Discussion \#1

TA: Guang Cheng
Office: $\quad 4261$ CSSC
Phone: 263-7310
E-mail: cheng@stat.wisc.edu
Office Hours: 9:50-10:50 MW; 14:30-15:30 F

I. Review

1. Stem-and-Leaf Plots:
(a) advantage: it can be constructed quickly; we can extract all the data values from plot;
(b) disadvantage: not useful for large data sets; the choice of stem values may affects the distribution pattern of data.
2. Histograms
(a) advantage: useful for large data sets;
(b) disadvantage: the choice of class boundaries can affect the appearance of the histogram.
3. Dot Plots:
(a) advantage: it can be constructed quickly.
(b) disadvantage: when the number of data is small, it is difficult to identify any pattern of variation.
4. Boxplots: (constructed by: min max median 1stQ 3rdQ-five number summary) They are particularly effective for graphically portraying comparisons among sets of data; they have a high visual impact.
5. Measures of Location:
(a) sample mean $=\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
(Sensitive to outlying values.)
(b) sample median: (for ordered data)
when sample size is odd, median=the value for the middle observation;
when sample size is even, median= the average of the middle two.
(Robust to outlying values.)
(c) Finding the p th sample quantile(also called the $100 p$ th percentile) $x_{[p]}$:
i. Put the data in order, from smallest to largest.
ii. Compute $n p$, where n is the sample size.
iii. If $n p$ is an integer, then $x_{[p]}$ is the average of the $(n p)^{t h}$ and the $(n p+1)^{t h}$ numbers in the list.
iv. If $n p$ is not an integer, then round up, and use the observation which occurs at that place in the list.
(d) 1st quartile $=$ the 0.25 quantile.
(e) 3 rd quartile $=$ the 0.75 quantile.
6. Measures of Spread
(a) range=maximum-minimum
(b) interquartile range $(\mathrm{IQR})=3$ rd quartile-1st quartile
(c) variance $=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right]$.
(d) standard deviation $=S=\sqrt{S^{2}}$
(e) coefficent of variation $=\mathrm{Cv}=\frac{S}{X}$

II.Practice Problems

1. Consider the following two sets of data:

x:	4	5	7.8	6.4	1.5
y:	33	7.9	18.7	6	55.9

(a) Evaluate the following:
i. $\sum_{i=1}^{5} x_{i}$
ii. $\sum_{i=1}^{5} x_{i}^{2}$
iii. $\left(\sum_{i=1}^{5} x_{i}\right)^{2}$
iv. $\sum_{i=1}^{5} y_{i}$
v. $\sum_{i=1}^{5} x_{i} y_{i}$
vi. $\left(\sum_{i=1}^{5} x_{i}\right)\left(\sum_{i=1}^{5} y_{i}\right)$
vii. $\sum_{i=1}^{5} a x_{i}$ with $a=2$
viii. $a \sum_{i=1}^{5} x_{i}$ with $a=2$
ix. $\sum_{i=1}^{5} a$ with $a=4$
(b) Before making any further calculations, which sample, x or y , do you think has the larger mean? Calculate \bar{x} and \bar{y} and compare.
(c) Before making any further calculations, which sample, x or y , do you think has the larger variance? Calculate s^{2} for each sample and compare.
(d) Verify numerically that, except for rounding error, the $n=5$ values satisfy the following:
i. $\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)=0$
ii. $\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{5} x_{i}^{2}-n(\bar{x})^{2}=\sum_{i=1}^{5} x_{i}^{2}-\frac{\left(\sum_{i=1}^{5} x_{i}\right)^{2}}{n}$
2. A company bottles milk in several sizes of container. A random sample of 17 containers is obtained from the "small" container size. The volumn of milk (in ounces) is measured for each container. The volumns are:
5.995 .845 .956 .095 .935 .885 .926 .046 .00
5.895 .955 .975 .905 .916 .035 .895 .98
(a) Make a stem and leaf display.
(b) Find the mean, standard deviation, median, 1st quartile, 3rd quartile, range, IQR and 20th percentile of the data.
(c) Construct a box plot for these data.

III Solutions of the Practice problems

1. (a) Evaluate the following:
i. $\sum_{i=1}^{5} x_{i}=24.7$
ii. $\sum_{i=1}^{5} x_{i}^{2}=16.00+25.00+60.84+40.96+2.25=145.05$
iii. $\left(\sum_{i=1}^{5} x_{i}\right)^{2}=24.7^{2}==610.09$
iv. $\sum_{i=1}^{5} y_{i}=121.5$
v. $\sum_{i=1}^{5} x_{i} y_{i}=132.00+39.50+145.86+38.40+83.85=439.61$
vi. $\left(\sum_{i=1}^{5} x_{i}\right)\left(\sum_{i=1}^{5} y_{i}\right)=24.7(121.5)=3001.05$
vii. $\sum_{i=1}^{5} a x_{i}$ with $a=2: 8.0+10.0+15.6+12.8+3.0=49.4$
viii. $a \sum_{i=1}^{5} x_{i}$ with $a=2: 2(24.7)=49.4$
ix. $\sum_{i=1}^{5} a$ with $a=4=4+4+4+4+4=20$
(b) $\bar{x}=\frac{24.7}{5}=4.94, \bar{y}=\frac{121.5}{5}=24.3$.
(c) $s_{x}^{2}=5.758, s_{y}^{2}=427.365$.
(d) i. $\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)=(-0.94)+0.06+2.86+1.46+(-3.44)=0$
ii. $\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}=0.8836+0.0036+8.1796+2.1316+11.8336=23.032$

$$
\begin{aligned}
& \sum_{i=1}^{5} x_{i}^{2}-n(\bar{x})^{2}=145.05-5(4.94)^{2}=23.032 \\
& \sum_{i=1}^{5} x_{i}^{2}-\frac{\left(\sum_{i=1}^{5} x_{i}\right)^{2}}{n}=145.05-\frac{24.7^{2}}{5}=23.032
\end{aligned}
$$

2. (a)

$$
\begin{array}{l|l}
5.8 & \mid \\
5.8 & \mid 899 \\
5.9 & \mid 0123 \\
5.9 & \mid \\
65789 \\
6.0 & \mid 034 \\
6.0 & \mid 9
\end{array}
$$

(b) mean $=5.9506$, standard deviation $=0.0657$, median $=5.95$, range $=0.25$, $\mathrm{Q} 1=x_{[5]}=5.90, \mathrm{Q} 3=x_{[13]}=5.99, \mathrm{IQR}=0.09,20$ th percentile $=x_{[4]}=5.89$.

