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ABSTRACT

The identification of quantitative trait loci (QTL) and their interactions is a crucial step toward the
discovery of genes responsible for variation in experimental crosses. The problem is best viewed as one of
model selection, and the most important aspect of the problem is the comparison of models of different
sizes. We present a penalized likelihood approach, with penalties on QTL and pairwise interactions chosen to
control false positive rates. This extends the work of Broman and Speed to allow for pairwise interactions
among QTL. A conservative version of our penalized LOD score provides strict control over the rate of
extraneous QTL and interactions; a more liberal criterion is more lenient on interactions but seeks to
maintain control over the rate of inclusion of false loci. The key advance is that one needs only to specify a
target false positive rate rather than a prior on the number of QTL and interactions. We illustrate the use of
our model selection criteria as exploratory tools; simulation studies demonstrate reasonable power to detect
QTL. Our liberal criterion is comparable in power to two Bayesian approaches.

QUANTITATIVE traits, such as blood pressure and
fasting glucose, are often affected by multiple

genetic factors, called quantitative trait loci (QTL). The
identification of such QTL can lead to improved under-
standing ofmolecular mechanisms behind suchtraits and
is the central goal of many experimental crosses involving
inbred lines.

We focus on the case of a backcross or an intercross
derived from two inbred parental lines and on a contin-
uously varying quantitative trait with normally distributed
residual variation. The goals of a QTL mapping experi-
ment include the identification of QTL and epistatic
interactions, the derivation of interval estimates for the
locations of the QTL, and the estimation of QTL effects.
We focus strictly on the identification of QTL and their
interactions.

The simplest and most commonly used approach for
QTL mapping is interval mapping (Lander and Botstein

1989). One posits the presence of a single QTL and
considers each genomic location, one at a time, as the
putative location for the QTL. At each location, a LOD
score is calculated, comparing the hypothesis of a single
QTL at the given position to the null hypothesis of no
QTL. Much of the focus has been on statistical signif-
icance correcting for the genome scan (that is, for the
multiplicity of statistical tests that are performed). A

significance threshold or set of corrected P-values is
derived on the basis of the distribution of the genome-
wide maximum LOD score, under the null hypothesis of
no QTL. This null distribution is commonly estimated via
a permutation test (Churchill and Doerge 1994).

Despite being based on a single-QTL model, interval
mapping has been remarkably useful. However, the
consideration of multiple-QTL models has several advan-
tages: (1) controlling for a QTL with large effect reduces
the residual variation and increases the power to detect
additional QTL of modest effect; (2) one can better
separate linked QTL; and (3) epistatic interactions
among QTL can be inferred.

The exploration of multiple-QTL models goes beyond
hypothesis testing and is better viewed as model selection
(also known as variable selection). We seek to identify the
set of QTL (and epistatic interactions) that are best
supported by the data. Special features of the model
selection problem in QTL mapping make it unique. First,
our primary goal is identifying a good model, not
minimizing prediction error; this involves balancing the
omission of important loci (false negatives) against the
inclusion of extraneous loci (false positives). Second, we
have a continuum of ordinal-valued covariates (the
genetic loci). Finally, the collinearity of genetic loci is
well understood: genotypes for different chromosomes
are independent, and for linked loci the correlation
decays rapidly with genetic distance.

We split the model selection problem into four dis-
tinct parts: choice of a class of models, model fit, model
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search, and model comparison. The class of models may
contain only additive QTL models or may allow pairwise
interactions and possibly higher-order interactions.
Model fit with complete genotype data at the putative
QTL uses linear regression. With missing data at QTL,
several methods are available, including multiple-
interval mapping (MIM) (Kao et al. 1999), Haley–Knott
regression (Haley and Knott 1992), and multiple
imputation (Sen and Churchill 2001). Model search
with a large class of possible models requires an efficient
search procedure. Possible procedures include forward
selection, backward elimination, stepwise selection, and
randomized algorithms including simulated annealing
and Markov chain Monte Carlo (MCMC).

Model comparison is arguably the most important
aspect of the model selection problem. Models of the
same size can be compared directly by maximum likeli-
hood. However, models of varying size must be com-
pared by seeking a balance between model fit and
model complexity. A common approach is to use a
penalized likelihood criterion, with a penalty on the
number of terms in the model. Many classical criteria
have this form, including the Akaike information
criterion (AIC) (Akaike 1969) and the Bayesian in-
formation criterion (BIC) (Schwartz 1978).

In their original forms, neither the AIC nor the BIC is
ideal for model selection in QTL mapping, due to the
large numbers of potential covariates. However, numer-
ous modifications to the BIC have been proposed. Ball

(2001), Bogdan et al. (2004), and Baierl et al. (2006)
suggested incorporating a prior on the model size, while
Siegmund (2004) arrived at a similar criterion by
formulating QTL mapping as a change-point problem.
Broman and Speed (2002) modified the penalty term to
control the false positive rate.

Boer et al. (2002), Zhang and Xu (2005), and Tanck

et al. (2006) described penalized likelihood methods for
linkage analysis, with penalties on the sizes of effects, in
a form similar to ridge regression, to shrink both the
model and the estimated effects. The approach we
follow is quite different.

Another important stream of methods for multiple-
QTL mapping makes use of a Bayesian analysis via
MCMC (e.g., Satagopan et al. 1996; Yi et al. 2003, 2005).
An advantage of the Bayesian methods is that an ex-
pression of uncertainty in the final inference is integral
to the framework. However, the Bayesian framework
requires a specification of prior distributions on all
aspects of the model (including the number of QTL and
the number of interactions), implementing the MCMC
algorithm requires great care, and the interpretation of
the MCMC results can be difficult.

In this article, we extend the work of Broman and
Speed (2002) to allow for pairwise interactions among
QTL. Broman and Speed (2002) considered strictly
additive QTL models and used the null distribution of
the genomewide maximum LOD score to derive a pen-

alty on the number of QTL that provided appropriate
control on the rate of inclusion of extraneous (i.e., false
positive) loci. We apply the same logic, considering the
results of a two-dimensional, two-QTL scan, to derive a
penalty for the interaction terms. We focus on a class of
models that includes pairwise interactions, but with an
imposed hierarchical structure in which the inclusion
of an interaction term requires the inclusion of the
corresponding main effects.

Our goal is to develop a model selection procedure
that identifies as many true QTL as possible, while
controlling the rate of inclusion of extraneous loci. We
generally view the inclusion of an extraneous interac-
tion (or the failure to identify an interaction) as less
severe than the inclusion of an extraneous locus (or the
failure to identify a locus). This target is most appropri-
ate for biomedical research and may not be appropriate
for agricultural or evolutionary studies.

We illustrate our methods through application to data
from a mouse backcross and validate the performance
of these methods through computer simulation.

METHODS

We consider the case of a backcross or an intercross
derived from two inbred lines and of a continuously
varying quantitative trait with normally distributed re-
sidual variation. We consider QTL models with possible
pairwise interactions among QTL and impose a hierar-
chy on the models, with the inclusion of a pairwise
interaction requiring the inclusion of both correspond-
ing main effects. In the case of an intercross, we always
include both the additive and the dominance terms for
a QTL, and a pairwise interaction requires the inclusion
of all four parameters.

We extend the BICd criterion of Broman and Speed

(2002) to allow pairwise interactions among QTL, de-
fining two new criteria, pLODH and pLODL, with heavy
and light penalties on the pairwise interactions.

Broman and Speed (2002) considered strictly addi-
tive QTL models. Their BICd criterion is equivalent to
choosing the model that maximizes the penalized LOD
score

pLODaðgÞ ¼ LODðgÞ � Tmjgj ; ð1Þ

where g denotes a model, LOD(g) is the log10-likeli-
hood ratio for the model g relative to the null model (of
no QTL), jgj is the number of QTL in the model g, and
Tm is a penalty on QTL. (While one would usually count
model parameters in such a criterion, note that here we
are counting QTL.)

The penalty on QTL, Tm, was chosen as the 1 � a

quantile of the genomewide maximum LOD score
under the null hypothesis of no QTL (derived, for
example, from a permutation test). With this choice, the
false positive rate is maintained at the rate a in the case
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of no QTL and with the search restricted to models with
no more than one QTL. Broman and Speed (2002)
showed, through computer simulation, that the false
positive rate is also maintained at or near a in the
presence of QTL and for wider searches.

We rename the BICd criterion as pLODa for consis-
tency with the two new criteria, defined below, and
because the term ‘‘BIC’’ is a misnomer: in the traditional
BIC, the penalty increases with the sample size, on the
order log n, but in the BICd criterion, the penalty is
approximately constant with sample size.

We now turn to the case of pairwise interactions
among QTL. We consider the penalized LOD score

pLODðgÞ ¼ LODðgÞ � Tmjgjm � Tijgj i; ð2Þ

where jgjm and jgji are the number of QTL and the
number of pairwise interactions, respectively, in the
model g. We thus allow separate penalties on the main
effects and interactions and note again that our penal-
ties are on the number of QTL and interactions, and not
on the individual degrees of freedom in such terms.

For consistency, we use the same penalty on the main
effects as in Equation 1: the significance threshold from
a single-QTL genome scan. Thus, if one restricts the
search to additive QTL models, this more general
criterion reduces to the pLODa criterion.

To derive the penalty for the interaction terms, we
follow the same logic as in Broman and Speed (2002),
but here we consider the results of a two-dimensional,
two-QTL genome scan (Haley and Knott 1992; Sen

and Churchill 2001). This is the obvious extension
of the single-QTL genome scan of interval mapping:
we consider each pair of genomic positions (l1, l2) as
putative QTL and fit both a full model, with the two
QTL allowed to interact, and an additive model. We also
consider the results of a single-QTL genome scan. We
consider three sets of LOD scores. LODf(l1, l2) is the
log10 likelihood ratio comparing the hypothesis of two
interacting QTL, with one at position l1 and the other at
position l2, to the null hypothesis (no QTL). LODa(l1,
l2) is the analogous LOD score comparing the hypoth-
esis of two additive QTL to the null hypothesis. LOD1(l)
is the LOD score from the single-QTL scan, at position l.

In considering the appropriate penalty for interac-
tion terms, imagine that there are two additive QTL and
that one performs the two-dimensional, two-QTL scan
outlined above. We might then choose the penalty as
follows:

T H
i ¼ ð1� aÞ quantile of

max
l1;l2

LODfðl1; l2Þ �max
l1;l2

LODaðl1; l2Þ
� �

: ð3Þ

With this choice, the penalized LOD score in Equation 2
has the property that, if the truth is a pair of additive
QTL, and one restricts the search to models with no
more than two QTL, we will falsely choose an interacting

pair over the additive model at the target rate, a. We call
this the heavy penalty (to distinguish it from a lighter
penalty described below).

The quantile in Equation 3 is ideally for the distri-
bution in the presence of two additive QTL. Such a
quantile would be difficult to derive and would likely
depend on the locations and effects of the two QTL.
However, it is likely to be well approximated by the
quantile under the null hypothesis of no QTL, as the
interaction terms are approximately orthogonal to
the main-effect terms. Thus, we again recommend the
use of a permutation test (Churchill and Doerge

1994) to derive this penalty.
For the class of models under consideration, allowing

pairwise interactions but with our enforced hierarchy,
one may represent a QTL model as an undirected
graph, with nodes representing QTL and edges repre-
senting pairwise interactions. Four example models are
displayed in Figure 1. In Figure 1A, there is a pair of
interacting QTL. In Figure 1B, there are three QTL,
with two of the three possible pairwise interactions. In
Figure 1C, there are three QTL with all possible pairwise
interactions. In Figure 1D, there are seven QTL, one of
which shows an interaction with each of the other QTL.

The heavy penalty in Equation 3 seeks to control the
rate of inclusion of an extraneous interaction (an
extraneous edge in the graph). With this approach, we
have low power to detect interacting loci with limited
marginal effects. Moreover, the inclusion of a false
interaction (or the exclusion of a true interaction) is

Figure 1.—Example graphical representations of QTL
models. Nodes represent QTL and edges represent pairwise in-
teractions. (A) A model containing two QTL and their interac-
tion. (B) A model containing three QTL and two pairwise
interactions. (C) A model containing three QTL and all possi-
ble pairwise interactions. (D) A model containing seven QTL,
with one central locus interacting with the other six.
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generally not so bad as the inclusion of a false locus (or
the exclusion of a true locus). Our primary goal should
be to identify the major players. The correct identifica-
tion of the detailed interactions can be useful (particu-
larly for guiding subsequent fine-mapping experiments),
but it is not so critical as the correct identification of the
loci themselves.

With this in mind, we consider a variation on our logic
for deriving the penalty on interactions. Consider the
case that the truth is a single QTL and that we perform a
two-dimensional, two-QTL genome scan and seek to
control the rate of inclusion of an additional interacting
locus. The idea is that the truth is a single node, and we
wish to control the rate of inclusion of an extraneous
‘‘pin’’ (that is, an additional node with a pairwise
interaction edge). An additional interacting QTL would
give an additional main-effect penalty (Tm) plus an
interaction penalty (Ti). Thus, one could choose the
interaction penalty according to the following equation:

Tm 1 T L
i ¼ ð1� aÞ quantile of

max
l1;l2

LODfðl1; l2Þ �max
l

LOD1ðlÞ
� �

: ð4Þ

This gives our light interaction penalty: the difference
between the quantile specified on the right-hand side
of Equation 4 and the main-effect penalty, Tm. The
penalized LOD in Equation 2, with the light interaction
penalty, Ti

L, has the property that, if the truth is a single
QTL and one performs a search over models with no
more than two QTL, the rate of inclusion of a second
(false) QTL is maintained at a rate no more than a.

While we would hope that the false positive rates
would be maintained at their target rates irrespective of
the size of the model, computer simulation experiments
indicated that, in the presence of multiple QTL, use of
the light interaction penalty will often lead to a model
with an extraneous QTL exhibiting interactions with
multiple true QTL (similar to the model depicted in
Figure 1D, with the central node being an extraneous
QTL). The light interaction penalty controls the rate of
inclusion of an extraneous pin (a QTL with a single
interaction) and improperly penalizes the case of a
multipronged pin (as in the central locus in Figure 1D).

Therefore, we compromise between the exclusive use
of the heavy interaction penalty and the exclusive use of
the light interaction penalty. We consider the graphical
representation of a model (for example, imagine that
the four panels in Figure 1 represent a single model,
with 15 QTL and 12 pairwise interactions). For each
connected component in the model, we apply one light
interaction penalty, Ti

L, and give all other pairwise
interactions the heavy interaction penalty, Ti

H. (Thus,
for the model consisting of the entirety of Figure 1, the
penalty would be 15Tm 1 4Ti

L 1 8Ti
H.)

We thus define two penalized LOD scores. The first,
more conservative criterion, denoted pLODH, is of the

form in Equation 2, with the exclusive use of the heavy
interaction penalty, Ti

H, defined to control the rate of
inclusion of a false interaction in the presence of two
additive QTL. A second, more liberal criterion, denoted
pLODL, does not fit the form of Equation 2, but requires
consideration of the connected components of QTL;
each component is assigned a single light interaction
penalty, Ti

L (except, of course, if the component
consists of a single QTL), with all additional interactions
being assigned the heavy penalty, Ti

H.
As mentioned earlier, we prefer to separate the def-

inition of a model comparison criterion from the
procedures to search through the space of models. In
constructing a model comparison criterion, we imagine
the case that one could consider all possible models
exhaustively. In forming a model search procedure, the
task is then to optimize the chosen model comparison
criterion.

For the purpose of identifying interactions, we pro-
pose searching the model space using a two-at-a-time
version of forward selection. At each step of forward
selection, we consider adding up to two QTL plus their
pairwise interaction, and we choose the model with the
maximum penalized LOD (even if it is lower than the
penalized LOD for the current model). After a prede-
termined number of steps forward, we proceed with
backward elimination as usual. The final model chosen
is the one with the highest penalized LOD among all
models visited in the search space.

After each step of forward selection (and, potentially,
after each backward elimination step), we use an addi-
tional model refinement step, based closely on the
search algorithm described by Zeng et al. (1999): we
iteratively refine the location of each QTL along a
chromosome, keeping positions of all other QTL fixed.
In the case of multiple QTL on a chromosome, the
position for a given QTL is scanned between the nearest
flanking QTL (or ends of the chromosome), so that the
order of the QTL is not modified.

APPLICATION

We illustrate our multiple-QTL mapping methods
through application to the data of Sugiyama et al.
(2001), on salt-induced hypertension in 250 backcross
mice. A selective genotyping strategy was used (for most
markers, only 92 individuals with extreme phenotypes
were genotyped). To deal with missing genotype data, we
used multiple imputation (Sen and Churchill 2001).

We begin by calculating appropriate significance
thresholds for this data set. To account for selective
genotyping, we perform stratified permutations, pre-
serving the relationship between the missing genotype
pattern and the phenotypes (Manichaikul et al. 2007).
The LOD penalties of Tm ¼ 2.56, Ti

H ¼ 2.39, and Ti
L ¼

1.01 were obtained as 95% quantiles of distributions
from 10,000 permutations with a two-dimensional, two-
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QTL scan on a 2.5-cM grid with 64 imputed sets of
genotypes.

Previous analysis by Sugiyama et al. (2001) suggested
a six-QTL model with a pair of linked loci on chromo-
some 1; unlinked QTL on chromosomes 4, 5, 6, and 15;
and a pairwise interaction between the QTL on chro-
mosomes 6 and 15. We use this model as a starting point
and proceed to explore neighboring models, to see how
well the data support models with additional or fewer
QTL. In accordance with our two-at-a-time forward se-
lection strategy, we considered neighboring models by
adding (1) an interaction between an existing pair of
QTL, (2) an additional additive QTL, (3) a new QTL in-
teracting with a QTL already in the model, (4) a pair of
additional additive QTL, and (5) a pair of additional
QTL with a pairwise interaction.

Data analysis was performed on a 2.5-cM grid with 256
imputed sets of genotypes. The best model of each type
is summarized in Figure 2. An interaction between the
loci on distal chromosome 1 and chromosome 5 from
the original model increased the model LOD score by
0.76, missing the light interaction penalty of 1.01. An
additional locus on proximal chromosome 5 improved
the LOD by 1.56, missing the main-effect threshold of
2.56 and decreasing the penalized LOD score by 1.0.
Fitting an interaction between this new locus on chro-
mosome 5 and the existing locus on proximal chromo-
some 1 further increased the model LOD score by 1.53,
exceeding the corresponding light interaction thresh-
old of 1.01 and increasing the value of pLODL by 0.52
compared to the model without this interaction. How-
ever, the extended model with a second locus on
chromosome 5 interacting with proximal chromosome
1 still had a lower penalized LOD than the original
model of Sugiyama et al. (2001) because the improve-
ment due to interaction did not outweigh the decrease
from addition of the main effect on chromosome 5. In
considering whether to add a pair of loci to the model,
the best additive pair we identified consisted of a new
locus on chromosome 2, together with the aforemen-
tioned additional locus on chromosome 5. However,
adding this pair of loci did not yield the required LOD
increase of twice the main-effect penalty, or 2 3 2.56.
The best pair of interacting loci contained a new QTL
on chromosome 4 and the same locus on proximal
chromosome 5. The increase in LOD from the addition
of the new term on chromosome 4 and its interaction
with proximal chromosome 5 was 2.61, missing the cor-
responding penalty of 2.56 1 1.01 ¼ 3.57. In summary,
our search through neighboring models did not iden-
tify any additional model terms that improved the
penalized LOD beyond that of Sugiyama et al. (2001).

We also performed backward elimination to explore
the possibility of a smaller model. We found that remov-
ing the loci on proximal chromosome 1 and chromo-
some 5 improved the penalized LOD score from 7.40 to
9.38. So, our pLODL criterion would support removing

these two QTL from the model, resulting in a model
with QTL on chromosomes 1, 4, 6, and 15 and including
the 6 3 15 interaction. This more parsimonious model
was also chosen by application of our fully automated
search algorithm. It reflects the strict control over false
positives in our approach to QTL model selection. But
note that we are not limited to choosing a single model;
our proposed penalized LOD scores can be used as an
exploratory tool to compare relative support of the data
for different models.

SIMULATIONS

While the application of a QTL mapping method to
specific data sets can be informative, a more complete
exploration of the performance of a method requires
computer simulation experiments. To characterize the
performance of our proposed penalized LOD criteria
and to compare them to other approaches, we simu-
lated intercrosses of 500 individuals and compared the
results of our proposed criteria (pLODL and pLODH),
the criterion of Broman and Speed (2002) (pLODa), a
Bayesian model selection method using MCMC (Yi et al.
2005), and the modified BIC criteria of Baierl et al.
(2006). To create a realistic generating QTL model, we
considered that model estimated via the pLODL crite-
rion with data from a mouse intercross on self-selected
diet intake (Smith Richards et al. 2002). We consid-
ered the total food intake weight, in grams, adjusted for
postdiet body weight (TgB) phenotype. The estimated
model included QTL on chromosomes 5, 7, 8, 10, 16,
17, 18, and 19, and interactions between QTL on the
chromosome pairs 7 3 10, 8 3 18, and 5 3 16. QTL
effect parameters (estimated by multiple imputation
with 64 sets of imputed genotypes) were reduced by a
factor of 0.6 to more clearly differentiate the relative
performance of different methods. The resulting heri-
tability values for each of the model terms (the propor-
tions of the phenotypic variance explained by each term)

Figure 2.—The final model for hypertension data in
Sugiyama et al. (2001) contained a pair of QTL on chromo-
some 1, unlinked QTL on chromosomes 4 and 5, and a pair of
interacting QTL on chromosomes 6 and 15 (solid line). We
explored the possibility of additional interactions between
QTL in the original model of Sugiyama et al. (2001) and also
considered additional QTL on chromosomes 2, 4, and 5, with
possible interactions involving these loci (dashed lines). Each
new model term is annotated with its corresponding contri-
bution to the model LOD score. For example, an interaction
between model terms 1b and 5a increased the model LOD
score by 0.76 compared to the original model.
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are displayed in Figure 4B. As seen in the figure, the
heritabilities corresponding to the main-effect terms of
QTL on chromosomes 5 and 16 are relatively weak, so we
would expect our power to detect these QTL without
allowing for epistasis to be markedly reduced. We used
a marker map modeled after the mouse genome with
markers at a 10-cM spacing; we considered the autosomes
only.

Model selection strategies: For each simulated data
set, we applied a number of different model selection
approaches, described below.

For each method and each simulation replicate, QTL
main effects were considered to be correctly identified if
the final selected model contained a QTL within 50 cM
of the true position. The large window for picking up
true QTL gave us a generous view of power, but we
complemented this measure with a summary of the
precision in QTL positions.

pLODL: In analyses with pLODL as the criterion to
choose a final model, a search of the model space was
performed using two-at-a-time forward selection, fol-
lowed by backward elimination. The search was per-
formed on a 2.5-cM grid, and models were fitted using
Haley–Knott regression (Haley and Knott 1992). The
LOD penalties of Tm ¼ 3.58, Ti

H ¼ 2.81, and Ti
L ¼ 4.41

were obtained as 95% thresholds of the appropriate
log10-likelihood-ratio statistics, estimated via 10,000
simulation replicates under the null hypothesis of no
QTL. The maximum number of model parameters
(excluding the grand mean and error variance) was
limited to 50; forward selection was stopped upon
reaching the first model with at least 50 parameters.
Further, we required at least two markers within the
interval between any two linked QTL fitted at non-
marker positions and at least one marker between
linked QTL where one QTL was at a marker and the
other was not. This restriction is justified because es-
sentially all information in a QTL position in between
markers can be summarized by genotype data at the
flanking markers (Whittaker et al. 1996), and so we
should not fit linked QTL at nonmarker positions with
flanking markers in common.

pLODH: Analysis using the pLODH criterion was the
same as for pLODL above, but using heavy interaction
penalties only.

pLODa (Broman and Speed 2002): Analysis using
the pLODa criterion was the same as described for the
pLODL, except that interactions were excluded from
the search space.

Bayesian model selection (Yi et al. 2005): Bayesian model
fitting was performed, with priors specified on number
of QTL, QTL locations, genetic effects, overall pheno-
typic mean, and residual variance as described in Yi et al.
(2005). The prior on the number of QTL in the model
was chosen as a Poisson distribution with mean 6, and
the upper bound on the number of QTL allowed in the
model was 13.

Inclusion of QTL main effects was assumed indepen-
dent of epistatic effects, and QTL locations were
assumed independent and uniformly distributed. Ge-
netic effects of included main and epistatic terms were
assumed to be normally distributed. The prior on the
overall phenotypic mean was specified as normally dis-
tributed with mean and variance taken as their observed
sample values. Finally, residual variance was assigned the
improper noninformative prior, p(s2) } 1/s2.

Pseudomarkers were spaced approximately every
2.5 cM. The MCMC sampler was run for 404,000 steps,
with 4000 burn-in steps removed. The posterior distri-
bution was estimated on the basis of the results from every
20th iteration and so contained 20,000 MCMC samples.

Model selection was performed by choosing the pat-
tern of chromosomes and interactions with the highest
posterior probability. Estimated positions of the QTL
were obtained as the median positions from among all
visited models whose pattern either matched the se-
lected pattern exactly or was a superset of the selected
pattern.

Modified BIC with empirical Bayes (Baierl et al. 2006):
To control the problem of model overfitting encoun-
tered in allowing for epistasis, mBIC (Bogdan et al.
2004) incorporates a prior distribution to account for
the large number of model parameters considered.
Extending this work to deal with intercrosses, Baierl

et al. (2006) proposed QTL model selection by mini-
mizing the following general criterion:

mBIC ¼ n log RSS 1 ðp 1 qÞlog n 1 2p logðl � 1Þ
1 2q logðu � 1Þ: ð5Þ

Here p is the number of main-effect parameters and q is
the number of epistatic parameters in the model. The
mBIC criterion is very similar to the original BIC, with
the addition of two separate penalty terms on main
effects and interactions to account for the large number
of possible predictors of these two types. Specifically, l :¼
mv/ENv and u :¼ me/ENe, where mv and me are the
number of main and epistatic parameters in the model,
while ENv and ENe are the expected number of main
and epistatic parameters, according to the chosen prior.
Performing model selection on the m marker positions
only, we take mv ¼ 2m and me ¼ 2m(m � 1) and ENv ¼
ENe ¼ 2.2, which gives mBIC obtained as a direct
extension of that presented in Bogdan et al. (2004).

As an alternative to fixed priors, Baierl et al. (2006)
presented an empirical Bayes type strategy for setting
the expected number of true QTL model terms. This
practical approach begins with an initial scan using
mBIC as described above. The observed numbers of
main and epistatic terms, N̂v and N̂e, are then used to set
the expected number of QTL parameters as ENv ¼
maxð2:2; N̂vÞ and ENe ¼ maxð2:2; N̂eÞ. Plugging these
new expected values into the general version of mBIC
in Equation 5 yields an empirical Bayes version of the
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criterion, called mBIC1. This modified version always
sets the expected number of model parameters to be as
large as or larger than that specified by mBIC and so
should be more powerful in detecting QTL effects.

Modified BIC with additional scan for interactions: A
second extension of mBIC was proposed in Baierl et al.
(2006) to improve power to detect interactions. This
modification, called mBIC2, is designed to perform a
focused scan for interactions involving QTL terms
already identified by mBIC1. The idea is that mBIC1

could miss real interactions because it allows interac-
tions to be added to a model without corresponding
main effects, making the model space more noisy and
requiring the search criterion to be more stringent. By
performing a scan targeted at a reduced set of inter-
actions, the extended criterion, mBIC2, is designed to
improve power to pick up epistatic terms.

For simulations, mBIC1 and mBIC2 are implemented
to search models with QTL at marker positions. Also,
note that Bogdan et al. (2004) and Baierl et al. (2006)
do not impose the same hierarchy as we do on the model
space: they allow interactions to be included in a model
without corresponding main effects. They also allow
additive effects in an intercross model without corre-
sponding dominance terms and vice versa.

Software: Simulations were performed using the
statistical software R (Ihaka and Gentleman 1996)
and the add-on package R/qtl (Broman et al. 2003).
Some computationally intensive functions were coded
in C or Matlab and called from R to improve speed.
The Bayesian analysis was performed using R/qtlbim
(Yandell et al. 2007). Analysis with the mBIC criteria was
performed with Matlab code obtained from Andreas
Baierl.

Results: The results are summarized in Figures 3 and
4. Figure 3 displays the error rates for each method, with
the frequency of extraneous loci in Figure 3A, the
frequency of extraneous interactions in Figure 3B, and
the frequency of extraneous interactions that involve an
extraneous locus in Figure 3C. Figure 3D shows the
frequency of extraneous loci as a function of the
number of correctly identified QTL. Figure 4A shows
the power to detect each individual QTL and interac-
tion; Figure 4B shows the proportion of the phenotypic
variance due to the individual terms, for comparison
purposes. Figure 4D shows the distribution of the
number of correctly identified QTL. Figure 4C shows
the mapping resolution of the individual QTL.

pLODL detected more true QTL than pLODH and
pLODa (Figure 4D), with notably higher power to detect
the loci on chromosomes 5 and 16, which had strong
interaction but weak main effects. At the same time,
pLODL also had notably higher error rates than pLODH

and pLODa (Figure 3A).
The Bayesian approach detected correct main effects

approximately in the same range as pLODL (Figure 4D).
Similarly, power for individual model terms was compa-
rable for these two methods, although pLODL per-
formed noticeably better in picking up the interaction
terms (Figure 4A). Extraneous main effects were in-
cluded in models selected by the Bayesian approach at
a rate comparable to that seen for pLODL (Figure 3A).

The detection of correct main effects for the mBIC
methods was roughly in between that of pLODH and
pLODa (Figure 4D), with mBIC2 having the higher
power of the two mBIC approaches. The power to detect
interactions was quite varied across the pLOD and mBIC
methods. The pLODL and pLODH criteria had the

Figure 3.—Estimated error
rates for intercross simulations un-
der a model based on data from
Smith Richards et al. (2002). Plots
display observed distribution sum-
maries of (A) the number of extra-
neousmaineffects, (B) thenumber
of extraneous interactions, (C) the
number of interactions associated
with extraneous main effects, and
(D) the probability of one or more
extraneous unlinked terms as a
function of the number of correct
main effects, shown only when at
least 30 simulation replicates had
the specified number of correct
main effects using a given method.
Ninety-five percent confidence in-
tervals in D are obtained by invert-
ing an exact binomial test. Results
are shown for pLODL (solid black
circle), pLODH (solid red square),
pLODa (solid blue triangle), Bayes
(open black diamond), mBIC2

(open black circle), and mBIC1

(open red square).
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highest power to detect interactions, followed by mBIC2,
with mBIC1 having the lowest power among methods
designed to detect epistasis (Figure 4A). In terms of
overall rates of including extraneous main effects,
mBIC2 was slightly higher than pLODL, while mBIC1

was a bit higher than pLODH (Figure 3A). Since the
mBIC approaches do not constrain additive and dom-
inance terms to be at the same marker positions, we
adjusted our reported error rates by dropping one of
each pair of neighboring markers from our count of
extraneous main effects, but the rates displayed for
mBIC may still be somewhat inflated.

Looking at the error rates stratified by the number of
correctly identified main effects, we saw that pLODL

tended to add more extraneous terms when more QTL
were identified correctly (Figure 3D). The same pattern
was also noticeable to a lesser extent for mBIC2. This
phenomenon makes sense for mBIC2 and pLODL

because both of these criteria were designed to allow
more interaction terms into the model in the presence
of already identified main effects, and these interaction
terms often carry in extraneous main effects (Figure
3C). The Bayesian approach seemed to show a slight
decrease in error rate as the number of correctly
identified main effects increased, but this may simply
reflect the default prior of six main-effect QTL. Further,
the small number of realizations with two or fewer QTL
identified correctly by the Bayesian method makes it
difficult to characterize this relationship completely.

Regarding computation time, the analysis with pLODL

took an average of 8.0 min per simulation replicate, the
analysis with pLODH took 9.2 min, and the analysis with
pLODa took 5.7 min. (Analysis with pLODa was fastest,

since it did not involve a search for interactions; analysis
with pLODL was faster than pLODH, as it generally
reached a model with the maximum allowed size in
fewer steps.) The two mBIC analyses, combined, took an
average of 3.1 min per simulation replicate, but recall
that model search included only the marker locations.
The average analysis time for the Bayesian MCMC ap-
proach was 42.4 min per simulation replicate. These esti-
mated computation times are based on runs on a common
machine.

DISCUSSION

QTL mapping methods that consider models with
multiple QTL have a number of advantages over meth-
ods based on single-QTL models, such as interval
mapping. However, it can be difficult to establish the
support for QTL in the context of multiple-QTL models.

Bayesian methods provide the most natural expres-
sion of model uncertainty: the posterior distribution on
QTL models and, as a corollary, the posterior probabil-
ity that an individual locus or interaction term is
involved in the phenotype. Bayesian methods have the
further advantages of more completely capturing un-
certainty in the inference and of tying together all
aspects of the problem. However, the Bayesian approach
requires a specification of prior distributions; particu-
larly difficult is the specification of the prior on QTL
models, including the number of QTL and the number
of interactions. The posterior can be quite sensitive to
the choice of prior. Additional difficulties include the
construction of efficient MCMC samplers and the
diagnosis of deficiencies in a sampler.

Figure 4.—Estimated power
to detect true QTL in intercross
simulations under a model based
on data from Smith Richards

et al. (2002). Plots display (A)
the power to detect each individ-
ual model term, (B) the heritabil-
ity of the QTL main effects and
interactions, (C) the root mean
squared error of the estimated
positions among correctly identi-
fied QTL, and (D) the observed
distribution of the number of
correct main effects identified in
each simulation replicate. A, C,
and D show results for pLODL

(solid black circle), pLODH (solid
red square), pLODa (solid blue
triangle), Bayes (open black dia-
mond), mBIC2 (open black circle),
and mBIC1 (open red square).
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We have described a penalized likelihood approach
to the problem of comparing multiple QTL models.
Our approach extends the work of Broman and Speed

(2002) to allow for epistatic interactions. We also allow
QTL to reside at nonmarker locations. The key advan-
tage of the new approach is that one needs only to
specify the target false positive rate.

The choice of a prior on the number of QTL and
interactions in a Bayesian approach and in the modified
BIC criterion is essentially equivalent to a choice of
penalties on model complexity; modification of the
prior will affect the performance characteristics of the
methods. In QTL mapping for biomedical research,
control of the false positive rate is particularly impor-
tant. We view our system for selecting penalties, which
considers such false positive rates directly, as more
natural than the specification of a prior. It may be
possible to derive priors for which our penalized LOD
criteria correspond approximately to the log posterior
for a model. This deserves further investigation, as it
would enable a simple system for specifying the prior in
Bayesian QTL analysis.

As expected, we observed notably different frequen-
cies of extraneous QTL using pLODL vs. pLODH. In
fact, the two extensions to pLODa are useful toward
different goals. With the interaction penalty in the
pLODH criterion, we seek to control the rate of any
extraneous interaction, while with pLODL we seek to
control the inclusion of an extraneous interacting locus
and are relatively permissive of extraneous interactions,
providing that they do not bring in a false locus. The
penalized LOD criteria had false positive rates exceed-
ing their targets, and given that there are two separate
penalties, it should probably not be surprising that the
error rates are on the order of 2a, when the target is a.
Moreover, the error rate for the pLODL criterion was
seen to grow with the number of correctly identified
QTL. This again is not unexpected, as with a larger
number of true QTL, there are more ways in which an
extraneous interacting locus may enter the model. This
behavior is likely to be acceptable; one should be less
concerned about a single extraneous QTL among six
correctly identified QTL than about an extraneous QTL
when only one QTL was correctly identified.

Unlike Bogdan et al. (2004), Yi et al. (2005), and
Baierl et al. (2006), we have required the hierarchy that
interactions are considered together with their corre-
sponding main effects, and we have also restricted
additive and dominance terms of an intercross to join
any model as a pair. This makes a comparison between
our methods and these others somewhat difficult. As with
any choice, our restriction of model space has both
advantages and disadvantages. On the one hand, we have
reduced flexibility in terms of the types of models we
consider and so should expect lower power in certain
situations. On the other hand, the restriction on model
space can lead to lower penalties on model terms, and the

results may be less noisy. Furthermore, we find results
with additive and dominance terms at the same position
to be easier to interpret and more biologically plausible
than models with additive and dominance terms at
neighboring positions, which often arise in the method
of Baierl et al. (2006), and so required special consid-
eration in our summaries of the simulation results.

Possible extensions of our proposed criteria include
special consideration of linked QTL, treatment of the X
chromosome, and consideration of QTL 3 covariate
interactions. Proper treatment of the X chromosome
might be obtained by considering X chromosome-specific
significance thresholds, along the lines of Broman et al.
(2006). Penalties on QTL 3 covariate interactions could
be derived through thresholds obtained by single-QTL
scans with and without the interaction term.

We have employed a relatively simple model search
algorithm. Improvements in this algorithm, to more
exhaustively search model space and to reduce com-
putation time, deserve additional investigation. Our
two-at-a-time forward selection algorithm can be com-
putationally intensive and may have little advantage over
one-step forward selection to a large model followed by
backward elimination. A more adaptive search algo-
rithm, in place of forward selection to a model of
predetermined size, may further reduce computation
time. In addition, randomized search methods, such as
MCMC and simulated annealing, could allow a more
exhaustive consideration of the space of interactions.

While our penalized LOD criteria are based on fixed
penalties that are derived from fixed targets for the false
positive rates, we generally disapprove of strict signifi-
cance thresholds. Precisely defined criteria can be
useful to the novice QTL mapper, and particularly for
the assessment of the performance of a method in
computer simulations, but one should keep in mind
that there will generally be an array of similarly plausible
models. Thus, in practice, it is important to explore the
set of models whose penalized LOD is similar to the
chosen model. The simplest approach may be to
consider a single working model (such as that for which
the penalized LOD score is optimized) and focus on the
change in likelihood that accompanies the omission of
a single term or the addition of one or two QTL or
interactions. Such evidence can be usefully represented
in a graph, such as that in Figure 2.

In summary, we have presented a straightforward and
versatile approach to QTL model selection in the pres-
ence of pairwise interactions among QTL. The model
selection criteria directly control false positive rates,
and so the support for QTL identified through these
procedures can be interpreted in a sense similar to
traditional hypothesis testing. Since the model selection
technique is closely tied to permutation testing, the
criteria can be applied quite generally.
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