Review

1. Sample space and Event

Elementary outcome is an individual possible result of an experiment. Sample space $\mathbf{S} =$ the set of all elementary outcomes. An *event* is a collection of elementary outcomes.

Suppose **A** and **B** are two events:

- (a) **A** OR **B** = the set of elementary outcomes either in **A**, in **B** or in both (union)
- (b) \mathbf{A} AND \mathbf{B} = the set of elementary outcomes in both \mathbf{A} and \mathbf{B} (intersection)
- (c) NOT \mathbf{A} = the set of elementary outcomes not in \mathbf{A} (complement)
- (d) **A** and **B** are mutually exclusive if they do not have elementary outcomes in common.
- 2. Probabilities are defined in terms of a model. A probability model consists of a probability assignment for each of the events in sample space **S**. Rules for probability assignments:
 - (a) For any event \mathbf{A} , $0 \leq \mathbf{P}(\mathbf{A}) \leq 1$
 - (b) P(S)=1
 - (c) If **A** and **B** are mutually exclusive, then $P(\mathbf{A} \text{ OR } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B})$
- 3. Suppose **A** and **B** are two events
 - (a) $P(\mathbf{A} \text{ OR } \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) P(\mathbf{A} \text{ AND } \mathbf{B})$
 - (b) $P(NOT \mathbf{A}) = 1 P(\mathbf{A})$
 - (c) $P(\mathbf{A} \text{ AND } \mathbf{B}) = P(\mathbf{A})P(\mathbf{B})$ if \mathbf{A} and \mathbf{B} are independent
 - (d) Conditional probability of event **A** given **B** is

$$P(\mathbf{A}|\mathbf{B}) = \frac{P(\mathbf{A} \text{ AND } \mathbf{B})}{P(\mathbf{B})}$$

If **A** and **B** are independent, then $P(\mathbf{A}|\mathbf{B}) = P(\mathbf{A})$. So $P(\mathbf{A} \text{ AND } \mathbf{B}) = P(\mathbf{A})P(\mathbf{B})$

(e) Is there any relationship between mutually exclusive and independence? Answer: No. They are different concepts.

Practice Problem

(a) Suppose that the bowl looks like:

(1Y) $(2Y)$	(3Y)	(1R)	(2R)	(?R)	I
-------------	------	------	------	------	---

Let \mathbf{A} be the event that the ball has a 1 on it. Let \mathbf{B} be the event that the ball is yellow.

- i. Suppose $P(\mathbf{B}|\mathbf{A}) = \frac{1}{3}$, what is the number corresponding to the ball marked "?"?
- ii. Suppose $P(\mathbf{B}|\mathbf{A}) = \frac{3}{4}$, is this possible?
- (b) 100 students reported the numbers of brothers and sisters they have. The results are summarized in the following table:

	Number of Sisters					
		0	1	≥ 2	total	
Number	0	3	8	9	20	
of	1	7	15	8	30	
Brothers	≥ 2	15	17	18	50	
	total	25	40	35	100	

Consider the experiment of selecting 1 person at random from a class of 100 students. Compute the following probabilities:

- i. Pr(at least 1 sister)
- ii. Pr(exactly 1 sister or more than 1 brother)
- iii. Pr(exactly 1 brother given that the student has at least 2 sisters)
- iv. Pr(exactly 1 sister given that the student has exactly 1 brother)
- v. Define A = "having one sister", B = "having no brothers". Are A and B independent?

Solutions

(a)

1. $\mathbf{B} = \{1Y, 2Y, 3Y\}$ and \mathbf{A} AND $\mathbf{B} = \{1Y\}$, therefore, $P(\mathbf{B}) = \frac{3}{6} = \frac{1}{2}$ and $P(\mathbf{A} \text{AND}\mathbf{B}) = \frac{1}{6}$. Now since $P(\mathbf{B}|\mathbf{A}) = \frac{1}{3}$, we have

$$P(\mathbf{A}) = \frac{P(\mathbf{A} \text{AND}\mathbf{B})}{P(\mathbf{B}|\mathbf{A})} = \frac{1/6}{1/3} = \frac{1}{2}.$$

Now we can declare that ? = 1.

2. If $P(\mathbf{B}|\mathbf{A}) = \frac{3}{4}$, then

$$P(\mathbf{A}) = \frac{P(\mathbf{A} \text{AND}\mathbf{B})}{P(\mathbf{B}|\mathbf{A})} = \frac{1/6}{3/4} = \frac{2}{9}.$$

This result is impossible.

(b)

1.

$$P(\text{at least 1 sister}) = P(1S \text{ } or \ge 2S)$$

= $P(1S) + P(\ge 2S)$
= $\frac{40}{100} + \frac{35}{100}$
= $\frac{75}{100} = .75$

2.

$$P(\text{ exactly 1 sister or more than 1 brother}) = P(1Sand0B, 1Sand1B, 1Sand \ge 2B, 0Sand \ge 2B, 2Sand \ge 2B) = \frac{8+15+17+15+18}{100} = .73$$

3.

P(exactly 1 brother given that the student has at least 2 sisters)P(1|| > 2S)

$$= \frac{P(1B| \ge 2S)}{P(1Band \ge 2S)}$$
$$= \frac{P(1Band \ge 2S)}{\ge 2S}$$
$$= \frac{8/100}{35/100} = 0.2286$$

email: kozloski@stat.wisc.edu Office:CSS 4257

Phone:262-8181

4.

P(exactly 1 sister given that the student has exactly 1 brother)

$$= P(1S|1B) = \frac{P(1Sand1B)}{P(1B)} = \frac{15/100}{30/100} = .5$$

5.

$$P(\mathbf{A}) = P(1S) = \frac{40}{100} = .4,$$
$$P(\mathbf{B}) = P(0B) = \frac{20}{100} = .2,$$

and

$$P(\mathbf{A} \text{ AND } \mathbf{B}) = P(1Sand0B) = \frac{8}{100} = .08.$$

Since $P(\mathbf{A} \text{ AND } \mathbf{B}) = P(\mathbf{A})P(\mathbf{B})$, we can say that \mathbf{A} and \mathbf{B} are independent.