
DISCONTINUITY DETECTION IN REGRESSION SURFACESPeihua Qiu and Brian Yandell, University of Wisconsin - MadisonPeihua Qiu, Department of Statistics, University of Wisconsin, Madison, WI 53706KEY WORDS: Jump surfaces, Least squaresplane, Jump detection criterion, Image processing.ABSTRACTWe consider the problem of locating jumps inregression surfaces. A jump detection algorithm issuggested based on local least squares estimation.This method requires O(Nk) computations, whereN is the sample size and k is the window width ofthe neighborhood. This property makes it possibleto handle large data sets. The conditions imposedon the jump location curves, the jump surfaces andthe noise are mild.1 IntroductionIn computer image analysis, a very important prob-lem involves detecting the edges of objects, or equiv-alently, detecting the discontinuities of the underly-ing \intensity function" (the brightness of each pointin the image is expressed by this function). In me-teorology and oceanography, the equi-temperaturesurfaces of the high sky and the deep ocean are usu-ally discontinuous. From a statistical view point, allof these problems could be regarded as applicationsof estimation of two dimensional (2-D) jump regres-sion surfaces (JRS). The purpose of this paper is todevelop a method to detect the jump locations ofthe 2-D JRS.The research on jump regression models is cur-rently under rapid development. In one dimensional(1-D) case, McDonald and Owen (1986) suggesteda \split linear smoother" which provided a discon-tinuity preserving curve estimator. Hall and Titter-ington (1992) proposed an alternative but simplermethod to detect the jumps by establishing some re-lations among three local linear smoothers. M�uller(1992), Qiu (1994), Wu and Chu (1993), amongmany others, discussed various kernel-type methods.These methods were all based on the di�erence be-

tween two one-sided kernel smoothers. Eubank andSpeckman (1993) treated the 1-D jump regressionmodel as a semi-parametric regression model andproposed estimates of the jump locations and magni-tudes. Wang (1995) proposed detecting jumps withwavelet transformations.In 2-D case, Russian scientists did much theo-retical research in this area. Korostelev and Tsy-bakov (1993) investigated jump location detectionand �tting jump surfaces under several kinds of de-sign and jump boundaries. They suggested approxi-mating jump location curves by piecewise polynomi-als and then estimating the coe�cients by maximumlikelihood estimation. O'Sullivan and Qian (1994)suggested detecting object boundaries by de�ninga contrast statistic. M�uller and Song (1994) pro-posed \maximin" estimators of the jump boundariesof the d-dimensional (d � 1) jump surfaces under thecondition that the number of such jump boundarycurves (surfaces) is known. Qiu (1992) suggesteda so-called Rotational Di�erence Kernel Estimatorof the jump location curves of the JRS. Both of theabove two methods were based on two one-sided ker-nel smoothers along a direction and the estimatorswere obtained by maximizing the jump detection cri-teria with respect to this direction. This makes thecomputation quite expensive. Jump detection in re-gression surfaces is directly related to edge detec-tion in computer image processing. Gonzalez andWoods (1992), Qiu and Bhandarkar (1996), Rosen-feld and Kak (1982) and Torre and Poggio (1986)presented an excellent overview of computer edgedetection techniques.In this paper we make another attempt to de-tect the jump locations of the JRS. Our method isbased on the local simple least squares (LS) �tting.At a point in question, a LS plane is �tted in a neigh-borhood. The LS coe�cients of this plane give anapproximation of the gradient direction of the JRSat this point. They carry both the continuous andthe jump information about the JRS. We then tryto delete the continuous information from the LScoe�cients by considering two small neighborhoods



along the approximated gradient direction, on ei-ther side of the original neighborhood. In such away, the jump information is extracted. Based onthat a jump detection criterion is derived. Compu-tation of the jump detection criterion can be up-dated easily from one point to the next. The wholealgorithm requires O(Nk) calculations, with N thesample size and k the window width of the neigh-borhoods. Comparing with the existing derivative-based edge detectors in image processing literature,we explicitly characterize the jump information inthe edge detection criterion and eliminate the e�ectof the continuous variation of the intensity functionon the edge detection. We also establish the sta-tistical consistency of the edge detection procedureand provide the rate of convergence. The conditionsimposed on the edge curves are mathematically ex-plicitly expressed. These e�orts, we think, might behelpful to the further development of edge detectiontechniques.The rest of the paper is organized as follows.In the next section we describe the model and thejump detection method. Numerical examples arediscussed in Section 3. In Section 4, we give someconcluding remarks.2 Jump Detection AlgorithmObservations fzijg come from the following modelzij = f(xi; yj) + �ij; i; j = 1; 2; � � � ; n; (2.1)where f(xi; yj) = (i=n; j=n); i; j = 1; 2; � � � ; ng areequally spaced design points in [0; 1]�[0; 1], f�ijg arei.i.d. random numbers with mean 0 and variance �2.The sample size is N = n2. The regression functionf(x; y) is continuous over [0; 1]�[0; 1] except on somecurves, which are called the jump location curves(JLCs) hereafter. In the simplest case that f(x; y)has a unique JLC which divides [0; 1]� [0; 1] into 2connected regions 
1 and 
2 with 
1T
2 = ; and
1S
2 = [0; 1]� [0; 1], f(x; y) can be expressed asf(x; y) = g(x; y) + C(x; y)I(x;y)2
1 ; (2.2)where g(x; y) is continuous over [0; 1]� [0; 1],C(x; y)is continuous over 
1, @
1T@
2 is the JLC with@
i denoting the boundary of the region 
i; i = 1; 2:The regression function f(x; y) considered inthis paper is not restricted to (2.2). But it is similarin that it is continuous over connected regions anddiscontinuous on their boundaries (namely, JLCs).

@@@@����& $� = �=4?JLC��Figure 2.1: At any point on the JLCs, there existtwo orthogonal lines crossing at this point and twovertical quadrants formed by these two lines belongto two di�erent regions in a small neighborhood.The following assumption (AS) is imposed on theJLCs.(AS) At any point (x; y) on the JLCs, there existtwo orthogonal lines which cross at (x; y) such thattwo vertical quadrants formed by these two lines be-long to two di�erent regions in a small neighborhood(c.f. Figure 2.1).At any design point (xi; yj); `+1 � i; j � n� `,we consider its neighborhood N (xi; yj) with windowwidth k = 2` + 1 � n, where ` is a non-negativeinteger.N (xi; yj) := f(xi+s; yj+t); s; t = �`; � � � ; 0; � � � ; `g:A least squares plane is �tted in this neighborhoodẑij(x; y) = �̂(i;j)0 + �̂(i;j)1 (x � xi) + �̂(i;j)2 (y � yj):After some calculations, we have�̂(i;j)0 = 1k2 z::�̂(i;j)1 = 1kS2x X̀s=�`(xi+s � xi)zi+s;:�̂(i;j)2 = 1kS2y X̀t=�`(yj+t � yj)z:;j+t (2.3)where z:: = Ps̀;t=�` zi+s;j+t; zi+s;: =Pt̀=�` zi+s;j+t; z:;j+t = Ps̀=�` zi+s;j+t; S2x =Ps̀=�`(xi+s � xi)2; S2y = Pt̀=�`(yj+t � yj)2. Itis not hard to check that �̂(i;j)0 ; �̂(i;j)1 and �̂(i;j)2 areuncorrelated. Furthermore, they have the followingproperty (proof is omitted):



Theorem 2.1 In model (2.1), suppose that f(x; y)has continuous �rst order partial derivatives over(0; 1) � (0; 1) except on the JLCs at which it hasthe �rst order right and left partial derivatives.The JLCs satisfy the assumption (AS). The windowwidth k satis�es the conditions that limn!1 k =1and limn!1 k=n = 0. If there is no jump inN (xi; yj), then�̂(i;j)1 = f 0x(xi; yj) +O(nploglogkk2 ); a:s:�̂(i;j)2 = f 0y(xi; yj) + O(nploglogkk2 ); a:s:If (xi; yj) is on a JLC, then�̂(i;j)1 = f 0x(~xi; ~yj) + h(i;j)1 C(i; j) + 1Cx(i; j) +O(nploglogkk2 ); a:s:�̂(i;j)2 = f 0y(~xi; ~yj) + h(i;j)2 C(i; j) + 2Cy(i; j) +O(nploglogkk2 ); a:s:where (~xi; ~yj) is some point around (xi; yj) whichsatis�es (i) it is on the same side of the JLC as(xi; yj) and (ii) the distance between (~xi; ~yj) and(xi; yj) tends to zero; C(i; j); Cx(i; j) and Cy(i; j)are the jumpmagnitudes of f(x; y) and its �rst orderx and y partial derivatives; h(i;j)1 and h(i;j)2 are twoconstants satisfyingq(h(i;j)1 )2 + (h(i;j)2 )2 = O(n=k);1 and 2 are two constants between -1 and 1.In Theorem 2.1, the term O(nploglogkk2 ) is due tonoise. We could see that the slopes �̂(i;j)1 and �̂(i;j)2carry both the continuous and the jump informationof the JRS. We try to extract the jump informationin the following way for a particular lattice point(xi; yj). The angle formed by ~vij := (�̂(i;j)1 ; �̂(i;j)2 )and the positive direction of x-axis is denoted as� 2 [��=4; 7�=4]. Two neighboring design points(xN1; yN1) and (xN2; yN2) are determined by the fol-lowing formulas.If �=4 � � < 3�=4 or 5�=4 � � < 7�=4, thenxN1 = xi + kn � tan � ; yN1 = yj + knxN2 = xi � kn � tan � ; yN2 = yj � kn ; (2.4)If ��=4 � � < �=4 or 3�=4 � � < 5�=4, thenxN1 = xi + kn; yN1 = yj + kn � tan �

xN2 = xi � kn; yN2 = yj � kn � tan � (2.5)If the two points determined by (2.4)-(2.5) are notexactly the grid points, we just choose two gridpoints which are closest to them instead.(xN1; yN1) and (xN2; yN2) have the followingproperties: (1) they are two design points on the linethrough (xi; yj) and with slope �̂(i;j)2 =�̂(i;j)1 ; (2) theyare closest to (xi; yj) among the points on that linewhich neighborhoods have no overlap withN (xi; yj).Notice that ~vij is the gradient vector of the �t-ted LS plane. The underlying JRS increases mostrapidly along a near-by direction. If (xi; yj) is on aJLC, then assumption (AS) guarantees that the JLCcould not be in N (xN1; yN1) and N (xN2; yN2) whenn is large enough. In other words, (xN1; yN1) and(xN2; yN2) are on two di�erent sides of the JLC. Wethen de�ne the following jump detection criterion�ij. �ij := minfk~vij � ~vN1k; k~vij � ~vN2kg (2.6)where ~vN1 := (�̂(N1)1 ; �̂(N1)2 ) and ~vN2 :=(�̂(N2)1 ; �̂(N2)2 ) are gradient vectors of the �tted LSplanes at (xN1; yN1) and (xN2; yN2) respectively andk � k is the Euclidean norm.If there is no jump in these three neighbor-hoods, then ~vij; ~vN1 and ~vN2 should be close to eachother. Hence �ij is small. If (xi; yj) is on a JLC,by Theorem 2.1, �ij � q(h(i;j)1 )2 + (h(i;j)2 )2C(i; j)= O(n=k)C(i; j) which tends to in�nity when n in-creases. Hence �ij could be used to detect the jumps.A large value of �ij indicates a possible jump at(xi; yj). For any constant b > 0,P (�ij > b)� P (k~vij � ~vN1k > b)= P �(�̂(i;j)1 � �̂(N1)1 )2 + (�̂(i;j)2 � �̂(N1)2 )2 > b2�= E fP ( (�̂(i;j)1 � �̂(N1)1 )2 + (�̂(i;j)2 � �̂(N1)2 )2 > b2j�̂(i;j)1 ; �̂(i;j)2 )g :For �xed �̂(i;j)1 and �̂(i;j)2 ; ((�̂(i;j)1 ��̂(N1)1 )2+(�̂(i;j)2 ��̂(N1)2 )2)=�2N1 is approximately �22 distributed underthe assumption that there is no jump in N (xi; yj)SN (xN1; yN1). Here �2N1 = var(�̂(N1)1 ) = �2kS2x .Therefore a natural threshold value of �ij isb =s�22;�n � �̂2kS2x = �̂s�22;�nkS2x (2.7)



where �22;�n is a 1��n quantile of the �22 distributionand �̂ is a consistent estimator of �.Suppose that (xi; yj) is on a JLC with jumpmagnitude C(i; j). Then the values of most kernel-type jump detection criteria (e.g. M�uller and Song,1994) are about C(i; j) at this point while our crite-rion is of order O(n=k) which tends to in�nity withthe sample size. Hence �ij is more sensitive to thejumps. This property has two bene�ts. One is that�ij visually reveals the jumps better. The other isthat our jump detector is more robust to the selec-tion of the threshold. The threshold could be cho-sen a little bit larger than usual without missing thejumps when the sample size is larger since �ij is quitelarge in this case.The design points f(xi; yj) : �ij > b; i; j =(3k + 1)=2; � � � ; n � (3k � 1)=2g could be aggedas jump candidates. Two modi�cation procedures(MPs) are also suggested to make the detected jumpboundaries thin and to delete some scattered decep-tive candidates.We summarize the jump detection method inthe following algorithm.The Jump Detection Algorithm1. At any (xi; yj) with `+1 � i; j � n� `, �t a LSplane in N (xi; yj) by formula (2.3).2. Use (2.4)-(2.5) to determine two neighboringdesign points of (xi; yj); (3k + 1)=2 � i; j �n� (3k � 1)=2.3. Use formula (2.6) to calculate �ij.4. Use formula (2.7) to determine the thresholdvalue b.5. Flag the design point (xi; yj) as a jump candi-date if it satis�es �ij > b.6. Use modi�cation procedures to determine the �-nal candidates.Theorem 2.2 If �n in (2.7) is chosen such that (i)limn!1�n = 0; (ii) limn!1 log(�n)=log(log(k)) =�1; and (iii) limn!1 log(�n)=k2 = 0, then the de-tected jumps are a.s. consistent in the Hausdor�distance and the convergence rate is O(n�1log(n)).The proof is based on the following facts.Firstly, from Theorem 2.1, we know that thejump information in the jump detection criterion

�ij is of order O(n=k). Secondly, the thresholdvalue b in (2.7) is of order O(np�log(�n)=k2).(We use the fact that �22;�n = �2log(�n) here.)Thirdly, the order of the standard deviation of �ijis O(nplog(log(k))=k2). So the jump informationdominates the randomness in the jump detection cri-terion as long as k tends to in�nity with n.3 Numerical AnalysisIn this section we do some simulations with an ar-ti�cial example. The regression function f(x; y) hasthe expressionf(x; y) = �0:5�y+3(x�0:5)2+Ify>�(x�0:5)2+0:5g:There is one JLC y = �(x�0:5)2+0:5 with constantjump magnitude 1. The regression function and theJLC are plotted in Figure 3.1.
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(b)Figure 3.1: (a) The jump regression surface used inthe example; (b) the jump location curve.10000 observations fzij; i; j = 1; 2; � � � ; 100g aregenerated from zij = f(i=n; j=n) + �ij with n =100 and i.i.d. random numbers from N (0; 0:52). Wethen use formulas (2.3)-(2.6) to calculate the jumpdetection criterion f�ijg, initially with k = 7. Thegradient vector ~vij of the �tted LS plane at eachdesign point is shown by Figure 3.2.Then a threshold is calculated by formula (2.7)with �n = 0:001 which is the smallest number inmost �2 tables. The agged jump candidates areplotted in Figure 3.3(b) by black points. We no-tice that the detected jump boundary is quite thickand there are some scattered candidates also. Wethen use two modi�cation procedures to modify theset of candidates. The results are plotted in Figure3.3(c) and (d). As a comparison, we plot the realJLC in Figure 3.3(a). We notice that there are somebreaks here or there in the detected jump boundaryin Figure 3.3(d). The detected boundary is not thin
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Figure 3.2: The gradient vector ~vij of the �tted LSplane at each design point.enough at some places. These imply that there issome room for our MPs to be improved.
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(d)Figure 3.3: (a) The real jump location curve;(b)detected jump candidates by criterion (2.7); (c)the modi�ed jump candidates from those in (b) bythe �rst MP; (d) the modi�ed jump candidates fromthose in (c) by the second MP.The above experiment is then repeated 1000times. The number of times of each design pointto be in the �nal candidates set is plotted in Figure3.4. We can see that the results are quite impressive.Theoretically, we can use the Hausdor� distanceto measure the performance of our algorithm. In re-ality, this distance could be very hard to compute. Inthe following, we use the average orthogonal distanceof the points in the �nal set of candidates to the realJLCs as a performance measurement. This measure-ment is averaged again for 1000 replications. The re-
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dFigure 3.4: The number of times each design pointis detected in 1000 replications.sults for several n; k and �2 values are presented inFigure 3.5. From the plots, we could see that the av-eraged performance measurement (APM) decreaseswhen n increases for each �2 value. This may reectthe consistency of the algorithm. For �xed �2 value,the best k (k with smallest APM) does not appearto change much with n. That veri�es the conclusionin Theorem 2.2 that k should be quite stable whenn increases, to achieve the biggest accuracy of thedetected jumps. The best k increases with �2 value.That implies that for noisier data more observationsare needed in each window to reduce the randomnessin the jump detection criterion. We also notice thatAPM is much smaller for smaller �2 value. Theseare intuitively reasonable.
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4 Some Concluding RemarksWe have presented a jump boundary detection algo-rithm with local LS plane �tting which is intuitivelyappealing and simple to use. It can handle relativelylarge data sets. Simulations show that it works wellin practice.We leave some parameters such as the windowwidth used in the algorithm to be adjustable to theusers. Much future research is needed to providesome guidelines on the selection of these parame-ters. As we mentioned, the modi�cation procedurespresented in the paper are only two of the possi-ble ones. More careful modi�cation procedures areneeded to make the detected jump candidates matchthe real jump boundaries better. Another very im-portant issue is the relationship between jump loca-tion detection and jump surface �tting. If we putmore structure on the jump locations, then �ttingthe jump surfaces would be easier. But some realapplications are also excluded. It may be importantto work out some methods to �t the jump surfacesunder mild conditions on the jump locations.We discussed jumps in the regression functionsin this paper. In some situations jumps in deriva-tives are also interesting. (The so-called \roof-edges" in image processing correspond to the jumpsin the �rst order derivatives of the regression func-tions.) We think that the coe�cients of the �ttedlocal polynomials of order k + 1 contain useful in-formation about the jumps in the k-th derivatives ofthe underlying regression functions. This kind of re-lationship need be investigated further. Generaliza-tion from 2-D to general d-dimensional cases seemsto be straight forward theoretically. But it may notbe easy to make the algorithm applicable in highdimensional cases. How to apply some dimensionreduction techniques to the jump regression modelsis another future research topic.REFERENCESEubank, R.L., and Speckman, P.L. (1993),\Non-parametric estimation of functions with jumpdiscontinuities," IMS Lecture Notes, vol.23,Change-Point Problems (E. Carlstein, H.G.M�uller and D. Siegmund eds.).Gonzalez, R.C., and Woods, R.E. (1992), DigitalImage Processing, Addison-Wesley PublishingCompany, Inc.
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