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Summary

DNA microarrays to evaluate gene expression present tremendous opportunities for
understanding complex biological processes. However, important genes, such as transcription
factors and receptors, are expressed at low levels, potentially leading to negative values after
adjusting for background. These low-abundance transcripts have previously been ignored or
handled in an ad hoc way. We describe a method that analyzes genes with low expression using
normal scores, and robustly adapts to changing variability across average expression levels. This
approach can be the basis for clustering and other exploratory methods. Our algorithm also assigns
a data-driven p-value that is sensitive to changes in variability with gene expression. Together,
these two features expand the repertoire of genes that can be analyzed with DNA arrays.

Introduction

Microarray technology to measure gene expression is becoming widespread .  The
application of microarray analysis to such diverse biological processes as aging (1), cancer (2,3),
diabetes (4), and obesity (4,5) have provided important insights.  The power of microarrays to
simultaneously evaluate the level of expression of thousands of genes creates the challenge of
identifying those few genes that demonstrate significant changes in expression from among
numerous genes that show little or no change.

Several approaches have been proposed to interpret microarray data.  Clustering methods
(6,7) search for genes that show similar changes in expression across experimental conditions.
These methods do not determine the significance of the changes in gene expression, and they
require extensive pre-filtering of the data to eliminate genes with low intensity or modest fold
changes. Thus, much information is lost before gene clustering can begin. Furthermore, it has
become apparent that at different gene expression levels, different thresholds for significant
changes are needed (8,9,10). More recent methods model the variability across average expression
levels to establish thresholds, but still rely on ad-hoc methods for genes expressed at very low
abundance (11).

We present a robust statistical approach to more accurately assess data from microarray
experiments. Simulation studies indicate that our approach is robust. The application of this method
to mouse experiments studying diabetes and obesity uncovered changes in gene expression missed
by other methods. Details of the method are provided, including information on how to obtain
public domain software.

Experimental Procedures

Our gene array analysis algorithm uses rank order to normalize data for each experimental
condition, and estimates the variability at each level of gene expression to set varying significance
thresholds for differential expression across levels of mRNA abundance.  It requires only minimal
assumptions to assign Bonferroni-corrected p-values, and can be used alternatively to prefilter
genes to be organized further by clustering methods.

Expression data may be acquired from spotted cDNA arrays or from oligonucleotide arrays.
After data acquisition, expression levels are typically adjusted for background, which can lead to
negative values. Our procedure rank-orders the adjusted values by intensity, and converts the ranks
into normal scores (Figure 1). This normal scores transformation was initially proposed in another
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setting (12), and has been employed for microarray data in a slightly different approach (13). If
expression data are approximately log normal, then this normal scores transformation will be very
close to a log transformation. In addition, it readily accommodates negative adjusted expression
values that are discarded or set to some arbitrary value by most other procedures that use the log.
This transformation, which automatically standardizes the data, may be done by condition or across
all conditions, depending on the situation (e.g. whether experimental conditions are at fixed levels
or are a random sample of possible conditions).

The average intensity value for each gene across all experimental conditions is then
calculated as a mean of these normal scores. Differential expression across conditions of interest is
computed by contrasting normal scores. If there are only two conditions, a plot of the mean
expression against the difference is just a 45 degree rotation of the plot of the two conditions.

Differential gene expression between experimental conditions may depend on the average
level of gene expression. Therefore, we use estimates of the center and spread that can vary across
average gene expression to standardize differential expression, specifically smoothed medians and
smoothed median absolute deviations, respectively. Differential contrasts standardized by these
center and spread should have approximately the standard normal distribution for genes that have
no differential expression across the experimental conditions.

Formal evaluation of differential expression may be approached as a collection of tests for
each gene of the "null hypothesis" of no difference, or alternatively as estimating the probability
that a gene shows differential expression (11,13). Testing raises the need to account for multiple
comparisons, here we use p-values derived using a Bonferroni-style genome-wide correction (14).
Genes with significant differential expression are reported in order of increasing p-value. Further
details of this procedure and the software can be found in Supplementary Data.

Results and Discussion

Simulation Studies
Three simulation studies were conducted to examine properties of the normal scores

procedure. The first study shows how well the smoothed median absolute deviations can estimate
the variability of the uncontaminated part of the data. The second study verifies that our procedure
can essentially extract the "true differential expression" that would be observed if there were no
measurement error. Simulated data from the second study was used to compare our procedure with
other procedures that have been previously proposed.

The following simulation demonstrates the effectiveness of the robust standardization. We
generated 9,500 (X,Y) pairs, with X from standard normal and Y normally distributed with mean 0
and standard deviation σ(X)=1/[X/3 + 2.5]. Then we generated another 500 pairs by adding
independent standard normal random numbers to each Y value. Thus given the same X, the standard
deviation of the contaminated Y is [1 + (X/3 + 2.5)2]1/2 times that of the uncontaminated Y  (1.8 to
3.64 as X goes from −3 to 3). We applied our robust scaling function to the combined data of
10,000 pairs. A typical simulation result is shown in Figure 2. Figure 2(a-b) show scatter plots of
the simulated data before and after the addition of contamination. Figure 2(c) shows how close are
the true (solid line) and estimated scale (dotted line) scale. While there is always some bias with
non-parametric estimation, the key bias problem arises in estimating spread in the presence of
differentially expressed genes. The robust procedure reduces the influence of this contamination.
The normal quantile plot of Y/s(X) in Figure 2(d) shows the middle portion to be almost straight, as
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expected with normal data, while the tails diverge due to the "contamination" by differentially
expressed genes.

We tested the normal scores procedure on simulated data with two conditions and constant
intrinsic variance across average expression levels. We generated samples with 10,000 genes and
5% differential expression and increasing amounts of measurement error. First, we randomly
generated 9,500 normal variates with mean 4 and variance 2. Next, we generate 500 random
numbers from the same distribution and added normal "contamination" which was either up
regulated or down regulated with probability 1/2. This contamination had variance 1/2 and mean
tending from 3 to 2 as average expression level ranged from low to high abundance. The intrinsic
noise ε was generated with variance 0.5, attenuations a were set at 1. We considered a range of
measurement error variances from none to high (δ = 0, 1, 2, 5, 10, 20). The "best" ranking would be
based on the true differential expression between the two conditions.  Figure 3a compares the top
500 "best" ranks when the true intensities are known with our procedure.  In the absence of
measurement error, our procedure essentially preserves the true ordering of differential expression
(line 0). When a typical level of noise is applied to the simulation, the procedure faithfully captures
most of the differentially expressed genes.

In practice, analysis of low-abundance mRNA's leads to negative adjusted values, which are
ignored or set to an arbitrary value by most other procedures.  In the absence of measurement error,
previously proposed methods perform well when they are first rank-ordered as done in our
algorithm (Figure 3b).  In practice, measurement error becomes high with genes of low abundance
and therefore background correction masks changes in gene expression.  Despite a high level of
noise, our method successfully detected numerous differentially expressed low-abundance mRNA's
(Figure 3c).  None of the non-changing genes were identified; there were no false positives. In
contrast, an early analytical method assuming a constant coefficient of variation (15) yielded
conservative, flat thresholds (Figure 3c, dashed line).  The Bayesian approach (11) missed the
pattern of changing variation with average gene intensity and misses most of the differentially
expressed genes (Figure 3c, dotted line).
Application to obesity

The majority of individuals with Type 2 diabetes mellitus are obese.  Adipose tissue is
thought to influence whole-body fuel partitioning and might do so in an aberrant fashion in obese
and/or diabetic subjects.  Nadler et al. (4) evaluated changes in gene expression between adipose
tissue from lean, obese and obese-diabetic mice using oligonucleotide arrays with over 13,000
probes.  The obesity experiment had six experimental conditions arranged in a two-way factorial
with lean and obese mice from three different genotypes.

Roughly 100 genes were determined to have significant (p<0.05) changes in gene
expression using the robust normal scores procedure (Figure 4). Almost half of these genes had at
least one negative adjusted value in the dataset due to low expression (green), and were missed by
other methods.

Table 1 (Supplementary Data) shows new genes identified by the Bonferroni criterion.
Some of these genes are transcription factors, including I-κB, a modulator of transcription in
connection with inflammatory processes, RXR, a nuclear hormone receptor that forms
heterodimers with several nuclear hormone receptors.  Other genes in this collection are proteins
involved in regulation; e.g. protein kinase A and glycogen synthase kinase-3.  The correlation of
the expression of these genes with obesity raises interesting new questions about the consequences
of obesity on adipocyte signaling pathways.
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Figure 5 shows the density of standardized differences Z for obesity overlaid on the
standard normal density, with good agreement for standardized differences between −2 and 2. The
long-dashed line shows an estimate of the density for differentially expressed genes. This was
produced by assuming the standard normal is correct for non-changing genes and picking the
proportion of changing genes as just large enough so that this differential density is positive (cf.
13). This illustrates just how conservative the Bonferroni approach is. We have since begun
examining the genes with standardized scores above 2 or below −2 SDs separately using
hierarchical clustering. Initial results show clustering that is highly correlated with mean expression
level, but with important rearrangement that might suggest functional association among genes in
clusters. This work will be reported elsewhere.

In conclusion, this novel method adapts to the dynamic range of expression data while
handling low intensity signals, including negative adjusted values.  No data need be ignored, as the
method finds a transformation to identify differentially expressed genes from large microarray data
sets. Further, we have demonstrated the feasibility of putting p-values on differential gene
expression without making many of the assumptions other methods require.

This method can be extended to general experimental designs (16) by adjusting for
variability in expression across all conditions relative to the average gene expression.  The utility of
clustering (6,7) and classification (2) methods can be extended by relying on the standardized
normal scores rather than log-transformed values. This can uncover novel relationships, particularly
involving low-abundance transcripts.  The p-values proposed here can further refine relationships
uncovered by these omnibus methods.

Transcriptional regulation plays a particularly important role in the biology of low-
abundance mRNA transcripts.  This new algorithm now extends the powerful techniques of DNA
array analysis to the world of low-abundance mRNA's.



5

5

                                                          

References
1 Lee, C. K., Klopp, R. G., Weindruch, R., and Prolla, T. A. (1999) Science, 285, 1390-1394
2. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H.,
Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999) Science,
286, 531-537
3. Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T.,
Pergamenschikov, A., Williams. C. F., ZhuS. X., Lee, J. C. F., Lashkari, D., Shalon, D., Brown, P.
O., and Botstein, D. (1999) Proc. Natl. Acad. Sci. USA, 96, 9212-9217
4. Nadler, S. T., Stoehr, J. P., Schueler, K. L., Tanimoto, G., Yandell, B. S., and Attie, A. D. (2000)
Proc. Natl. Acad. Sci. U.S.A., 97, 11371-11376.
5. Soukas, A., Cohen, P., Socci, N. D., and Friedman, J. M. (2000) Genes & Development, 14 ,963-
980
6. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Proc. Natl. Acad. Sci.
U.S.A., 95, 14863
7. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and
Golub, T. R. (1999) Proc. Natl. Acad.  Sci. U.S.A., 96, 2907-2912
8. Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y. D.
D., Dai, H. Y., Walker, W. L., Hughes, T. R., Tyers, M., Boone, C., Friend, S. H. (2000) Science,
287, 873-880
9. Wittes, J., Friedman, H. P. (1999) J. Natl. Cancer. Inst., 91, 400-401
10. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D.,
Bennett, H. A., Coffey, E., Dai, H. Y., He, Y. D. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade,
D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J.,
Bard, M., and Friend, S. H. (2000) Cell, 102, 109-126
11. Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W. (2001) J.
Comp. Biol., 8, 000-000
12. Klaassen, C. A. J., and Wellner, J. A. (1997) Bernoulli, 3, 55-77
13. Efron, B., Tibshirani, R., Goss, V., and Chu, G. (2000) Tech. Rep., Dept. Statist., Stanford U.
14. Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2000) Tech. Rep. 578, Dept.
Biochem., Stanford U.
15. Chen, Y., Dougherty, E. R., and Bittner, M. L. (1997) J. Biomed. Optics, 2, 364-374
16. Kerr, M. K., Martin, M., and Churchill, G. A. (2000) Tech. Rep., Jackson Laboratory



12

Figure Legends

Figure 1. Normal scores transformation.

Any data set (a) can be transformed approximately to normal by first (b) replacing

each datum by its rank and (b) replacing the rank by its normal score. For each panel,

there are 30 observations, and the area for each datum is 1/30 so that the total area is 1.

Figure 2. Simulation to show estimated spread.

Simulated data with 10,000 genes and 5% contamination (see text for details). (a-

b) show scatter plots of data before and after addition of contamination. (c) shows how

close are the true (solid line) and estimated scale (dotted line) scale. (d) shows a Q-Q

plot, which should be straight for normal data; here the middle portion is be almost

straight while the tails diverge due to the "contamination" by differentially expressed

genes.

Figure 3. Simulation of differential expression and effect of noise.

Data were simulated with intrinsic variability due to gene-specific hybridization

efficiency, and varying amounts of measurement error. Five percent of the 10,000

simulated genes were assigned to display differential expression; the mean fold change

for differentially expressed genes decreased as average intensity increased. With no

measurement error, differential expression has constant variance on a log scale. As

measurement error increases, the variance of differential expression decreases as average

intensity increases. Axes are antilog of normal scores, which approximates fold change.

Details of the simulation model can be found in the Supplementary Data. (a) Number of

changed genes captured as measurement noise increases (0 to 20). Note almost perfect

recovery of rank order with no noise, followed by gradual degradation as noise increases.
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(b) Detection of fold change with no measurement error. Blue points represent genes with

differential expression. Dashed lines are from Chen et al. (12). Dotted curves are from

Newton et al. (11). Solid curves are from our procedure. Note that Chen and Newton

provide similar results, while our procedure is more conservative. (c) Detection of fold

change with high measurement error. Here lines for Chen and Newton methods are more

conservative. Newton method does not appear to adequately capture the pattern of

variability.

Figure 4. Gene expression in obesity.

Solid red line is our 5% confidence limit. Points in green have at least one of six

readings with negative adjusted values. Purple points were detected by Nadler et al. (4).

Additional blue points, and all points beyond 5% line, were detected by our procedure.

Axes are antilog of normal scores, which approximates fold change.  Note that methods

based on fold change, even adjusting for changing variability across average intensity,

may miss important genes uncovered by other methods.

Figure 5. Density of standardized differences.

The density for the standardized differences Z (solid line) for obesity is overlaid on the

standard normal density (dashed line), with good agreement between -2 and 2. The long-

dashed line shows an estimate of the density for differentially expressed genes. This was

produced by picking the proportion of changing genes just large enough so that the

differential density is positive, assuming the standard normal for non-changing genes.

The dot-dashed line shows where the density for the standardized differences is twice that

of the standard normal.
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Supplementary Data
Raw microarray measurements are typically normalized to account for systematic bias and

noise to attempt to restore expression levels from raw data.  One important source of bias is
background fluorescence. Other factors that require attention include variations in array, dye,
thickness of sample, and measurement noise. Background fluorescence may be measured in several
ways, depending on chip technology, and are typically removed by subtraction or division.
Background-adjusted intensities are typically log-transformed to reduce the dynamic range and
achieve normality. However, negative adjusted values, arising from low expression swamped by
background, are either dropped or adjusted upwards by a small constant before taking the log.
Various authors have noted that comparisons based on such log-transformed gene expression levels
appear to be approximately normal. Our alternative normalization method leverages this idea while
providing comparisons that are more robust to difficulties with the log-normal assumption.

Our rank-based procedure depends on the existence of a monotone transformation (e.g. log
of expression plus a constant, or square root) that is that transforms the data to near normal, but
does not actually require that we know the transformation. Consider measurements under one
condition. Let Q be the raw expression for a gene, and denote the background by B. The adjusted
intensity is the difference A=Q−B (or the relative difference A=Q/B). This is normalized by some
transformation, although its form may be unknown. We prefer to approximate this transformation
using the normal scores

N = qnorm[ rank(A) / (n+1) ]

where rank(A) is the rank among all n adjusted gene measurements under the same condition. The
normal quantiles, qnorm(), transform the ranks to be essentially a sample from standard normal: a
histogram of these N would be bell-shaped and centered about zero (Figure 1). Thus these normal
scores are close to a transformation that would make the data appear normal (1). If done separately
by condition, this normalization automatically standardizes the scale and center. Alternatively, if
the experimental conditions are viewed as a random sample of a broader set of possible conditions,
data across all conditions could be transformed together by normal scores.

Normal scores are unaffected by monotone transformations of adjusted intensities or by
global factors such as array, dye, and thickness of chip sample. Ranks may be disturbed by local
noise, but that effect is unavoidable in any analysis of such an experiment.

A.1. Motivating Model for Expression Data

The following model motivates the normal scores in the case of simple subtraction for
background; see (2) for another approach. Here, the natural transformation to normality is the
logarithm. The observed background intensity B for a gene is measured with error ω, with perhaps
some attenuation d that may depend on the condition: B = bd +ωB. The observed raw measurement
Q has in addition the gene signal g, which may be affected in a relative way by the degree of
hybridization h: Q = [aexp(g+h+ε)+b]d+ωQ. Here ε is the intrinsic noise (whose variance may
depend on g) and a is the attenuation effect of the array and the thickness of the sample. Notice that
g is confounded with h unless hybridization efficiency is gene specific with no dependence on the
experimental condition.

Subtracting the background intensity B from Q yields the adjusted measurements  A = aG+δ
where δ=ωB−ωQ is symmetric around 0 and log(G) = g+h+ε is the log expression level. Thus G is
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the measurement if there were no measurement error, no dye or array effect, and no background
intensity. Hence it is natural under this model to consider N=log(G), although the normal scores
would be almost as good. This model forms the basis for simulations presented later.

A.2. Comparing Two Conditions

Comparison of gene expression between two conditions involves finding genes with strong
differential expression. Typically, most genes show no real difference, except for that due to
measurement variation. We propose a data-driven, robust standardization to assess differential
expression that accounts for changing variance in differential expression with average intensity
noted by other authors.

Genes at different average expression may have intrinsically different variability.
Information on comparison of conditions is summarized in N1 and N2. However, the joint
distribution of normalized values from two conditions across the n genes is in general not normal.
Consider plotting the average intensity X = (N1+N2)/2 against the difference Y = N1-N2. The
difference Y measures the change in gene expression level relative to the average intensity X. Our
procedure standardizes Y by the variability of the intrinsic noise at X. For those genes with no
change, the variance of Y depends approximately on X in some smooth way. The decreasing
variance in Y as X increases comes in part from normalization: the same noise is more likely to
disturb expression ranks at lower intensities.

A.3. Robust Center and Spread

Smoothing splines are combined with standardized local median absolute deviation (MAD)
to provide a data-adapted, robust estimate of spread s(X). A smooth, robust estimate of center m(X)
can be computed in a similar fashion by smoothing the medians across the slices. We use these
robust estimates of center and scale to construct standardized normal scores Z = [Y−m(X)]/s(X).

The genes are sorted and partitioned based on X into many (about 400) slices containing
roughly the same number of genes and summarized by the median and the MAD for each slice.
These should have roughly the same distribution up to a constant. To estimate the scale, it is natural
to regress log(MAD) on X with smoothing splines, but other non-parametric smoothing methods
would work as well. The smoothing parameter is tuned automatically by generalized cross
validation (3). The anti-log of the smoothed curve, globally rescaled, provides an estimate of s(X),
which can be forced to be decreasing if appropriate.

It may be reasonable in some cases to use "house-keeping genes'' that are generally believed
to not change over different conditions (cf. 4). However, this approach may not capture the finer
details of the center and scale as average intensity changes over the microarray. We use a robust
estimation procedure to guard against the influence of the small proportion of changing genes that
"contaminate" microarray data. Notice, however, that this contamination is of primary interest.

The following model may help motivate our specification for spread. Consider again log(G)
= g+h+ε and suppose hybridization is negligible, or at least the same across conditions. However,
the intrinsic noise ε may depend on the true expression level g. For two conditions 1 and 2, the
difference Y is approximately log(G1)−log(G2)= g1−g2 + ε1−ε2. If there is no differential expression,
g1=g2=g, then Var(Y) = s2(g), and g may be approximated by X. However, the true formula for
Var(Y | X) is not exactly s2(X), and cannot be determined without further assumptions.
A.4. Formal Testing Procedure
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We can use the standardized scores Z to rank the genes. The conditional distribution of
these Z given X are assumed to be standard normal across all genes whose expressions do not
change between conditions. Since we are conducting multiple tests, we should adjust the test level
of each gene to have a suitable overall level of significance. We prefer the conservative Zidak
version of the Bonferroni correction: the overall p-value is bounded by 1− (1−p)n, where p is the
single test p-value. For example, for 13,000 genes with an overall level of significance of 0.05,
each gene should be tested at level 1.95*10-6, which corresponds to 4.62 score units. Testing for a
million genes would correspond to identifying significant differential expression at more than 5.45
score units. Guarding against overall type one error may seem conservative. However, a larger
overall level does not substantially change the normal critical value (from 4.62 to 4.31 with 13,000
genes for a .05 to .20 change in p-value). This test can be made one-sided if preferred.

Less conservative multiple comparison adjustment to p-values are proposed in (5).
However, the results are essentially the same with all such methods, except when more than 5-10%
of the genes change across conditions.

It may be appropriate to examine a histogram of standardized scores Z, using these critical
values as guidelines rather than strict rules. Figure 5 shows a smooth density estimate of the
histogram compared to the standard normal. Following (6), we recognize that the density f of all the
scores is a mixture of the densities for nonchanging f0 and changing f1 genes:

f(z) = 0 f0(z) + 1 f1(z).

We assume that f0 is standard normal, and set 1 just large enough so that the estimate

f1(z) = [f(z)  0 f0(z)] / 1

is positive. This in some sense provides a "liberal" estimate of the distribution of differentially
expressed genes, as shown in Figure 5. It lends support to examination of a wider set of genes, with
standardized scores that are above 3 or below −3. We suggest using this set as the basis for
hierarchical clustering.

A.5. Experimental Design Considerations

This method can be extended to designed experiments, with multiple conditions, multiple
readings (e.g. dyes) per gene on a chip, and replication of chips (7). The development for two
conditions adapts naturally to contrasts capturing key features of differential gene expression across
design factors.

Robust estimation methods may overlook the influence of outliers. Further, gross errors can
be confused with changing genes. Good design dictates replication and factorial design across
multiple chips, which can be used to detect outliers in a similar fashion to the approach for
differential gene expression. Residual deviations of each replicate from the mean could be plotted
against the average intensity. Robust estimates of center and scale could be used as above in formal
Bonferroni-style tests for outliers.

Time or other progressions over multiple levels might be examined for linear or quadratic
trends using orthogonal contrasts (8). With multiple factors, polynomial or other orthogonal
contrasts can be considered for main effects and for interactions. Each contrast can be analyzed in a
similar fashion to the above.
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Consider r condition levels in increasing order. The importance of each polynomial
component in the data can be measured by a specific trend associated with a contrast. That is,
consider the average intensity X=∑Nk/r and contrasts of the form Y=∑ckNk. For instance, with five
conditions representing a linear series of glucose levels, one might investigate linear and quadratic
contrasts: Y1=2N5+N4−N2−2N1 and Y1=2N5−N4−2N3-N2+2N1. Again, assume that most genes are not
changing, and proceed with a similar specification as for two conditions. Separate smooth robust
estimates of center and scale are needed for each contrast. Perhaps an additional Bonferroni
correction may be used to adjust for multiple contrasts.

A.6. Software Implementation

The analysis procedure is written as an R language module. The R system is publicly
available from the R Project, and our code is available from the corresponding author as the R
"microarray" library. The function robustscale() computes the center m(X) and spread s(X), while
the function pickgene() plots Y against X, after backtransforming to show fold changes, and picks
the genes with significant differences in expression. Examples include the simulations and graphics
presented here. A separate library contains the obesity and diabetes microarray data.
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Accesion # fold Description Function average p-value
AA033381 -5.46 No significant homologies - 0.506 0.0028
aa190005 -5.33 No significant homologies - 1.056 0.0015
AA198324 -5.64 No significant homologies - 0.428 0.0016
aa267014 -7.04 No significant homologies - 1.154 0.0000
aa544897 -10.23 No significant homologies - 0.346 0.0000
aa596237 -4.14 No significant homologies - 1.377 0.0095
aa616759 -5.46 No significant homologies - 0.522 0.0027
c80103 2.74 No significant homologies - 3.398 0.0076
AA048974 6.40 No significant homologies - 0.565 0.0001
AA035870 6.74 No significant homologies - 1.091 0.0000
AA103862 8.10 No significant homologies - 0.268 0.0013
w19022 7.03 No significant homologies - 0.694 0.0000
w45955 -7.92 No significant homologies - 0.356 0.0001
w49331 -5.05 No significant homologies - 0.849 0.0093
w64688 6.73 No significant homologies - 0.943 0.0000
W48968 3.55 Sequence Withdrawn - 2.147 0.0016
W51181 5.08 Sequence Withdrawn - 0.475 0.0062
AA168767 7.41 Sequence Withdrawn - 0.090 0.0072
ET63493 6.27 Mus musculus cyclin-dependent kinase inhibitor (p15INK4b) Cell Cycle 0.434 0.0002
aa711625 2.58 Similar to Rat ERG2 Cholesterol Metabolism 23.856 0.0081
AA146437 3.18 Mus musculus cathepsin S Cysteine Protease 3.442 0.0001
AA089333 3.66 Mus musculus cathepsin S precursor Cysteine Protease 4.128 0.0000
W13263 4.07 Mus musculus ctsk Cysteine Protease 2.581 0.0000
U59807 3.14 Mus musculus cystatin B (Stfb) Cysteine Protease 5.263 0.0000
AA009095 5.46 Similar to cathepsin D Cysteine Protease 0.392 0.0052
X54511 4.17 M.musculus Myc basic motif homologue-1 Cytoskeletal Function 2.904 0.0000
X54511 2.75 M.musculus mbh1 Cytoskeletal Function 3.625 0.0040
X64361 4.83 M.musculus vav Cytoskeletal Function 0.535 0.0140
AA050934 -3.80 Similar to Rat kinesin-related protein 2 (KRP2) Cytoskeletal Function 1.799 0.0039
AA062269 -5.80 Mouse protamine 1 DNA Binding Protein 0.877 0.0009
m27501 -4.77 Mus musculus protamine 2 DNA Binding Protein 0.990 0.0143
X87096 6.40 M.musculus brevican ECM Function 0.340 0.0038
X99143 7.47 M.musculus hair keratin, mHb6 ECM Function 0.203 0.0064
x14951 3.12 CD18 antigen beta subunit, leukocyte adhesion protein (LFA-1) ECM Function 2.272 0.0142
l13732 5.66 Mouse macrophage-specific integral membrane protein ECM Function 0.962 0.0006
AA080172 -4.06 Mus musculus phosphoenolpyruvate carboxykinase 1 Gluconeogenesis 4.763 0.0000
W47728 6.20 Similar to Rat glycogen synthase kinase 3 alpha Glycogen Metabolism 0.577 0.0002



U96386 -4.82 Mus musculus activin beta E subunit Growth Factor 1.167 0.0035
u02883 -5.56 Mus musculus Balb/c mammary-derived growth inhibitor (MDGI) Growth Factor 1.002 0.0010
AA097231 5.02 Mus musculus Rac2 GTP Binding Protein 0.628 0.0076
AA137962 7.97 similar to Human rab-14 GTP Binding Protein 1.076 0.0000
ET62522 5.20 Mus musculus defensin Immune Function 0.632 0.0042
W41745 3.11 Mus musculus Fc receptor Immune Function 5.090 0.0000
M21285 -2.68 Mouse stearoyl-CoA desaturase Lipogenesis 25.716 0.0046
aa137436 2.69 Similar to stearoyl-CoA desaturase Lipogenesis 17.940 0.0025
M21050 2.84 Mouse lysozyme M Lysosomal Function 16.350 0.0005
X63349 -5.92 M.musculus tyrosinase-related protein-2 Metabolism 1.599 0.0000
j05663 -5.03 Mouse vas deferens androgen related protein (MVDP) Metabolism 0.682 0.0105
U16297 -8.60 Mus musculus cytochrome B561 Metabolism 0.506 0.0000
AA023099 9.64 Mus musculus dUTPase Metabolism 0.221 0.0002
AA111277 6.97 Mus musculus hippocalcin-like 1 (Hpcal1) Metabolism 0.348 0.0008
AA116710 -6.73 Mus musculus serum response factor Metabolism 0.847 0.0001
W10926 8.01 Mus musculus ubiquitin like protein Metabolism 0.762 0.0000
c76068 2.71 Similar to Mouse mitochondrial genes coding for three transfer RNAs Mitochondrial 11.905 0.0020
M20625 5.43 Cytochrome c Mitochondrial 0.406 0.0033
u69135 2.51 Mus musculus UCP2 Mitochondrial 10.515 0.0161
W16250 6.20 Similar to Mus musculus ATP synthase Mitochondrial 0.459 0.0002
J04179 8.27 Mouse chromatin nonhistone high mobility group protein Nuclear Protein 1.138 0.0000
J04179 3.88 Mouse chromatin nonhistone high mobility group protein (HGM-I(Y)) Nuclear Protein 1.445 0.0131
m30844 -3.94 Mus musculus B2 protein Nuclear Protein 6.960 0.0000
aa408365 -7.18 Mus musculus SRp25 nuclear protein Nuclear Protein 0.380 0.0001
x93999 -7.64 Gal beta-1,3-GalNAc-specific GalNAc alpha-2,6-sialyltransferase gene Protein Metabolism 0.513 0.0000
U77083 5.09 Mus musculus CD13/aminopeptidase N Protein Metabolism 0.844 0.0059
U93862 2.54 Mus musculus ribosomal protein L41 Protein Synthesis 26.383 0.0116
x03479 4.03 Mouse mRNA fragment for serum amyloid A (SAA) 3 Secreted Protein 1.491 0.0049
X03505 8.29 Mouse serum amyloid A Secreted Protein 0.693 0.0000
W17473 -3.64 Mus musculus angiotensinogen Secreted Protein 5.016 0.0000
AA106347 -3.22 Mus musculus angiotensinogen precursor Secreted Protein 2.293 0.0095
M82831 5.33 Mus musculus macrophage metalloelastase Secreted Protein 1.878 0.0000
W85163 14.06 Mus musculus migration inhibitory factor Secreted Protein 0.168 0.0000
ET63455 6.42 Mus musculus serum amyloid A-4 protein (Saa4) Secreted Protein 0.310 0.0108
AA124352 4.88 Similar to Human neuromedin B Secreted Protein 0.705 0.0117
x04673 -3.45 Mouse adipsin Serine Protease 10.273 0.0000
W36455 -4.61 Mus musculus adipsin Serine Protease 12.089 0.0000
AA105229 -6.85 Mus musculus hepsin Serine Protease 0.318 0.0047



ET62360 6.69 Calcium-dependent phospholipase A2 precursor Signal Transduction 0.417 0.0001
X72862 -8.95 M.musculus beta-3-adrenergic receptor Signal Transduction 1.575 0.0000
x93328 4.54 M.musculus F4/80 Signal Transduction 1.777 0.0001
x72862 -3.27 M.musculus beta-3-adrenergic receptor Signal Transduction 5.781 0.0000
X65026 6.56 M.musculus GTP-binding protein Signal Transduction 0.810 0.0001
m31810 -5.36 Mouse 2',3'-cyclic-nucleotide 3'-phosphodiesterase Signal Transduction 0.512 0.0037
D14883 -4.56 Mouse C33/R2/IA4 Signal Transduction 1.134 0.0119
J02935 -5.12 Mouse cAMP-dependent protein kinase type II regulatory subunit Signal Transduction 0.399 0.0148
m19681 4.93 Mouse platelet-derived growth factor-inducible protein Signal Transduction 1.106 0.0027
AA168061 6.20 Mus musculus adenylate kinase Signal Transduction 0.603 0.0002
u77460 9.93 Mus musculus anaphylatoxin C3a receptor Signal Transduction 1.191 0.0000
ab009287 2.96 Mus musculus Macrosialin Signal Transduction 3.565 0.0006
U19799 4.86 Mus musculus IkB-beta Signal Transduction 0.451 0.0125
w14147 4.77 Mus musculus TOM1 Signal Transduction 0.549 0.0166
AA154294 13.08 Mus musculus non-receptor protein tyrosine phosphatase Signal Transduction 0.306 0.0000
U09507 8.45 Mus musculus p21 (Waf1) Signal Transduction 0.724 0.0000
w12140 4.83 Similar to Human putative receptor protein (PMI) Signal Transduction 1.167 0.0024
AA138292 6.57 Similar to Rat S6 kinase Signal Transduction 0.419 0.0001
AA114591 6.27 Similar to Rat type III adenylyl cyclase Signal Transduction 0.615 0.0002
X12521 -8.98 Mouse transition protein 1 TP1 Telomeric 0.751 0.0000
AA144629 -5.87 Mus musculus transition protein 1 Telomeric 0.710 0.0008
x66224 12.09 M.musculus retinoid X receptor-beta Transcription Factor 0.256 0.0000
m32370 4.46 Mouse transcription factor PU.1 Transcription Factor 1.405 0.0013
w48392 7.23 similar Id4 helix-loop-helix protein Transcription Factor 0.573 0.0000
aa259645 5.99 Mus musculus BING4 Unknown 0.737 0.0004
d10911 3.51 Mus musculus DNA for MS2 protein Unknown 2.580 0.0002
aa608251 -25.21 Dp1l1 mRNA for polyposis locus protein 1-like 1 (TB2 protein-like 1) Unknown 0.535 0.0000
Z31278 5.46 Mus musculus T-ZAP Unknown 0.653 0.0019


