 
and u. A first-order expectation-maximization 
algorithm, which is presented in detail by San 
Cristobal et al. (21), was used for parameter 
estimation. 

In the present study, the model for observa- 
tions (Model [l]) was of the following form: 

A = q x q additive relationship matrix 
for all animals in the population. 

The mixed model equations corresponding to 
Model [ l]  are 

y i , ~  = an observation of progeny 1 of 
sire k, arising in herd i and year- 

[61 

where 
season j, 

. . ., 465), 

1, 2, . . . , 41, 

= 1, 2, . . . , 385), and 

Hi = fixed effect of herd i (i = 1, 2, 

YS, = fixed effect of year-season j (j = 

Sk = additive genetic effect of sire k (k 

x = [X;x; . . . XI‘]’, 

(uu,ZISI)’l’, and 
z* = [(UU,Z1 SI>’ (Uu,Z,S2>’ . . * 

R = Diag (Iiuei). 2 

The structural model for variances involves 
the use of a log-link function (16), such that 
the transformed variance components can be 
described using a linear model, e.g., 

[71 

where 

w = k, x 1 incidence vector for herd i; 

ye = k, x 1 vector of fixed effects for 
the residual variance model; 

w = < x 1 incidence vector for herd i, 
and 

yu = ku x 1 vector of fixed effects for 
the genetic variance model. 

ei 

Ui 

A log-link function implies that factors affect- 
ing variance components act in a multiplicative 
manner. Now, letting y = [yey,]’, estimation 
of parameters for the variance model involved 
maximization of L(yly), which is the log- 

, ,  

q , ~  = random residual (1 = 1, 2, . . . 
nijk). 

Although use of an animal model would 
have been theoretically preferable, a sire model 
(Equation [9]) was chosen for computational 
simplicity. Because the inverse of the mixed 
model coefficient mamx in Equation [6] is 
required at each round of iteration, this proce- 
dure can become quite costly computationally, 
particularly when a large number of prelimi- 
nary variance component models are used dur- 
ing the model selection process. Three genera- 
tions of relationships among sires were 
considered for construction of the relationship 
matrix in Equation [ 5 ] .  

Initial screening of management factors as 
possible causes of heterogeneous within-herd 
variances was performed using Levene’s test, 
which involved a one-way ANOVA on abso- 
lute deviations of observations from the means 
of their respective levels for each management 
variable (17). This preliminary test was used to 
investigate the null hypothesis of homogene- 
ous phenotypic variances across herds, states, 
year-seasons, and levels of each categorical 
management variable. Levene’s test was ap- 
proximate in this case because correlations 
among observations that were due to genetic 
relationships and differences in variances that 
were due to fixed effects, other than the 
management factor being tested, were ignored. 
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For computational simplicity, selection of 
models for residual and sire variances was 
performed using a random subset of the full 
data. Herds with even-numbered DHI herd 
codes were chosen, and data were edited as 
described previously; the remaining data con- 
tained 232 sires, 239 herds, and 3078 records. 
Model [9] was used for the observations in all 
cases, and model selection for the within-herd 
variance components involved a two-stage 
procedure (21). First, the most suitable residual 
variance model for milk yield was chosen in a 
forward stepwise manner (using a likelihood 
ratio test) under the assumption of homogene- 
ous sire variances. Second, the residual vari- 
ance model was held constant, and differing 
models for within-herd sire variances were im- 
plemented. Once an overall model for sire and 
residual variances was chosen for this subset 
of the data, it was applied to an independent 
subset of the data consisting of herds with odd- 
numbered DHI herd codes (200 sires, 225 
herds, 2857 records). This subset of the data 
was used to check normality and independence 
of residuals and to check whether significant 
effects of management factors on variance 
components were consistent across subsets. 
The resulting variance model was applied to 
milk yield for the full data. 

Following the first stage of the model selec- 
tion procedure, Model [7] for within-herd 
residual variances for milk yield contained the 
following parameters: 

where 

p(e) = effect common to all herds; 

MS = effect of milking system; 
DHIT = effect of DHI test type; 

AT0 = effect of presence or ab- 
sence of automatic takeoff 
devices; 

TMR = effect of use or nonuse of a 
TMR; 

STO = effect of silage storage sys- 
tem; and 

A description 

regressions on rolling herd 
average, herd size, and 
proportion of animals in the 
herd that were registered, 
respectively. 

of individual levels of 
management factors is given in Tables 1 and 3, 
and participation in each level is given in 
Table 1. Levels of management factors that 
contained very few observations were com- 
bined with those levels representing similar 
management practices whenever possible. To 

TABLE 1 .  Description of relevant management and 
production factors. 

Factor Herds 

State (no.) 
Illinois 158 
Iowa 35 
Missouri 75 
North Dakota 9 
South Dakota 30 
Nebraska 57 
Ki3IMS 80 
Arkal lSaS 1 
Oklahoma 20 

DHIR.1 Official DHI, AM-PM component 395 
AM-PM with timer 70 

Pipeline, bucket 338 
Parlor 127 

Yes 121 
No 344 

Conventional silo, bags, trench, other 322 
Oxygen-limiting storage system 143 

Yes 103 
No 362 

June 1, 1984 to September 30, 1984 3078 
October 1, 1984 to April 30, 1985 2806 

549 
October 1, 1985 to December 31, 1985 70 

DHI Rolling herd average for milk, kg 7595 
DHI Rolling herd average for fat, kg 277 
Herd size, no. cows on DHI test 83 
Proportion of animals in herd that 

DHI Test type 

Milking system 

Automatic takeoff devices 

Silage storage system 

TMR 

Year-season records 

May 1.  1985 to September 30, 1985 

- 
Covariates X 

were registered .59 

IDHIR = DHI Registry, AM-PM = a.m.-p.m. 
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render the model as simple as possible, levels 
that were thought, a priori, to be similar were 
combined if corresponding estimates of effects 
on variances components were similar. The 
preceding model was also applied to fat yield 
data; two management factors, TMR and PHR, 
did not significantly affect residual variances 
for fat yield and were removed from the model 
for this trait. 

All factors in Equation [lo] for residual 
variances, as well as several other management 
characteristics that were hypothesized to cause 
differences in additive genetic variation, were 
individually incorporated into the model for 
within-herd sire variances. Because no signifi- 
cant relationships were detected, Model [8] for 
within-herd sire variances for milk and fat 
yields contained only the overall mean, e.g., 

Yu = [P(u)l [I11 

where ~ ( ~ 1  = effect common to all herds. Equa- 
tion [ l l ]  implies homogeneity of sire vari- 
ances. However, the selection of a homogene- 
ous model for sire variances (Equation [ l l ] )  
and a heterogeneous model for residual vari- 
ances (Equation [lo]) does not necessarily im- 
ply that significant differences in heritability 
existed across herds, and this hypothesis was 
not tested explicitly. 

Given solutions to the residual and sire 
variance models in Equations [lo] and [ l l ] ,  
respectively, within-herd variance component 
estimates were obtained as 

and 

[131 

For example, for milk yield of a herd on DHI 
Registry (DHIR) test using a pipeline milking 
system, no automatic takeoff devices, a TMR, 
oxygen-limiting silage storage, RHA for milk 
yield = 7500 kg, herd size = 60 cows, and 
PHR = .8, 

= [l 1 0 1 0 0 1 1 0 0 1 7500 60 .8]'. 
At convergence of the variance model, solu- 

tions to Equation [6] using gi = $ and c? = 
ei 'i 

i? are empirical Bayes estimates and predic- 
Ui 

tions of 6 and u*, respectively. Changes of 
standardized F'TA (e.g., elements of ti* for the 
heterogeneous model or, equivalently, ( 1hu) ti 
for the homogeneous model) and rankings of 
sires were examined to assess effects on sire 
selection associated with accounting for heter- 
ogeneous within-herd variances using the 
structural model. As a check for nonrandom 
allocation of sires to environments with differ- 
ing variances, a one-way ANOVA was used to 
examine the association between sire progeny 
groups and the natural logarithms of within- 
herd residual variance estimates obtained using 
Equation [12] for those herds in which the 
sues had progeny. 

RESULTS AND DISCUSSION 

As shown in Table 2, significant heter- 
ogeneity of phenotypic variances was detected 
across individual herds and states using Le- 
vene's test (17). A 10-fold range of estimated 
within-herd phenotypic standard deviations 
was observed. In agreement with Brotherstone 
and Hill (4), who suggested that factors caus- 
ing heterogeneous within-herd phenotypic var- 
iances remain relatively constant over time, 
heterogeneity across year-seasons was not de- 
tected. However, the data for the present study 
spanned only 19 mo. Heterogeneity of pheno- 
typic variances was also observed for several 
management factors, including type of DHI 
test, milking system, presence or absence of 
automatic takeoff devices, and silage storage 
system. However, differences in phenotypic 
variances that were due to nutritional factors, 
such as type of dry hay or silage fed and use or 
nonuse of a TMR or a buffer supplement, were 
generally small. 

The structural log-linear model for variance 
components was first implemented for the 
homogeneous case, i.e., assuming that 02 = 4 
and b = 4 for all i. In the homogeneous case, 
the first-order algorithm presented by San 
Cristobal et al. (20, 21) is equivalent to REML 
via the estimation-maximization algorithm. Es- 
timates of dispersion parameters for milk yield 
under the homogeneous model were 

e, 

'i 

e = exp (14.334) = 1,679,489 
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TABLE 2. Probabilities associated with the null hypothesis of homogeneity of phenotypic variances across herds, states, 
year-season subclasses, and across levels of each of the herd management factors using Levene's test. 

P > F  
Management factor ME1 Milk ME Fat 

Herd .o001 .ooo1 
State ,001 1 ,044 
Year-season .95 .10 
DHI Test type ,048 .01 
Type of housing system .17 .63 
Type of milking system ,088 .055 
Use or nonuse of automatic takeoff devices .o001 ,0001 
Type of silage storage system ,016 . O W  
Use or nonuse of a Th4R .58 .13 
Use or nonuse of a buffer supplement .36 .90 
Type of dry hay fed in winter .40 .61 
Type of dry hay fed in summer .54 .82 
Type of silage fed in summer .47 .60 
Frequency of concentrate feeding .oa .09 
Frequency of roughage feeding .22 .06 
Use or nonuse of a herd health program .94 .93 
Use or nonuse of AI .27 .21 

'Mature equivalent, 305-d lactation, twice daily yield. 

and 

2 3u = exp (11.695) = 119,970. 

Similarly, the homogeneous model for fat 
yield gave the following estimates: 

= exp (7.589) = 1976 

and 

e = exp (4.765) = 117. 

Heritability estimates for milk and fat yields 
were .267 and .224, respectively, for the 
homogeneous model. 

As shown in Table 3, eight herd manage- 
ment characteristics were identified that sig- 
nificantly influenced within-herd residual vari- 
ances for first lactation milk yield. Among 
covariates, within-herd residual variances for 
milk and fat yields increased as RHA in- 
creased, as suggested in previous studies (3, 5) .  
A positive relationship between residual vari- 
ance and herd size was also observed. For milk 
yield, residual variance decreased slightly as 
the proportion of registered animals in the herd 

increased. This relationship may be because of 
differences in management of registered and 
grade cattle, differing selection goals between 
the registered and grade populations, or a 
greater incidence of pedigree recording errors 
in grade herds (27). 

Among categorical management factors, 
residual variances differed among types of 
DHI testing programs. In particular, herds en- 
rolled in DHIR, official DHI, and a.m.-p.m. 
(AM-PM) component testing schemes, in 
which all milk weights in a 24-h period are 
recorded, had lower residual variances than 
herds on AM-PM test with a timer, in which 
only one milk weight per month is recorded on 
an alternating basis (6). This difference most 
likely reflects greater accuracy of measurement 
among testing plans in which all milkings are 
recorded. The difference in residual variances 
among DHI testing plans was slightly smaller 
for fat yield, perhaps because herds on AM- 
PM component testing may have larger 
residual variance than those on DHIR or offi- 
cial DHI. However, levels of management 
variables were pooled in the same manner for 
milk and fat yields to simplify interpretation of 
results. 

Herds using a pipeline or bucket milking 
system had smaller residual variances than 
herds using a milking parlor, although the 
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reason for this difference is unclear. In addi- 
tion, herds using automatic takeoff devices had 
smaller residual variances; these differences 
may be due to a more consistent time of 
millung machine removal when automatic 
takeoff devices are used. 

Herds using a TMR had larger residual 
variances for milk yield, and herds using 
oxygen-limiting silage storage had larger 
residual variances than herds using conven- 
tional silos, trenches, or other types of silage 
storage. These differences may be due, in part, 
to higher means for herds with more progres- 
sive management practices. 

Effects of state and housing type were not 
significant (P c .OS) after the other factors 
were accounted for in Model [IO]. Some con- 
founding may likely exist, both among factors 
included in Model [lo] and among other 
unidentified factors that affect residual vari- 
ances. For example, herds housed in free stalls 
are more likely to use a parlor milking system, 

automatic takeoff devices, and group feeding, 
which can lead to difficulties in interpretation 
of results. Furthermore, several models may be 
constructed for variances that contain widely 
different management factors but that describe 
a similar portion of the variation among 
within-herd variance components. 

No difference in sire variances were signifi- 
cant across levels of the management factors; 
however, the relatively small size of the pres- 
ent data set may preclude detection of such 
differences. In addition, Visscher (25) sug- 
gested that likelihood ratio tests may lack 
sufficient power to detect differences in 
within-herd genetic variances or heritability, 
particularly with limited data. Furthermore, be- 
cause this study was relatively short and be- 
cause all data were from a common geographi- 
cal region, heterogeneity of sire variances may 
possibly exist with respect to time or regions 
even though the structure of the present data 
precluded its detection. 

TABLE 3. Estimates of significant (P < .05) effects of herd management factors on within-herd residual and sire 
components of variance for milk and fat yield using the structural log-linear model for variances. 

Factor DescriDtion ME’Milk ME Fat 

Residual variance 
Intercept 13.31* 6.446 
DHIR,3 Official DHl, AM-PM component -.158 -.I37 

DHIT2 AM-PM with timer 0 0 
Pipeline or bucket milking system -.08 -.112 
Parlor milking system 0 0 

MSl 

AT01 Automatic takeoff devices used -.lo8 -.M1 
MS2 

AT02 Automatic takeoff devices not used 0 0 
TMR 1 TMR used ,046 . . .  
TMR2 TMR not used 0 . . .  

ST02 Oxygen-limiting silage storage 0 0 

“PHR Regression on proportion registered -0248 . . .  

;#TI 

STOl Conventional silo, bags, trench, other -.IO8 -.lo7 

“RHA Regression on rolling herd average .OOO141 .OOO158 
‘YHS Regression on herd size ,00163 ,00155 

Sire variance 
M n )  Intercept 11.7 4.769 

~~ ~ 

LMature equivalent, 305-d lactation, twice daily yield. 
U i n g  the structural model for log variances, within-subclass variance components of, e.g., milk yield for a herd on 

DHIR test using a pipeline milking system, no automatic takeoff devices, a TMR, oxygen-limiting silage storage, rolling 
herd average for milk yield of 7500 kg, and herd size of 60 cows, 80% of which are registered, can be calculated as 

3 = exp [13.31 - ,158 - .OS + 0 + ,046 + 0 + .000141 (7500) + .00163 (60) - .M48 (.8)] = exp (14.253) = 
ei 

1,549,526 
and 

2 = exp (11.7) = 120,572. 
3DHIR = DHI Registry, AM-PM = a.m.-p.m 

SI 
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In Figure 1, the average of residual variance 
estimates for herds in which each sire was 
used, weighted by the number of progeny per 
herd by sire subclass, is plotted versus the total 
number of progeny of the sire. A threefold 
range in average residual variance estimates 
was observed across sire progeny groups, 
which is indicative of nonrandom use of sires 
across variance levels, particularly for sires 
with relatively few total progeny. Sires with 
250 progeny, many of which would likely be 
popular AI sires, were apparently used, on the 
average, in herds with above average residual 
variances (Figure 1). Furthermore, the null 
hypothesis of constant residual variances 
across sire progeny groups was rejected (P < 
.001) within each of four progeny group cate- 
gories (<lo, 10 to 24, 25 to 49, or 250 total 
progeny), using a one-way ANOVA of the 
relationship between sire progeny group and In 
(2)  for the herd in which each progeny was 
housed. 

Sires’ standardized PTA, ii*, before and 
after accounting for heterogeneous variances, 
are shown in Figure 2. Product-moment and 
rank correlations between sires’ standardized 
PTA under the two models were >.99, which 
suggests that the overall impact on sire selec- 
tion would be small. However, changes of 
PTA for individual sires may be somewhat 
larger. 

ei 

2.15 

Overall mean of within-krd 
residual variance estimates 

2.00 

1.75 (1 0 . . . . . . . . . . . . . . . 

5 25 45 65 85 105 125 145 165 185 205 

No. Progeny 

Figure 1 .  Number of progeny for each sire plotted 
versus the weighted average of within-herd residual vari- 
ance estimates (million square kilograms), using the struc- 
tural log-linear model, for milk yield for herds in which 
the sire’s progeny performed. 
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Figure 2. Plot of sires’ standardized PTA, ii*, for milk 
yield before and after accounting for heterogeneous vari- 
ances using estimates from the structural log-linear model. 

In Table 4, standardized PTA and rankings 
of the top 5% of sires, based on standardized 
PTA under the homogeneous model, are given. 
Some shuffling of the top sires occurred when 
heterogeneous within-herd residual variances 
were taken into account; for example, sires 133 
and 79 dropped 6 and 10 places, respectively, 
and sires 79, 86, and 210 dropped from the top 
5%.  As shown in Table 5 ,  an average rank 
change of 10, with a maximum of 72, was 
observed when the 385 sires were ranked by 
standardized PTA assuming either homogene- 
ous or heterogeneous within-herd variances. 

In Figure 3, the change of standardized 
PTA when heterogeneous variances were taken 
into account is shown as a function of the 
average estimated within-herd residual vari- 
ance for herds in which the sire’s progeny 
were housed. In Figure 3A, for sires for which 
standardized PTA was 21 under the 
homogeneous model, standardized PTA in- 
creased for sires for which progeny, on aver- 
age, were housed in low variance environ- 
ments and decreased for sires for which 
progeny were kept in high variance environ- 
ments. This trend was reversed for sires for 
whch standardized PTA under homogeneity 
was I-1, as shown in Figure 3B. This result 
supports the hypothesis that, when heter- 
ogeneity is ignored, superior sires used primar- 
ily in high variance environments are over- 
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TABLE 4. Standardized PTA for milk yield and rankings of the top 5% of sires before and after accounting' for 
heterogeneous within-herd variances. 

Homogeneous2 Heterogeneous3 No. of 
Sire progeny PTA SEP Rank PTA SEP Rank 

46 45 2.31 .53 1 2.25 .53 1 
155 84 2.09 .44 2 2.09 .44 2 
175 61 1.99 .47 3 2.02 .47 3 
110 143 1.86 .35 4 I .87 .35 5 
138 204 1.83 .30 5 1.91 .30 4 
59 55 1.75 .51 6 I .18 .51 6 

338 6 1.68 3 4  7 I .48 .87 9 
250 6 1.61 .83 8 I .69 .81 7 

1 1  1 1.58 .84 9 1.38 .86 10 
73 30 1.53 .61 I O  1.50 .59 8 

133 13 1.38 .7 1 11 1.24 .7 1 17 
70 164 1.35 .33 12 1.35 .33 11 

132 10 1.31 .77 13 1.30 .76 13 
183 13 1.27 .44 14 1.23 .43 19 
79 19 1.25 .68 15 1.16 .66 25 

210 14 1.25 .74 16 1.19 .75 21 
208 10 1.24 3 1  17 1.26 .80 16 
233 5 1.22 .90 18 1.34 .89 12 
86 58 1.20 .47 19 1.12 .47 21 

'SEP = Standard errors of prediction. 
*Assuming homogeneous variances. 
3Accounting for heterogeneous residual variances using estimates from the structural model. 

evaluated, and, similarly, inferior sires in high 
variance herds are underevaluated. In Figure 3. 
the coefficients of regression of change in 
sires' F'TA on average within-herd estimated 
residual variance were significant (P < .01). 
Thus, biases in PTA of individual sires that 
were due to nonrandom use of sires across 
herds with differing variances may have been 
reduced by using within-herd variance esti- 
mates from the structural model. 

TABLE 5.  Changes of PTA for milk yield and rankings of 
the 385 sires present in the study when heterogeneous 
within-herd residual variances were either ignored or ac- 
counted for using estimates from the structural log-linear 
model. 

Criterion Value 

Average absolute change in standardized 
ETA .063 

Average change in rank 10 

Maximum change in rank 72 

Maximum absolute change in standardized 
PTA .285 

Correlation between sires' PTA ,991 
Rank correlation among sires .992 

CONCLUSIONS 

The structural model for variance compo- 
nents succeeded in identifying management 
factors that cause heterogeneity of within-herd 
residual variances. However, differences in 
within-herd sire variances were not detected, 
and parameter estimates from the heterogene- 
ous sire variance model were not very ac- 
curate. For thls reason, shrinkage procedures 
may be desirable (21) when factors affecting 
genetic variances are estimated, particularly if 
the amount of data is limited. However, larger 
differences in within-herd genetic and residual 
variances may be expected for data that span a 
wider geographical range or a longer time than 
the data of the present study. 

Identification of factors affecting within- 
herd sire and residual variances using the 
structural model (8, 9, 20, 21) may be more 
feasible computationally on a large scale than 
methods for direct estimation of within-herd 
variance components (11) because the struc- 
tural model can be applied to a random subset 
of the data rather than to all US dairy herds. 
Estimates of factors affecting genetic and 
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Figure 3. Change of standardized PTA of milk yield when heterogeneity was accounted for using residual variance 
estimates from the structural model versus the weighted average of residual variance estimates (million square kilograms) 
for herds in which the sire’s progeny performed: A) for those sires for which standardized PTA assuming homogeneity 
was 21; B) for those sires for which standardized PTA assuming homogeneity was G-1. 

residual variances could be used to approxi- 
mate within-herd variance components for 
other herds for which management practices 
are known. 

The overall effect of accounting for heter- 
ogeneous within-herd residual variances using 
the structural model on sire selection and ac- 
curacy of prediction was small. However, 
changes of rankings for individual sires oc- 
curred, which may be important with regard to 
young sires for which progeny are nonran- 
domly distributed across herds with differing 
variances. In addition, changes in PTA and 
rankings of cows could be larger, because a 
cow’s own records and records of her maternal 
relatives are usually made within a single herd. 
Therefore, even though the impact on genetic 
progress of the population may be limited, an 
increase in “fairness” of genetic evaluations 

regarding factors such as DHI test type, herd 
production, herd size, and PHR is readily 
available; however, data regarding on-farm fa- 
cilities and specific management practices may 
be difficult and costly to obtain on a large 
scale. Second, an adequate proportion of the 
total variability of residual and genetic vari- 
ance components must be explained by factors 
in the variance model. Development of a statis- 
tic analogous to the coefficient of determina- 
tion would be useful to assess the proportion 
of variation of variance components accounted 
for by the structural model. Perhaps this statis- 
tic could be crudely approximated phenotypi- 
cally by regressing the usual unbiased within- 
herd sample variance (sum of squared devia- 
tions from the within-herd mean/(number of 
observations - 1)) on gi = gi + ti; 2:i and 

with respect to individual herds or animals $ can be estimated using Equations [121 and 

The potential value of the methodology ern- (This Procedure gave an approximate R2 
ployed herein as a solution to the heterogene- for Variances of when applied to the full 
ous variance problem in national genetic heterogeneous model in the Present Study.) 
evaluation procedures will depend on two con- Presumably, this procedure could also be used 
siderations. First, sufficient management infor- with a model containing a subset of the 
mation for individual herds must be available parameters such that the increase in the propor- 
to allow estimation of adjustment factors for tion of variation of variances that is due to 
variance components and approximation of inclusion of an additional parameter could be 
within-herd variances for other herds with calculated. 
similar management practices (G. R. Wiggans, If sufficient data can be obtained and a 
1992, personal communication). Information large proportion of the variation of within-herd 
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variances can be explained by the structural 
model, useful adjustment factors for within- 
herd variances could probably be computed. 
However, if the majority of differences in 
within-herd variance components are due to 
random variation or due to management 
characteristics that are unknown, it may be 
desirable to estimate variance components 
within herds using Bayesian methods (1 1, 28) 
or approximations based on phenotypic vari- 
ances (4, 30). 
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