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Causal model selection tests in systems genetics

Elias Chaibub Neto, Mark P Keller, Aimee T Broman,
Alan D Attie, Brian S Yandell

Abstract

We develop a novel hypothesis testing framework for causal inference among pairs of phenotypes
in the context of segregating populations. Our model selection test extends Vuong’s test to the
case of three misspecified models, to handle the full range of possible causal relationships among
a pair of traits, namely, causal, reactive or independent models. The ability to properly address
misspecified models for systems genetics is key since in general any two phenotypes may be part
of a complex network that is grossly oversimplified by the pairwise models. We evaluate and
compare our test against the BIC model selection criterium and to another causality inference
test in simulation studies using data generated from simple and complex networks and from models
affected by measurement error. While our causal model selection test is less powered than alternative
approaches when one of the competing models is correctly specified, it makes mistakes at much lower
rates than the other approaches under model misspecification and in the presence of measurement
error. Finally, we apply and compare these three approaches using a mice intercross data set.

Introduction

A key objective of biomedical research is to unravel the biochemical mechanisms underlying complex
disease traits such as type 2 diabetes. Integration of genetic information with genomic, proteomic and
metabolomic data has been used to infer causal relationships among phenotypes (Schadt et al. 2005; Li
et al. 2006; Kulp and Jagalur 2006; Chen et al. 2006; Zhu et al. 2007; Aten et al. 2008; Liu et al. 2008;
Chaibub Neto et al. 2008, 2009; Winrow et al. 2009; Millstein et al. 2009). Current approaches for
causal inference in systems genetics can be classified into whole network scoring methods (Li et al. 2006,
Zhu et al. 2007, Liu et al. 2008 and Chaibub Neto et al. 2008, 2009, Winrow et al. 2009) or pairwise
methods, which focus on the inference of causal relationships among pairs of phenotypes (Schadt et al.
2005, Li et al. 2006, Kulp and Jagalur 2006, Chen et al. 2006 and Aten et al. 2008, Millstein et al.
2009). In this paper we address the latter pairwise problem.

We propose a formal hypothesis testing framework for the inference of causal relationships between
pairs of phenotypes. Our approach accommodates multiple quantitative trait loci (QTL), additive and
interactive covariates. Given a pair of phenotypes, (Y1, Y2), we consider three models: (M1) Y1 drives Y2;
(M2) Y1 is driven by Y2; and (M3) there is no causal relationship between Y1 and Y2 and their correlation
is a consequence of latent causal phenotypes, common causal QTLs or of common environmental effects
(see Figure 1).

Our causal model selection test (CMST) extends Vuong’s (1989) asymptotic test, based on Kullback-
Leibler information criterium, to the comparison of three models. It uses penalized log-likelihood ratios
scaled by their standard errors, as test statistics. The main novelty of the CMST in systems genetics
is that it is designed to perform model selection among misspecified models. That is, the true data
generating process need not be one of the models under consideration. Accounting for the misspecification
of the models is key. In general, any two phenotypes of interest are embedded in a complex network and
are affected by many other phenotypes not considered in the grossly simplified (and thus misspecified)
pairwise models.
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Figure 1. Pairwise causal models. M1, M2 and M3 represent, respectively, the causal, reactive and
independent models. Following Li et al. (2006) and Chaibub Neto et al. (2009), QTL detection for the
putative reactive trait is done using the putative causal trait as a covariate, whereas standard
unconditional mapping analysis is performed to detect QTLs for the putative causal trait. Here C is a
notation for an arbitrary set of covariates and Q1|2 represents the set of QTLs identified in the mapping
analysis of Y1 conditional in Y2. Note further, that the Q and C sets may have QTLs and covariates in
common, even though it is not represented in the figure.

The CMST tests the null hypothesis that the selected model is no closer to the true model than the
other models. Generally, when the models are misspecified, the standard error of a penalized likelihood
ratio is high, shrinking the test statistic value towards zero, avoiding the rejection of the null hypothesis.
We evaluate the statistical properties of the CMST in simulation studies where: (1) the true model
corresponds to one of our fitted models, i.e., one of our pairwise models is correctly specified; and (2) the
true model does not match any of our fitted models, so that M1, M2 and M3 are misspecified. Simulations
show that the CMST is conservative test and has error rates that are well controlled under both model
misspecification and correct specification.

Previous work on the pairwise problem provides in silico evidence of good power to recover the correct
causal relationship when data is simulated from small networks (Schadt et al. 2005, Chen et al. 2007,
Aten et al. 2008, Millsteim et al. 2009). In this paper we evaluate and compare the performance of
CMST with the BIC model selection criterium and the CIT approach (Millstein et al. 2009) using data
simulated from toy and more realistic networks, as well as from small networks subjected to measurement
error. Although the BIC and CIT approaches are better powered than the CMST when one of the fitted
models is correctly specified, our simulations show that these two approaches can show high error rates
under model misspecification. The CMST approach, on the other hand, is designed to forfeit making
calls in these adverse situations, and out-performed the BIC and CIT methods.

Large measurement error often leads to conditional independence relationships that are inconsistent
with the true causal model. In other words, the faithfulness condition (Spirtes et al. 2000) is violated.
This problem is more serious for methods that use a single QTL, common to both phenotypes, as an
anchor for causal inference such as the CIT (Millstein et al. 2009) and the approach proposed by Schadt
et al. (2005). Theory suggests, and our simulations confirm, that the measurement error problem is
reduced with models allowing for different sets of QTLs for each phenotype.

As with most methods for causal inference in the context of eukaryotic genetics, our approach relies on
the fact that genetic variation precedes phenotypic variation, and on the fact that Mendelian randomiza-
tion of alleles provides a mechanism to eliminate the effects of confounding. Both conditions need to be
met in order to justify causal claims between QTLs and phenotypes. Causal inference among phenotypes,
on the other hand, is justified by conditional independence relations under Markov properties (Li et al.
2006, Chaibub Neto et al. 2009). In the remainder of this paper we will adopt the standard conditional
independence notation, A ⊥⊥ B | C, as a shorthand for A is independent of B conditional on C (the
symbol 6⊥⊥ stands for not independent).
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Results

Simulation studies

We assessed and compared the empirical error rates of the CMST, BIC and CIT approaches in three
distinct simulation studies: 1) with data generated from toy networks composed of two or three phenotype
and QTL nodes; 2) with data generated from a more realistic network composed of 30 nodes whose
mapping patterns give rise to a QTL hotspot; and 3) with data generated from toy networks affected by
measurement error.

In the first simulation study we considered 7 distinct toy networks shown in the Supplement Figure
8. Two out of the 7 networks correspond to the fitted models on M1 and M3 Figure 1, and allows us
to investigate the case where one of our fitted models is correctly specified. Four of the networks do not
correspond to any of our fitted models and allows us to investigate the effects of model misspecification.
We also performed simulations under the null model where the phenotypes are uncorrelated. For each
one of the 7 toy models we investigated 8 different simulation settings amounting to a total of 56 dis-
tinct simulation experiments. A detailed description of the results and the choice of parameters for the
simulation experiments is given in the Supplement. Overall, all approaches perform well when the true
model corresponds or is close to one of our fitted models, but the BIC and CIT approaches outperform
the CMST, since they are better powered than the CMST, and although they show higher error rates
than the CMST, the error rates were still adequately low. However, when the true model is more complex
and our fitted models are misspecified, the CMST still manages to keep error rates below the adopted
significance levels, while the BIC and CIT can show considerably higher error rates.

In the second simulation study we generated data from the more realistic network depicted in Figure
9 in the Supplement. In accordance with the results from first simulation study, CMST made calls and
mistakes at lower rates then CIT and BIC. However, this more complex model represents a much more
challenging simulation setting in part because the majority of the pairs of phenotypes do not correspond
to our simplified fitted models. The top node of this network is, by design, causal to all other nodes;
all methods inferred this at high rates. However, inference for pairs of phenotypes located within the
network are more difficult because noise propagates from top to bottom of a network and there may be
several latent variables (other nodes) that are not specified in the fitted models (Supplement Figure XX).
For all methods, the proportion of false discoveries were high when calls were made in the middle of the
network, especially for CIT and BIC. CMST made few calls, which resulted in an error rate below the
nominal significance level and acceptable FDR overall (see Supplement Table 33).

In the third simulation study we investigate the effects of measurement error using the networks in
Supplement Figure 11. Measurement error has been pointed out as an important drawback for causal
inference in systems genetics (Schadt et al. 2005, Rockman 2008, Li et al. 2010). If the causal trait
is poorly measured in comparison with the reactive trait, model selection approaches may incorrectly
support the reversed causal direction. The intuition is that the measurement of the reactive trait may be a
better measurement of the causal trait than its own measurement in this situation (Rockman 2008). In the
Methods section we provide a formal description of the effects of measurement error in terms of violations
of the faithfulness assumption (Spirtes et al. 2000). Using the toy network in the Supplement Figure 11a,
we show how the conditional independence relations induced by the measurement error are unfaithful
to the causal graph generating the data, but are consistent with the graph with reversed causal relation
between phenotypes. However, in situations such as Figure 11b, where the two phenotypes are directly
affected by distinct sets of QTLs, the conditional independence relations induced by the measurement
error are not consistent with either the causal, reactive or independence models. Therefore, the impact of
measurement error is reduced. A detailed description of the results and the choice of parameters for the
simulation experiments is given in the Supplement. With no measurement error, all approaches perform
well for data generated under models (a) and (b) in Supplement Figure 11, specially at higher R2 and
sample size. Overall, the results are better for the model (b). In the presence of measurement error, all
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approaches perform better under data simulated from model (b) than from model (a). Nonetheless, the
CIT and specially the BIC tend to make mistakes at higher levels than CMST. Under data generated
from model (a) the CMST approach was still affected by measurement error, although to a lesser degree
than the BIC and CIT. However, under the more favorable conditions of model (b) the CMST approach
made very few calls, and avoided M2 calls to a great extent.

An application to liver expression data of a mice intercross

We illustrate the application of the CMST, BIC and CIT approaches to a liver gene expression data set
derived from a F2 intercross between inbred lines C3H/HeJ and C57BL/6J (Ghazalpour et al. 2006,
Wang et al. 2006). The data set is composed of genotype data on 1,065 markers and liver expression
data on the 3,421 public available transcripts from 135 female mice.

QTL mapping analysis detected an eQTL hotspot located at 29.06cM (see supplementary Figure 12)
on chromosome 2. We investigated the causality architecture of this chromosome, that is, we tested
each one of the genes physically located on chromosome 2 against the 78 expression traits composing the
hotspot. We selected chromosome 2 for this study because it shows the strongest genetic linkages in this
data set.

Figure 2a presents the results for the BIC approach. The red bars represent the number of traits
causally affected by the local trait, i.e., the number of M1 calls. The blue bars show the number of M2

calls, that is, the number of traits affecting the local trait. The black bars show the number of M3 calls,
i.e., the number of traits associated with the local trait due to common genetic factors, latent variables
and environmental factors. For the BIC approach we forfeit making a call when the difference between
the BIC scores of the best and second best models corresponds to an approximate Bayes factor smaller
than 10. The bars are stacked over each other in the sequence red, blue and black. The plot shows
many M1 and M2 relationships widespread over the chromosome. Figure 15 in the Supplement shows the
results for much higher Bayes factors thresholds. Although, the number of calls decrease as we increase
the threshold, we still see a considerable amount of M1 and M2 calls over the entire chromosome.

The CMST approach, on the other hand, shows a completely different picture (Figure 2b). The vast
majority of tests were not significant at a 0.05 significance level. Only Pscdbp, a transcription factor
physically located at 32.4cM (58.4Mb) and mapping to a QTL located at 28.07cM, stands out showing
12 out of 77 significant M1 calls. Pscdbp encodes a protein modulating the activation of alternate open
reading frame genes.

Figure 2c presents the results for the CIT approach. Because the CIT can only be applied to traits
that map to a common locus, many fewer tests were actually performed in this case. Nonetheless, we
still observe a fair amount of significant M1, M2 and M3 calls across the entire chromosome.

It is interesting to note that the locations pinpointed by the CMST approach were also detected by
the CIT approach and, of course, by the BIC approach (recall that the CMST attaches a p-value to
the model selected by the BIC criterion). Furthermore, the BIC and CIT approaches detected a greater
number of M1 calls on those regions.

We also tested each one of the 78 traits composing the hotspot against each other. The results depicted
in Figure 3 show that the CMST detects causal relationships at much lower rates than the BIC and CIT
in this situation too. Because all 78 traits co-map to the same genomic region, this time we could apply
the CIT to most pairs of traits, and it actually detected causal relationships at slightly higher rates than
the BIC.

Once a set of causal relations have been inferred, it is useful to examine the empirical mapping patterns
(see Figure 14 in the Supplement) to verify that they agree with what is expected with the causal call.
Sometimes, we find evidence for a causal call, but the mapping pattern includes contradictions. We are
investigating formal methods to check for consistent mapping patterns. Manual inspection of the 12 traits
reactive to Pscdbp found no problems.
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Figure 2. Causal architectures restricted to the transcripts composing the hotspot on chromosome 2.
Panels (a), (b) and (c) present the causal architectures uncovered by the BIC, CMST and CIT
approaches, respectively. The red, blue and black bars represent, respectively, the numbers of M1, M2,
M3 calls, according to approximate Bayes factors for the BIC approach, and significance p-values for
the CMST and CIT. We adopted a Bayes factor threshold of 10 and significance level 0.05. The bars
are stacked over each other in the sequence red, blue and black.

We constructed a causal network using the QTLnet algorithm (Chaibub Neto et al. 2009) with Pscdbp
and the 12 transcripts detected by the CMST approach (Figure 4). Pscdbp is at the top of the network
driving the expression of the remainder transcripts.
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Pscdbp (a) BIC

Pscdbp (b) CMST

Pscdbp (c) CIT

Figure 3. Inferred causal relationships among all pairs of traits composing the hotspot on chromosome
2. Panel (b) presents the results for the CMST. The dots represent the traits and the arrows show the
inferred causal relationships among pairs of traits. The BIC and CIT approaches infer causal
relationships at much higher rates than the CMST. Out of the 3,003 possible pairs of traits derived
from the 78 traits composing the hotspot, the CMST detected only 30 causal relationships, whereas the
BIC and CIT detected 1,248 and 1,413 relationships, respectively. The black dots represent local traits
physically located close to the hotspot peak that show significant linkages.
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Figure 4. Causal network constructed with the QTLnet algorithm. This algorithm learns the structure
of a mixed Bayesian network composed of phenotypes and QTL nodes. It jointly infers the causal
phenotype network and the associated genetic architecture, and is able to sort out the direct and
indirect effects of QTLs and phenotypes. This network approach supports the CMST results that
Pscdbp causally affects the 12 remainder transcripts. QTLnet is implemented with a
Metropolis-Hastings algorithm. Diagnostic plots and measures (see Supplement) support the
convergence of the Markov chain.
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Figure 5. R2 quantiles based on 78 traits composing the eQTL hotspot on chromosome 2. The black,
blue and red curves represent, respectively, the 1th, 10th and 39th highest R2 values, among the 78
transcripts. The R2 values were computed based on simple regression models, where we regress the
phenotype on the QTL, and measure the proportion of the phenotype variance explained by the QTL.
Overall, the QTLs explain a fairly modest amount of the total variability of the phenotypes.
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It is important to notice that the sample size in this study is only 135, and that the genetic signal is,
in general, modest as seen from Figure 5. Nonetheless, it is reassuring to see that the region with highest
signal coincides with the region where the CMST made more significant calls. Note, however, that this
is not the case for the BIC and CIT approaches.

The BIC approach made more calls than the other approaches and showed many M1 and M2 calls
widespread over the chromosome (Figure 2a). We still see many calls over the entire chromosome even
when we adopt Bayes factor thresholds as high as 10,000 (Figure 15 in the Supplement). Because the
Bayes factor is a relative measure of how well two different models fit the data, it is possible to get very
high Bayes factors when both models have bad fits but one of them is much worse than the other. All
BIC plots show many calls in regions where no causal signal was found with the CMST approach.

These analysis results are consistent with the expected behavior of the CMST approach and with our
simulation results. For example, the simulation results for model (d) with n = 135 and R2 = 0.25 show
power and conditional power around 0.22 at a 0.05 significance level (see Table 15 in the Supplement).
For R2 = 0.125 the power and conditional power quickly decrease to 0.04 and 0.05, respectively. The R2

associated with Pscdbp and the QTL at 28.07cM is 0.24, and we got 12 significant M1 calls out of 77 tests
giving an approximate power of 0.16. Also, 70 out of 77 traits showed an M1 relationship with Pscdbp
(with BF=1), giving an approximate conditional power of 0.17. The CMST approach returned “no calls”
most of the time and the few calls made by the CMST were located in the genomic regions showing the
highest signal levels. The BIC and CIT approaches detected calls at higher rates then the CMST in
these regions, in accordance with our simulation results that these approaches are better powered than
the CMST. However the BIC and CIT approaches also detected many calls across the whole chromosome
and in the situation depicted in Figure 3, that are probably false positives as suggested by our simulations.

Discussion

In his pioneering work, Schadt et al. (2005) proposed an AIC model selection approach to infer the
causal direction between pairs of phenotypes. The authors perform genome scans for the phenotypes
and whenever two correlated phenotypes co-map to a same genomic region, this common QTL is used
to infer the causal direction. The underlying assumption is that either: (a) the reactive phenotype Y2

maps to Q indirectly via the causal phenotype Y1; (b) the other way around; (c) or both phenotypes map
to Q and their correlation is explained by Q or by the effects of other loci and/or environmental effects
not included in the model. Model (c) is denoted the independence model. Mathematically, model (c)
represents three distribution/likelihood equivalent models: (c1) Q // **

Y1 // Y2 ; (c2) Q // **
Y1 Y2oo ; and

(c3) Q // **
Y1 // Y2oo , where the double arrow represents statistical association without a causal direction.

Note that only (c3) represents a true independence causal relation. However, since the causal models
c1 and c2 cannot be distinguish from c3 using the data, they are all lumped together under the name
independence model. The authors evaluated the performance of their approach in a simulation study
with data generated from a toy network composed by one QTL and two phenotype nodes.

Chen et al. (2007) proposed a non-parametric empirical Bayes approach to estimate the posterior
probability that a transcript Y1 has a causal regulatory effect on Y2. The authors consider triplets
(Q1, Y1, Y2) where Q1 is a local-QTL for Y1 and a distal-QTL to Y2, and estimate the posterior probability
that Q1 → Y1 → Y2, based on three testable conditional independence relations that hold if and only
if Y1 causally affects Y2, and there is no confounding due to latent variables affecting both phenotypes.
This single QTL approach provides a direct quantification of the uncertainty associated with the causal
relationship and allows for the estimation of false discovery rate. The performance of the approach was
assessed with data simulated from a mixture of six different toy networks composed by a single QTL and
two or three phenotype nodes.

Aten et al. (2008) considered a model selection approach based on local structural equation models
(SEM) of pairs of phenotypes and multiple markers. SEM focus in the modeling of covariance relationships



9

and represent a widely used tool for the evaluation of the fit of causal models. The SEM framework allows
for the explicit modeling of a latent variable whenever the phenotypes are affected by non-overlapping
sets of markers. The method’s performance was evaluated in two simulation studies with data simulated
from a small network containing six phenotype nodes and a latent variable, in the first, and from a
two-phenotype toy network, in the second.

Millstein et al. (2009) proposed an intersection-union causality test, for single QTL models, in which a
number of equivalence and conditional F tests are conservatively combined in a single test. In a nutshell,
the authors consider a series of regression models and use equivalence tests to test whether a regression
coefficients are different from zero, and conditional F-tests to test if some of the regression coefficients
are equal to zero. The null hypothesis for the causal and reactive models are then constructed as unions
of the simpler equivalence and conditional F-test null hypothesis. No formal test is conducted for the
independence model and the decision rule adopted by the authors is: (1) to make a causal call if the
causal p-value is less than a significance threshold α and the reactive p-value is greater than α; (2) to
make a reactive call if it is the other way around; (3) to make an independence call if both p-values are
greater than α; and (4) to make a “no call” if both p-values are less than α. Note that they make a “no
call” when both causal and reactive models are well supported by their tests. The authors evaluated the
performance of their method in a simulation study using six different types of toy networks involving one
QTL and two or three phenotype nodes.

Sun et al. (2007) were the first to apply Vuong’s model selection test in the context of causal
inference in systems genetics. The authors employ a variant of Schadt’s test to determine the causal
ordering between transcription factors and distal (trans) genes using a local (cis) expression trait as a
causal anchor. Explicitly, they compare models (a) GC → TA → GT ; (b) GC → GT → TA; and (c)
GT ← GC → TA, where GC, TA and GT represent, respectively, the expression level of the cis-trait, the
transcription factor activity and the expression level of the trans-trait. Nonetheless the authors perform
three separate Vuong’s test to compare their models and do not account for the correlation structure
among the three test statistics. Interesting the authors do not make any mention about the usefulness
of Vuong’s tests to deal with model misspecification and justify their adoption of this test as a way to
perform a likelihood ratio test comparing regression models with different sets of covariates.

In this paper we propose a novel hypothesis test for causal inference in systems genetics. We assess the
significance of a selected model by testing the null hypothesis that the selected model is not significantly
closer to the true model than the other models, according to the Kullback-Leibler distance. Our test
is designed to be conservative and to forfeit making calls when our fitted models are misspecified. We
evaluated the performance of pairwise approaches in a more realistic settings where the true model
does not correspond to any of our fitted models, and as expected, our simulation studies showed that
the more realistic settings represents a much more challenging inference problem. The BIC and CIT
approaches showed high error rates in these more challenging settings, whereas our method produced
mistakes at considerably lower rates. As expected, all approaches perform well when one of the fitted
models is correctly specified, although the CMST approach shows lower power. We point out, however,
that situations where our fitted models are misspecified are likely the rule and not the exception, so that
the eventual advantage of the BIC and CIT approaches under correct specification, is largely contra-
balanced by their higher error rates under model misspecification. Furthermore, we can always use the
CMST approach to detect the most reliable regions, followed by investigation of the candidates detected
by the BIC approach on those regions.

Contrary to previous approaches that mostly focus on single QTL models with additive genetic effects,
our multiple QTL approach also handles dominance genetic effects, additive covariates such as sex and
batch-effects and genotype by additive covariate interactions (we restricted our simulations to additive
effect for the sake of comparison with the CIT approach, that is only implemented for additive genetic
effects). Previous studies provide in-silico evidence that multiple QTL models improve the power to
detect causal relationships (Aten et al. 2008). An extension to incorporate epistatic effects detected
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under a model selection framework (Manichaikul et al. 2009) is possible, but computationally expensive
and yet to be done.

In a similar spirit to Li et al. (2006) and following Chaibub Neto et al. (2009) the detection of QTLs
for the putative reactive phenotype is done conditional on the putative causal phenotype. By allowing the
phenotypes to have distinct sets of QTLs, instead of relying in a single common QTL as a causal anchor,
our approach is often able to distinguish among the distribution/likelihood equivalent models c1, c2 and
c3 of Schadt et al. (2005). When both phenotypes are affected by exactly the same set of QTLs, our
approach is unable to distinguish among then. Our independence model (M3) corresponds to a seemingly
unrelated regression (SUR) model (Zellner 1962). In a nutshell, the SUR model is an extension of the
multivariate regression model that, in addition to imposing a correlation structure to the error terms, also
allows the independent variables to be affected by different sets of dependent variables. This attractive
feature of SUR models has been explored in the context of multiple trait QTL mapping (Verzilli et al
2005, Banerjee et al 2008). Models M1 and M2 are homogeneous conditional Gaussian regression (HCGR)
models (Chaibub Neto et al. 2009). The main difference between a SUR model and the HCGR model is
that in SUR modeling we assume that the correlation structure between the phenotypes is a consequence
of a correlation between the error terms, induced by latent variables and uncontrolled environmental
factors, whereas in the HCGR model the correlation between the phenotypes is defined by the causal
relationships between the phenotypes, as determined by the directed graph structure.

Measurement error has been pointed out as an important drawback for causal inference in systems
genetics. Rockman (2008) argues that there is good biological reason to be concerned about this problem
since regulatory molecules are often present in the cell at lower concentrations than the structural protein
transcripts they target. The problem is that the latter may be easier to measure with good precision, than
the low abundance regulatory transcripts that might be present at the threshold of detection. Rockman
suggests going back to the early microarray experimental designs with technical replicates as a way to
estimate and incorporate measurement error in the statistical modeling. We re-cast the measurement
error problem as a violation of the faithfulness assumption (Spirtes et al. 2000) of causal inference
theory. We argue that although the measurement error problem may affect the CMST, it is likely a more
important problem to approaches that use a single QTL common to both phenotypes, as an anchor for
causal inference, such as the CIT and the approach proposed by Schadt et al. (2005). Our simulations
provide in silico evidence that the CMST provide some protection against measurement error, specially
when the phenotypes are directly affected by distinct sets of QTLs.

Genome-wide application of our causal model selection tests involves a large number of hypothesis
tests. Unfortunately, false discovery rate (FDR) control mechanisms will likely fail to work with misspec-
ified models. To see why, consider Vuong’s model selection test (see Supplement) comparing only models
M1 and M2 (for the sake of simplicity) applied to data generated from model (f), in Figure 8, that shows
a causal relationship from Y1 to Y2, but is also affected by the confounder variable Y5 and by Q5. In our
simulations using R2 = 0.25 and n = 135, the empirical distribution of the test statistic Z12 is symmetric
around zero (Figure 13 in the Supplement), so the number of false and true discoveries corresponding,
respectively, to the left and right tails (M2 and M1 calls, respectively) of this distribution will tend to be
equally likely, no matter what significance threshold we adopt. Consequently, the FDR will tend to be
around 0.5 for any significance threshold we choose.

We point out, however, that although the FDR of the CMST was sometimes high for models (c),
(e) and (f), the actual number of significant calls tended to be rather small so that the error rates were
kept low. Therefore, the high FDRs are not a big concern in these cases. On the other hand, the FDR
was usually low for models (b), (d) and (g). Finally, empirical estimates of the FDR associated with a
network, i.e., the proportion of edges in the network that are mistakes, will depend on the complexity
of the network. Our simulations from the network on Figure 9 show considerably higher FDR than the
simulations from a mixture of the 7 different models in Figure 8.

Our simulations show that the CMST has adequate power and low error and false discovery rates
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for pairs of nodes showing a type (d) model, where the correlation between the phenotypes is due to
the causal effect of the driver phenotype into the target phenotype, and there is no confounding due
to common ancestors, i.e., latent nodes affecting both phenotypes. For example, our simulations from
the network on Figure 9 show that CMST mostly recover the causal relationships between Y1 and the
remaining 29 other phenotypes. These results suggest that in practice putative phenotype drivers showing
almost exclusively M1 relationships with the other phenotypes represent our best candidates. On the
other hand, we should be suspicious about traits showing just a few significant calls for both M1 and M2

relationships.
Although our model selection test can handle model misspecification in very broad terms, i.e., the

true and fitted models may even belong to different parametric families, in our applications model mis-
specification simply means that the fitted models fail to incorporate important causal covariates such as
other parent phenotype nodes in the true phenotype network. Whole network methods such as Zhu et
al. (2007, 2008), Liu et al. (2008), Winrow et al. (2009) and Chaibub Neto et al. (2009) can potentially
incorporate these covariates and, in principle, are immune to this type of problem. Furthermore, contrary
to the pairwise approaches that can only determine whether a phenotype is upstream or downstream an-
other one, the whole network approaches can tell whether the causal relations between two phenotypes
are direct or indirect. The drawback of network approaches is that they tend to be computationally
expensive and sensitive to latent variables.

The CMST approach is currently implemented for inbred line crosses. Extension to outbred popula-
tions involving mixed effects models is yet to be done. Finally, although in this paper we focused in a
systems genetics application, our extension of Vuong’s model selection tests to the comparison of three
models is actually valid to the comparison of any three non-nested, overlapping and not observationally
identical models, under the fairly general conditions given by Vuong (1989).

Methods

Causal model selection tests

In this section we present our causal model selection test (CMST). Its derivation is technical and is
left to the Supplement. In a nutshell, the MST is a extension of Vuong’s model selection test (Vuong
1989) to the comparison of three possibly misspecified models, M1, M2 and M3. The test is based on
the Kullback-Leibler information criterium (Kullback 1959) and is derived from the null hypothesis that
none of the three models is closer to the true model, i.e.,

H0 : E0

[
log

f1

f2

]
= 0 and E0

[
log

f1

f3

]
= 0 and E0

[
log

f2

f3

]
= 0,

where fu = fu(y | xu ; θu∗) represents the probability density function of model Mu for u = 1, 2, 3; θu∗
represents the parameter value that minimizes the Kullback-Leibler distance from fu to the true model;
and E0 represents the expectation with respect to the true joint distribution. Under H0,

Z = diag(Σ̂)−
1
2 LR̃/

√
n −→d N3(0 , ρ) , (1)

where ρ = diag(Σ)−
1
2 Σ diag(Σ)−

1
2 is the correlation matrix. LR̃ = (LR̃12 , LR̃13 , LR̃23)T is a vector of

penalized log-likelihood statistics, LR̃uv = LRuv −Duv, where

LRuv =
n∑

i=1

log
f̂u,i

f̂v,i

, (2)

and f̂u,i = fu(yi | xui ; θ̂u); θ̂u is the maximum likelihood estimates of θu; Duv = kfu − kfv or Duv =
(kfu −kfv )(log n)/2 for the AIC and BIC penalties, respectively, where kfu and kfv represent the number
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of parameters of fu and fv, respectively. And

Σ̂ =




σ̂12.12 σ̂12.13 σ̂12.23

σ̂12.13 σ̂13.13 σ̂13.23

σ̂12.23 σ̂13.23 σ̂23.23


 , (3)

where

σ̂uv.st =
1
n

n∑

i=1

[
log

fu,i

fv,i
log

fs,i

ft,i

]
−

[
1
n

n∑

i=1

log
fu,i

fv,i

][
1
n

n∑

i=1

log
fs,i

ft,i

]
. (4)

Note that the elements of the test statistic vector Z

Zuv =
LR̃uv√
n σ̂uv.uv

=
−(BICu −BICv)/2√

n σ̂uv.uv

, (5)

correspond to penalized log-likelihood ratios scaled by their standard errors, or equivalently, to a scaled
contrast of BIC scores, if we adopt the BIC penalty. (Similarly, if we adopt the AIC penalty, Zuv

corresponds to a scaled contrast of AIC scores.) Note that because the scaling factors in our test statistics
are positive, performing model selection using the BIC criterium is equivalent to performing model
selection using the CMST test statistics. Explicitly, the data supports model: M1 if BIC1 < BIC2 and
BIC1 < BIC3, or equivalently, if z12 > 0 and z13 > 0; M2 if BIC1 > BIC2 and BIC2 < BIC3, or
equivalently, if z12 < 0 and z23 > 0; M3 if BIC1 > BIC3 and BIC2 > BIC3, or equivalently, if z13 < 0
and z23 < 0. The advantage of the CMST is that it goes one step further and provides a formal measure
of significance for the penalized log-likelihood scores that accounts for possible mis-specifications of the
models.

Given that the data supports model Mu better, the CMST allows us to test the null hypothesis, H 6Mu

0 ,
that model Mu is not significantly closer to the true model, according to the Kullback-Liebler distance,
than the other models. Note that given the best model, the relative closeness of the other models to
the true model has no further impact on the model selection call. Therefore, we derive the rejection
region for the null hypothesis from the appropriate asymptotic bivariate marginal null distribution. For
example, we make a call in favor of M1 if z12 and z13 are both positive and we test if the call is statistically
significant using the asymptotic marginal null distribution (Z12, Z13)T ∼ N2(0 , ρ12.13). Table 1 presents
our CMST tests. The details of the derivation of these tests are given in the Supplement.

H0 Test statistic distr. under H0 Rejection region P-value

H 6M1
0 (Z12, Z13)T ∼ N2(0, ρ12.13) z12 > cα

12.13 , z13 > cα
12.13 p

MS

6M1
= p12.13

H 6M2
0 (Z12, Z23)T ∼ N2(0, ρ12.23) z12 < −cα

12.23 , z23 > cα
12.23 p

MS

6M2
= p12.23

H 6M3
0 (Z13, Z23)T ∼ N2(0, ρ13.23) z13 < −cα

13.23 , z23 < −cα
13.23 p

MS

6M3
= p13.23

Table 1. Model selection tests. Here cα
uv.st = (χ2

2,α λuv.st/2)1/2 corresponds to the critical value of the
test of level α based on the joint distributions of (Zuv, Zst); λuv.st corresponds to the first eigenvalue of
the bivariate marginal correlation matrix ρuv.st; χ2

2,α corresponds to the αth upper quantile of a
chi-squared distribution with two degrees of freedom; and
puv.st = max

{
P (χ2

2 ≥ 2z2
uv/λuv.st) , P (χ2

2 ≥ 2z2
st/λuv.st)

}
.
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Measurement error and unfaithfulness

A common assumption in the causal graphical models literature is that of the faithfulness of a probability
distribution to a graph (Spirtes et al. 2000). This assumption implies that given a graph and a proba-
bility distribution associated with it, all the conditional independence relations spanned by a probability
distribution must match the d-separation (Pearl 1988, 2000) relations predicted from the graph structure.

Unfaithfulness of a probability distribution is often (but not always) a consequence of a very particular
parametrization of the model generating the data. Suppose, for example, the data is generated from the
following model

Q //
%%

Y1
// Y2 , (6)

where Q is a discrete random variable with variance σ2
q , (Y1 | q) ∼ N(β1q , σ2

1) and (Y2 | y1, q) ∼
N(β2q + β21 y1 , σ2

2). In this case Cov(Y2, Q) = (β2q + β21β1q)σ2
q and we see that if β2q = −β21β1q, then

Cov(Y2, Q) = 0 and the data shows the probabilistic independence Y2 ⊥⊥ Q, whereas d-separation clearly
predicts that Y2 6⊥⊥ Q.

Unfaithfulness can affect model selection when the probability distribution of the data is unfaithful to
the structure of the data generating process but is faithful to the structure of a different causal model. For
instance, application of d-separation to graph 6 yields the following conditional (in)dependence relations:
Y1 6⊥⊥ Q, Y1 6⊥⊥ Y2, Y2 6⊥⊥ Q, Y1 6⊥⊥ Q | Y2, Y2 6⊥⊥ Q | Y1 and Y1 6⊥⊥ Y2 | Q. However, when β2q = −β21β1q we
have that Y2 ⊥⊥ Q (although the other five (in)dependence relations are still preserved). The problem is
that the (in)dependence relations Y1 6⊥⊥ Q, Y1 6⊥⊥ Y2, Y2 ⊥⊥ Q, Y1 6⊥⊥ Q | Y2, Y2 6⊥⊥ Q | Y1 and Y1 6⊥⊥ Y2 | Q,
are consistent with graph Q → Y1 ← Y2, so that model selection criteria will tend to favor this model
with reversed causal relationship between Y1 and Y2.

It has been argued in the literature (Meek 1995, Spirtes et al 2000) that this type of faithfulness
violation is probably not important in practice since it requires very specific parameterizations and the
set of such finely-tuned parameterizations has measure zero. Others have argued, however, that there are
situations in which such finely-tuned parameterizations are feasible (for example, Shipley (2000) points
out homeostasis mechanisms balancing counter-acting causal effects as likely examples).

A second, and probably far more widespread form of unfaithfulness is caused by measurement error.
It has long been recognized that measurement error can potentially lead model selection approaches to
the inference of inverted causal direction (Schadt et al. 2005, Rockman 2008, Li et al. 2010). We argue
here that the measurement error problem can be framed in the context of a faithfulness violation problem,
where measurement error provides a mechanism to the generation of conditional independence relations
that do not match the d-separation relations implied by the graphical model generating the data.

To illustrate the problem consider the toy network on Figure 11a. The random variables Y ∗ and Y
represent, respectively, the true and measured values of the traits. Further, suppose that the reactive
trait Y ∗

2 is well measured so that Y2 is a good approximation to Y ∗
2 , whereas Y1 is a poor measurement of

Y ∗
1 . Because Y1 is poorly measured in comparison with Y2, it follows that Y2 is a better measurement of

Y ∗
1 than Y1 itself (Rockman 2008). The consequence is that Y2 has more information about Q1 than Y1,

and given the value of Y2, Y1 does not gives us further information about Q1. Formally, this implies that
Y1 ⊥⊥ Q1 | Y2, what disagrees with one of the relations predicted by the application of d-separation to
the graph in Figure 11a: i.e., Y1 6⊥⊥ Q1, Y2 6⊥⊥ Q1, Y1 6⊥⊥ Y2, Y1 6⊥⊥ Q1 | Y2, Y2 6⊥⊥ Q1 | Y1 and Y1 6⊥⊥ Y2 | Q1.
Moreover, in the presence of measurement error, the conditional independence relations generated by
the data (i.e., Y1 6⊥⊥ Q1, Y2 6⊥⊥ Q1, Y1 6⊥⊥ Y2, Y1 ⊥⊥ Q1 | Y2, Y2 6⊥⊥ Q1 | Y1 and Y1 6⊥⊥ Y2 | Q1) exactly
match the conditional independence relations predicted by application of d-separation to the causal graph
Q1 → Y2 → Y1, and model M2 provides a better fit to the data than M1.

However, the measurement error problem gets alleviated in situations where the phenotypes are
directly affected by different sets of QTLs, such as in Figure 11b. The set of conditional independence
relations in Figure 11b does not match the set of conditional independence relations associated with any
of the causal graphs: (i) Q1 → Y1 → Y2 ← Q2; (ii) Q1 → Y1 ← Y2 ← Q2; and (iii) Q1 → Y1 ↔ Y2 ← Q2.
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(For example, in Figure 11b we have that Y1 6⊥⊥ Q2 | Y2, Y2 6⊥⊥ Q1 and Y2 6⊥⊥ Q1 | Y1. In the causal graph
(i) we have Y1 6⊥⊥ Q2 | Y2, Y2 6⊥⊥ Q1 and Y2 ⊥⊥ Q1 | Y1. In causal graph (ii) Y1 ⊥⊥ Q2 | Y2, Y2 ⊥⊥ Q1 and
Y2 6⊥⊥ Q1 | Y1. And in causal graph (iii) we have Y1 ⊥⊥ Q2 | Y2, Y2 ⊥⊥ Q1 and Y2 ⊥⊥ Q1 | Y1.)
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Supplement for:

Causal model selection tests in systems genetics

Elias Chaibub Neto, Mark P Keller, Aimee T Broman,
Alan D Attie, Brian S Yandell

Vuong’s model selection tests

Vuong (1989) proposed asymptotic likelihood ratio tests for model selection of two nested, non-nested
and non-nested overlapping models, applicable in situations where one or more competing models may be
misspecified. He showed that under fairly general conditions the asymptotic distribution of the likelihood
ratio statistic converges to a weighted sum of chi-square distributions or to a normal distribution depend-
ing on whether the models are observationally identical or not. Two models are observationally identical
if their probability densities are the same, when evaluated at the respective pseudo-true parameter values,
i.e., f1(y ; θ1∗) = f2(y ; θ2∗) for almost all y, where the pseudo-true parameter values, θk∗, corresponds
to the parameter value that minimizes the Kullback-Leibler distance from the true model (Sawa 1978).

Our focus is model selection for non-nested Gaussian regression models with potentially overlapping
but distinct sets of covariates. Furthermore, we mostly consider models that are not observationally
identical. (Vuong points out that in the normal linear regression case, two overlapping models are
observationally identical if and only if the pseudo-true parameters associated with the variables specific
to each regression are simultaneously null. In other words, regression models are observationally identical
if and only if they have the same set of covariates. In our applications, when the phenotypes map to
different sets of QTLs the models are not observationally identical.) Hence we will only present here,
Voung’s model selection test for non-nested, not observationally identical, and overlapping models.

Vuong’s test derives from the Kullback-Leibler (1959) Information Criterion (KLIC) that measures
the closeness of a probability model to the true distribution generating the data. Formally, let {f(y |
x ; θ) : θ ∈ Θ} represent a parametric family of conditional models. Then

KLIC(h0; f) = E0
[
log h0(y | x)

]− E0 [log f(y | x ; θ∗)]

=
∫

x

[∫

y

h0(y | x) log
h0(y | x)

f(y | x ; θ∗)
dy

]
h0(x) dx, (7)

where E0 represents the expectation with respect to the true joint distribution h0(y,x) = h0(y | x)h0(x),
and θ∗ is the parameter value that minimizes the KLIC distance from f to the true model (Sawa 1978).
Note that f need not belong to the same parametric family as h0.

A model f1(y | x1 ; θ1∗), denoted f1 for short, is regarded as a better approximation to the true model
h0(y | x), than the alternative model f2(y | x2 ; θ2∗) if and only if KLIC(h0; f1) < KLIC(h0; f2), or
alternatively, E0[log f1] > E0[log f2] (Sawa 1978). Vuong’s model selection test is based on later criterion
and the test hypotheses are defined as

H0 : E0

[
log

f1

f2

]
= 0, H1 : E0

[
log

f1

f2

]
> 0, H2 : E0

[
log

f1

f2

]
< 0. (8)

The null hypothesis is that models f1 and f2 are equally close to the true distribution. H1 means that
f1 is better than f2 and conversely for H2. The notation x1, x2 and x makes explicit that the models f1

and f2 can have different sets of covariates from the true set of covariates x.
The quantity E0[log f1]− E0[log f2] is unknown, but Vuong (1989) showed that under fairly general

conditions
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1
n

LR12(θ̂1, θ̂2) −→a.s. E0

[
log

f1

f2

]
, σ̂12.12 −→a.s. V ar0

[
log

f1

f2

]
= σ12.12, (9)

where θ̂1 and θ̂2 are the maximum likelihood estimates and

LR12(θ̂1, θ̂2) =
n∑

i=1

log
f̂1,i

f̂2,i

(10)

is the log likelihood ratio statistic, where f̂1,i = f1(yi | x1i ; θ̂1), and the variance is

σ̂12.12 =
1
n

n∑

i=1

[
log

f̂1,i

f̂2,i

]2

−
[

1
n

n∑

i=1

log
f̂1,i

f̂2,i

]2

. (11)

Vuong’s model selection statistic for overlapping, non-nested and not observationally identical models
(see Vuong’s condition (6.4) on page 320 and Theorem 5.1 on page 318) converges to

under H0: LR12(θ̂1, θ̂2)/
√

nσ̂12.12 −→d N(0, 1), (12)

under H1: LR12(θ̂1, θ̂2)/
√

nσ̂12.12 −→a.s. +∞, (13)

under H2: LR12(θ̂1, θ̂2)/
√

nσ̂12.12 −→a.s. −∞. (14)

This test is based on the unadjusted log likelihood ratio statistic. However, competing models may
have different dimensions, requiring a complexity penalty. The penalized log-likelihood ratio is then

LR̃12(θ̂1, θ̂2) = LR12(θ̂1, θ̂2)−D12, (15)

where D12 = kf1 − kf2 or D12 = (kf1 − kf2)(log n)/2 for the AIC and BIC penalties, respectively, and
kf1 and kf2 represent the number of parameters of f1 and f2, respectively. Because the penalty term
divided by n1/2 converges to zero, n−1/2LR̃12(θ̂1, θ̂2)/

√
σ̂12.12 has the same asymptotic properties as

n−1/2LR12(θ̂1, θ̂2)/
√

σ̂12.12 and we can use the adjusted log likelihood ratio for the model selection test
(Vuong 1989).

Model selection tests for the comparison of three models

We now present our causal model selection test (CMST). In our applications we consider three models
M1, M2 and M3. Simple application of three separate model selection tests, namely, f1 × f2, f1 × f3

and f2 × f3 can be misleading, since the three test statistics are dependent (for example, LR12 share
its numerator with LR13 and its denominator is the numerator of LR23). In order to adjust for the
dependency among the test statistics, we consider a multivariate extension of Vuong’s model selection
tests, as follows.

Under the same general regularity conditions of Vuong (1989), the empirical covariance

σ̂12.13 =
1
n

n∑

i=1

[
log

f̂1,i

f̂2,i

log
f̂1,i

f̂3,i

]
−

[
1
n

n∑

i=1

log
f̂1,i

f̂2,i

][
1
n

n∑

i=1

log
f̂1,i

f̂3,i

]
(16)

converges to

σ̂12.13 −→a.s. Cov0

[
log

f1

f2
, log

f1

f3

]
= σ12.13 . (17)
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Thus the empirical covariance matrix converges, Σ̂ −→a.s. Σ, where

Σ =




σ12.12 σ12.13 σ12.23

σ12.13 σ13.13 σ13.23

σ12.23 σ13.23 σ23.23


 . (18)

It follows from the multivariate central limit and Slutsky’s theorems that under the null hypothesis

H0 : E0

[
log

f1

f2

]
= 0 and E0

[
log

f1

f3

]
= 0 and E0

[
log

f2

f3

]
= 0

we have that
Z = diag(Σ̂)−

1
2 LR̃/

√
n −→d N3(0 , ρ) , (19)

where LR̃ = (LR̃12 , LR̃13 , LR̃23)T and ρ = diag(Σ)−
1
2 Σdiag(Σ)−

1
2 is the correlation matrix

ρ =




1 ρ12.13 ρ12.23

ρ12.13 1 ρ13.23

ρ12.23 ρ13.23 1


 . (20)

Note that the elements of the test statistic vector Z, e.g., Z12

Z12 =
LR̃12√
n σ̂12.12

=
−(BIC1 −BIC2)/2√

n σ̂12.12

, (21)

correspond to penalized log-likelihood ratios scaled by their standard errors, or equivalently, to a scaled
contrast of BIC scores, if we adopt the BIC penalty. (Similarly, if we adopt the AIC penalty, Z12

corresponds to a scaled contrast of AIC scores.) Note that because the scaling factors in our test statistics
are positive, performing model selection using the BIC criterium is equivalent to performing model
selection using the CMST test statistics. Explicitly, the data supports model: M1 if BIC1 < BIC2

and BIC1 < BIC3, or equivalently, if z12 > 0 and z13 > 0; M2 if BIC1 > BIC2 and BIC2 < BIC3,
or equivalently, if z12 < 0 and z23 > 0; M3 if BIC1 > BIC3 and BIC2 > BIC3, or equivalently, if
z13 < 0 and z23 < 0. The advantage of the CMST is that it goes one step further and provides a formal
measure of significance for the penalized likelihood scores that accounts for possible mis-specifications of
the models.

Suppose, for example, that the data supports model M1 better, according to the BIC model selection
criterium. The CMST allows us to test the null hypothesis, H 6M1

0 , that model M1 is not significantly
closer to the true model, according to the Kullback-Liebler distance, than models M2 and M3. Note that
given the best model, the relative closeness of the other models to the true model has no further impact on
the model selection call, that is, given that the data supports model M1 better, we are indifferent about
the relative closeness of models M2 and M3 to the to the true model. Therefore, we derive the rejection
region for the null hypothesis from the appropriate asymptotic bivariate marginal null distribution. For
example, we select M1 if z12 and z13 are both positive and we test if the call is statistically significant
using the asymptotic marginal null distribution (Z12, Z13)T ∼ N2(0 , ρ12.13), where

ρ12.13 =
(

1 ρ12.13

ρ12.13 1

)
. (22)

The marginal bivariate distributions of our test statistics have nice geometric properties. For instance,
because the statistics have the same variance (equal to 1), the major axis of the confidence ellipse will
be along the 45o line through the mean for positively correlated random variables, and along the line at
right angles to the 45o line through the mean for negatively correlated random variables (see Figures 6a
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and 6b). Furthermore, because the half-length of the major axis of a confidence ellipse with probability
1−α is given by (χ2

2,α λ)1/2, where λ is the first eigenvalue of the correlation matrix and χ2
2,α is the upper

αth quantile of a chi-square distribution with two degrees of freedom, we have that the critical value (the
point where the first principal component axis first touches the confidence ellipse) is (χ2

2,α λ/2)1/2 (see
Figure 6a).
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Figure 6. Rejection regions for H 6M1
0 , H 6M2

0 and H 6M3
0 . Panel (a) shows the rejection region for H 6M1

0

(the M1 region). Note that because f1 is located in the numerator of both Z12 and Z13 we have that
ρ12.13 > 0, and the major axis of the confidence ellipse is along the 45o line through 0. Panel (b) shows
the rejection region for H 6M2

0 . Here ρ12.23 < 0 since f2 is located in the denominator of Z12 and at the
numerator of Z23. The major axis then is then along the line at right angle with the 45o line through
the mean. Panel (c) shows the rejection region for H 6M3

0 . Because f3 is located in the denominator of
both Z13 and Z23 we have that ρ13.23 > 0. The figure depicts the 95% confidence regions associated
with the bivariate marginal distributions of a tri-variate normal with mean 0 and correlation matrix
with off-diagonal entries ρ12.13 = 0.5, ρ12.23 = −0.25 and ρ13.23 = 0.65.

From the relationship between the quadratic form of a p-dimensional multivariate normal, X ∼
Np(0,Σ), and the upper αth percentile of a chi-square distribution with p degrees of freedom, χ2

p, we
have that the equation xtΣ−1x = χ2

2,α corresponds to an ellipsoide countour of a bivariate normal
centered at zero with probability 1 − α. Since P (χ2

p ≥ χ2
p,α) = α we have that P (χ2

p ≥ xtΣ−1x) = α.
In Figure 7a we illustrate how the p-value associated with the asymptotic marginal null distribution
of (Z12, Z13) is computed. Setting (Z12, Z13) = (z12, z12) and to (Z12, Z13) = (z13, z13) the observed
quadratic forms reduce, respectively, to 2z2

12/λ12.13 and 2z2
13/λ12.13 and the p-value testing H 6M1

0 is given
by the maximum of P (χ2

2 ≥ 2z2
12/λ12.13) and P (χ2

2 ≥ 2z2
13/λ12.13). Table 2 presents the null hypothesis,

null distributions, rejection regions and p-values for the CMST tests associated with the causal, reactive
and independence models.

Operationally, our procedure is composed of two steps: (1) check the sign of the test statistics to select
one of the models (or equivalently, use the penalized likelihood criterion to select among the models);
and (2) test the null hypothesis that the selected model is not closer to the true model than the other
models.

Note that we should not pay attention to the CMST p-values of unselected models. Because our model
selection tests are directional and our p-values correspond to the probability mass outside a confidence
ellipse it is possible that the CMST p-value of a unselected model to be smaller than the CMST p-value
of the selected model. For example, in Figure 7b we have that the p-value for H 6M3

0 is smaller than the
p-value for H 6M1

0 (the CMST test associated with the actual selected model, M1). However, the observed
test statistics, z13 = 2.5 and z23 = 3, are positive and are in the wrong direction of the rejection region
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H0 Test statistic distr. under H0 Rejection region P-value

H 6M1
0 (Z12, Z13)T ∼ N2(0, ρ12.13) z12 > cα

12.13 , z13 > cα
12.13 p

MS

6M1
= p12.13

H 6M2
0 (Z12, Z23)T ∼ N2(0, ρ12.23) z12 < −cα

12.23 , z23 > cα
12.23 p

MS

6M2
= p12.23

H 6M3
0 (Z13, Z23)T ∼ N2(0, ρ13.23) z13 < −cα

13.23 , z23 < −cα
13.23 p

MS

6M3
= p13.23

Table 2. Model selection tests. Here cα
uv.st = (χ2

2,α λuv.st/2)1/2 corresponds to the critical value of the
test of level α based on the joint distributions of (Zuv, Zst); λuv.st corresponds to the first eigenvalues of
the bivariate marginal correlation matrix ρuv.st; χ2

2,α corresponds to the αth upper quantile of a
chi-squared distribution with two degrees of freedom; and
puv.st = max

{
P (χ2

2 ≥ 2z2
uv/λuv.st) , P (χ2

2 ≥ 2z2
st/λuv.st)

}
.

of H 6M3
0 , where both test statistics need to be negative.
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Figure 7. Panel (a) illustrates the computation of the p-value for H 6M1
0 . The observed values of the

test statistics, z12 = 1.5 and z13 = 2.5, are indicated by the dashed lines. Setting (Z12, Z13) = (z12, z12)
the observed quadratic form reduces to 2z2

12/λ12.13 and the p-value P (χ2
2 ≥ 2z2

12/λ12.13) = 0.223
corresponds to the probability mass outside the inner ellipsoid contour. Setting (Z12, Z13) = (z13, z13)
we obtain the p-value P (χ2

2 ≥ 2z2
13/λ12.13) = 0.016 corresponding to the probability outside the outer

ellipsoid. The p-value for H 6M1
0 is given by max{P (χ2

2 ≥ 2z2
12/λ12.13) , P (χ2

2 ≥ 2z2
13/λ12.13) }

corresponding to the probability mass outside the inner ellipsoid contour. The probability mass outside
the middle (and thicker) ellipsoid is 0.05. Panel (b) illustrates the computation of the p-value for H 6M3

0

in the invalid situation that M3 is not the selected model. In this case, the p-value for the H 6M3
0

(probability mass outside the middle ellipsoid contour) is 0.023 (and is smaller than the p-value for
H 6M1

0 , 0.223). Note, however, the observed test statistics, z13 = 2.5 and z23 = 3, are positive and in the
wrong direction of the rejection region of H 6M3

0 , where both test statistics need to be negative.

Finally, in our applications it will sometimes be the case that two (or all three) models are likelihood
equivalent (for example, when both phenotypes are affected by exactly the same set of QTLs). In these
situations, the results presented in this section are no longer valid since likelihood equivalent models
are a simple re-parametrization of each other, i.e., f1(. ; θ1) = f2(. ; θ2) for all θ1 = h(θ2), and thus
are observationally identical (recall that observationally identical models satisfy f1(. ; θ1∗) = f2(. ; θ2∗)
where θ1∗ is the parameter values that minimize the Kullback-Liebler distance between f1 and the density
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of the true model). Nonetheless, because the likelihood ratio statistic of likelihood equivalent models is
always 1, and likelihood equivalent models always have the same dimension, we have that our test statistic
have a degenerated point mass distribution concentrated at 0, and the p-value is trivially 1. Therefore,
whenever two (or all three) models are tied in terms of a penalized likelihood model selection criterium,
our approach cannot make a significant call in favor of one of the models (in accordance with our intuition
that if two models are the same, then none of then can be closer to the truth).

Simulation studies

Simulation study 1: assessing empirical error rates using toy networks

In this section we evaluate and compare the performance of the CMST to the BIC and CIT approaches
in terms of empirical error rates. We considered the 7 models listed on Figure 8 in this simulation study.
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Figure 8. Toy network models used in the simulation study. We generate data from models (a)-(g) but
fit models M1, M2 and M3 from Figure 1. Model (a) represents the null model with uncorrelated
phenotypes. Models (b) and (d) corresponds to the fitted models M3 and M1, respectively. These two
models allows us to investigate the case where one of the fitted models is correctly specified. Models (c),
(e), (f) and (g) do not correspond to any of our fitted models and allows us to investigate the effects of
model misspecification.

For each model we investigated 8 different simulation settings comprising all combinations between
R2 = {0.125, 0.25, 0.5, range} and n = {135, 500}, where R2 represents the amount of the variability
of Y1 explained by the QTLs. For a fixed R2 value, and residual variances and phenotype effects set
to 1, we computed the corresponding additive genetic effect, and then used these parameter values to
generate the simulated data sets. For the “R2 = range” case, each one of the data sets were generated
using a different combination of parameter values, with residual variances and additive genetic effects
ranging from 0.2 to 2, and phenotype effects ranging from 0.5 to 1.5. For each one of the 56 different
simulations we generated 10,000 F2 crosses with 505 markers unequally spaced across 5 chromosomes of
length 100cM. We adopted a QTL mapping threshold of 4.

We investigated the performance of the CMST and CIT for 10 different significance levels varying from
0.1 to 0.01, and the BIC performance using Bayes factors thresholds of 1, 3 and 10. In order to directly
compare our results to the CIT and BIC approaches we kept track of empirical power and error rates.
When the true model shows a Mk causal relationship, the power is given by the number of significant Mk

calls, m∗
k, divided by the total number of simulations, t. The error rates are given by m∗

j/t, for j 6= k.
The conditional nature of our tests implies that we select a model and then test whether it is closer to

the true model than other models. Therefore, it seems more appropriate to assess the CMST performance
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conditional on the selected model. In addition to the empirical power and error rates described above, we
also kept track of conditional power and conditional error rates for the CMST. When the true model has
a Mk causal relationship, the conditional power is given by m∗

k/mk, where mk corresponds to number of
times that model Mk was selected. The conditional error rates are given by m∗

j/mj , for j 6= k.
For the BIC approach, m∗

k represents the number of interesting calls. A call is considered interesting
when the difference between the BIC scores of the best and second best models corresponds to an
approximate Bayes factor (Kass and Raftery 1995) greater than a fixed threshold (chosen as 1, 3 or 10
in this study).

We also kept track of the false discovery rate (FDR) for all three approaches. The FDR is given by
the number of mistakes divided by the number of significant (interesting) calls. The number of mistakes
corresponds to the number of times we incorrectly detect models M2 and M3 when the true model is M1,
and models M1 and M2 when the true relation is M3.

Tables 3-30 present the results for all 56 simulation studies. Overall, the simulation results show that
although the CMST is a low powered test, the conditional error rates (and consequently the unconditional
ones) were almost always well controlled, i.e., were below the nominal significance levels. Except for the
simulation with R2 = 0.5 for model (e), where the conditional error rates for model M3 were slightly
above the nominal levels (see Tables 19 and 21), the conditional error rates (the cER columns) were
always below the nominal significance levels (the level columns in tables 3-30). The unconditional error
rates were below the nominal significance levels in all 56 simulation settings.

The CIT approach on the other hand, showed higher power in almost all simulation settings, but also
higher error rates. The error rates were specially high for models (e) and (f) (see Tables 19, 21, 23 and
25 in the Supplement). Furthermore, the CIT approach tends to favor the independence model as we
adopt stricter significance levels. This phenomenon is a consequence of the decision rule behind the CIT
approach, where we: (1) make a call in favor of model M1 if the p-value derived from a intersection-union
test for a causal relationship (M1) is lower than the nominal significance level α, and the p-value for the
reactive relationship (M2) is higher than α; (2) make a call in favor of model M2 if it is the other way
around; (3) make a call in favor of model M3 if the causal and reactive p-values are greater than α (hence
as α decreases it gets more likely to make a call in favor of model M3); and (4) forfeit to make a call if
the causal and reactive p-values are lower than α. Inspection of the fifth columns in Tables ?? and ??
illustrates this phenomenon. Nonetheless, when the true model corresponds to one of our fitted models,
such as model (d), which corresponds to our model M1, the CIT approach has much higher power then
the CMST and error rates that, although higher than the CMST, are still relatively low (see Tables 15
and 17 in the Supplement). On a technical note, the CIT requires that both phenotypes map to the same
QTL, but often times the phenotypes map to nearby but not precisely the same QTL. Instead of having
to decide which QTL to use as a causal anchor, we use the joint LOD profile to determine the QTL to
be used as a causal anchor, as described in the Supplement.

The BIC approach showed higher power and higher error rates than the CMST as well (see the even
numbered tables among Tables 4-30). The error rates were specially high for models (f) (Tables 24 and
26) and (c) to a lesser degree (Table 12).
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CMST
ER ER ER cER cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/m1 m∗
2/m2 m∗

3/m3

0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.125 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0000 0.0001 0.0001 1.0000 0.0000 0.0003 0.0004

0.25 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0002 0.0001 0.0000 1.0000 0.0006 0.0003 0.0000

0.5 0.09 0.0000 0.0001 0.0000 1.0000 0.0000 0.0003 0.0000
0.08 0.0000 0.0001 0.0000 1.0000 0.0000 0.0003 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

range 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3. Simulation results for the CMST with data generated from model (a) with n=135. Model (a)
corresponds to the null model, where the phenotypes are uncorrelated. As expected, the CMST made
very few significant calls and has very low error rates (ER) and conditional error rates (cER). Note,
however, it does not correspond to any of the type of relations that we seek to infer with our fitted
models, not even to M3, since M3 assumes that the phenotypes are correlated. Hence whenever the
false discovery proportion (FDR) is either 0 or 1.

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.4197 0.0324 0.0196 0.3586 0.0251 0.0044 0.3457 0.0459 0.0068 0.3679 0.0425 0.0092

m∗
2/t 0.4130 0.0327 0.0196 0.3617 0.0239 0.0027 0.3475 0.0429 0.0062 0.3548 0.0386 0.0083

m∗
3/t 0.1673 0.0030 0.0001 0.2796 0.0100 0.0009 0.3069 0.0290 0.0037 0.2773 0.0205 0.0028

FDR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4. Simulation results for the BIC approach with data generated from model (a) with n=135.
The BIC makes many interesting calls using a Bayes factor (BF) of 10.
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CMST
ER ER ER cER cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/m1 m∗
2/m2 m∗

3/m3

0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.125 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.25 0.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.08 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0001 0.0001 0.0000 1.0000 0.0003 0.0003 0.0000

0.5 0.09 0.0001 0.0001 0.0000 1.0000 0.0003 0.0003 0.0000
0.08 0.0001 0.0001 0.0000 1.0000 0.0003 0.0003 0.0000
0.07 0.0001 0.0001 0.0000 1.0000 0.0003 0.0003 0.0000
0.06 0.0001 0.0001 0.0000 1.0000 0.0003 0.0003 0.0000
0.05 0.0001 0.0000 0.0000 1.0000 0.0003 0.0000 0.0000
0.04 0.0001 0.0000 0.0000 1.0000 0.0003 0.0000 0.0000
0.03 0.0001 0.0000 0.0000 1.0000 0.0003 0.0000 0.0000
0.02 0.0001 0.0000 0.0000 1.0000 0.0003 0.0000 0.0000
0.01 0.0001 0.0000 0.0000 1.0000 0.0003 0.0000 0.0000
0.10 0.0002 0.0001 0.0001 1.0000 0.0006 0.0003 0.0004

range 0.09 0.0002 0.0001 0.0001 1.0000 0.0006 0.0003 0.0004
0.08 0.0001 0.0001 0.0001 1.0000 0.0003 0.0003 0.0004
0.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. Model (a), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.3684 0.0084 0.0006 0.3619 0.0197 0.0015 0.3500 0.0447 0.0060 0.3545 0.0371 0.0073

m∗
2/t 0.3580 0.0082 0.0009 0.3492 0.0195 0.0017 0.3446 0.0406 0.0060 0.3676 0.0351 0.0054

m∗
3/t 0.2736 0.0012 0.0000 0.2889 0.0072 0.0001 0.3054 0.0257 0.0023 0.2779 0.0169 0.0018

FDR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6. Model (a), n=500
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CMST
ER ER PW cER cER cPW

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/m1 m∗
2/m2 m∗

3/m3

0.10 0.0021 0.0015 0.0068 0.3462 0.0064 0.0043 0.0310
0.125 0.09 0.0015 0.0012 0.0056 0.3253 0.0046 0.0035 0.0255

0.08 0.0012 0.0010 0.0044 0.3333 0.0037 0.0029 0.0200
0.07 0.0010 0.0009 0.0036 0.3455 0.0030 0.0026 0.0164
0.06 0.0009 0.0006 0.0029 0.3409 0.0027 0.0017 0.0132
0.05 0.0006 0.0004 0.0026 0.2778 0.0018 0.0012 0.0118
0.04 0.0004 0.0004 0.0021 0.2759 0.0012 0.0012 0.0096
0.03 0.0002 0.0003 0.0015 0.2500 0.0006 0.0009 0.0068
0.02 0.0001 0.0001 0.0007 0.2222 0.0003 0.0003 0.0032
0.01 0.0000 0.0001 0.0003 0.2500 0.0000 0.0003 0.0014
0.10 0.0001 0.0000 0.1001 0.0010 0.0009 0.0000 0.1276

0.25 0.09 0.0001 0.0000 0.0927 0.0011 0.0009 0.0000 0.1182
0.08 0.0001 0.0000 0.0849 0.0012 0.0009 0.0000 0.1082
0.07 0.0001 0.0000 0.0746 0.0013 0.0009 0.0000 0.0951
0.06 0.0001 0.0000 0.0650 0.0015 0.0009 0.0000 0.0829
0.05 0.0000 0.0000 0.0554 0.0000 0.0000 0.0000 0.0706
0.04 0.0000 0.0000 0.0449 0.0000 0.0000 0.0000 0.0573
0.03 0.0000 0.0000 0.0347 0.0000 0.0000 0.0000 0.0442
0.02 0.0000 0.0000 0.0228 0.0000 0.0000 0.0000 0.0290
0.01 0.0000 0.0000 0.0102 0.0000 0.0000 0.0000 0.0130
0.10 0.0000 0.0001 0.4008 0.0003 0.0000 0.0039 0.4235

0.5 0.09 0.0000 0.0001 0.3826 0.0003 0.0000 0.0039 0.4043
0.08 0.0000 0.0001 0.3632 0.0003 0.0000 0.0039 0.3838
0.07 0.0000 0.0001 0.3430 0.0003 0.0000 0.0039 0.3625
0.06 0.0000 0.0000 0.3156 0.0000 0.0000 0.0000 0.3334
0.05 0.0000 0.0000 0.2847 0.0000 0.0000 0.0000 0.3008
0.04 0.0000 0.0000 0.2522 0.0000 0.0000 0.0000 0.2665
0.03 0.0000 0.0000 0.2141 0.0000 0.0000 0.0000 0.2262
0.02 0.0000 0.0000 0.1713 0.0000 0.0000 0.0000 0.1810
0.01 0.0000 0.0000 0.1056 0.0000 0.0000 0.0000 0.1116
0.10 0.0009 0.0003 0.0923 0.0129 0.0057 0.0019 0.1763

range 0.09 0.0008 0.0002 0.0875 0.0113 0.0050 0.0013 0.1671
0.08 0.0006 0.0001 0.0826 0.0084 0.0038 0.0006 0.1579
0.07 0.0003 0.0000 0.0774 0.0039 0.0019 0.0000 0.1480
0.06 0.0002 0.0000 0.0713 0.0028 0.0013 0.0000 0.1363
0.05 0.0002 0.0000 0.0648 0.0031 0.0013 0.0000 0.1238
0.04 0.0001 0.0000 0.0584 0.0017 0.0006 0.0000 0.1116
0.03 0.0001 0.0000 0.0487 0.0021 0.0006 0.0000 0.0932
0.02 0.0000 0.0000 0.0399 0.0000 0.0000 0.0000 0.0763
0.01 0.0000 0.0000 0.0266 0.0000 0.0000 0.0000 0.0508

Table 7. Model (b), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.3674 0.2389 0.1688 0.1083 0.0618 0.0306 0.0279 0.0140 0.0061 0.1891 0.0898 0.0518

m∗
2/t 0.3869 0.2521 0.1778 0.1064 0.0575 0.0300 0.0258 0.0130 0.0051 0.1897 0.0879 0.0498

m∗
3/t 0.2457 0.1589 0.0784 0.7852 0.6470 0.4741 0.9464 0.9000 0.8250 0.6212 0.4586 0.3275

FDR 0.7543 0.7555 0.8155 0.2148 0.1557 0.1134 0.0536 0.0292 0.0134 0.3788 0.2792 0.2367

Table 8. Model (b), n=135
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CMST
ER ER PW cER cER cPW

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/m1 m∗
2/m2 m∗

3/m3

0.10 0.0001 0.0000 0.2293 0.0004 0.0019 0.0000 0.2555
0.125 0.09 0.0001 0.0000 0.2165 0.0005 0.0019 0.0000 0.2413

0.08 0.0001 0.0000 0.2004 0.0005 0.0019 0.0000 0.2233
0.07 0.0001 0.0000 0.1865 0.0005 0.0019 0.0000 0.2078
0.06 0.0001 0.0000 0.1696 0.0006 0.0019 0.0000 0.1890
0.05 0.0001 0.0000 0.1517 0.0007 0.0019 0.0000 0.1691
0.04 0.0000 0.0000 0.1363 0.0000 0.0000 0.0000 0.1519
0.03 0.0000 0.0000 0.1177 0.0000 0.0000 0.0000 0.1312
0.02 0.0000 0.0000 0.0961 0.0000 0.0000 0.0000 0.1071
0.01 0.0000 0.0000 0.0677 0.0000 0.0000 0.0000 0.0754
0.10 0.0000 0.0000 0.4442 0.0000 0.0000 0.0000 0.4656

0.25 0.09 0.0000 0.0000 0.4280 0.0000 0.0000 0.0000 0.4486
0.08 0.0000 0.0000 0.4121 0.0000 0.0000 0.0000 0.4320
0.07 0.0000 0.0000 0.3931 0.0000 0.0000 0.0000 0.4120
0.06 0.0000 0.0000 0.3734 0.0000 0.0000 0.0000 0.3914
0.05 0.0000 0.0000 0.3529 0.0000 0.0000 0.0000 0.3699
0.04 0.0000 0.0000 0.3316 0.0000 0.0000 0.0000 0.3476
0.03 0.0000 0.0000 0.3038 0.0000 0.0000 0.0000 0.3184
0.02 0.0000 0.0000 0.2710 0.0000 0.0000 0.0000 0.2840
0.01 0.0000 0.0000 0.2239 0.0000 0.0000 0.0000 0.2347
0.10 0.0000 0.0000 0.6310 0.0000 0.0000 0.0000 0.6454

0.5 0.09 0.0000 0.0000 0.6186 0.0000 0.0000 0.0000 0.6327
0.08 0.0000 0.0000 0.6035 0.0000 0.0000 0.0000 0.6172
0.07 0.0000 0.0000 0.5862 0.0000 0.0000 0.0000 0.5995
0.06 0.0000 0.0000 0.5708 0.0000 0.0000 0.0000 0.5838
0.05 0.0000 0.0000 0.5495 0.0000 0.0000 0.0000 0.5620
0.04 0.0000 0.0000 0.5264 0.0000 0.0000 0.0000 0.5384
0.03 0.0000 0.0000 0.4940 0.0000 0.0000 0.0000 0.5053
0.02 0.0000 0.0000 0.4536 0.0000 0.0000 0.0000 0.4640
0.01 0.0000 0.0000 0.3925 0.0000 0.0000 0.0000 0.4015
0.10 0.0000 0.0001 0.2808 0.0004 0.0000 0.0011 0.3589

range 0.09 0.0000 0.0001 0.2697 0.0004 0.0000 0.0011 0.3447
0.08 0.0000 0.0000 0.2581 0.0000 0.0000 0.0000 0.3299
0.07 0.0000 0.0000 0.2453 0.0000 0.0000 0.0000 0.3135
0.06 0.0000 0.0000 0.2355 0.0000 0.0000 0.0000 0.3010
0.05 0.0000 0.0000 0.2197 0.0000 0.0000 0.0000 0.2808
0.04 0.0000 0.0000 0.2038 0.0000 0.0000 0.0000 0.2605
0.03 0.0000 0.0000 0.1848 0.0000 0.0000 0.0000 0.2362
0.02 0.0000 0.0000 0.1617 0.0000 0.0000 0.0000 0.2067
0.01 0.0000 0.0000 0.1279 0.0000 0.0000 0.0000 0.1635

Table 9. Model (b), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.0515 0.0255 0.0107 0.0222 0.0103 0.0039 0.0111 0.0051 0.0022 0.0946 0.0418 0.0177

m∗
2/t 0.0512 0.0273 0.0127 0.0238 0.0110 0.0042 0.0112 0.0047 0.0023 0.0928 0.0403 0.0197

m∗
3/t 0.8973 0.8189 0.6795 0.9540 0.9044 0.8001 0.9777 0.9499 0.8905 0.8126 0.7090 0.5903

FDR 0.1027 0.0606 0.0333 0.0460 0.0230 0.0100 0.0223 0.0102 0.0050 0.1874 0.1037 0.0596

Table 10. Model (b), n=500
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CIT CMST
ER ER PW ER ER PW cER cER cPW

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.0820 0.0890 0.0094 0.9481 0.0085 0.0090 0.0000 1.0000 0.0247 0.0257 0.0000
0.125 0.09 0.1054 0.0937 0.0094 0.9551 0.0069 0.0078 0.0000 1.0000 0.0200 0.0223 0.0000

0.08 0.1265 0.1030 0.0094 0.9608 0.0054 0.0070 0.0000 1.0000 0.0157 0.0200 0.0000
0.07 0.1358 0.1124 0.0141 0.9464 0.0039 0.0046 0.0000 1.0000 0.0113 0.0132 0.0000
0.06 0.1710 0.1522 0.0141 0.9583 0.0024 0.0033 0.0000 1.0000 0.0070 0.0094 0.0000
0.05 0.1944 0.1710 0.0258 0.9341 0.0016 0.0027 0.0000 1.0000 0.0046 0.0077 0.0000
0.04 0.2225 0.2131 0.0328 0.9300 0.0011 0.0014 0.0000 1.0000 0.0032 0.0040 0.0000
0.03 0.2576 0.2553 0.0703 0.8795 0.0002 0.0007 0.0000 1.0000 0.0006 0.0020 0.0000
0.02 0.3162 0.2881 0.1218 0.8323 0.0001 0.0003 0.0000 1.0000 0.0003 0.0009 0.0000
0.01 0.3185 0.2857 0.3091 0.6615 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0670 0.0725 0.0022 0.9842 0.0161 0.0165 0.0031 0.9127 0.0404 0.0408 0.0166

0.25 0.09 0.0827 0.0818 0.0026 0.9846 0.0134 0.0154 0.0027 0.9137 0.0336 0.0381 0.0145
0.08 0.0940 0.0914 0.0026 0.9863 0.0110 0.0136 0.0025 0.9074 0.0278 0.0336 0.0134
0.07 0.1081 0.1097 0.0032 0.9855 0.0085 0.0112 0.0020 0.9078 0.0215 0.0279 0.0107
0.06 0.1276 0.1292 0.0038 0.9852 0.0070 0.0094 0.0017 0.9061 0.0177 0.0234 0.0091
0.05 0.1597 0.1543 0.0055 0.9829 0.0055 0.0078 0.0012 0.9172 0.0139 0.0194 0.0064
0.04 0.1934 0.1879 0.0115 0.9706 0.0036 0.0056 0.0011 0.8932 0.0091 0.0139 0.0059
0.03 0.2332 0.2328 0.0231 0.9528 0.0021 0.0037 0.0008 0.8788 0.0053 0.0092 0.0043
0.02 0.2861 0.2838 0.0523 0.9160 0.0013 0.0018 0.0003 0.9118 0.0033 0.0045 0.0016
0.01 0.3307 0.3239 0.1511 0.8125 0.0008 0.0007 0.0001 0.9375 0.0020 0.0017 0.0005
0.10 0.0210 0.0224 0.0131 0.7677 0.0034 0.0035 0.0871 0.0739 0.0195 0.0196 0.1351

0.5 0.09 0.0254 0.0264 0.0159 0.7648 0.0033 0.0033 0.0814 0.0755 0.0189 0.0185 0.1262
0.08 0.0309 0.0303 0.0192 0.7610 0.0032 0.0030 0.0735 0.0783 0.0183 0.0168 0.1140
0.07 0.0358 0.0337 0.0234 0.7484 0.0026 0.0029 0.0670 0.0764 0.0149 0.0162 0.1039
0.06 0.0432 0.0447 0.0277 0.7600 0.0020 0.0022 0.0594 0.0665 0.0115 0.0123 0.0922
0.05 0.0505 0.0541 0.0356 0.7459 0.0017 0.0015 0.0529 0.0575 0.0097 0.0084 0.0820
0.04 0.0664 0.0679 0.0453 0.7480 0.0010 0.0009 0.0439 0.0418 0.0057 0.0050 0.0681
0.03 0.0837 0.0874 0.0635 0.7293 0.0008 0.0003 0.0370 0.0291 0.0046 0.0017 0.0573
0.02 0.1189 0.1201 0.0925 0.7210 0.0008 0.0003 0.0269 0.0396 0.0046 0.0017 0.0417
0.01 0.1804 0.1758 0.1688 0.6786 0.0003 0.0001 0.0146 0.0268 0.0017 0.0006 0.0227
0.10 0.0858 0.0749 0.0929 0.6337 0.0178 0.0177 0.0281 0.5577 0.0618 0.0593 0.1015

range 0.09 0.0910 0.0839 0.1007 0.6346 0.0155 0.0159 0.0261 0.5455 0.0538 0.0533 0.0943
0.08 0.1007 0.0891 0.1075 0.6383 0.0138 0.0141 0.0235 0.5430 0.0482 0.0472 0.0848
0.07 0.1094 0.0948 0.1174 0.6348 0.0123 0.0124 0.0216 0.5346 0.0429 0.0418 0.0780
0.06 0.1205 0.1087 0.1283 0.6411 0.0109 0.0107 0.0196 0.5255 0.0381 0.0361 0.0707
0.05 0.1368 0.1198 0.1411 0.6453 0.0096 0.0090 0.0178 0.5124 0.0335 0.0303 0.0642
0.04 0.1519 0.1430 0.1550 0.6555 0.0079 0.0076 0.0153 0.5049 0.0276 0.0256 0.0551
0.03 0.1701 0.1656 0.1812 0.6495 0.0060 0.0057 0.0135 0.4643 0.0209 0.0192 0.0489
0.02 0.1959 0.1905 0.2186 0.6387 0.0047 0.0042 0.0107 0.4541 0.0164 0.0142 0.0388
0.01 0.2164 0.2190 0.2970 0.5945 0.0027 0.0024 0.0074 0.4080 0.0094 0.0081 0.0268

Table 11. Model (c), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.4814 0.3695 0.3027 0.4025 0.3253 0.2548 0.1756 0.1213 0.0811 0.3334 0.2578 0.1989

m∗
2/t 0.4884 0.3752 0.3040 0.4079 0.3284 0.2589 0.1799 0.1249 0.0799 0.3454 0.2601 0.1983

m∗
3/t 0.0302 0.0115 0.0036 0.1897 0.1211 0.0671 0.6445 0.5320 0.3973 0.3211 0.2341 0.1511

FDR 0.9698 0.9849 0.9940 0.8103 0.8437 0.8844 0.3555 0.3164 0.2884 0.6789 0.6887 0.7244

Table 12. Model (c), n=135
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CIT CMST
ER ER PW ER ER PW cER cER cPW

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.0460 0.0430 0.0007 0.9925 0.0006 0.0007 0.0064 0.1688 0.0025 0.0029 0.0123
0.125 0.09 0.0533 0.0494 0.0007 0.9935 0.0004 0.0007 0.0056 0.1642 0.0017 0.0029 0.0108

0.08 0.0593 0.0560 0.0007 0.9942 0.0004 0.0006 0.0043 0.1887 0.0017 0.0025 0.0083
0.07 0.0664 0.0643 0.0007 0.9949 0.0004 0.0006 0.0032 0.2381 0.0017 0.0025 0.0062
0.06 0.0805 0.0756 0.0007 0.9957 0.0002 0.0005 0.0026 0.2121 0.0008 0.0020 0.0050
0.05 0.0966 0.0877 0.0007 0.9963 0.0001 0.0004 0.0018 0.2174 0.0004 0.0016 0.0035
0.04 0.1145 0.1072 0.0009 0.9957 0.0001 0.0002 0.0013 0.1875 0.0004 0.0008 0.0025
0.03 0.1419 0.1334 0.0016 0.9941 0.0000 0.0001 0.0009 0.1000 0.0000 0.0004 0.0017
0.02 0.1817 0.1714 0.0041 0.9886 0.0000 0.0001 0.0005 0.1667 0.0000 0.0004 0.0010
0.01 0.2483 0.2357 0.0189 0.9623 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0004
0.10 0.0013 0.0015 0.0005 0.8387 0.0000 0.0000 0.1325 0.0000 0.0000 0.0000 0.1628

0.25 0.09 0.0017 0.0017 0.0005 0.8649 0.0000 0.0000 0.1232 0.0000 0.0000 0.0000 0.1514
0.08 0.0020 0.0022 0.0005 0.8889 0.0000 0.0000 0.1155 0.0000 0.0000 0.0000 0.1419
0.07 0.0030 0.0029 0.0005 0.9167 0.0000 0.0000 0.1062 0.0000 0.0000 0.0000 0.1305
0.06 0.0037 0.0034 0.0005 0.9306 0.0000 0.0000 0.0971 0.0000 0.0000 0.0000 0.1193
0.05 0.0044 0.0046 0.0005 0.9438 0.0000 0.0000 0.0875 0.0000 0.0000 0.0000 0.1075
0.04 0.0058 0.0053 0.0005 0.9541 0.0000 0.0000 0.0766 0.0000 0.0000 0.0000 0.0941
0.03 0.0079 0.0065 0.0005 0.9643 0.0000 0.0000 0.0653 0.0000 0.0000 0.0000 0.0802
0.02 0.0108 0.0093 0.0006 0.9691 0.0000 0.0000 0.0526 0.0000 0.0000 0.0000 0.0646
0.01 0.0181 0.0178 0.0006 0.9825 0.0000 0.0000 0.0374 0.0000 0.0000 0.0000 0.0460
0.10 0.0000 0.0000 0.0005 0.0000 0.0004 0.0010 0.3073 0.0045 0.0046 0.0115 0.3723

0.5 0.09 0.0000 0.0000 0.0005 0.0000 0.0004 0.0009 0.2967 0.0044 0.0046 0.0103 0.3595
0.08 0.0000 0.0000 0.0005 0.0000 0.0003 0.0009 0.2852 0.0042 0.0034 0.0103 0.3455
0.07 0.0000 0.0000 0.0005 0.0000 0.0003 0.0009 0.2738 0.0044 0.0034 0.0103 0.3317
0.06 0.0000 0.0000 0.0005 0.0000 0.0003 0.0005 0.2622 0.0030 0.0034 0.0057 0.3177
0.05 0.0000 0.0000 0.0005 0.0000 0.0002 0.0005 0.2451 0.0028 0.0023 0.0057 0.2969
0.04 0.0000 0.0000 0.0005 0.0000 0.0002 0.0004 0.2327 0.0026 0.0023 0.0046 0.2819
0.03 0.0000 0.0000 0.0005 0.0000 0.0002 0.0003 0.2146 0.0023 0.0023 0.0034 0.2600
0.02 0.0000 0.0000 0.0005 0.0000 0.0002 0.0002 0.1913 0.0021 0.0023 0.0023 0.2318
0.01 0.0000 0.0000 0.0005 0.0000 0.0001 0.0000 0.1602 0.0006 0.0011 0.0000 0.1941
0.10 0.0311 0.0296 0.0065 0.9030 0.0029 0.0043 0.1597 0.0431 0.0155 0.0231 0.2655

range 0.09 0.0335 0.0309 0.0074 0.8969 0.0025 0.0035 0.1537 0.0376 0.0134 0.0188 0.2556
0.08 0.0365 0.0331 0.0080 0.8966 0.0021 0.0027 0.1454 0.0320 0.0112 0.0145 0.2418
0.07 0.0399 0.0359 0.0092 0.8922 0.0019 0.0026 0.1395 0.0312 0.0102 0.0139 0.2320
0.06 0.0442 0.0380 0.0107 0.8851 0.0017 0.0019 0.1326 0.0264 0.0091 0.0102 0.2205
0.05 0.0487 0.0423 0.0123 0.8809 0.0013 0.0016 0.1241 0.0228 0.0070 0.0086 0.2064
0.04 0.0542 0.0461 0.0146 0.8732 0.0009 0.0015 0.1150 0.0204 0.0048 0.0080 0.1912
0.03 0.0614 0.0523 0.0176 0.8662 0.0004 0.0013 0.1037 0.0161 0.0021 0.0070 0.1724
0.02 0.0703 0.0614 0.0241 0.8453 0.0003 0.0009 0.0913 0.0130 0.0016 0.0048 0.1518
0.01 0.0875 0.0801 0.0345 0.8292 0.0002 0.0003 0.0717 0.0069 0.0011 0.0016 0.1192

Table 13. Model (c), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.2365 0.1590 0.1006 0.0943 0.0558 0.0305 0.0874 0.0527 0.0293 0.1917 0.1360 0.0917

m∗
2/t 0.2441 0.1629 0.1028 0.0918 0.0491 0.0248 0.0871 0.0532 0.0312 0.1913 0.1337 0.0899

m∗
3/t 0.5193 0.3876 0.2450 0.8139 0.7062 0.5478 0.8255 0.7498 0.6116 0.6171 0.5189 0.3970

FDR 0.4807 0.4538 0.4536 0.1861 0.1293 0.0917 0.1745 0.1238 0.0900 0.3829 0.3420 0.3139

Table 14. Model (c), n=500
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CIT CMST
PW ER ER PW ER ER cPW cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.6982 0.0761 0.0380 0.1405 0.1007 0.0001 0.0000 0.0010 0.1269 0.0012 0.0000
0.125 0.09 0.7041 0.0752 0.0473 0.1483 0.0892 0.0001 0.0000 0.0011 0.1124 0.0012 0.0000

0.08 0.7101 0.0744 0.0583 0.1575 0.0764 0.0001 0.0000 0.0013 0.0964 0.0012 0.0000
0.07 0.7244 0.0727 0.0676 0.1623 0.0634 0.0000 0.0000 0.0000 0.0799 0.0000 0.0000
0.06 0.7270 0.0651 0.1006 0.1856 0.0528 0.0000 0.0000 0.0000 0.0665 0.0000 0.0000
0.05 0.7270 0.0659 0.1209 0.2044 0.0398 0.0000 0.0000 0.0000 0.0501 0.0000 0.0000
0.04 0.7134 0.0558 0.1623 0.2341 0.0289 0.0000 0.0000 0.0000 0.0364 0.0000 0.0000
0.03 0.6881 0.0533 0.2113 0.2777 0.0207 0.0000 0.0000 0.0000 0.0261 0.0000 0.0000
0.02 0.6492 0.0431 0.2823 0.3339 0.0124 0.0000 0.0000 0.0000 0.0157 0.0000 0.0000
0.01 0.5714 0.0304 0.3888 0.4232 0.0046 0.0000 0.0000 0.0000 0.0058 0.0000 0.0000
0.10 0.8626 0.0039 0.0037 0.0088 0.3358 0.0000 0.0000 0.0000 0.3429 0.0000 0.0000

0.25 0.09 0.8748 0.0041 0.0044 0.0096 0.3148 0.0000 0.0000 0.0000 0.3214 0.0000 0.0000
0.08 0.8873 0.0050 0.0050 0.0111 0.2925 0.0000 0.0000 0.0000 0.2987 0.0000 0.0000
0.07 0.8991 0.0044 0.0066 0.0121 0.2672 0.0000 0.0000 0.0000 0.2728 0.0000 0.0000
0.06 0.9101 0.0054 0.0081 0.0146 0.2437 0.0000 0.0000 0.0000 0.2488 0.0000 0.0000
0.05 0.9202 0.0054 0.0110 0.0175 0.2170 0.0000 0.0000 0.0000 0.2216 0.0000 0.0000
0.04 0.9306 0.0060 0.0135 0.0205 0.1847 0.0000 0.0000 0.0000 0.1886 0.0000 0.0000
0.03 0.9368 0.0054 0.0201 0.0265 0.1524 0.0000 0.0000 0.0000 0.1556 0.0000 0.0000
0.02 0.9360 0.0060 0.0334 0.0404 0.1152 0.0000 0.0000 0.0000 0.1176 0.0000 0.0000
0.01 0.9262 0.0044 0.0591 0.0641 0.0757 0.0000 0.0000 0.0000 0.0773 0.0000 0.0000
0.10 0.9078 0.0000 0.0082 0.0089 0.5214 0.0000 0.0000 0.0000 0.5284 0.0000 0.0000

0.5 0.09 0.9161 0.0000 0.0088 0.0096 0.5041 0.0000 0.0000 0.0000 0.5108 0.0000 0.0000
0.08 0.9245 0.0000 0.0098 0.0105 0.4883 0.0000 0.0000 0.0000 0.4948 0.0000 0.0000
0.07 0.9328 0.0000 0.0111 0.0117 0.4669 0.0000 0.0000 0.0000 0.4731 0.0000 0.0000
0.06 0.9384 0.0000 0.0136 0.0143 0.4454 0.0000 0.0000 0.0000 0.4514 0.0000 0.0000
0.05 0.9439 0.0000 0.0152 0.0159 0.4192 0.0000 0.0000 0.0000 0.4248 0.0000 0.0000
0.04 0.9493 0.0000 0.0178 0.0184 0.3898 0.0000 0.0000 0.0000 0.3950 0.0000 0.0000
0.03 0.9564 0.0001 0.0207 0.0213 0.3589 0.0000 0.0000 0.0000 0.3637 0.0000 0.0000
0.02 0.9586 0.0001 0.0258 0.0264 0.3167 0.0000 0.0000 0.0000 0.3209 0.0000 0.0000
0.01 0.9583 0.0000 0.0352 0.0355 0.2572 0.0000 0.0000 0.0000 0.2606 0.0000 0.0000
0.10 0.8678 0.0065 0.0340 0.0447 0.3731 0.0004 0.0000 0.0011 0.4349 0.0111 0.0000

range 0.09 0.8758 0.0064 0.0375 0.0477 0.3561 0.0004 0.0000 0.0011 0.4150 0.0111 0.0000
0.08 0.8854 0.0056 0.0402 0.0492 0.3385 0.0001 0.0000 0.0003 0.3946 0.0028 0.0000
0.07 0.8932 0.0056 0.0449 0.0536 0.3217 0.0000 0.0000 0.0000 0.3749 0.0000 0.0000
0.06 0.8981 0.0051 0.0511 0.0589 0.3027 0.0000 0.0000 0.0000 0.3529 0.0000 0.0000
0.05 0.8998 0.0042 0.0589 0.0655 0.2804 0.0000 0.0000 0.0000 0.3268 0.0000 0.0000
0.04 0.8992 0.0033 0.0688 0.0742 0.2592 0.0000 0.0000 0.0000 0.3021 0.0000 0.0000
0.03 0.8961 0.0031 0.0813 0.0861 0.2325 0.0000 0.0000 0.0000 0.2709 0.0000 0.0000
0.02 0.8863 0.0027 0.0991 0.1031 0.2022 0.0000 0.0000 0.0000 0.2356 0.0000 0.0000
0.01 0.8596 0.0015 0.1340 0.1362 0.1571 0.0000 0.0000 0.0000 0.1831 0.0000 0.0000

Table 15. Model (d), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.8953 0.8192 0.7456 0.9805 0.9570 0.9114 0.9868 0.9683 0.9201 0.9502 0.9122 0.8532

m∗
2/t 0.0970 0.0605 0.0399 0.0105 0.0066 0.0029 0.0045 0.0025 0.0006 0.0399 0.0228 0.0141

m∗
3/t 0.0077 0.0031 0.0011 0.0089 0.0037 0.0011 0.0086 0.0031 0.0011 0.0099 0.0043 0.0013

FDR 0.1047 0.0720 0.0522 0.0195 0.0107 0.0044 0.0132 0.0058 0.0019 0.0498 0.0289 0.0178

Table 16. Model (d), n=135



31
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R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.8930 0.0001 0.0010 0.0012 0.5021 0.0000 0.0000 0.0000 0.5055 0.0000 0.0000
0.125 0.09 0.9043 0.0001 0.0010 0.0012 0.4831 0.0000 0.0000 0.0000 0.4864 0.0000 0.0000

0.08 0.9164 0.0001 0.0010 0.0012 0.4653 0.0000 0.0000 0.0000 0.4684 0.0000 0.0000
0.07 0.9267 0.0001 0.0010 0.0012 0.4455 0.0000 0.0000 0.0000 0.4485 0.0000 0.0000
0.06 0.9380 0.0001 0.0010 0.0012 0.4238 0.0000 0.0000 0.0000 0.4267 0.0000 0.0000
0.05 0.9496 0.0002 0.0010 0.0013 0.3992 0.0000 0.0000 0.0000 0.4019 0.0000 0.0000
0.04 0.9609 0.0001 0.0011 0.0013 0.3700 0.0000 0.0000 0.0000 0.3725 0.0000 0.0000
0.03 0.9708 0.0001 0.0011 0.0012 0.3395 0.0000 0.0000 0.0000 0.3418 0.0000 0.0000
0.02 0.9783 0.0001 0.0016 0.0017 0.3016 0.0000 0.0000 0.0000 0.3036 0.0000 0.0000
0.01 0.9885 0.0000 0.0024 0.0024 0.2507 0.0000 0.0000 0.0000 0.2524 0.0000 0.0000
0.10 0.8915 0.0000 0.0003 0.0003 0.6361 0.0000 0.0000 0.0000 0.6396 0.0000 0.0000

0.25 0.09 0.9022 0.0000 0.0003 0.0003 0.6173 0.0000 0.0000 0.0000 0.6207 0.0000 0.0000
0.08 0.9117 0.0000 0.0003 0.0003 0.5978 0.0000 0.0000 0.0000 0.6010 0.0000 0.0000
0.07 0.9231 0.0000 0.0003 0.0003 0.5790 0.0000 0.0000 0.0000 0.5821 0.0000 0.0000
0.06 0.9336 0.0000 0.0003 0.0003 0.5581 0.0000 0.0000 0.0000 0.5611 0.0000 0.0000
0.05 0.9439 0.0000 0.0003 0.0003 0.5335 0.0000 0.0000 0.0000 0.5364 0.0000 0.0000
0.04 0.9554 0.0000 0.0003 0.0003 0.5019 0.0000 0.0000 0.0000 0.5046 0.0000 0.0000
0.03 0.9675 0.0000 0.0003 0.0003 0.4676 0.0000 0.0000 0.0000 0.4701 0.0000 0.0000
0.02 0.9773 0.0001 0.0003 0.0004 0.4234 0.0000 0.0000 0.0000 0.4257 0.0000 0.0000
0.01 0.9874 0.0000 0.0004 0.0004 0.3641 0.0000 0.0000 0.0000 0.3661 0.0000 0.0000
0.10 0.9038 0.0000 0.0001 0.0001 0.7433 0.0000 0.0000 0.0000 0.7456 0.0000 0.0000

0.5 0.09 0.9110 0.0000 0.0001 0.0001 0.7293 0.0000 0.0000 0.0000 0.7316 0.0000 0.0000
0.08 0.9214 0.0000 0.0001 0.0001 0.7134 0.0000 0.0000 0.0000 0.7156 0.0000 0.0000
0.07 0.9316 0.0000 0.0001 0.0001 0.6953 0.0000 0.0000 0.0000 0.6975 0.0000 0.0000
0.06 0.9408 0.0000 0.0001 0.0001 0.6771 0.0000 0.0000 0.0000 0.6792 0.0000 0.0000
0.05 0.9504 0.0000 0.0001 0.0001 0.6551 0.0000 0.0000 0.0000 0.6571 0.0000 0.0000
0.04 0.9596 0.0000 0.0001 0.0001 0.6274 0.0000 0.0000 0.0000 0.6294 0.0000 0.0000
0.03 0.9693 0.0000 0.0001 0.0001 0.5941 0.0000 0.0000 0.0000 0.5959 0.0000 0.0000
0.02 0.9782 0.0000 0.0001 0.0001 0.5466 0.0000 0.0000 0.0000 0.5483 0.0000 0.0000
0.01 0.9896 0.0000 0.0001 0.0001 0.4751 0.0000 0.0000 0.0000 0.4766 0.0000 0.0000
0.10 0.8926 0.0022 0.0073 0.0105 0.6069 0.0001 0.0000 0.0002 0.6239 0.0119 0.0000

range 0.09 0.9020 0.0021 0.0082 0.0113 0.5931 0.0000 0.0000 0.0000 0.6097 0.0000 0.0000
0.08 0.9095 0.0021 0.0089 0.0120 0.5774 0.0000 0.0000 0.0000 0.5936 0.0000 0.0000
0.07 0.9158 0.0018 0.0108 0.0135 0.5605 0.0000 0.0000 0.0000 0.5762 0.0000 0.0000
0.06 0.9241 0.0014 0.0123 0.0146 0.5417 0.0000 0.0000 0.0000 0.5569 0.0000 0.0000
0.05 0.9351 0.0013 0.0137 0.0158 0.5225 0.0000 0.0000 0.0000 0.5372 0.0000 0.0000
0.04 0.9456 0.0011 0.0153 0.0170 0.4992 0.0000 0.0000 0.0000 0.5132 0.0000 0.0000
0.03 0.9560 0.0009 0.0173 0.0188 0.4702 0.0000 0.0000 0.0000 0.4834 0.0000 0.0000
0.02 0.9622 0.0004 0.0210 0.0217 0.4317 0.0000 0.0000 0.0000 0.4438 0.0000 0.0000
0.01 0.9646 0.0002 0.0266 0.0271 0.3742 0.0000 0.0000 0.0000 0.3847 0.0000 0.0000

Table 17. Model (d), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.9933 0.9823 0.9571 0.9946 0.9862 0.9662 0.9969 0.9918 0.9747 0.9878 0.9722 0.9456

m∗
2/t 0.0030 0.0017 0.0004 0.0005 0.0002 0.0001 0.0002 0.0001 0.0000 0.0085 0.0057 0.0030

m∗
3/t 0.0037 0.0011 0.0005 0.0049 0.0017 0.0004 0.0029 0.0005 0.0001 0.0037 0.0011 0.0005

FDR 0.0067 0.0028 0.0009 0.0054 0.0019 0.0005 0.0031 0.0006 0.0001 0.0122 0.0070 0.0037

Table 18. Model (d), n=500
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R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.6626 0.0149 0.1287 0.1782 0.0735 0.0031 0.0000 0.0405 0.1008 0.0138 0.0000
0.125 0.09 0.6843 0.0122 0.1355 0.1775 0.0654 0.0028 0.0000 0.0411 0.0897 0.0124 0.0000

0.08 0.6965 0.0136 0.1463 0.1867 0.0575 0.0025 0.0000 0.0417 0.0788 0.0111 0.0000
0.07 0.7046 0.0122 0.1585 0.1950 0.0495 0.0017 0.0000 0.0333 0.0679 0.0075 0.0000
0.06 0.7222 0.0108 0.1667 0.1973 0.0420 0.0015 0.0000 0.0346 0.0576 0.0067 0.0000
0.05 0.7182 0.0095 0.1870 0.2148 0.0341 0.0010 0.0000 0.0286 0.0467 0.0044 0.0000
0.04 0.7263 0.0068 0.2060 0.2266 0.0267 0.0006 0.0000 0.0221 0.0365 0.0027 0.0000
0.03 0.7276 0.0068 0.2263 0.2426 0.0188 0.0003 0.0000 0.0157 0.0258 0.0013 0.0000
0.02 0.7222 0.0041 0.2615 0.2689 0.0122 0.0000 0.0000 0.0000 0.0168 0.0000 0.0000
0.01 0.6545 0.0027 0.3401 0.3438 0.0057 0.0000 0.0000 0.0000 0.0078 0.0000 0.0000
0.10 0.4765 0.0017 0.2361 0.3329 0.0728 0.0004 0.0009 0.0176 0.0921 0.0026 0.0172

0.25 0.09 0.5017 0.0017 0.2441 0.3288 0.0672 0.0004 0.0008 0.0176 0.0850 0.0026 0.0153
0.08 0.5279 0.0013 0.2555 0.3273 0.0611 0.0004 0.0007 0.0177 0.0774 0.0026 0.0134
0.07 0.5537 0.0017 0.2683 0.3278 0.0551 0.0003 0.0006 0.0161 0.0698 0.0019 0.0115
0.06 0.5873 0.0024 0.2777 0.3229 0.0483 0.0003 0.0005 0.0164 0.0611 0.0019 0.0096
0.05 0.6162 0.0020 0.2928 0.3236 0.0421 0.0002 0.0003 0.0118 0.0532 0.0013 0.0057
0.04 0.6390 0.0013 0.3086 0.3266 0.0347 0.0002 0.0002 0.0114 0.0440 0.0013 0.0038
0.03 0.6461 0.0013 0.3324 0.3406 0.0293 0.0002 0.0001 0.0102 0.0371 0.0013 0.0019
0.02 0.6259 0.0010 0.3640 0.3683 0.0205 0.0001 0.0001 0.0097 0.0259 0.0006 0.0019
0.01 0.5863 0.0010 0.4117 0.4131 0.0116 0.0001 0.0001 0.0169 0.0147 0.0006 0.0019
0.10 0.2942 0.0001 0.4924 0.6261 0.0285 0.0067 0.0293 0.5583 0.0701 0.0225 0.0999

0.5 0.09 0.3098 0.0001 0.5028 0.6188 0.0255 0.0059 0.0269 0.5628 0.0627 0.0198 0.0917
0.08 0.3257 0.0000 0.5152 0.6127 0.0231 0.0053 0.0237 0.5568 0.0568 0.0178 0.0807
0.07 0.3441 0.0000 0.5306 0.6066 0.0202 0.0048 0.0214 0.5649 0.0496 0.0161 0.0728
0.06 0.3591 0.0000 0.5479 0.6041 0.0181 0.0039 0.0188 0.5567 0.0444 0.0131 0.0640
0.05 0.3708 0.0001 0.5660 0.6042 0.0155 0.0031 0.0163 0.5562 0.0380 0.0104 0.0554
0.04 0.3809 0.0002 0.5855 0.6059 0.0126 0.0024 0.0129 0.5487 0.0309 0.0081 0.0438
0.03 0.3758 0.0000 0.6106 0.6190 0.0095 0.0020 0.0095 0.5476 0.0235 0.0067 0.0325
0.02 0.3525 0.0000 0.6442 0.6463 0.0065 0.0013 0.0066 0.5486 0.0160 0.0044 0.0226
0.01 0.3049 0.0000 0.6948 0.6950 0.0044 0.0009 0.0036 0.5056 0.0109 0.0030 0.0123
0.10 0.4319 0.0020 0.3380 0.4405 0.0753 0.0045 0.0043 0.1049 0.1280 0.0260 0.0578

range 0.09 0.4458 0.0017 0.3468 0.4388 0.0700 0.0040 0.0039 0.1017 0.1190 0.0231 0.0524
0.08 0.4661 0.0014 0.3549 0.4332 0.0644 0.0036 0.0033 0.0969 0.1096 0.0208 0.0444
0.07 0.4858 0.0014 0.3641 0.4293 0.0583 0.0029 0.0028 0.0892 0.0992 0.0167 0.0376
0.06 0.5041 0.0014 0.3753 0.4276 0.0524 0.0025 0.0026 0.0889 0.0891 0.0144 0.0349
0.05 0.5173 0.0010 0.3898 0.4304 0.0459 0.0023 0.0024 0.0931 0.0781 0.0133 0.0323
0.04 0.5339 0.0014 0.4017 0.4302 0.0398 0.0018 0.0022 0.0915 0.0677 0.0104 0.0296
0.03 0.5424 0.0014 0.4193 0.4368 0.0318 0.0014 0.0020 0.0969 0.0540 0.0081 0.0269
0.02 0.5319 0.0014 0.4488 0.4584 0.0247 0.0009 0.0014 0.0855 0.0419 0.0052 0.0188
0.01 0.4966 0.0010 0.4986 0.5015 0.0158 0.0005 0.0011 0.0920 0.0269 0.0029 0.0148

Table 19. Model (e), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.7586 0.6749 0.5808 0.7902 0.7093 0.6059 0.4070 0.3247 0.2446 0.7031 0.6223 0.5279

m∗
2/t 0.2349 0.1709 0.1227 0.1573 0.1062 0.0695 0.2992 0.2260 0.1607 0.2078 0.1531 0.1133

m∗
3/t 0.0066 0.0030 0.0016 0.0524 0.0341 0.0186 0.2938 0.2253 0.1526 0.0891 0.0609 0.0363

FDR 0.2414 0.2049 0.1763 0.2098 0.1652 0.1269 0.5930 0.5816 0.5616 0.2969 0.2559 0.2209

Table 20. Model (e), n=135
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R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.0420 0.0019 0.4394 0.9131 0.0346 0.0000 0.0004 0.0114 0.0432 0.0000 0.0035
0.125 0.09 0.0474 0.0016 0.4456 0.9041 0.0306 0.0000 0.0003 0.0097 0.0382 0.0000 0.0026

0.08 0.0499 0.0009 0.4540 0.9011 0.0262 0.0000 0.0003 0.0113 0.0327 0.0000 0.0026
0.07 0.0538 0.0012 0.4618 0.8959 0.0213 0.0000 0.0003 0.0139 0.0266 0.0000 0.0026
0.06 0.0620 0.0017 0.4688 0.8835 0.0172 0.0000 0.0003 0.0171 0.0215 0.0000 0.0026
0.05 0.0689 0.0012 0.4787 0.8745 0.0141 0.0000 0.0002 0.0140 0.0176 0.0000 0.0017
0.04 0.0801 0.0011 0.4908 0.8600 0.0109 0.0000 0.0000 0.0000 0.0136 0.0000 0.0000
0.03 0.0965 0.0006 0.5056 0.8398 0.0078 0.0000 0.0000 0.0000 0.0097 0.0000 0.0000
0.02 0.1242 0.0012 0.5238 0.8087 0.0048 0.0000 0.0000 0.0000 0.0060 0.0000 0.0000
0.01 0.1737 0.0019 0.5524 0.7614 0.0026 0.0000 0.0000 0.0000 0.0032 0.0000 0.0000
0.10 0.0358 0.0015 0.4877 0.9318 0.0646 0.0004 0.0061 0.0914 0.0845 0.0073 0.0356

0.25 0.09 0.0371 0.0016 0.4951 0.9305 0.0584 0.0004 0.0054 0.0903 0.0764 0.0073 0.0315
0.08 0.0377 0.0015 0.5044 0.9306 0.0512 0.0003 0.0048 0.0906 0.0670 0.0055 0.0280
0.07 0.0394 0.0013 0.5141 0.9290 0.0443 0.0002 0.0038 0.0828 0.0580 0.0036 0.0222
0.06 0.0418 0.0014 0.5231 0.9261 0.0363 0.0001 0.0033 0.0856 0.0475 0.0018 0.0193
0.05 0.0435 0.0011 0.5345 0.9249 0.0289 0.0000 0.0022 0.0707 0.0378 0.0000 0.0129
0.04 0.0493 0.0009 0.5450 0.9172 0.0232 0.0000 0.0017 0.0683 0.0304 0.0000 0.0099
0.03 0.0539 0.0015 0.5608 0.9125 0.0167 0.0000 0.0009 0.0511 0.0218 0.0000 0.0053
0.02 0.0636 0.0012 0.5810 0.9015 0.0100 0.0000 0.0005 0.0476 0.0131 0.0000 0.0029
0.01 0.0757 0.0009 0.6146 0.8905 0.0043 0.0000 0.0002 0.0444 0.0056 0.0000 0.0012
0.10 0.0859 0.0003 0.2825 0.7669 0.0944 0.0036 0.0284 0.2532 0.1397 0.0727 0.1164

0.5 0.09 0.0885 0.0004 0.2935 0.7685 0.0826 0.0034 0.0271 0.2697 0.1222 0.0687 0.1111
0.08 0.0959 0.0002 0.3048 0.7608 0.0745 0.0034 0.0256 0.2802 0.1102 0.0687 0.1049
0.07 0.1035 0.0002 0.3152 0.7528 0.0667 0.0031 0.0231 0.2820 0.0987 0.0626 0.0947
0.06 0.1119 0.0003 0.3288 0.7463 0.0575 0.0028 0.0212 0.2945 0.0851 0.0566 0.0869
0.05 0.1246 0.0002 0.3430 0.7337 0.0496 0.0026 0.0190 0.3034 0.0734 0.0525 0.0779
0.04 0.1367 0.0004 0.3618 0.7260 0.0403 0.0023 0.0180 0.3350 0.0596 0.0465 0.0738
0.03 0.1476 0.0004 0.3844 0.7227 0.0321 0.0017 0.0160 0.3554 0.0475 0.0343 0.0656
0.02 0.1632 0.0001 0.4187 0.7196 0.0227 0.0014 0.0133 0.3930 0.0336 0.0283 0.0545
0.01 0.1939 0.0000 0.4669 0.7066 0.0107 0.0008 0.0100 0.5023 0.0158 0.0162 0.0410
0.10 0.1019 0.0017 0.3955 0.7959 0.0701 0.0018 0.0107 0.1513 0.1018 0.0184 0.0632

range 0.09 0.1058 0.0015 0.4000 0.7914 0.0643 0.0018 0.0096 0.1506 0.0934 0.0184 0.0567
0.08 0.1135 0.0010 0.4048 0.7814 0.0569 0.0015 0.0087 0.1520 0.0826 0.0153 0.0514
0.07 0.1208 0.0009 0.4113 0.7734 0.0522 0.0013 0.0079 0.1498 0.0758 0.0133 0.0466
0.06 0.1279 0.0015 0.4175 0.7661 0.0467 0.0011 0.0073 0.1525 0.0678 0.0112 0.0431
0.05 0.1375 0.0012 0.4230 0.7551 0.0398 0.0010 0.0063 0.1550 0.0578 0.0102 0.0372
0.04 0.1502 0.0010 0.4307 0.7419 0.0335 0.0007 0.0059 0.1646 0.0486 0.0071 0.0348
0.03 0.1681 0.0010 0.4400 0.7240 0.0273 0.0006 0.0049 0.1677 0.0396 0.0061 0.0289
0.02 0.1904 0.0010 0.4523 0.7042 0.0205 0.0006 0.0038 0.1767 0.0298 0.0061 0.0224
0.01 0.2241 0.0012 0.4756 0.6802 0.0118 0.0006 0.0022 0.1918 0.0171 0.0061 0.0130

Table 21. Model (e), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.8013 0.6906 0.5488 0.7718 0.6241 0.4661 0.6972 0.5514 0.4338 0.7203 0.6047 0.4833

m∗
2/t 0.0837 0.0492 0.0252 0.0553 0.0329 0.0202 0.0511 0.0346 0.0240 0.1025 0.0694 0.0471

m∗
3/t 0.1151 0.0706 0.0366 0.1729 0.0914 0.0546 0.2517 0.1534 0.0969 0.1772 0.1154 0.0722

FDR 0.1987 0.1479 0.1013 0.2282 0.1661 0.1383 0.3028 0.2542 0.2180 0.2797 0.2341 0.1979

Table 22. Model (e), n=500
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R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.1347 0.3568 0.4128 0.8511 0.0118 0.0107 0.0000 0.4756 0.0313 0.0289 0.0000
0.125 0.09 0.1296 0.3436 0.4405 0.8581 0.0098 0.0089 0.0000 0.4759 0.0260 0.0241 0.0000

0.08 0.1233 0.3329 0.4632 0.8658 0.0076 0.0076 0.0000 0.5000 0.0202 0.0205 0.0000
0.07 0.1233 0.3103 0.4965 0.8674 0.0058 0.0065 0.0000 0.5285 0.0154 0.0176 0.0000
0.06 0.1145 0.2920 0.5337 0.8782 0.0048 0.0049 0.0000 0.5052 0.0127 0.0132 0.0000
0.05 0.1076 0.2775 0.5683 0.8871 0.0035 0.0032 0.0000 0.4776 0.0093 0.0086 0.0000
0.04 0.1026 0.2568 0.6048 0.8936 0.0023 0.0022 0.0000 0.4889 0.0061 0.0059 0.0000
0.03 0.0925 0.2335 0.6507 0.9053 0.0017 0.0015 0.0000 0.4688 0.0045 0.0041 0.0000
0.02 0.0755 0.1926 0.7174 0.9234 0.0010 0.0008 0.0000 0.4444 0.0027 0.0022 0.0000
0.01 0.0585 0.1334 0.8024 0.9411 0.0004 0.0001 0.0000 0.2000 0.0011 0.0003 0.0000
0.10 0.1061 0.5879 0.1975 0.8810 0.0284 0.0323 0.0000 0.5322 0.0582 0.0640 0.0000

0.25 0.09 0.1049 0.5800 0.2191 0.8840 0.0252 0.0279 0.0000 0.5255 0.0516 0.0552 0.0000
0.08 0.1016 0.5705 0.2414 0.8888 0.0213 0.0250 0.0000 0.5401 0.0436 0.0495 0.0000
0.07 0.1018 0.5610 0.2638 0.8901 0.0187 0.0212 0.0000 0.5315 0.0382 0.0419 0.0000
0.06 0.1020 0.5466 0.2888 0.8912 0.0164 0.0178 0.0000 0.5206 0.0335 0.0352 0.0000
0.05 0.1023 0.5290 0.3178 0.8922 0.0136 0.0149 0.0000 0.5211 0.0280 0.0294 0.0000
0.04 0.1000 0.5059 0.3565 0.8961 0.0110 0.0111 0.0000 0.5023 0.0226 0.0220 0.0000
0.03 0.0968 0.4748 0.4031 0.9007 0.0083 0.0081 0.0000 0.4939 0.0171 0.0161 0.0000
0.02 0.0879 0.4234 0.4745 0.9108 0.0051 0.0056 0.0000 0.5234 0.0105 0.0111 0.0000
0.01 0.0768 0.3428 0.5761 0.9229 0.0027 0.0031 0.0000 0.5345 0.0056 0.0062 0.0000
0.10 0.0241 0.7215 0.1377 0.9727 0.0949 0.0143 0.0000 0.1308 0.1355 0.0491 0.0000

0.5 0.09 0.0263 0.7290 0.1399 0.9706 0.0881 0.0136 0.0000 0.1334 0.1258 0.0467 0.0000
0.08 0.0257 0.7347 0.1440 0.9716 0.0786 0.0127 0.0000 0.1388 0.1122 0.0436 0.0000
0.07 0.0280 0.7423 0.1485 0.9696 0.0707 0.0117 0.0000 0.1416 0.1009 0.0401 0.0000
0.06 0.0298 0.7472 0.1556 0.9681 0.0606 0.0103 0.0000 0.1447 0.0865 0.0353 0.0000
0.05 0.0297 0.7519 0.1631 0.9686 0.0535 0.0085 0.0000 0.1378 0.0763 0.0294 0.0000
0.04 0.0319 0.7543 0.1717 0.9667 0.0453 0.0069 0.0000 0.1327 0.0647 0.0239 0.0000
0.03 0.0344 0.7529 0.1845 0.9646 0.0368 0.0057 0.0000 0.1348 0.0525 0.0197 0.0000
0.02 0.0359 0.7465 0.2033 0.9636 0.0272 0.0040 0.0000 0.1286 0.0389 0.0138 0.0000
0.01 0.0309 0.7169 0.2479 0.9690 0.0153 0.0023 0.0000 0.1314 0.0218 0.0080 0.0000
0.10 0.1191 0.4857 0.2012 0.8523 0.1075 0.0193 0.0001 0.1527 0.1889 0.0658 0.0084

range 0.09 0.1194 0.4880 0.2125 0.8544 0.1012 0.0176 0.0001 0.1485 0.1780 0.0600 0.0084
0.08 0.1205 0.4921 0.2231 0.8558 0.0958 0.0150 0.0001 0.1365 0.1684 0.0514 0.0084
0.07 0.1204 0.4956 0.2373 0.8589 0.0894 0.0132 0.0001 0.1299 0.1571 0.0452 0.0084
0.06 0.1239 0.4994 0.2512 0.8584 0.0840 0.0113 0.0001 0.1199 0.1476 0.0387 0.0084
0.05 0.1268 0.4988 0.2699 0.8584 0.0754 0.0098 0.0001 0.1163 0.1326 0.0336 0.0084
0.04 0.1255 0.4996 0.2923 0.8632 0.0673 0.0084 0.0001 0.1124 0.1183 0.0288 0.0084
0.03 0.1263 0.4973 0.3159 0.8655 0.0588 0.0066 0.0001 0.1026 0.1034 0.0226 0.0084
0.02 0.1201 0.4860 0.3539 0.8749 0.0483 0.0047 0.0001 0.0907 0.0848 0.0161 0.0084
0.01 0.1078 0.4580 0.4173 0.8903 0.0353 0.0036 0.0001 0.0951 0.0621 0.0123 0.0084

Table 23. Model (f), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.5026 0.4143 0.3398 0.4896 0.4176 0.3469 0.7004 0.6444 0.5769 0.6512 0.5891 0.5220

m∗
2/t 0.4934 0.4113 0.3386 0.5069 0.4329 0.3547 0.2908 0.2373 0.1869 0.3351 0.2759 0.2245

m∗
3/t 0.0040 0.0013 0.0004 0.0034 0.0020 0.0008 0.0088 0.0036 0.0015 0.0137 0.0087 0.0049

FDR 0.4974 0.4990 0.4994 0.5104 0.5102 0.5062 0.2996 0.2721 0.2462 0.3488 0.3258 0.3054

Table 24. Model (f), n=135
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CIT CMST
PW ER ER PW ER ER cPW cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.0443 0.6930 0.0794 0.9458 0.0048 0.0054 0.0000 0.5294 0.0092 0.0113 0.0000
0.125 0.09 0.0461 0.6944 0.0875 0.9444 0.0043 0.0048 0.0000 0.5275 0.0083 0.0101 0.0000

0.08 0.0465 0.6958 0.0971 0.9446 0.0036 0.0045 0.0000 0.5556 0.0069 0.0095 0.0000
0.07 0.0475 0.6943 0.1071 0.9440 0.0033 0.0036 0.0000 0.5217 0.0064 0.0076 0.0000
0.06 0.0493 0.6925 0.1189 0.9427 0.0028 0.0033 0.0000 0.5410 0.0054 0.0069 0.0000
0.05 0.0518 0.6869 0.1346 0.9407 0.0024 0.0025 0.0000 0.5102 0.0046 0.0053 0.0000
0.04 0.0563 0.6780 0.1543 0.9366 0.0023 0.0018 0.0000 0.4390 0.0044 0.0038 0.0000
0.03 0.0628 0.6639 0.1822 0.9309 0.0016 0.0014 0.0000 0.4667 0.0031 0.0029 0.0000
0.02 0.0694 0.6371 0.2248 0.9254 0.0011 0.0010 0.0000 0.4762 0.0021 0.0021 0.0000
0.01 0.0843 0.5795 0.2962 0.9122 0.0003 0.0004 0.0000 0.5714 0.0006 0.0008 0.0000
0.10 0.0062 0.5693 0.2465 0.9925 0.0064 0.0025 0.0000 0.2809 0.0108 0.0065 0.0000

0.25 0.09 0.0071 0.5767 0.2481 0.9915 0.0053 0.0020 0.0000 0.2740 0.0090 0.0052 0.0000
0.08 0.0069 0.5843 0.2506 0.9919 0.0041 0.0017 0.0000 0.2931 0.0069 0.0044 0.0000
0.07 0.0083 0.5905 0.2520 0.9903 0.0027 0.0012 0.0000 0.3077 0.0046 0.0031 0.0000
0.06 0.0097 0.5974 0.2540 0.9888 0.0021 0.0008 0.0000 0.2759 0.0035 0.0021 0.0000
0.05 0.0095 0.6039 0.2572 0.9891 0.0015 0.0007 0.0000 0.3182 0.0025 0.0018 0.0000
0.04 0.0107 0.6116 0.2598 0.9879 0.0012 0.0005 0.0000 0.2941 0.0020 0.0013 0.0000
0.03 0.0114 0.6191 0.2638 0.9873 0.0008 0.0003 0.0000 0.2727 0.0014 0.0008 0.0000
0.02 0.0150 0.6269 0.2685 0.9835 0.0005 0.0001 0.0000 0.1667 0.0008 0.0003 0.0000
0.01 0.0186 0.6312 0.2809 0.9801 0.0003 0.0001 0.0000 0.2500 0.0005 0.0003 0.0000
0.10 0.0028 0.4816 0.4422 0.9970 0.0207 0.0048 0.0000 0.1882 0.0374 0.0120 0.0000

0.5 0.09 0.0031 0.4868 0.4427 0.9967 0.0190 0.0043 0.0000 0.1845 0.0343 0.0108 0.0000
0.08 0.0032 0.4933 0.4432 0.9966 0.0168 0.0034 0.0000 0.1683 0.0303 0.0085 0.0000
0.07 0.0027 0.4981 0.4445 0.9971 0.0156 0.0024 0.0000 0.1333 0.0282 0.0060 0.0000
0.06 0.0034 0.5039 0.4454 0.9964 0.0120 0.0021 0.0000 0.1489 0.0217 0.0053 0.0000
0.05 0.0029 0.5096 0.4465 0.9970 0.0100 0.0015 0.0000 0.1304 0.0181 0.0038 0.0000
0.04 0.0028 0.5155 0.4475 0.9971 0.0079 0.0008 0.0000 0.0920 0.0143 0.0020 0.0000
0.03 0.0025 0.5205 0.4493 0.9974 0.0059 0.0006 0.0000 0.0923 0.0107 0.0015 0.0000
0.02 0.0026 0.5276 0.4499 0.9973 0.0046 0.0005 0.0000 0.0980 0.0083 0.0013 0.0000
0.01 0.0030 0.5333 0.4517 0.9970 0.0017 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000
0.10 0.0551 0.3108 0.2594 0.9119 0.1066 0.0044 0.0007 0.0457 0.1542 0.0185 0.0148

range 0.09 0.0572 0.3166 0.2621 0.9101 0.1016 0.0038 0.0007 0.0424 0.1470 0.0160 0.0148
0.08 0.0579 0.3221 0.2663 0.9103 0.0943 0.0035 0.0005 0.0407 0.1364 0.0147 0.0105
0.07 0.0598 0.3288 0.2709 0.9094 0.0871 0.0031 0.0005 0.0397 0.1260 0.0130 0.0105
0.06 0.0616 0.3340 0.2759 0.9083 0.0801 0.0027 0.0004 0.0373 0.1159 0.0114 0.0084
0.05 0.0620 0.3421 0.2823 0.9096 0.0710 0.0018 0.0003 0.0287 0.1027 0.0076 0.0063
0.04 0.0655 0.3529 0.2894 0.9074 0.0616 0.0013 0.0002 0.0238 0.0891 0.0055 0.0042
0.03 0.0695 0.3628 0.2987 0.9049 0.0537 0.0010 0.0001 0.0201 0.0777 0.0042 0.0021
0.02 0.0725 0.3746 0.3137 0.9047 0.0436 0.0006 0.0000 0.0136 0.0631 0.0025 0.0000
0.01 0.0810 0.3898 0.3340 0.8994 0.0306 0.0002 0.0000 0.0065 0.0443 0.0008 0.0000

Table 25. Model (f), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.5195 0.4249 0.3353 0.5918 0.4751 0.3610 0.5548 0.4051 0.2740 0.7080 0.6162 0.5156

m∗
2/t 0.4760 0.3778 0.2837 0.3872 0.2733 0.1726 0.4002 0.2584 0.1481 0.2434 0.1763 0.1182

m∗
3/t 0.0045 0.0019 0.0006 0.0210 0.0082 0.0026 0.0450 0.0131 0.0041 0.0485 0.0221 0.0107

FDR 0.4805 0.4719 0.4588 0.4082 0.3721 0.3267 0.4452 0.4012 0.3571 0.2920 0.2435 0.1999

Table 26. Model (f), n=500
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CIT CMST
PW ER ER PW ER ER cPW cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.6732 0.0786 0.0560 0.1667 0.0963 0.0001 0.0000 0.0010 0.1217 0.0012 0.0000
0.125 0.09 0.6794 0.0786 0.0708 0.1803 0.0837 0.0000 0.0000 0.0000 0.1057 0.0000 0.0000

0.08 0.6864 0.0794 0.0872 0.1953 0.0728 0.0000 0.0000 0.0000 0.0920 0.0000 0.0000
0.07 0.6872 0.0833 0.1051 0.2151 0.0607 0.0000 0.0000 0.0000 0.0767 0.0000 0.0000
0.06 0.6848 0.0809 0.1276 0.2334 0.0481 0.0000 0.0000 0.0000 0.0608 0.0000 0.0000
0.05 0.6926 0.0755 0.1525 0.2477 0.0369 0.0000 0.0000 0.0000 0.0466 0.0000 0.0000
0.04 0.6872 0.0669 0.1852 0.2684 0.0265 0.0000 0.0000 0.0000 0.0334 0.0000 0.0000
0.03 0.6630 0.0576 0.2397 0.3096 0.0174 0.0000 0.0000 0.0000 0.0220 0.0000 0.0000
0.02 0.6218 0.0451 0.3097 0.3633 0.0099 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000
0.01 0.5276 0.0288 0.4374 0.4691 0.0038 0.0000 0.0000 0.0000 0.0048 0.0000 0.0000
0.10 0.8647 0.0057 0.0048 0.0120 0.3199 0.0000 0.0000 0.0000 0.3279 0.0000 0.0000

0.25 0.09 0.8758 0.0059 0.0053 0.0126 0.2998 0.0000 0.0000 0.0000 0.3073 0.0000 0.0000
0.08 0.8907 0.0069 0.0055 0.0137 0.2772 0.0000 0.0000 0.0000 0.2841 0.0000 0.0000
0.07 0.9010 0.0076 0.0071 0.0161 0.2563 0.0000 0.0000 0.0000 0.2627 0.0000 0.0000
0.06 0.9126 0.0088 0.0086 0.0188 0.2303 0.0000 0.0000 0.0000 0.2360 0.0000 0.0000
0.05 0.9208 0.0086 0.0122 0.0221 0.2051 0.0000 0.0000 0.0000 0.2102 0.0000 0.0000
0.04 0.9296 0.0090 0.0164 0.0266 0.1803 0.0000 0.0000 0.0000 0.1849 0.0000 0.0000
0.03 0.9372 0.0082 0.0242 0.0334 0.1476 0.0000 0.0000 0.0000 0.1513 0.0000 0.0000
0.02 0.9365 0.0078 0.0357 0.0444 0.1147 0.0000 0.0000 0.0000 0.1176 0.0000 0.0000
0.01 0.9262 0.0059 0.0607 0.0671 0.0730 0.0000 0.0000 0.0000 0.0748 0.0000 0.0000
0.10 0.9065 0.0000 0.0077 0.0084 0.5199 0.0000 0.0000 0.0000 0.5276 0.0000 0.0000

0.5 0.09 0.9150 0.0000 0.0085 0.0092 0.5024 0.0000 0.0000 0.0000 0.5099 0.0000 0.0000
0.08 0.9233 0.0000 0.0089 0.0096 0.4846 0.0000 0.0000 0.0000 0.4919 0.0000 0.0000
0.07 0.9304 0.0000 0.0104 0.0110 0.4655 0.0000 0.0000 0.0000 0.4724 0.0000 0.0000
0.06 0.9395 0.0000 0.0110 0.0116 0.4441 0.0000 0.0000 0.0000 0.4507 0.0000 0.0000
0.05 0.9474 0.0000 0.0126 0.0131 0.4189 0.0000 0.0000 0.0000 0.4251 0.0000 0.0000
0.04 0.9559 0.0000 0.0145 0.0149 0.3920 0.0000 0.0000 0.0000 0.3978 0.0000 0.0000
0.03 0.9610 0.0000 0.0174 0.0178 0.3597 0.0000 0.0000 0.0000 0.3650 0.0000 0.0000
0.02 0.9643 0.0000 0.0216 0.0219 0.3193 0.0000 0.0000 0.0000 0.3241 0.0000 0.0000
0.01 0.9612 0.0000 0.0320 0.0322 0.2558 0.0000 0.0000 0.0000 0.2596 0.0000 0.0000
0.10 0.8530 0.0093 0.0283 0.0421 0.2484 0.0001 0.0000 0.0004 0.3273 0.0023 0.0000

range 0.09 0.8636 0.0090 0.0312 0.0445 0.2343 0.0001 0.0000 0.0004 0.3087 0.0023 0.0000
0.08 0.8736 0.0090 0.0349 0.0478 0.2201 0.0001 0.0000 0.0005 0.2900 0.0023 0.0000
0.07 0.8803 0.0090 0.0415 0.0542 0.2040 0.0000 0.0000 0.0000 0.2688 0.0000 0.0000
0.06 0.8898 0.0085 0.0452 0.0569 0.1858 0.0000 0.0000 0.0000 0.2448 0.0000 0.0000
0.05 0.8964 0.0069 0.0526 0.0622 0.1699 0.0000 0.0000 0.0000 0.2238 0.0000 0.0000
0.04 0.8974 0.0063 0.0595 0.0683 0.1538 0.0000 0.0000 0.0000 0.2027 0.0000 0.0000
0.03 0.8948 0.0061 0.0719 0.0802 0.1347 0.0000 0.0000 0.0000 0.1775 0.0000 0.0000
0.02 0.8906 0.0040 0.0896 0.0951 0.1134 0.0000 0.0000 0.0000 0.1495 0.0000 0.0000
0.01 0.8625 0.0037 0.1279 0.1324 0.0861 0.0000 0.0000 0.0000 0.1134 0.0000 0.0000

Table 27. Model (g), n=135

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.8961 0.8214 0.7509 0.9764 0.9534 0.9095 0.9853 0.9666 0.9179 0.9336 0.8841 0.8163

m∗
2/t 0.0980 0.0624 0.0406 0.0153 0.0070 0.0029 0.0049 0.0023 0.0009 0.0547 0.0341 0.0240

m∗
3/t 0.0059 0.0027 0.0005 0.0083 0.0033 0.0016 0.0097 0.0036 0.0010 0.0117 0.0052 0.0018

FDR 0.1039 0.0735 0.0519 0.0236 0.0107 0.0049 0.0147 0.0061 0.0021 0.0664 0.0426 0.0307

Table 28. Model (g), n=135
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CIT CMST
PW ER ER PW ER ER cPW cER cER

R2 level m∗
1/t m∗

2/t m∗
3/t FDR m∗

1/t m∗
2/t m∗

3/t FDR m∗
1/m1 m∗

2/m2 m∗
3/m3

0.10 0.8834 0.0000 0.0006 0.0007 0.5060 0.0000 0.0000 0.0000 0.5099 0.0000 0.0000
0.125 0.09 0.8953 0.0000 0.0006 0.0007 0.4873 0.0000 0.0000 0.0000 0.4910 0.0000 0.0000

0.08 0.9059 0.0000 0.0006 0.0007 0.4685 0.0000 0.0000 0.0000 0.4721 0.0000 0.0000
0.07 0.9176 0.0002 0.0007 0.0011 0.4446 0.0000 0.0000 0.0000 0.4480 0.0000 0.0000
0.06 0.9286 0.0002 0.0007 0.0010 0.4208 0.0000 0.0000 0.0000 0.4240 0.0000 0.0000
0.05 0.9399 0.0000 0.0012 0.0013 0.3967 0.0000 0.0000 0.0000 0.3997 0.0000 0.0000
0.04 0.9515 0.0000 0.0012 0.0013 0.3682 0.0000 0.0000 0.0000 0.3710 0.0000 0.0000
0.03 0.9635 0.0002 0.0012 0.0015 0.3358 0.0000 0.0000 0.0000 0.3384 0.0000 0.0000
0.02 0.9756 0.0004 0.0017 0.0021 0.2937 0.0000 0.0000 0.0000 0.2959 0.0000 0.0000
0.01 0.9872 0.0001 0.0034 0.0035 0.2409 0.0000 0.0000 0.0000 0.2427 0.0000 0.0000
0.10 0.8916 0.0000 0.0002 0.0002 0.6370 0.0000 0.0000 0.0000 0.6407 0.0000 0.0000

0.25 0.09 0.9024 0.0000 0.0002 0.0002 0.6205 0.0000 0.0000 0.0000 0.6241 0.0000 0.0000
0.08 0.9126 0.0000 0.0002 0.0002 0.6029 0.0000 0.0000 0.0000 0.6064 0.0000 0.0000
0.07 0.9254 0.0000 0.0002 0.0002 0.5821 0.0000 0.0000 0.0000 0.5854 0.0000 0.0000
0.06 0.9354 0.0000 0.0002 0.0002 0.5638 0.0000 0.0000 0.0000 0.5670 0.0000 0.0000
0.05 0.9442 0.0000 0.0002 0.0002 0.5371 0.0000 0.0000 0.0000 0.5402 0.0000 0.0000
0.04 0.9535 0.0000 0.0002 0.0002 0.5102 0.0000 0.0000 0.0000 0.5131 0.0000 0.0000
0.03 0.9631 0.0000 0.0002 0.0002 0.4779 0.0000 0.0000 0.0000 0.4806 0.0000 0.0000
0.02 0.9746 0.0000 0.0002 0.0002 0.4359 0.0000 0.0000 0.0000 0.4384 0.0000 0.0000
0.01 0.9873 0.0000 0.0003 0.0003 0.3775 0.0000 0.0000 0.0000 0.3797 0.0000 0.0000
0.10 0.8979 0.0000 0.0003 0.0003 0.7452 0.0000 0.0000 0.0000 0.7474 0.0000 0.0000

0.5 0.09 0.9083 0.0000 0.0003 0.0003 0.7327 0.0000 0.0000 0.0000 0.7349 0.0000 0.0000
0.08 0.9177 0.0000 0.0003 0.0003 0.7173 0.0000 0.0000 0.0000 0.7195 0.0000 0.0000
0.07 0.9282 0.0000 0.0003 0.0003 0.7006 0.0000 0.0000 0.0000 0.7027 0.0000 0.0000
0.06 0.9381 0.0000 0.0003 0.0003 0.6807 0.0000 0.0000 0.0000 0.6827 0.0000 0.0000
0.05 0.9471 0.0000 0.0003 0.0003 0.6581 0.0000 0.0000 0.0000 0.6601 0.0000 0.0000
0.04 0.9561 0.0000 0.0003 0.0003 0.6322 0.0000 0.0000 0.0000 0.6341 0.0000 0.0000
0.03 0.9676 0.0000 0.0003 0.0003 0.5975 0.0000 0.0000 0.0000 0.5993 0.0000 0.0000
0.02 0.9787 0.0000 0.0003 0.0003 0.5528 0.0000 0.0000 0.0000 0.5545 0.0000 0.0000
0.01 0.9897 0.0000 0.0003 0.0003 0.4858 0.0000 0.0000 0.0000 0.4873 0.0000 0.0000
0.10 0.8801 0.0022 0.0070 0.0103 0.4930 0.0000 0.0000 0.0000 0.5327 0.0000 0.0000

range 0.09 0.8907 0.0023 0.0075 0.0109 0.4776 0.0000 0.0000 0.0000 0.5160 0.0000 0.0000
0.08 0.9008 0.0021 0.0082 0.0113 0.4637 0.0000 0.0000 0.0000 0.5010 0.0000 0.0000
0.07 0.9132 0.0018 0.0100 0.0127 0.4481 0.0000 0.0000 0.0000 0.4842 0.0000 0.0000
0.06 0.9221 0.0016 0.0108 0.0133 0.4297 0.0000 0.0000 0.0000 0.4643 0.0000 0.0000
0.05 0.9303 0.0016 0.0133 0.0158 0.4101 0.0000 0.0000 0.0000 0.4431 0.0000 0.0000
0.04 0.9368 0.0018 0.0164 0.0191 0.3886 0.0000 0.0000 0.0000 0.4199 0.0000 0.0000
0.03 0.9442 0.0018 0.0189 0.0214 0.3612 0.0000 0.0000 0.0000 0.3903 0.0000 0.0000
0.02 0.9511 0.0016 0.0227 0.0250 0.3295 0.0000 0.0000 0.0000 0.3560 0.0000 0.0000
0.01 0.9568 0.0016 0.0309 0.0329 0.2786 0.0000 0.0000 0.0000 0.3010 0.0000 0.0000

Table 29. Model (g), n=500

BF BF BF BF
R2 = 0.125 R2 = 0.25 R2 = 0.5 R2 = range

1 3 10 1 3 10 1 3 10 1 3 10

m∗
1/t 0.9924 0.9828 0.9574 0.9943 0.9865 0.9667 0.9970 0.9923 0.9773 0.9765 0.9525 0.9156

m∗
2/t 0.0031 0.0014 0.0003 0.0012 0.0003 0.0001 0.0003 0.0001 0.0000 0.0176 0.0090 0.0065

m∗
3/t 0.0045 0.0016 0.0007 0.0045 0.0020 0.0006 0.0027 0.0011 0.0004 0.0059 0.0015 0.0003

FDR 0.0076 0.0030 0.0010 0.0057 0.0023 0.0007 0.0030 0.0012 0.0004 0.0235 0.0108 0.0074

Table 30. Model (g), n=500



38

As expected, when data is generated from the null model (a), that do not correspond to any of the
fitted models, the CMST made very few significant calls (see Tables 3 and 5). Note that in this case any
call correspond to a mistake and the false discovery proportion is 1, even though the error rates were
very low.

Models (b) and specially (d) and (g) were the less challenging for all methods, showing high power,
low error rates and low false discovery proportions (see Tables 7-10, 15-18 and 27-30). Note that models
(b) and (d) correspond to simulation settings under correctly specified models. It is interesting to notice
that the CMST is less powered to detect a relationship of type M3 than M1. For example, consider the
results for models (b) and (d), that correspond to our M3 and M1 fitted models (see Tables 7, 9, 15
and 17). However, since in practice the real interest is to discover causal relationships, failing to detect
uninteresting M3 relationships is not a concern.

Models (c) and specially (f) were the most challenging for all methods showing the lowest power and
high error rates. Nonetheless, the CMST still managed to keep the error rates controlled at the nominal
levels, but showed very low power in these situations. For example, in Table 11 we see that the power
to detect a M3 relation when R2 = 0.125 was 0, whereas the error rates, although very low, were higher
than 0. So in this case the false discovery proportion was 1. In other words, the very few significant calls
were M1 or M2, instead of M3. The CMST also showed high false discovery proportions for model (f),
but in this case too, the error rates where low.

Model (g) showed performance comparable to model (d) (see Tables 15, 17, 27 and 29), suggesting
that missing to include a common latent variable (models c, e and f) has a stronger effect than missing
covariates that are specific to each phenotype.

Overall, these results show than when the true model corresponds (or is close) to one of our fitted
models, such as in model (d), the BIC and CIT approaches outperform the CMST, since they are better
powered and show low error rates. However, when the true model is more complex and our fitted models
are misspecified, then CMST detects false positives at much lower rates than the BIC and CIT.

So far we have considered the performances of each simulated model, separately. Following Chen
et al. (2007) we now investigate the performances of the BIC, CIT and CMST approaches using the
results from all 7 models together. In other words, we now view this simulation study as a genetics of
gene expression experiment with pairwise causal relationships simulated from a mixture of the 7 different
models on Figure 8 with a uniform prior probability on the models. Note that, now, the FDR corresponds
to the number of incorrect calls (across all 7 models) divided by the number of calls (across all 7 models).
Tables 31 and 32 present the results for the CIT, CMST and BIC approaches, respectively.

n=135 n=500
CIT CMST CIT CMST

level PW ER FDR PW ER FDR PW ER FDR PW ER FDR

0.1 0.4500 0.2595 0.3821 0.1553 0.0080 0.0568 0.3758 0.2433 0.3927 0.3110 0.0029 0.0106
0.09 0.4577 0.2690 0.3846 0.1465 0.0071 0.0535 0.3809 0.2474 0.3934 0.3008 0.0026 0.0100
0.08 0.4654 0.2793 0.3872 0.1373 0.0062 0.0503 0.3859 0.2519 0.3946 0.2899 0.0024 0.0094
0.07 0.4734 0.2904 0.3908 0.1276 0.0053 0.0461 0.3914 0.2566 0.3954 0.2784 0.0021 0.0085
0.06 0.4809 0.3067 0.3959 0.1173 0.0044 0.0423 0.3970 0.2620 0.3968 0.2664 0.0018 0.0079
0.05 0.4872 0.3234 0.4022 0.1062 0.0037 0.0388 0.4028 0.2682 0.3988 0.2526 0.0015 0.0069
0.04 0.4924 0.3442 0.4106 0.0947 0.0028 0.0337 0.4094 0.2756 0.4012 0.2376 0.0013 0.0064
0.03 0.4957 0.3708 0.4219 0.0821 0.0021 0.0285 0.4167 0.2850 0.4048 0.2198 0.0011 0.0056
0.02 0.4940 0.4064 0.4397 0.0676 0.0014 0.0237 0.4253 0.2979 0.4101 0.1975 0.0008 0.0050
0.01 0.4918 0.4523 0.4642 0.0487 0.0008 0.0190 0.4380 0.3182 0.4184 0.1663 0.0005 0.0038

Table 31. Simulation results for the CIT and CMST approaches using the results from all 7 models
together. PW represents the overall power, given the number of correct calls divided by the total
number of tests. ER represents the overall error rates given by the number of mistakes divided by total
number of tests.

When considering all seven models together we see that the CMST has much lower FDRs than CIT
and BIC. Note that this result does not contradict the high FDRs observed for the CMST under models
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n=135 n=500
BF PW ER FDR PW ER FDR

1 0.6830 0.4146 0.4026 0.8215 0.2959 0.2958
3 0.6143 0.2109 0.2762 0.7493 0.1075 0.1431
10 0.5372 0.1502 0.2358 0.6600 0.0621 0.0987

Table 32. Simulation results for the BIC approach using the results from all 7 models together. PW
represents the overall power, given the number of correct calls divided by the total number of tests. ER
represents the overall error rates given by the number of mistakes divided by total number of tests.

(c), (e) and (f), since the number of calls was rather low for these models (recall that these models
showed low power and low error rates). Models (d) and (g), on the other hand, showed very low FDRs
and reasonable power, so that under these models most of the calls were correct.

Simulation study 2: a realistic network

In this section we compare the performance of the BIC, CIT and CMST approaches with data simulated
from a network composed of 30 phenotype nodes, that generates a QTL hotspot pattern. We assessed
and compared the performances of the CMST, BIC and CIT approaches under two different simulation
settings: 1) strong phenotype and genetic effects; and 2) strong phenotype effects and weak genetic
effects. In each setting, we generated 100 data sets according to the network on Figure 9. Each data set
corresponds to a F2 population of 500 individuals. We generated measurements on 30 phenotypes and
1919 markers unequally distributed across 19 autosomes of length 100cM (101 markers per chromosome).
We adopted a QTL mapping threshold of 4 determined by a permutation test (Churchill and Doerge
1994). Each phenotype is directly affected by a single QTL. The phenotype-to-phenotype effects varied
from 1 to 1.2. Additive genetic effects varied from 1 to 1.2 in simulation setting 1, and from 0.4 to 0.6 in
simulation setting 2. The residual variance was set to 1.

We adopted strong phenotype-to-phenotype effects in order to make most phenotypes map to the
QTL directly affecting Y1, generating a QTL hotspot pattern. In practice, we are often interested in
determining the causal drivers generating a QTL hotspot. Furthermore, in order to be able to compare
our approach to the CIT we need to enforce that most phenotypes map to common QTLs, since the CIT
approach requires that both phenotypes map to the same QTL, and cannot be applied otherwise.

Figure 10 presents the simulation results. For each of the three approaches under study, we kept track
of: (i) the proportion of calls (for the BIC approach we make a call when the difference between the BIC
scores of the best and second best models corresponds to an approximate Bayes factor (Kass and Raftery
1995) greater than 10. For the CIT and CMST approaches we make a call when the tests are significant
at an 0.05 level); (ii) the error rate, defined as the number of mistakes divided by the number of tests;
and (iii) the false discovery proportion, defined as the number of mistakes divided by the number of calls.

Figure 10a shows that the BIC and CIT (to a lesser degree) make calls at much higher rates than the
CMST. Unlike the BIC and CIT, the CMST concentrate its calls in situations where one of our fitted
models is correctly specified (or close to correctly specified), such as the tests involving Y1 against all
other phenotypes (far left regions of Figure 10a). Figure 10b shows that the CMST have much smaller
error rates than the BIC and CIT. These results indicate that the CMST achieve low error rates by
forfeiting to make calls when our fitted models are misspecified like at the bottom of the network. Under
model misspecification, the BIC and CIT approaches tended to make errors at much higher rates than
the CMST.

Inspection of Figure 10c shows high false discovery proportions for all three approaches, specially
for the CIT. We point out, however, that the CMST error rate (Figure 10b and e) was always low, so
that the high false discovery proportion simply means that many of the few calls made by the CMST
are mistakes. The BIC and CIT approaches, on the other hand, showed high error rates and high false
discovery proportions. Inspection of Figures 10d-f reveals similar patterns to the Figures 10a-c.
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Figure 9. Network composed of 30 phenotype and QTL nodes (only phenotype nodes shown). Of the
435 pairs, 196 are of type M1 and 239 are of type M3. The M1 type represents direct relationships such
as Y1 → Y2, as well as, indirect relationships such as Y1 → Y4 → Y9 → Y16, where there is an indirect
path connecting Y1 to Y16. Examples of M3 relationships are the pairs (Y2, Y3) whose correlation arises
due to the common cause Y1 (Y2 ← Y1 → Y3), and the pair (Y24, Y30) that have the common ancestors
Y1, Y2 and Y5 adding to their correlation. Because the causal flow in the network always go from the
nodes with smaller numbers to the ones with big numbers there are no M2 relations.

Observe that all approaches perform well when one of the fitted models is correctly specified. The BIC
and CIT out-perform the CMST and PCT in these situations since they made calls at higher rates and
showed equally low error rates. However, under the model misspecification situations, the BIC and CIT
showed high error rates, whereas the CMST did not make calls most of the time in these less favorable
situations, and showed low error rates.

So far we have considered the results for each pair of nodes separately. Table 33 presents results based
on the whole network.

BIC CIT CMST
Simulation Calls ER FDR Calls ER FDR Calls ER FDR

(1) 0.817 0.392 0.480 0.488 0.346 0.702 0.200 0.039 0.189
(2) 0.710 0.494 0.694 0.669 0.507 0.754 0.057 0.023 0.352

Table 33. Whole network results. The proportion of calls (Calls) is given by the number of significant
(interesting) calls (edges in the network) divided by 435. The error rate (ER) represents the number of
incorrectly detected edges divided by 435. The FDR is given by the number of incorrect edges in the
network divided by the number of detected edges. Results were computed using α = 0.05 and BF=10,
and represent averages across 100 simulations.

In accordance with the previous results, CMST made calls and mistakes at lower rates then CIT and
BIC. Observe, however, that error and false discovery rates were considerably higher in this simulation
than in the one presented in the previous section (Tables 31, 32 and 33). The present network represents
a much more challenging simulation setting in part because the majority of the pairs of phenotypes
represent models of type (f) and (c), with fewer pairs representing a type (d) model (e.g., the pair
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Figure 10. Simulation results. Top and bottom panels summarize the results from simulation settings
1 and 2, respectively. The x-axis represents all 435 phenotype pairs ordered from left to right in the
following way: (1, 2), (1, 3), . . ., (1, 30), (2, 3), (2, 4), . . ., (2, 30), . . ., (29, 30). Panels (a) and (d) present
the average proportion of calls; panels (b) and (e) present the average error rates; and panels (c) and (f)
present the average false discovery proportions. The results were based on 100 simulations. The grey
scale goes from 0 to 1 corresponding, respectively, to light grey and black.

(Y1, Y30) is a type (d) model, whereas phenotype pairs (Y12, Y15) and (Y16, Y21), represent type (f) and
(c) models, repectively). Furthermore, because noise propagates from top to the bottom of a network,
inference for pairs of phenotypes located at the bottom of the network will likely be harder. Finally, QTL
mapping patterns will likely be more complex in complex networks.
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Simulation study 3: toy networks subjected to measurement error

Measurement error has been pointed out as an important drawback for causal inference in systems
genetics (Schadt et al. 2005, Rockman 2008, Li et al. 2010). If the causal trait is poorly measured
in comparison with the reactive trait, model selection approaches may incorrectly support the reversed
causal direction. The intuition is that the measurement of the reactive trait may be a better measurement
of the causal trait than its own measurement in this situation (Rockman 2008). In the Methods section we
provide a formal description of the effects of measurement error in terms of violations of the faithfulness
assumption (Spirtes et al. 2000). Using the toy network in Figure 11a, we show how the conditional
independence relations induced by the measurement error are unfaithful to the causal graph generating
the data, but are consistent with the graph with reversed causal relation between phenotypes. However,
in situations such as Figure 11b, where the two phenotypes are directly affected by distinct sets of QTLs,
the conditional independence relations induced by the measurement error are not consistent with either
the causal, reactive or independence models (see Methods for details). Therefore, the measurement error
problem should be reduced in these situations.

Here we illustrate the above points with a simulation study assessing and comparing the performance
of the CMST methods against the BIC and CIT approaches using data generated from the toy networks
of Figure 11. We set the measurement error of Y2 to zero, i.e, δ2

2 = 0. The measurement error levels
for Y1 were set to δ2

1 = {0, 1, 3} and σ2
1 = σ2

2 = 1. We adopted two distinct phenotype effects levels
(1 and 2), and for each level, we considered, as before, the 8 different simulation settings comprising
all combinations between R2 = {0.125, 0.25, 0.5, range} and n = {135, 500}. Here R2 represents the
amount of the variability of Y1 explained by the QTLs, without measurement error. For each one of
the 16 simulation settings, we generated 1,000 F2 crosses with 505 markers unequally spaced across 5
chromosomes of length 100cM, and adopted a QTL mapping threshold of 4.
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Figure 11. Measurement error model. The random variables Y ∗ and Y represent, respectively, the
true value of a trait and it’s measured value (subjected to error). The error terms ε∗k ∼ N(0, σ2

k) and
εk ∼ N(0, δ2

k), k = 1, 2, represent the residual and measurement errors, respectively. Y1 and Y2 represent
the causal and reactive traits, respectively. The true causal relationship on this example is M1.

Tables 34 and 35 present the frequency that the correct (M1) and reversed (M2) causal directions
were inferred out of 1,000 simulations. With no measurement error, all approaches perform well for data
generated under models (a) and (b) in Figure 11, specially at higher R2 and sample size. Overall, the
results are better for the model (b). In the presence of measurement error, all approaches perform better
under data simulated from model (b) than from model (a). Nonetheless, the CIT and specially the BIC
tend to make mistakes at higher levels than CMST. Under data generated from model (a) the CMST
approach was still affected by measurement error, although to a lesser degree than the BIC and CIT.
However, under the more favorable conditions of model (b) the CMST approach made very few calls, and
avoided M2 calls to a great extent.
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n=135 n=500
(a) (b) (a) (b)

R2 ME Call BIC CIT CMST BIC CIT CMST BIC CIT CMST BIC CIT CMST

0.125 0 M1 583 104 10 756 76 41 969 787 326 991 759 379
M2 97 12 0 89 7 0 25 0 0 3 0 0

1 M1 202 12 1 370 9 3 442 86 5 652 108 13
M2 200 12 1 197 4 1 414 83 7 121 55 0

3 M1 75 2 0 178 1 0 154 1 0 298 2 1
M2 211 2 0 247 0 0 731 86 31 442 61 1

0.25 0 M1 916 517 132 965 446 199 974 918 467 997 912 538
M2 66 9 0 17 7 0 24 0 0 1 0 0

1 M1 406 81 1 667 76 33 419 5 1 523 17 4
M2 382 105 2 160 56 0 392 5 0 43 1 1

3 M1 106 7 0 311 8 5 258 0 0 497 0 0
M2 613 39 7 426 21 5 580 137 11 136 59 0

0.5 0 M1 934 906 325 981 853 403 988 943 577 995 944 679
M2 50 0 0 4 0 0 7 0 0 1 0 0

1 M1 350 55 3 414 184 19 396 0 0 541 0 15
M2 364 67 0 127 7 0 402 0 0 19 0 0

3 M1 215 3 0 401 25 6 263 0 0 499 0 17
M2 549 294 24 212 98 0 482 5 0 19 0 0

range 0 M1 873 601 188 936 532 260 986 913 478 995 872 535
M2 66 5 0 29 0 0 13 0 0 0 0 0

1 M1 357 84 7 566 96 46 437 20 3 538 24 13
M2 363 116 5 154 46 1 384 37 0 51 18 0

3 M1 173 8 0 345 11 11 240 0 1 478 0 10
M2 501 124 20 323 62 6 566 102 21 127 59 0

Table 34. Frequency of correct (M1) and reversed (M2) causal directions out of 1,000 simulations
when the phenotype effect, β21, was set to 1. The CIT and CMST results were based on α = 0.05. The
BIC results were based on BF=1.

n=135 n=500
(a) (b) (a) (b)

R2 ME Call BIC CIT CMST BIC CIT CMST BIC CIT CMST BIC CIT CMST

0 M1 520 124 6 755 122 23 939 813 155 992 834 393
M2 156 19 0 147 19 1 59 14 0 7 8 0

0.125 1 M1 106 28 0 156 12 1 92 6 0 481 7 1
M2 453 69 4 419 58 5 884 574 154 474 542 25

3 M1 64 1 0 102 1 0 30 0 0 214 0 0
M2 435 5 2 410 7 1 945 358 121 753 321 41

0 M1 868 565 74 950 609 258 971 928 382 1000 947 620
M2 119 21 2 48 16 0 26 6 0 0 1 0

0.25 1 M1 128 28 0 338 49 1 120 0 0 641 0 0
M2 798 431 60 602 349 15 834 519 135 221 345 0

3 M1 62 1 0 183 1 0 39 0 0 405 0 0
M2 856 119 19 748 118 15 934 702 280 469 590 11

0 M1 934 872 220 986 929 602 986 943 566 998 944 773
M2 62 8 1 9 3 0 13 0 0 1 0 0

0.5 1 M1 135 3 0 679 15 22 197 0 0 670 0 22
M2 794 674 122 215 360 3 680 219 48 70 5 0

3 M1 78 0 0 494 0 15 49 0 0 471 0 3
M2 885 661 179 412 525 24 895 637 238 271 197 0

0 M1 861 673 159 941 653 309 976 931 493 997 922 620
M2 79 7 0 34 9 0 23 1 0 2 0 0

range 1 M1 227 50 0 526 75 10 297 3 0 608 6 6
M2 600 330 36 255 165 3 560 150 31 97 76 1

3 M1 97 1 0 300 4 7 118 0 0 450 0 2
M2 700 232 61 471 166 8 787 351 88 297 199 5

Table 35. Frequency of correct (M1) and reversed (M2) causal directions out of 1,000 simulations
when the phenotype effect, β21, was set to 2. The CIT and CMST results were based on α = 0.05. The
BIC results were based on BF=1.
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Linkage analysis

We performed QTL analysis using Haley-Knott regression (Haley and Knott, 1992) with the R/qtl soft-
ware (Broman, et al. 2003). For the simulation studies we adopted Haldane’s mapping function, geno-
typing error rate of 0.0001, and set the maximum distance between positions at which the genotype
probabilities were calculated to 2cM. For the real data examples we adopted Kosambi’s mapping func-
tion, genotyping error rate of 0.002, and set the maximum distance between positions to 1cM.

Model fitting

The test statistics of the CMST correspond to penalized log-likelihood ratios scaled by their standard
errors. In this section we describe the maximum likelihood model fitting approach we used to derive
the maximized log-likelihood scores. Given the sets of QTLs identified in the unconditional and condi-
tional analysis, let X1 and X2|1 represent the respective genetic effects and covariates predictor matrices,
and β1 and β2|1 the respective coefficient vectors determining the additive, dominance and epistatic
effects of QTLs as well as the coefficients associated with covariates. Maximum likelihood (or ordi-
nary least squares) estimation gives β̂1 = (XT

1 X1)−1XT
1 y1, σ̂2

1 = RSS1/n, β̂2|1 = (XT
2|1X2|1)−1XT

2|1y2,
σ̂2

2|1 = RSS2|1/n and the maximized likelihood of M1 becomes (2πe)−nσ̂−1
1 σ̂−1

2|1. Similarly the maximized
likelihood for M2 is given by (2πe)−nσ̂−1

2 σ̂−1
1|2.

The SUR model M3 does not have a closed form maximum likelihood estimator and the ML estimates
need to be computed numerically by iteration of the likelihood equations (Srivastrava and Giles 1987)

β̂ = (X−1(Σ̂
−1

ε ⊗ In)X)−1X−1(Σ̂
−1

ε ⊗ In)y , (23)

Σ̂ε =
1
n

(
(y1 −X1β1)′(y1 −X1β1) (y1 −X1β1)′(y2 −X2β2)
(y1 −X1β1)′(y2 −X2β2) (y2 −X2β2)′(y2 −X2β2)

)
, (24)

where ⊗ represents the standard Kronecker product of two matrices. We point out that we do not use the
SUR model to perform QTL mapping and simply use the QTLs detected in the unconditional analysis
in the fit of the SUR model. Statistical inference is then based on a scaled version of the penalized
log-likelihood ratio statistic described before.

The genetic effects predictor variables in the design matrices (e.g., X1 and X2|1) were constructed
using the dummy variable coding of Haley-Knott regression. For a F2 cross, the additive and domi-
nance predictor variables associated with a QTL are given by the difference of the homozygote genotype
probabilities, and by the heterozygote genotype probabilities, respectively. For a backcross, the additive
effect predictor variable is computed as the difference between the homozygote and heterozygote genotype
probabilities.
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Supplementary figures
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Figure 12. eQTL hotspot located at 29.06cM on chromosome 2. The y-axis represents the number of
traits whose peak LOD is located within a 2cM wide window centered at the genomic location. For
example, 78 transcripts have their peak within 28.06 and 30.06cM. Top and bottom panels show the
results in cM and Mb, respectively.
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Figure 13. Observed distribution of the test statistic Z12 from model (f), in Figure 8, for R2 = 0.125
and n=135. This distribution is fairly symmetric around 0 (maybe a little skewed to the left), so that
the right and left tails have about the same probability, and for any significance level we choose, about
half of our discoveries will be correct (M1 calls in the right tail) whereas half will be mistakes (M2 calls
in the left tail). Hence the proportion of false discoveries will be about 0.5 (or a little above it), for any
significance level, in this example.
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Figure 14. Mapping patterns associated with the graphical models composed of a pair of correlated
phenotypes and a single QTL, to which at least one of the phenotypes maps. The mapping patterns are
represented by indicator functions, (11Y1 6⊥⊥Q , 11Y2 6⊥⊥Q , 11Y1 6⊥⊥Q|Y2 , 11Y2 6⊥⊥Q|Y1), that describe the
conditional independence relations between the phenotypes and QTL. For example, in model (1) we
have that Y1 and Y2 unconditionally map to Q, hence 11Y1 6⊥⊥Q = 1 and 11Y1 6⊥⊥Q = 1; Y1 still maps to Q
even when we condition the mapping analysis on Y2, and thus, 11Y1 6⊥⊥Q|Y2 = 1; and Y2 does not map to Q
conditional on Y1, i.e. 11Y2 6⊥⊥Q|Y1 = 0. Models (1) and (2) agree with a M1 causal relationship.
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Figure 15. Causal architectures for the BIC approach based on increasing Bayes factors (BF)
thresholds. Panels (a), (b) and (c) present the results using approximate BF thresholds of 100, 1000 and
10000. The red, blue and black bars represent, respectively, the numbers of M1, M2, M3 calls, where a
call is made when the BF comparing the best and second best models is high than a determined
threshold. The no calls are not shown. Although, the number of calls decrease as we increase the BF
threshold (note the different y-axis scales), we still see many M1 and M2 calls along the entire
chromosome. Because the BF is a relative measure of how well two different models fit the data, we can
still obtain very high BF when both models have bad fits but one of them is much worse than the other.



48

Convergence diagnostics for the QTLnet

We assess the convergence of the Markov chain with Geweke (1992) and Raftery and Lewis (1992, 1995)
diagnostic measures, and by trace and autocorrelation plots. Inspection of the trace plots suggest good
mixing of the Markov chain and the autocorrelation plot corroborates this finding (Figure 16).

Geweke’s convergence diagnostic is based on a test for equality of the means of the first and last part
of a Markov chain (we used the first 10% and the last 50% parts of the Markov chain after dropping
the burnin). When the MCMC samples are drawn from the stationary distribution of the chain, the two
means are equal, and Geweke’s statistic is asymptotically N(0, 1). Our test statistic (a standard Z-score)
was 0.4845, suggesting that convergence was achieved.

The Raftery and Lewis diagnostic is a run length control diagnostic based on the accuracy of estimation
of the quantile q. It estimates: (1) the size of burnin (6 for our chain); (2) the required MCMC sample
size (the estimate was 6,349 and our chain had size 9,000); and (3) the dependency factor that measures
the extent to which autocorrelation inflates the required sample size (the estimated dependency factor
was 1.69. Values above 5 suggest problems due to high autocorrelation). These results again suggest that
convergence was achieved.
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Figure 16. Trace and autocorrelation plots for the Markov chain. The y-axis on the top and left
bottom panels shows the BIC for each sampled network. The top left plot displays the Markov chain for
the 9,000 sampled structures. The top right and bottom left plots show windows of size 1,000 and 200,
respectively. The bottom right plot shows the autocorrelation plot.
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QTL selection for the CIT approach

Single QTL approaches (e.g., Millstein et al. 2009, Schadt et al. 2005), require that both phenotypes
map to the same QTL. Often times the phenotypes map to nearby but not precisely the same QTL, and
the investigator needs to decide which QTL to use as a causal anchor for the causality test. When testing
expression traits against clinical traits, Millstein et al. and Schadt et al. suggest using the clinical trait
QTL as the anchor.

We adopt a different approach. When the phenotypes map to distinct regions that are less than
5cM apart we determine the QTL position using both phenotypes, jointly, as follows. For each pair of
phenotypes (Y1,Y2) we perform unconditional mapping analysis for Y1 and Y2 and conditional mapping
analysis for Y2 given Y1. Let LOD1 represent a LOD score for the mapping analysis of Y1, and LOD2|1
for the mapping analysis of Y2 given Y1. Since

log10

{
f(y1, y2 | q)
f(y1, y2)

}
= log10

{
f(y1 | q)
f(y1)

}
+ log10

{
f(y2 | y1, q)
f(y2 | y1)

}
, (25)

we compute the joint LOD score of (Y1,Y2) as LOD1,2 = LOD1 + LOD2|1 (or equivalently as LOD1,2 =
LOD2 + LOD1|2). We determine the peak QTL position, λ, using the LOD1,2 scores profile and assign
the QTL to Y1 and Y2 if LOD1 and LOD2 are greater than the mapping threshold at the λ position.

Figure 17 illustrates our approach. We simulated data from a model Q → Y1 → Y2, with a QTL,
Q, at 50cM. The blue and red curves show the (unconditional) LOD profiles of phenotypes Y1 and Y2,
respectively. The black curve depicts the joint LOD curve, and the peak QTL position λ is given by the
black vertical line. Instead of having to perform an arbitrary choice between the QTLs given by the red
and blue vertical lines we use the QTL given by the black line.
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Figure 17. The black, blue and red curves represent the joint and unconditional LOD curve for
phenotypes Y1 and Y2. The vertical lines represent the respective peak locations. We adopt the QTL
represented by the black vertical line. The dashed line shows the QTL mapping threshold.

When both phenotypes map to more than one QTL, we choose the strongest QTL as the causal anchor
for the CIT.


