STATISTICS 571

Discussion #1

TA:	Guang Cheng			
Office:	4261 CSSC			
Phone:	263-7310			
E-mail:	cheng@stat.wisc.edu			
Office Hours:	9:50–10:50 MW; 14:30–15:30 F			

I. Review

- 1. Stem-and-Leaf Plots:
 - (a) advantage: it can be constructed quickly; we can extract all the data values from plot;
 - (b) disadvantage: not useful for large data sets; the choice of stem values may affects the distribution pattern of data.

2. Histograms

- (a) advantage: useful for large data sets;
- (b) disadvantage: the choice of class boundaries can affect the appearance of the histogram.
- 3. Dot Plots:
 - (a) advantage: it can be constructed quickly.
 - (b) disadvantage: when the number of data is small, it is difficult to identify any pattern of variation.
- 4. Boxplots: (constructed by: min max median 1stQ 3rdQ—five number summary) They are particularly effective for graphically portraying comparisons among sets of data; they have a high visual impact.

- 5. Measures of Location:
 - (a) sample mean= $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ (Sensitive to outlying values.)
 - (b) sample median: (for ordered data)when sample size is odd, median=the value for the middle observation;when sample size is even, median= the average of the middle two.(Robust to outlying values.)
 - (c) Finding the *p*th sample quantile (also called the 100*p*th percentile) $x_{[p]}$:
 - i. Put the data in order, from smallest to largest.
 - ii. Compute np, where n is the sample size.
 - iii. If np is an integer, then $x_{[p]}$ is the average of the $(np)^{th}$ and the $(np+1)^{th}$ numbers in the list.
 - iv. If np is not an integer, then round up, and use the observation which occurs at that place in the list.
 - (d) 1st quartile= the 0.25 quantile.
 - (e) 3rd quartile= the 0.75 quantile.

6. Measures of Spread

- (a) range=maximum-minimum
- (b) interquartile range(IQR)=3rd quartile-1st quartile
- (c) variance= $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2 = \frac{1}{n-1} [\sum_{i=1}^n x_i^2 n\bar{x}^2].$
- (d) standard deviation= $S = \sqrt{S^2}$
- (e) coefficient of variation= $cv = \frac{S}{X}$

II.Practice Problems

1. Consider the following two sets of data:

x:	4	5	7.8	6.4	1.5
y:	33	7.9	18.7	6	55.9

- (a) Evaluate the following:
 - i. $\sum_{i=1}^{5} x_i$ ii. $\sum_{i=1}^{5} x_i^2$ iii. $(\sum_{i=1}^{5} x_i)^2$ iv. $\sum_{i=1}^{5} y_i$ v. $\sum_{i=1}^{5} x_i y_i$ vi. $(\sum_{i=1}^{5} x_i) (\sum_{i=1}^{5} y_i)$ vii. $\sum_{i=1}^{5} a x_i$ with a = 2viii. $a \sum_{i=1}^{5} x_i$ with a = 2ix. $\sum_{i=1}^{5} a$ with a = 4
- (b) Before making any further calculations, which sample, x or y, do you think has the larger mean? Calculate \bar{x} and \bar{y} and compare.
- (c) Before making any further calculations, which sample, x or y, do you think has the larger variance? Calculate s^2 for each sample and compare.
- (d) Verify numerically that, except for rounding error, the n = 5 values satisfy the following:
 - i. $\sum_{i=1}^{5} (x_i \bar{x}) = 0$ ii. $\sum_{i=1}^{5} (x_i - \bar{x})^2 = \sum_{i=1}^{5} x_i^2 - n(\bar{x})^2 = \sum_{i=1}^{5} x_i^2 - \frac{(\sum_{i=1}^{5} x_i)^2}{n}$

- A company bottles milk in several sizes of container. A random sample of 17 containers is obtained from the "small" container size. The volumn of milk (in ounces) is measured for each container. The volumns are:
 5.99 5.84 5.95 6.09 5.93 5.88 5.92 6.04 6.00
 5.89 5.95 5.97 5.90 5.91 6.03 5.89 5.98
 - (a) Make a stem and leaf display.
 - (b) Find the mean, standard deviation, median, 1st quartile, 3rd quartile, range, IQR and 20th percentile of the data.
 - (c) Construct a box plot for these data.

III Solutions of the Practice problems

1. (a) Evaluate the following:

6.0 | 9

i.
$$\sum_{i=1}^{5} x_i = 24.7$$

ii. $\sum_{i=1}^{5} x_i^2 = 16.00 + 25.00 + 60.84 + 40.96 + 2.25 = 145.05$
iii. $(\sum_{i=1}^{5} x_i)^2 = 24.7^2 = =610.09$
iv. $\sum_{i=1}^{5} x_i = 121.5$
v. $\sum_{i=1}^{5} x_i y_i = 132.00 + 39.50 + 145.86 + 38.40 + 83.85 = 439.61$
vi. $(\sum_{i=1}^{5} x_i)(\sum_{i=1}^{5} y_i) = 24.7(121.5) = 3001.05$
vii. $\sum_{i=1}^{5} ax_i$ with $a = 2$: $8.0 + 10.0 + 15.6 + 12.8 + 3.0 = 49.4$
viii. $a \sum_{i=1}^{5} x_i$ with $a = 2$: $2(24.7) = 49.4$
ix. $\sum_{i=1}^{5} a$ with $a = 4 = 4 + 4 + 4 + 4 = 20$
(b) $\bar{x} = \frac{24.7}{5} = 4.94$, $\bar{y} = \frac{121.5}{5} = 24.3$.
(c) $s_x^2 = 5.758$, $s_y^2 = 427.365$.
(d) i. $\sum_{i=1}^{5} (x_i - \bar{x})^2 = 0.8836 + 0.0036 + 8.1796 + 2.1316 + 11.8336 = 23.032$
 $\sum_{i=1}^{5} x_i^2 - n(\bar{x})^2 = 145.05 - 5(4.94)^2 = 23.032$
 $\sum_{i=1}^{5} x_i^2 - n(\bar{x})^2 = 145.05 - \frac{24.7^2}{5} = 23.032$
2. (a) $\begin{array}{c} 5.8 + 4 \\ 5.8 + 899 \\ 5.9 + 55789 \\ 6.0 + 034 \end{array}$

(b) mean=5.9506, standard deviation=0.0657, median=5.95, range=0.25, $Q1=x_{[5]}=5.90$, $Q3=x_{[13]}=5.99$, IQR=0.09, 20th percentile $=x_{[4]}=5.89$.