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Abstract

Current efforts in systems genetics have focused on the development of statistical

approaches that aim to disentangle causal relationships among molecular phenotypes in

segregating populations. Model selection criterions, such as the AIC and BIC, have been

widely used for this purpose, in spite of being unable to quantify the uncertainty associated

with the model selection call. In this paper we propose three novel hypothesis tests to

perform model selection among models representing distinct causal relationships. We

focus on models composed of pairs of phenotypes and use their common QTL to determine

which phenotype has a causal effect on the other, or whether the phenotypes are not

causally related, and are only statistically associated. Our hypothesis tests are fully

analytical and avoid the use of computationally expensive permutation or re-sampling

strategies. They adapt and extend Vuong’s model selection test to the comparison of

four possibly misspecified models, handling the full range of possible causal relationships

among a pair of phenotypes. We evaluate the performance of our tests against the AIC,

BIC and a recently published causality inference test in simulation studies. Furthermore,

we compare the precision of the causal predictions made by the methods using biologically

validated causal relationships extracted from a database of 247 knockout experiments in

yeast. Overall, our model selection tests tend to be conservative but also more precise

than alternative approaches. In practice, this is a useful feature since most biologists can

only investigate a few genes from a rank-ordered list of candidates, and shorter and more

accurate lists are often desired.

Introduction

A key objective of biomedical research is to unravel the biochemical mechanisms under-

lying complex disease traits. Integration of genetic information with genomic, proteomic
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and metabolomic data has been used to infer causal relationships among phenotypes

(Schadt et al. 2005; Li et al. 2006; Kulp and Jagalur 2006; Chen et al. 2006; Zhu et

al. 2004, 2007, 2008; Aten et al. 2008; Liu et al. 2008; Chaibub Neto et al. 2008, 2009;

Winrow et al. 2009; Millstein et al. 2009). Current approaches for causal inference in

systems genetics can be classified into whole network scoring methods (Li et al. 2006;

Zhu et al. 2004, 2007, 2008; Liu et al. 2008; Chaibub Neto et al. 2008, 2010; Winrow

et al. 2009; Hageman et al. 2010) or pairwise methods, which focus on the inference of

causal relationships among pairs of phenotypes (Schadt et al. 2005; Li et al. 2006; Kulp

and Jagalur 2006; Chen et al. 2006; Aten et al. 2008; Millstein et al. 2009; Li et al. 2010;

Duarte and Zeng 2011). In this paper we develop a pairwise approach for causal inference

among pairs of phenotypes.

Given a pair of phenotypes, Y1 and Y2, that co-map to a same quantitative trait locus,

Q, our objective is to learn which of the four distinct models, M1, M2, M3 and M4,

depicted in Figure 1, is the best representation for the true relation between Y1 and Y2.

Models M1, M2, M3 and M4 represent, respectively, the causal, reactive, independence

and full models. Note that the models in Figure 1 can represent collapsed versions of

more complex networks. A directed edge from the QTL to a phenotype or from one

phenotype to the other simply means that there exists at least one path in the network

where the node in the tail of the arrow is upstream to the node in the head. Hence, the

term “causal” should be interpreted as either direct or indirect causal relations. Figure

S1 in the Supplement shows a few examples of networks and their collapsed versions.

In this paper, we propose novel causal model selection hypothesis tests, and compare

their performance to the AIC and BIC model selection criteria and to a causality inference

test (CIT) proposed by Millstein et al (2009). Our causal model selection tests (CMSTs)

adapt and extend Vuong’s (1989) and Clarke’s (2007) tests to the comparison of four
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models.

Vuong’s model selection test is a formal parametric hypothesis test devised to quantify

the uncertainty associated with a model selection criterium, comparing two models based

on their (penalized) likelihood scores. It uses the (penalized) log-likelihood ratio scaled

by its standard error as a test statistic, and test the null hypothesis that both models

are equally close to the true data generating process according to the Kullback-Leibler

distance (Kullback 1958). While the (penalized) log-likelihood scores can only determine

whether, for example, model A fits the data better than model B, Vuong’s test goes one

step further and attaches a p-value to the scaled contrast of (penalized) log-likelihood

scores. In this way it can interrogate whether the better fit of model A compared to

model B is statistically significant or not.

One drawback of Vuong’s test is that it tends to be conservative and low powered

(Clarke 2007). In order to circumvent this problem Clarke (2007) proposed a non-

parametric version of Vuong’s test that achieves an increase in power at the expense

of higher miss-calling error rates. While Voung’s null hypothesis tests whether the aver-

age (penalized) log-likelihood ratio of two models is zero, Clarke’s null hypothesis tests

whether the median (penalized) log-likelihood ratio is zero.

We propose 3 distinct versions of causal model selection tests: (1) the paramet-

ric CMST test, that corresponds to an intersection-union test of six separate Vuong’s

tests; (2) the non-parametric CMST test, constructed as an intersection-union tests of six

Clarke’s tests; and (3) the joint-parametric CMST test, that mimics an intersection-union

test, and is derived from the joint distribution of Vuong’s test statistics. An interesting

property of the CMST tests, inherited from Vuong’s test, is their ability to perform model

selection among misspecified models. That is, the true data generating process need not

be one of the models under consideration.
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As the simulations and real data analysis presented in the next sections show, the

CMST tests tend to be more precise, but also more conservative than alternative ap-

proaches. Rather than a weakness, we see this property as a desired feature of the CMST

tests. Most biologists are interested in identifying a rank-ordered list of candidates for

further study with a low false positive rate. In many situations, only a few candidates

can be actively investigated in detail. A long list of putative causal traits is not useful if

most prove to be false positives; high power to detect causal relations alone is not enough.

A low-powered method that conservatively identifies candidates with high confidence and

few errors can be more appealing (a similar point is made by Chen et al. 2006). Further,

the exploratory goal is often to identify causal agents without attempting to reconstruct

entire pathways. Therefore, much information about the larger networks in which the

tested pairs of traits reside is unknown and generally unknowable, and contributes to the

large unexplained variation that in turn results in low power. Our method accurately re-

flects this difficulty to detect causal relationships in the presence of noisy high throughput

data and poorly understood networks.

As with most methods for causal inference in the context of segregating populations,

our approach relies on the fact that, in general, genetic variation precedes phenotypic

variation, and on the fact that Mendelian randomization of alleles in unlinked loci provides

a mechanism to eliminate the effects of confounding. Both conditions need to be met in

order to justify causal claims between QTLs and phenotypes. Causal inference among

phenotypes, on the other hand, is justified by conditional independence relations under

Markov properties (Li et al. 2006, Chaibub Neto et al. 2010).

Methods

In this Section we present our parametric, non-parametric and joint parametric causal
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model selection tests. As a pre-requisite to understand our CMST tests, we briefly present

Vuong’s and Clarke’s model selection tests, before we derive our own. Because the CMST

test statistics are based on AIC and BIC scores and we compare our tests to the CIT

approach in the simulations a real data analysis, we first briefly describe the AIC, BIC

and CIT approaches in the next subsection.

AIC, BIC and CIT: a brief review

The AIC (Akaike 1974) and BIC (Schwarz 1978) are widely used penalized likelihood

criteria to perform model selection among models with different number of parameters.

Over-parameterized models tend to over-fit the data and, when comparing models with

different dimension, it is necessary to counter-balance model fit and model parsimony,

by adding a penalty term proportional to the number of parameters. The AIC penalty

is proportional to the number of parameters, whereas the BIC penalty accounts for the

sample size and number of parameters.

The CIT (Millstein et al., 2009) corresponds to an intersection-union test, in which

a number of equivalence and conditional F tests are conservatively combined in a single

test. P-values are computed for models M1 and M2 in Figure 1, but not for the M3 or

M4 models, and the decision rule for model calling goes as follows: (1) call M1 if the M1

p-value is less than a significance threshold α and the M2 p-value is greater than α; (2)

call M2 call if it is the other way around; (3) call Mi if both p-values are greater than α;

and (4) make a “no call” if both p-values are less than α. The Mi call actually means that

the model is not M1 or M2 and could correspond to an M3 or M4 model. Note that the

CIT makes a “no call” when both M1 and M2 models are simultaneously significant. As

we will see in the next subsections the CMST do not suffer from this incoherent behavior.

Vuong’s model selection test
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Vuong’s test (Vuong 1989) derives from the Kullback-Leibler (1959) Information Cri-

terion (KLIC) that measures the closeness of a probability model to the true distribution

generating the data. Formally, let {f(y | x ; θ) : θ ∈ Θ} represent a parametric family of

conditional models. Then

KLIC(h0; f) = E0
[
log h0(y | x)

]
− E0 [log f(y | x ; θ∗)]

=

∫
x

[∫
y

h0(y | x) log h0(y | x)
f(y | x ; θ∗)

dy

]
h0(x) dx, (1)

where E0 represents the expectation with respect to the true joint distribution h0(y,x) =

h0(y | x)h0(x), and θ∗ is the parameter value that minimizes the KLIC distance from

f to the true model (Sawa 1978). Note that f need not belong to the same parametric

family as h0.

A model f1(y | x ; θ1∗), denoted f1 for short, is regarded as a better approximation

to the true model h0(y | x), than the alternative model f2(y | x ; θ2∗) if and only if

KLIC(h0; f1) < KLIC(h0; f2), or alternatively, E0[log f1] > E0[log f2] (Sawa 1978).

Vuong’s model selection test is based on the later criterion and the null and alternative

hypotheses are defined as

H0 : E0 [LR12] = 0, H1 : E0 [LR12] > 0, H2 : E0 [LR12] < 0, (2)

where LR12 = log f1 − log f2. The null hypothesis is f1 and f2 are equally close to the

true distribution. The alternative hypothesis H1 means that f1 is better than f2 and

conversely for the alternative H2.

The quantity E0[LR12] is unknown, but Vuong (1989) showed that under fairly general

conditions the sample mean and variance of LR̂12,i = log f̂1,i − log f̂2,i converge almost
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surely to E0 [LR12] and V ar0 [LR12] = σ12.12, where f̂1,i = f1(yi | xi ; θ̂1) and θ̂1 is the

maximum likelihood estimate of θ1. Let LR̂12 =
∑n

i=1 LR̂12,i, then, under H0,

n−1/2LR̂12/
√

σ̂12.12 →d N(0, 1) . (3)

Under H1 this test statistic converges almost surely to ∞, whereas, under H2, it converges

to −∞.

Vuong’s test is based on the unadjusted log likelihood ratio statistic. However, com-

peting models may have different dimensions, requiring a complexity penalty. The pe-

nalized log-likelihood ratio is given by LR̂∗
12 = LR̂12 − D12, where D12 = kf1 − kf2 or

D12 = (kf1 − kf2)(log n)/2 for the AIC and BIC penalties, respectively, and kf1 and kf2

represent the number of parameters of f1 and f2, respectively. Because the penalty term

divided by n1/2 converges to zero, n−1/2LR̂∗
12/

√
σ̂12.12 has the same asymptotic properties

as n−1/2LR̂12/
√
σ̂12.12 and we can use the adjusted log likelihood ratio for the model se-

lection test (Vuong 1989). Because in our applications we consider models with different

dimensions, we adopt

Z12 = n−1/2LR̂∗
12/

√
σ̂12.12 (4)

as a test statistic in this paper.

The p-value of Vuong’s test is given by p12 = P (Z12 ≥ z12) = 1 − Φ(z12), where Φ()

represents the cumulative density function of a standard normal variable. Note that since

Z12 = −Z21, we have that p21 = 1 − Φ(z21) = Φ(z12), so that p12 + p21 = 1. As we will

see later, this interesting property of the Vuong’s test ensures that the p-values of the

intersection-union tests that we develop next, cannot be simultaneously significant.

Figure S2 in the Supplement illustrates how Vuong’s test trades a decrease in detection

of false positives by a reduction in statistical power to detect true positives. Finally, on
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a technical note, we point out that the hypothesis test presented in this sub-section

corresponds to Vuong’s test for strictly non-nested models. Nonetheless, as it is clear

from Figure 1 some of our model comparisons involve nested models (for instance, model

M1 in Figure 1 is nested on Ma
4 ). In the Supplement we justify why we can still use

the above test for the comparison of nested models when our test statistics are based on

penalized log-likelihood scores.

Clarke’s model selection paired sign test

The model selection paired sign test, proposed by Clarke (2007), represents a non-

parametric alternative to Vuong’s test. Instead of testing the null hypothesis that the

mean log-likelihood ratio is 0, it tests the null hypothesis that the median of the individual

log-likelihood ratios is equal to zero.

The test statistic adopted by Clarke’s test, T12, is a version of the sign test on LR̂12,i.

Under the null hypothesis that the median log-likelihood ratio is zero, T12 has a binomial

distribution, and the p-value for comparing models 1 and 2 is

p12 = P (T12 ≥ t12) =
n∑

k=t12

Cn
k 2−n, (5)

with Cn
k = n!/k!(n− k)!. The p-values for T12 and T21 do not add to 1 since the statistics

are discrete, p12 + p21 = 1 + Cn
t12
2−n. Nonetheless, the Cn

t12
2−n term decreases to 0 as n

increases, and, in practice, p12 + p21 ≈ 1 even for moderate sample sizes.

Since our models can have different dimensions, we actually adopt

T12 =
n∑

i=1

11
{
LR̂12,i − n−1D12 > 0

}
, (6)

as a test statistic for the sign test, where D12 represents the AIC or BIC penalty.
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Causal Model Selection Tests (CMST)

In our applications we consider four models M1, M2, M3 and M4. In this section we

derive intersection-union tests based on the application of six separate Vuong (or Clarke)

tests comparing, namely, f1 × f2, f1 × f3, f1 × f4, f2 × f3, f2 × f4 and f3 × f4. Sun et

al. (2007) implicitly used intersection-unions of Vuong’s tests to select among three non-

nested models in a different context. Here, we present 3 distinct versions of the CMST: (1)

the parametric; (2) the non-parametric; and (3) the joint-parametric CMST tests. The

first two versions overlook the dependency among the test statistics, although we revisit

this point in the derivation of the multivariate version. As above, we implement the tests

with penalized log-likelihoods, although the results are stated in terms of log-likelihoods

for the sake of lighter notation.

Starting with the parametric version, we test the null H0: model M1 is not closer to

the true model than M2, M3 or M4, against the alternative H1: M1 is closer to the true

model than M2, M3 and M4. More explicitly, we test,

H0 :
{
E0 [LR12] = 0

}
∪

{
E0 [LR13] = 0

}
∪

{
E0 [LR14] = 0

}
, (7)

against

H1 :
{
E0 [LR12] > 0

}
∩

{
E0 [LR13] > 0

}
∩

{
E0 [LR14] > 0

}
. (8)

The rejection region for this test is given by min{z12, z13, z14} > cα, where cα represents the

critical value derived from a standard normal distribution. The intersection-union p-value

is given by p1 = max {p12, p13, p14}. Intersection-union p-values for the other comparisons

are similar. Note that for a fixed level α, if p1 ≤ α, then min{p2, p3, p4} ≥ 1−α. Therefore,

the proposed CMST test ensures the detection of at most one significant model p-value

at a time, in contrast to the CIT approach.
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The non-parametric CMST test correspond to an intersection-union of Clarke’s tests,

exactly analogous to the one developed above for the parametric version. Because in

practice p12+p21 ≈ 1 for Clarke’s test, it follows that the non-parametric CMST test does

not allow the detection of more than one significant model p-values at the same time, as

well.

Simple application of separate Vuong tests, overlooks the dependency among the test

statistics. Therefore, we consider a multivariate extension. We develop next the joint

parametric CMST test for model M1. Under the same general regularity conditions of

Vuong (1989), the sample covariance of LR̂12,i and LR̂13,i, σ̂12.13, converges almost surely

to Cov0 [LR12, LR13] = σ12.13 (and similarly for all other covariance terms). Therefore,

the sample covariance matrix, Σ̂1, converges almost surely to Σ1. It follows from the

multivariate central limit and Slutsky’s theorems that when


E0

[
LR12

]
E0

[
LR13

]
E0

[
LR14

]
 =


0

0

0

 (9)

we have that

Z1 = diag(Σ̂1)
− 1

2 LR̂1/
√
n −→d N3(0 , ρ1) , (10)

where LR̂1 = (LR̂12 , LR̂13 , LR̂14)
T and ρ1 = diag(Σ1)

− 1
2 Σ1 diag(Σ1)

− 1
2 is the correla-

tion matrix

ρ1 =


1 ρ12.13 ρ12.14

ρ12.13 1 ρ13.14

ρ12.14 ρ13.14 1

 . (11)

The condition in 9 is the worst case of the more general null hypothesis that M1 is
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not better than at least one of M2, M3, M4, or

H0 : min
{
E0 [LR12] , E

0 [LR13] , E
0 [LR14]

}
≤ 0 . (12)

We test this against the alternative that M1 is better than all three, or

H1 : min
{
E0 [LR12] , E

0 [LR13] , E
0 [LR14]

}
> 0 , (13)

using the statistic W1 = min{Z1}, with p-value

P (W1 ≥ w1) = P (min{Z12, Z13, Z14} ≥ w1) = P (Z12 ≥ w1, Z13 ≥ w1, Z14 ≥ w1) . (14)

Note that by adopting the W1 test statistic, the joint parametric CMST test follows

the same spirit of an intersection union test. However, it does so by accounting for the

dependency among the test statistics. The derivation of the tests for models M2, M3 and

M4 is analogous to the one just presented. Table 1 depicts the joint CMST tests for all

models.

The CMST tests are implemented in the R/qtlhot package available at CRAN.

Simulation studies

We conducted two simulation studies. In the first, denoted the “pilot study”, we

focus on performance comparison of different methods with data generated from simple

yet diverse causal models. The goal is to understand the behavior of our methods in

simple settings. In the second, denoted the “large scale study”, we perform a simulation

experiment, with data generated from causal models emulating QTL hotspot patterns.

The goal is to understand the impact of multiple testing on the performance of our

causality tests.
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In the pilot simulation study we generated data from Models A to E in Figure 2.

A detailed description of the simulation experiment and QTL mapping analysis is given

in the Supplement. We evaluated the method’s statistical performance using statistical

power, miss-calling error rate and precision. These quantities were computed as,

Power =
TP

N
, Miss-calling error =

FP

N
, Precision =

TP

TP + FP
,

where N is the total number of tests, and TP (true positives) and FP (false positives) are

defined according to Table 2, which depicts possible calls against simulated models, and

tabulates whether a specific call correctly represents the causal relationship between the

phenotypes in the model from which the data was generated.

In the large scale simulation study we investigate the empirical FDR (1 minus the pre-

cision) and power levels achieved by the CMST tests using the Benjamini and Hochberg

(1995) and the Benjamini and Yekutieli (2001) FDR control procedures (denoted, respec-

tively, by BH and BY for now on), as well as, no multiple testing correction. We simulate

data from the models in Figure 5 which emulate QTL hotspot patterns (i.e., genomic re-

gions to which hundreds or thousands of traits co-map). A frequent goal in QTL hotspots

studies is to determine a master regulator, i.e., a transcript that regulates the transcrip-

tion of the traits mapping to the hotspot. A promising strategy towards this end is to

test the cis trais (i.e., transcripts physically located close to the QTL hotspot) against

all other co-mapping traits. Our simulations are aimed to evaluate the performance of

the CMST tests in this setting. Details on the simulation experiment design and QTL

mapping are provided in the Supplement.

Results

In this section we evaluate and compare the performance of our AIC- and BIC-based
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causal model selection tests against the AIC and BIC model selection criterions and the

CIT. We first present the results of our two simulation studies and then turn to the analysis

of real data from yeast genetical genomics experiment. For the real data illustration we

use a compendium of 247 knockout experiments (Hughes et al. 2000, Zhu et at. 2008)

in yeast in order to evaluate the “biological” precision of causal predictions made by the

methods under study.

Pilot simulation study results

Figure 3 depicts the power, miss-calling error rate and precision of each of the methods

based on the simulation results of all five models in Figure 2 pulled together. Panels 3(a-

c) represent the simulations using 112 subjects, and panels 3(d-f) the 1,000 subjects

simulation results. (The choice 112 was motivated by the sample size in our real data

example.) The x-axis represents the significance levels used for computing the results.

Note that the results of the AIC and BIC approaches are constant across all significance

levels since these approaches do not provide a measure of statistical significance. For those

methods, we simply fit the models to the data and select the model with the smallest AIC

(BIC) score.

Overall, the AIC, BIC and CIT showed high power, high miss-calling error rates and

low precision. The CMST methods, on the other hand, showed lower power, lower miss-

calling error rates and higher precision. The non-parametric CMST tended to be more

powerful but less precise than the other CMST approaches. As expected, for sample size

1,000, all methods showed an increase in power and precision and decrease in miss-calling

error rate.

Figures S4-S8 in the Supplement show the simulation results data for each one of

Models A to E, when sample size is 112. Figures S9-S13 show the same results for sample
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size 1,000. Inspection of these figures clearly suggests that some of the simulated models

were intrinsically more challenging than others. For instance, in the absence of latent

variables the causal and independence relations can often be correctly inferred by all

methods (see the results for Models A and D in Figures S4, S9, S7, S12). However, the

presence of hidden-variables in Models B and E tend to complicate matters. Nonetheless,

although the AIC, BIC and CIT methods tend to detect false positives at high rates

in these complicated situations, the CMST tests tend to forfeit making calls and tend

to detect fewer false positives (see Figures S5, S10, S8, S13). Model C is particularly

challenging (Figures S6 and S11), showing the highest false positive detection rates among

all models.

We point out, however, that, in genetical genomics experiments we often restrict our

attention to the analysis of cis-genes against trans-genes. In this special case it is rea-

sonable to expect the pleiotropic causal relationship depicted in Model C to be much less

frequent than the relationships shown in Models A, B, D and E, so that the performance

statistics shown in Figure 3, might be negatively impacted to an unnecessary degree by

the simulation results from Model C.

In order to investigate the methods performance, in the cis against trans case, we

present in Figure 4 the simulation results based on Models A, B, D and E only. Compar-

ison of Figures 3 and 4 show an overall improvement in power, decrease in miss-calling

rates and increase in precision.

Nonetheless, in the analysis of trans against trans genes there is no a priori reason to

discard the relationship depicted in Model C, and an extra load of false positives should

be expected. We point out, however, that the CMST approaches, specially the joint

parametric and parametric CMST methods, tend to detect a much smaller number of

false positives than the AIC, BIC and CIT approaches, as shown in Figures S6 and S11.
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Large scale simulation study results

With the possible exception of the non-parametric version, the previous simulation

study suggests that the CMST tests can be quite conservative. Therefore, it is reasonable

to ask whether multiple testing correction is really necessary in order to achieve reasonable

false discovery rates (FDR).

Figure 6 presents the observed FDR and power using uncorrected, BH corrected and

BY corrected p-values for the simulations based on model F . The top left panel shows

that, except for the BIC-based non-parametric CMST, the observed FDRs were consid-

erably lower than the p-value cutoff, suggesting that multiple testing adjustment is not

necessary for the CMST tests. Furthermore, comparison of the bottom panels shows that

the BH and BY adjustments leads to an accentuated decrease in power (specially for

the BY adjustment) for the joint and parametric tests at the expense of small drop in

FDR levels (that were already low without any correction). For the non-parametric tests,

on the other hand, BH corrections leads to bigger drops in FDR (specially for the AIC

based test), and smaller drops in power. The BY correction, nonetheless, seen to be too

conservative even for the non-parametric tests.

Figure 7 presents the results for the simulations based on model G. Overall we see

the same patterns as for model F , only more clear cut. For instance, application of

BH correction seems quite deleterious for the joint and parametric CMST tests, where

no significant calls were detected. For the non-parametric tests, on the other hand, BH

correction seems to produce a slightly decrease in power (specially for the larger p-value

cutoffs), with noticeable decrease in FDR (specially for the AIC based tests). The BY

correction seems to be too conservative in this case again.

Because we fit almost three million hypothesis tests in the present simulation study,

we did not include the CIT tests in this investigation restricting our attention to the
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computationally more efficient CMST tests.

Yeast data analysis and biologically validated predictions

We analyzed a budding yeast genetical genomics data-set derived from a cross of a stan-

dard laboratory strain, and a wild isolate from a California vineyard (Brem and Kruglyak

2005). The data consists of expression measurements on 5,740 transcripts measured on

112 segregant strains with dense genotype data on 2,956 markers. Processing of the ex-

pression measurements raw data was done as described in Brem and Kruglyak (2005),

with an additional step of converting the processed measurements to normal scores. We

performed QTL analysis using Haley-Knott regression (Haley and Knott 1992) with the

R/qtl software (Broman et al. 2003). We used Haldane’s map function, genotype error

rate of 0.0001, and set the maximum distance between positions at which genotype prob-

abilities were calculated to 2cM. We adopted a permutation LOD threshold (Churchill

and Doerge 1994) of 3.48, controlling the genome wide error rate of falsely detecting a

QTL at a significance level of 5%.

In order to evaluate the precision of the causal predictions made by the methods we

used validated causal relationships extracted from a data-base of 247 knock-out experi-

ments in yeast (Hughes et al. 2000, Zhu et al. 2008). In each of these experiments, one

gene was knocked-out, and the expression levels of the remainder genes in control and

knocked-out strains were interrogated for differential expression. The set of differentially

expressed genes form the knock-out signature (ko-signature) of the knocked-out gene (ko-

gene), and show direct evidence of a causal effect of the ko-gene on the ko-signature

genes. The yeast data cross and knocked-out data analyzed in this section is available in

the R/qtlyeast package at GITHUB.

To use this information, we: (i) determined which of the 247 ko-genes also showed



E. Chaibub Neto et al. 19

a significant QTL in our data-set; (ii) for each one of the ko-genes showing significant

linkages, we determined which other genes in our data-set also co-mapped to the same

QTL of the ko-gene, generating, in this way, a list of putative targets of the ko-gene; (iii)

for each of the ko-gene/putative targets list, we applied all methods using the ko-gene as

the Y1 phenotype, the putative target genes as the Y2 phenotypes and the ko-gene QTL

as the causal anchor; (iv) for the AIC- and BIC-based non-parametric CMST tests we

adjusted the p-values according to the Benjamini and Hochberg FDR control procedure;

and (v) for each method we determined the “validated precision”, computed as the ratio

of true positives by the sum of true and false positives, where a true positive is defined as

an inferred causal relationship where the target gene belongs to the ko-signature of the

ko-gene, and a false positive is given by an inferred causal relation where the target gene

does not belong to the ko-signature.

In total 135 of the ko-genes showed a significant QTL, generating 135 putative target

lists. A gene belonged to the putative target list of a ko-gene when its 1.5 LOD support

interval (Lander and Botstein 1989; Dupuis and Siegmund 1999; Manichaikul et al. 2006)

contained the location of the ko-gene QTL. The number of genes in each of the putative

target lists varied from list to list, but in total we tested 31,975 “ko-gene/putative target

gene” relationships.

Figure 8 presents the number of inferred true positives, number of inferred false pos-

itives and the prediction precision across varying target significance levels for each one

of the methods. In terms of the number of true positives, the CIT, BIC and AIC out-

performed the CMST approaches, with the AIC-based CMST methods tending to be less

powered than the BIC-based ones. However, the CIT, BIC and AIC also inferred the

highest numbers of false positives (panel 8b), and showed low prediction precisions (panel

8c). From panel 8c we see that the CMST tests dominated the AIC, BIC and CIT meth-
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ods, showing higher precision rates across all target significance levels. Among the CMST

approaches, the joint parametric CMST tended to show the highest precisions, followed

by the non-parametric and parametric CMST tests.

The results presented on Figure 8 were computed using all 135 ko-genes. However, in

light of our simulation results, that suggest that the analysis of cis against trans genes is

usually easier than the analysis of trans against trans genes, we investigated the results

restricting ourselves to ko-genes with significant cis QTLs. Only 28 out of the 135 ko-

genes were cis traits, but, nonetheless, were responsible for 2,947 out the total 31,975 “ko-

gene/putative target gene” relationships. Figure 9 presents the results restricted to the

cis ko-genes. All methods show improvement in precision, corroborating our simulation

results. Once again, the CMST tests showed higher precision than the CIT, AIC and

BIC.

Discussion

In this paper, we proposed three novel hypothesis tests that adapt and extend Vuong’s

and Clarke’s model selection tests, to the comparison of four models, spanning the full

range of possible causal relationships among a pair of phenotypes. Our CMST tests

scale well to large genome wide analyzes because they are fully analytical and avoid

computationally expensive permutation or re-sampling strategies.

Another useful property of the CMST tests, inherited from Vuong’s test, is their ability

to perform model selection among misspecified models. That is, the correct model need

not be one of the models under consideration. Accounting for the misspecification of

the models is key. In general, any two phenotypes of interest are embedded in a complex

network and are affected by many other phenotypes not considered in the grossly simplified

(and thus misspecified) pairwise models.
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Overall, our simulations and real data analysis show that the CMST tests show better

controlled miss-calling error rates and tend to outperform the AIC, BIC and CIT methods

in terms of statistical precision. However, they do so at the expense of a decrease in

statistical power. Even though an ideal method should show high precision and power,

in practice there is always a trade-off between these quantities. Whether a more powerful

and less precise, or a less powerful and more precise method is more adequate, depends

on the biologist’s research goals and resources. For instance, if the goal is to generate a

ranked list of promising genes that causally affect a phenotype of interest, and it is time

consuming and expensive to conduct validation experiments, a biologist might be more

inclined to use a less powered and more precise method. However, if many genes can be

easily validated, then the biologist might find the larger lists generated by more powered

and less precise methods more appealing.

Interestingly, our data analysis and simulations also suggest that the analysis of cis

against trans gene pairs is less prone to detect false positives, than the analysis of trans

against trans gene pairs. Our simulations suggest that model selection approaches have

a hard time to pick up the correct causal ordering of the phenotypes when the QTL

effect reaches the truly reactive gene by two or more distinct paths, only one of which is

mediated by the truly causal gene (see Figure S1c in the Supplement, for an example).

When we test causal relationships among gene expression phenotypes we need to be

cautions. The problem is that the true causal relationships might take place outside the

transcriptional regulation level. For instance, the true causal regulations might be due

to methylation, phosphorylation, direct protein-protein interaction, transcription factor

binding, etc. Margolin and Califano (2007) have pointed out the limitations of causal

inference at the transcriptional level, where molecular phenotypes at other layers of reg-

ulation might represent latent variables. Nonetheless, our CMST tests include model M4
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(see Figure 1) and can, in principle, account for these latent variables.

Furthermore, as pointed out by Li et al. (2010), causal inference depends on the

detection of subtle patterns in the correlation between traits. Hence, it can be challenging

even when the true causal relations take place at the transcriptional level. The authors

point out that reliable causal inference in genome-wide linkage and association studies

require large sample sizes and would benefit of: (i) the incorporation of prior information

via Bayesian reasoning; (ii) the adjustment for experimental factors, such as sex and

age, that might induce correlations not explained the the causal relations; and (iii) the

consideration of a richer set of models than the four models accounted in this paper.

The CMST tests represent a step in the direction of reliable causal inference in two

accounts. First, they tend to be conservative and precise, forfeiting to make calls in situ-

ations where alternative approaches might deliver a flood of false positive calls. Second,

the CMST tests can adjust for experimental factors by modeling them as additive and

interactive covariates (this feature is already implemented in our code, although we didn’t

need it for the yeast data analysis). Furthermore, because our tests can be applied to

non-nested models of different dimensions, they can be readily extended to incorporate

a larger number of models. For the parametric and non-parametric versions it simply

means implementing intersection-union tests on a larger number of Vuong’s tests. For

the joint-parametric test we just need to handle a higher dimensional null distribution.

Finally, even though we do not attempt it here, the incorporation of prior information via

Bayesian reasoning represents an exciting direction for future work.

In theory, FDR control for the CMST approaches is a challenging problem as our tests

violate the key assumption, made by FDR control procedures, that the distribution of the

p-values under the null hypothesis are uniformly distributed (Benjamini and Hochberg

1995, Storey and Tibshirani 2003). Recall that the CMST p-values are computed as the
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maximum across other p-values, and the maximum of multiple uniform random variables

no longer follows a uniform distribution. Additionally, the CMST tests are usually not

independent since we often test the same cis-trait against several trans-traits, so that the

additional assumption of independent test statistics made by the Benjamini-Hochberg

procedure does not hold. Nonetheless, we still evaluated the performance of this method,

in addition to the Benjamini-Yekutieli (BY) procedure, that relaxes the independent test

statistics assumption, in our simulations.

Our results suggest that multiple testing correction should not be performed for the

joint and the parametric CMST tests, as they achieve low FDR levels without any cor-

rection and show severe reduction in statistical power with the application of BH and

BY control procedures. The non-parametric CMST tests, on the other hand, seemed to

benefit from BH correction, showing slight decrease in power with concomitant decrease

in FDR, in spite of the non-parametric CMST tests being based on discrete test statis-

tics and the BH procedure being developed to handle p-values from continuous statistics.

Inspection of the p-value distributions (see Figures S17, S18, S19, and S20 on the Sup-

plement) suggests that the smaller p-values of the non-parametric tests, relative to the

other approaches, are the reason for the higher power achieved by the BH corrected non-

parametric tests. The BY procedure, on the other hand, tended to be too conservative

even for the non-parametric CMST tests.

The CMST approach is currently implemented for inbred line crosses. Extension to

outbred populations involving mixed effects models is yet to be done. Although in this

paper we focused on mRNA expression traits, the CMST tests can be applied to any

sort of heritable phenotype, including clinical phenotypes and other “omic” molecular

phenotypes.

The higher statistical precision and computational efficiency achieved by our fully
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analytical hypothesis tests will help biologists to perform large scale screening of causal

relations, providing a conservative rank-ordered list of promising candidate genes for fur-

ther investigations.
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Figure 1: Pairwise causal models fitted by the CMST tests. Y1 and Y2 represent pheno-

types that co-map to a same QTL, Q. Models M1, M2, M3 and M4 represent, respectively,

the causal, reactive, independent and full model. In model M1 the phenotype Y1 has a

causal effect on Y2. In M2, the phenotype Y1 is actually reacting to a causal effect of

Y2, hence the name reactive model. In the independence model, M3, there is no causal

relationship between Y1 and Y2 and their correlation is solely due to Q. The full model,

M4, actually corresponds to three distribution equivalent models Ma
4 , M

b
4 , and M c

4 which

cannot be distinguished using the data because their maximized likelihood scores are

identical. Model M b
4 represents a causal independence relationship where the correlation

between Y1 and Y2 is a consequence of latent causal phenotypes, common causal QTLs or

of common environmental effects. Models Ma
4 and M c

4 correspond to causal-pleiotropic

and reactive-pleiotropic relations, respectively.
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Figure 2: Models used in the simulation study. Y1 and Y2 represent phenotypes that co-

map to a same QTL,Q. Model A represents a causal effect of Y1 on Y2. Model B represents

the same, with the additional complication that part of the correlation between Y1 and

Y2 is due to a hidden-variable H. Model C represents a causal-pleiotropic model, where

Q affects both Y1 and Y2 but Y1 also has a causal effect on Y2. Model D shows a purely

pleiotropic model, where both Y1 and Y2 are under the control of the same QTL, but one

does not causally affect the other. Model E represents the pleiotropic model, where the

correlation between Y1 and Y2 is partially explained by a hidden-variable H.
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Figure 3: Overall power, miss-calling error rate and precision across the simulated models

depicted in Figure 2. Panels a-c represent the simulations based on sample size 112,

whereas panels d-f present the results for sample size 1,000. Asterisk represents the

CIT. Empty and filled symbols represent, respectively, AIC- and BIC-based methods.

Diamonds: parametric CMST. Point-down triangles: non-parametric CMST. Point-up

triangles: joint-parametric CMST. Circles: AIC and BIC.
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Figure 4: Overall power, miss-calling error rate and precision restricted to the cis versus

trans cases. The results were computed using only the simulated models A, B, D and

E in Figure 2, since the pleiotropic causal relationship depicted in Model C is expected

to be much less frequent than the others when testing cis versus trans case. Panels a-c

represent the simulations based on sample size 112, whereas panels d-f present the results

for sample size 1,000. Asterisk represents the CIT. Empty and filled symbols represent,

respectively, AIC- and BIC-based methods. Diamonds: parametric CMST. Point-down

triangles: non-parametric CMST. Point-up triangles: joint-parametric CMST. Circles:

AIC and BIC.
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Figure 5: Models generating hotspot patterns. Y1 represents a cis expression trait. Yk,

k = 2, . . . , 5001 represent expression traits mapping in trans to the hotspot QTL Q. H

represents an unobserved expression trait. Model F generates a hotspot pattern derived

from the causal effect of the master regulator, Y1, on the transcription of the other traits.

Model G gives rise to a hotspot pattern, due to the causal effect of H on Yk, but where

the cis-trait Y1 maps to Q1, a QTL closely linked to the true QTL hotspot Q, and is

actually causally independent of the traits mapping in trans to the Q.
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Figure 6: Observed FDR and power for the simulations based on model F . Empty and

filled symbols represent, respectively, AIC- and BIC-based methods. Diamonds: para-

metric CMST. Point-down triangles: non-parametric CMST. Point-up triangles: joint-

parametric CMST. Circles: AIC and BIC.
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Figure 7: Observed FDR and power for the simulations based on model G. Empty and

filled symbols represent, respectively, AIC- and BIC-based methods. Diamonds: para-

metric CMST. Point-down triangles: non-parametric CMST. Point-up triangles: joint-

parametric CMST. Circles: AIC and BIC.
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Figure 8: Overall number of true positives, number of false positives and precision

across all 135 ko-gene/putative target lists. Asterisk represents the CIT. Empty and

filled symbols represent, respectively, AIC- and BIC-based methods. Diamonds: para-

metric CMST. Point-down triangles: non-parametric CMST. Point-up triangles: joint-

parametric CMST. Circles: AIC and BIC.
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Figure 9: Overall number of true positives, number of false positives and precision re-

stricted to 28 cis ko-gene/putative target lists. Asterisk represents the CIT. Empty and

filled symbols represent, respectively, AIC- and BIC-based methods. Diamonds: para-

metric CMST. Point-down triangles: non-parametric CMST. Point-up triangles: joint-

parametric CMST. Circles: AIC and BIC.
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H0 Null distribution P-value

H M̸1

0 Z1 = (Z12, Z13, Z14)
T ∼ N3(0, ρ̂1) P (Z12 ≥ w1, Z13 ≥ w1, Z14 ≥ w1)

H M̸2

0 Z2 = (Z21, Z23, Z24)
T ∼ N3(0, ρ̂2) P (Z21 ≥ w2, Z23 ≥ w2, Z24 ≥ w2)

H M̸3

0 Z3 = (Z31, Z32, Z34)
T ∼ N3(0, ρ̂3) P (Z31 ≥ w3, Z32 ≥ w3, Z34 ≥ w3)

H M̸4

0 Z4 = (Z41, Z42, Z43)
T ∼ N3(0, ρ̂4) P (Z41 ≥ w4, Z42 ≥ w4, Z43 ≥ w4)

Table 1: Model selection tests for models M1, M2, M3 and M4. Here wk = min{zk} for

k = 1, . . . , 4, and ρk is defined in analogy with ρ1 in equation 11.
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CMST Model A Model B Model C Model D Model E
M1 TP TP FP FP FP
M2 FP FP FP FP FP
M3 FP FP FP TP FP
M4 FP FP TP FP TP

CIT Model A Model B Model C Model D Model E
M1 TP TP FP FP FP
M2 FP FP FP FP FP
Mk FP FP TP TP TP

Table 2: True and false positives table. Each entry i, j represents whether the call on

row i is a true positive (TP) or as false positive (FP), when the data is generated from

the model on column j. For instance, when data is generated from Models A or B, a M1

call represents a true positive, whereas a M2, M3 or M4 call represents a false positive

for the AIC, BIC and CMSTs approaches (for the CIT a M2 or Mi call represents false

positive). Note that a M4 call is considered a true positive for Model C (in addition to

Model E) because it corresponds to Model Ma
4 on Figure 1 and, hence, is distribution

equivalent to Model M4. Please note too that because the CIT only provides p-values

for the M1 and M2 calls, but not for the M3 and M4 calls, and its output is either M1,

M2 or Mi, we classify a Mi call as a true positive for Models C, D and E. Observe that

by doing so we are actually giving an unfair advantage for the CIT approach, since when

the data is generated from, say, Model E, the CIT only needs to discard models M1 and

M2 as non-significant in order to detect a “true positive”. The AIC, BIC and CMST

approaches, on the other hand, need to discard models M1, M2 and M3 as non-significant

and accept model M4 as significant.
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Supplement
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Figure S 1: Network models and their collapsed versions. The collapse networks (bottom

panels) represent simplified versions of the true networks (top panels), where nodes other

than Q, Y1 and Y2 are ignored, even though they still represent correct the causal flow

among these three nodes in the true network. Consider, for example, network c and its

collapsed version c′. The path Q → Y3 → Y1 in c is collapsed to Q → Y1 in c′. The

paths Y1 → Y5 → Y2 and Y1 → Y6 → Y2 in c are collapsed to Y1 → Y2 in c′. The path

Q → Y3 → Y4 → Y7 → Y2 in c is collapsed to Q → Y2 in c′.
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Figure S 2: Model selection via log-likelihood ratio versus Vuong’s test.

Figure S2 illustrates how Vuong’s test works. We generated 1,000 data-sets from the

model X → Y1 → Y2 and applied Vuong’s test to the comparison of models M1 : X →

Y1 → Y2 against M2 : X → Y2 → Y1. The top panels present 3D scatter plots of the

test statistics Z12 against the R2 values of the regression of Y1 on X, R2(Y1, X), and

the R2 values of the regression of Y2 on X, R2(Y2, X). The data points are color coded

as blue, red and grey, representing, respectively, M1, M2 and “no calls”. Blue and red

points represent, respectively, correct and incorrect calls. The bottom panels follow the
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same color coding and show the projections of the 3D scatter plots into the R2(Y1, X) by

R2(Y2, X) plane.

The left panels of Figure S2 show the model selection results based on the log-likelihood

ratio (LR) criterium, where positive LR̂12 values support M1 and negative LR̂12 values

support M2 (note that we actually use the Z12 test statistics, instead of LR̂12 statistics,

but the results are equivalent). Because we generate the data from model M1, it will

usually be the case that X explains a greater proportion of the variability of Y1 than of

Y2. In other words, R2(Y1, X) will tend to be higher than R2(Y2, X). However, some

of the data-sets show the opposite trend due to random noise on the data. The bottom

left panel shows that the log-likelihood criterium tends to make incorrect calls when

R2(Y1, X) < R2(Y2, X).

The right panels of Figure S2 show the model selection results derived from Vuong’s

test. Now we see that most of the incorrect calls made by the log-likelihood criterium

(red points) are not significant (grey points) according to Vuong’s test, that requires that

Z12 ≤ −1.64 or Z12 ≥ 1.64 in order to achieve statistical significance at a 5% level. The

drawback is the reduction in power to detect the correct calls, since not only red dots are

replaced by grey dots, but many of the blue dots are turned into grey, as well. These

figures illustrate how Vuong’s test trade a decrease in detection of false positives by a

reduction in statistical power to detect true positives.
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A technical note on Vuong’s test

Vuong (1989) fully characterized the asymptotic distribution of the log-likelihood ratio

statistic under the most general conditions. He showed that the form of the asymptotic

distribution of the log-likelihood ratio depends on whether the models are observationally

identical or not. Two models are observationally identical if their probability densities

are the same, when evaluated at the respective pseudo-true parameter values, i.e., f1(y |

x ; θ1∗) = f2(y | x ; θ2∗) for almost all (y,x), where the pseudo-true parameter values,

θk∗, corresponds to the parameter value that minimizes the Kullback-Leibler distance

from the true model (Sawa 1978).

Explicitly, Vuong showed (Theorem 3.3 on page 313) that under very general condi-

tions:

1. If f1(y | x ; θ1∗) = f2(y | x ; θ2∗), then 2LR12(θ̂1, θ̂2) converges in distribution to a

weighted sum of chi-square distributions.

2. If f1(y | x ; θ1∗) ̸= f2(y | x ; θ2∗), then

1√
n

(
LR12(θ̂1, θ̂2)− E0

[
log

f1(y | x ; θ1∗)

f2(y | x ; θ2∗)

])
→d N(0, σ12.12)

Because of this interesting asymptotic behavior Vuong had to proposed 3 distinct

model selection tests: one for strictly non-nested models, that are always not observation-

ally identical; another for overlapping models that might or might not be observationally

identical; and a third for nested models, that are always observationally identical. (Nested

models are always observationally identical because the nested model cannot be better

than the full model and both models are equally close to the true model if and only if

they are the same.)
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In our applications, models M1, M2 and M3 are not nested on each other, but are

nested on models Ma
4 , M

c
4 and M b

4 , respectively (Figure 1 in the main text). Hence, our

model selection tests consider pairs of models that are either non-nested or nested. In

the Methods section we presented Vuong’s test for not observationally identical models,

that is suitable for the comparison of strictly non-nested models (M1×M2, M1×M3 and

M2 ×M3).

We point out, however, that even though we perform model selection tests between

nested models (M1 ×M4, M2 ×M4 and M3 ×M4) we don’t need to use Vuong’s test for

nested models because our test statistics are based on penalized log-likelihoods instead

of log-likelihoods, and our penalized models are not observationally identical for nested

models too. In other words, even though f1(y | x ; θ1∗) = f4(y | x ; θ4∗) when model 1 is

nested in model 4, we have that f1(y | x ; θ1∗)−p1 ̸= f4(y | x ; θ4∗)−p4 since the penalty

p1 is smaller than p4. Therefore, we can simply use Vuong’s test for not observationally

identical models in this case too.

On a technical note, we point out that Vuong’s Theorem 3.3 still holds when we replace

the log-likelihood ratio by the penalized log-likelihood ratio. The demonstration mimics

Vuong’s original proof presented on page 327. We just need to replace the log-likelihoods

by penalized log-likelihoods in the Taylor expansion of the log-likelihoods around the

maximum likelihood estimates.
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Simulation studies

Here we provide further details on the simulation studies presented in the main text.

Pilot simulation study

We conducted a total of 10 simulation studies, generating data from the five models

described in Figure 2 in the main text using sample sizes 112 and 1,000 (the choice 112

was motivated by the sample size in our real data example). For each model, we sim-

ulated 1,000 backcrosses composed with 3 chromosomes of length 100cM containing 101

unequally spaced markers per chromosome. For each one of the simulated backcrosses, the

additive and dominance genetic effects were sampled, respectively, from the U [−0.75, 0.75]

and U [0, 0.75] distributions, where U [a, b] represents the uniform distribution on the in-

terval [a, b]. Residual error rates were sampled from U [0.5, 1.5], and the phenotype to

phenotype regression coefficients in Figures 2 A, B and C were sampled from U [−1, 1].

The hidden-variable to phenotype regression coefficients on Figures 2 B and E were sam-

pled from U [−1, 1] and U [0.5, 1], respectively. This choice of parameters ensured that

approximately 99% of the R2 coefficients between phenotypes and QTL ranged between

0.08 and 0.32 for the simulations based on sample size of 112 subjects (see Figure S3a,

and the axis scales on Figures S4-S8) and between 0.01 to 0.20 for the simulations based

on 1,000 subjects (see Figure S3b, and the axis scales on Figures S9-S13).

The backcross simulations and the QTL mapping analyses were performed using the

R/qtl software (Broman et al. 2003). We performed Haley-Knott regression (Haley and

Knott 1992) and adopted Haldane’s map function, genotype error rate of 0.0001, and set

the maximum distance between positions at which genotype probabilities were calculated

to 2cM. We used a permutation LOD threshold (Churchill and Doerge 1994) of 2.24 for the

QTL mapping analysis, aiming to control the genome wide error rate of falsely detecting
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a QTL at a 5% rate. The selection of the co-mapping QTL, to be used as a causal anchor

in the tests, was performed as described in the next section.

Large scale simulation study

We performed two separate simulation studies generating data from the models in

Figure 5 in the main text. In model F , Y1 plays the role of a master regulator cis trait,

and all other traits map in trans to QTL hotspot QTL Q because of the causal effect of

Y1. In model G, Y1 plays the role of a cis trait mapping to a QTL closely linked to Q,

and, therefore, causally independent of the trans traits in the hotspot.

In each simulation study we generated 1,000 distinct backcrosses with genetic data

composed of 3 chromosomes of length 100cM containing 101 markers per chromosome,

and phenotypic data on 5,001 traits on 112 individuals. We simulated unequally spaced

markers for model F , but equally spaced markers forG, withQ1 andQ set 1cM apart. The

additive and dominance genetic effects of Q on Y1 were sampled, respectively, from the

U [0.5, 1] and U [0, 0.5] distributions. Residual error rates were sampled from U [0.5, 1.5],

and the coefficients of the regressions of Yk on Y1 were sampled from U [0.5, 1]. Figure S15

shows the overall R2 distributions. QTL mapping was performed as in the pilot study,

but here we used the QTL for trait Y1 as a causal anchor.

For each simulated data set we tested Y1 against all other phenotypes Yk, k =

2, . . . , 5001, that share the QTL with Y1, so that the number of hypothesis tests var-

ied from simulation to simulation. Figure S16 shows the distribution of the number of

tests per simulation study. In total we performed 1,656,261 tests for the simulations with

model F , and 1,286,243 tests for the simulations with model G.

The empirical FDR (that corresponds to one minus the precision) was computed as

the ratio of the number of FPs by the sum of the number of FPs and TPs across all
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tests. The empirical power was computed as before. For model F , a FP is defined as any

statistically significant M2, M3, or M4 call, and a TP is given by a significant M1 call. For

model G, on the other hand, a FP corresponds to any statistically significant M1, M2, or

M4 call, and a TP is given by a significant M3 call. For the evaluations without multiple

testing correction, a call Mk was statistically significant if the respective p-value, pk, was

smaller than a fixed significance level α.

Multiple testing correction procedures based on the control of family wise error rates

tend to be very conservative, and are not advisable. Here, we investigate the performances

of the Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) FDR control

procedures (denoted, respectively, by BH and BY for now on). The BH and BY adjusted

p-values were computed based on the p-values across all simulations pooled together,

separately by model call (e.g., for the model F simulations, we pool together all 1,656,261

M1 p-values and apply the BH adjusted for this set of p-values, and similarly for the M2,

M3 and M4 p-values), and then compute the FDR and power empirical estimates using

the adjusted p-values.
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Figure S 3: Overall distribution of the R2 statistics across all simulated models in Figure

2. Panels a and b present the R2 statistics for sample sizes 112 and 1,000, respectively.
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Figure S 4: Simulation results for Model A in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For this model, blue dots represent true positives. Red,

green and black dots represent false positives for the AIC, BIC and CMST methods. Red

and yellow dots represent false positives for the CIT.
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Figure S 5: Simulation results for Model B in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For this model, blue dots represent true positives. Red,

green and black dots represent false positives for the AIC, BIC and CMST methods. Red

and yellow dots represent false positives for the CIT.
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Figure S 6: Simulation results for Model C in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots represent

true positives, and blue, red and green dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Figure S 7: Simulation results for Model D in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, green dots represent

true positives, and blue, red and black dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Figure S 8: Simulation results for Model E in Figure 2 and sample size 112. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots represent

true positives, and blue, red and green dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Figure S 9: Simulation results for Model A in Figure 2 and sample size 1,000. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For this model, blue dots represent true positives. Red,

green and black dots represent false positives for the AIC, BIC and CMST methods. Red

and yellow dots represent false positives for the CIT.
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Figure S 10: Simulation results for Model B in Figure 2 and sample size 1,000. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For this model, blue dots represent true positives. Red,

green and black dots represent false positives for the AIC, BIC and CMST methods. Red

and yellow dots represent false positives for the CIT.



E. Chaibub Neto et al. 57

0.05 0.15 0.250.
00

0.
15

0.
30

AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

BIC

R2(Y1, Q)
R

2 (Y
2, 

Q
)

0.05 0.15 0.250.
00

0.
15

0.
30

CIT

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Joint CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Parametric CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Non−parametric CMST − AIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Joint CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Parametric CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

0.05 0.15 0.250.
00

0.
15

0.
30

Non−parametric CMST − BIC

R2(Y1, Q)

R
2 (Y

2, 
Q

)

Figure S 11: Simulation results for Model C in Figure 2 and sample size 1,000. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots represent

true positives, and blue, red and green dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Figure S 12: Simulation results for Model D in Figure 2 and sample size 1,000. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, green dots represent

true positives, and blue, red and black dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Figure S 13: Simulation results for Model E in Figure 2 and sample size 1,000. Blue, red,

green and black dots represent, respectively, M1, M2, M3 and M4 calls. Yellow dots (CIT

plot only) represent Mi calls. Grey dots show the “no calls”. Results were computed

using significance level 0.05. For the AIC, BIC and CMST methods, black dots represent

true positives, and blue, red and green dots represent false positives. For the CIT test,

yellow dots represent true positives and blue and red dots show false positives.
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Co-mapping QTL selection

Often times the phenotypes map to nearby but not precisely the same QTL, and one

needs to decide which QTL to use as the causal anchor. When testing expression traits

against clinical traits, Millstein et al. (2009) and Schadt et al. (2005) suggest using the

clinical trait QTL as the anchor.

We adopt a different approach. When the phenotypes map to distinct regions that are

less than 2cM apart we determine the QTL position using both phenotypes, jointly, as

follows. For each pair of phenotypes (Y1,Y2) we perform unconditional mapping analysis

for Y1 and Y2 and conditional mapping analysis for Y2 given Y1. Let LOD1 represent a

LOD score for the mapping analysis of Y1, and LOD2|1 for the mapping analysis of Y2

given Y1. Since

log10

{
f(y1, y2 | q)
f(y1, y2)

}
= log10

{
f(y1 | q)
f(y1)

}
+ log10

{
f(y2 | y1, q)
f(y2 | y1)

}
, (15)

we compute the joint LOD score of (Y1,Y2) as LOD1,2 = LOD1+LOD2|1 (or equivalently

as LOD1,2 = LOD2 + LOD1|2). We determine the peak QTL position, λ, using the

LOD1,2 scores profile and assign the QTL to Y1 and Y2 if LOD1 and LOD2 are greater

than the mapping threshold at the λ position. Figure S14 illustrates our approach. When

both phenotypes co-map to more than one QTL we select the QTL with the highest joint

mapping peak.
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Figure S 14: We simulated data from a model Q → Y1 → Y2, with a QTL, Q, at 50cM.

The blue and red curves show the (unconditional) LOD profiles of phenotypes Y1 and Y2,

respectively. The black curve depicts the joint LOD curve, and the peak QTL position

λ is given by the black vertical line. Instead of having to perform an arbitrary choice

between the QTLs given by the red and blue vertical lines we use the QTL given by the

black line. The dashed line shows the QTL mapping threshold.
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Figure S 15: Overall R2 statistics distributions for the large scale simulation study. The

left and right panels show the distribution for the cis-traits and trans-traits, respectively.
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Figure S 16: For each model F and G we performed 1,000 separate simulations, and

tested Y1 against all other phenotypes Yk, k = 2, . . . , 5001, that shared the QTL with

Y1, at each simulation. The panels show the distribution of the number of tests, i.e, the

number of trans-traits that co-mapped to Y1, per simulation study. In total, we performed

1,656,261 tests across the 1,000 simulations with model F , and 1,286,243 tests across the

simulations with model G.
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Figure S 17: Uncorrected p-value distributions for the BIC-based CMST tests with data

simulated from model F in Figure 5. Results based on 1,656,261 tests. For these simula-

tions, the M1 call is the correct one, hence the skewed distribution towards small p-values

at the left panels. The skewness towards larger p-values for the M2, M3, and M4 calls

follows from the fact that whenever a p-value for one model is smaller than α, then the p-

values for the other three models are greater than 1−α. Note the larger frequency of small

M1 p-values for the non-parametric CMST test (bottom left panel - the discrete nature of

the histogram is a consequence of the test statistic being discrete for the non-parametric

test).
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Figure S 18: Uncorrected p-value distributions for the AIC-based CMST tests with data

simulated from model F in Figure 5. Results based on 1,656,261 tests. For these simula-

tions, the M1 call is the correct one, hence the skewed distribution towards small p-values

at the left panels. The skewness towards larger p-values for the M2, M3, and M4 calls

follows from the fact that whenever a p-value for one model is smaller than α, then the p-

values for the other three models are greater than 1−α. Note the larger frequency of small

M1 p-values for the non-parametric CMST test (bottom left panel - the discrete nature of

the histogram is a consequence of the test statistic being discrete for the non-parametric

test).
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Figure S 19: Uncorrected p-value distributions for the BIC-based CMST tests with data

simulated from model G in Figure 5. Results based on 1,286,243 tests. For these simula-

tions, the M3 call is the correct one, hence the skewed distribution towards small p-values

at the M3 panels. The skewness towards larger p-values for the M1, M2, and M4 calls

follows from the fact that whenever a p-value for one model is smaller than α, then the p-

values for the other three models are greater than 1−α. Note the larger frequency of small

M3 p-values for the non-parametric CMST test (bottom left panel - the discrete nature of

the histogram is a consequence of the test statistic being discrete for the non-parametric

test).
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Figure S 20: Uncorrected p-value distributions for the AIC-based CMST tests with data

simulated from model G in Figure 5. Results based on 1,286,243 tests. For these simula-

tions, the M3 call is the correct one, hence the skewed distribution towards small p-values

at the M3 panels. The skewness towards larger p-values for the M1, M2, and M4 calls

follows from the fact that whenever a p-value for one model is smaller than α, then the p-

values for the other three models are greater than 1−α. Note the larger frequency of small

M3 p-values for the non-parametric CMST test (bottom left panel - the discrete nature of

the histogram is a consequence of the test statistic being discrete for the non-parametric

test).


