Review

1. Sample space and Event

Elementary outcome is an individual possible result of an experiment.
Sample space $\mathbf{S}=$ the set of all elementary outcomes.
An event is a collection of elementary outcomes.

Suppose \mathbf{A} and \mathbf{B} are two events:
(a) \mathbf{A} OR $\mathbf{B}=$ the set of elementary outcomes either in \mathbf{A}, in \mathbf{B} or in both (union)
(b) \mathbf{A} AND $\mathbf{B}=$ the set of elementary outcomes in both \mathbf{A} and \mathbf{B} (intersection)
(c) NOT $\mathbf{A}=$ the set of elementary outcomes not in \mathbf{A} (complement)
(d) \mathbf{A} and \mathbf{B} are mutually exclusive if they do not have elementary outcomes in common.
2. Probabilities are defined in terms of a model. A probability model consists of a probability assignment for each of the events in sample space \mathbf{S}. Rules for probability assignments:
(a) For any event $\mathbf{A}, 0 \leq \mathbf{P}(\mathbf{A}) \leq 1$
(b) $\mathrm{P}(\mathbf{S})=1$
(c) If \mathbf{A} and \mathbf{B} are mutually exclusive, then $\mathrm{P}(\mathbf{A}$ OR $\mathbf{B})=\mathrm{P}(\mathbf{A})+\mathrm{P}(\mathbf{B})$
3. Suppose \mathbf{A} and \mathbf{B} are two events
(a) $\mathrm{P}(\mathbf{A}$ OR $\mathbf{B})=\mathrm{P}(\mathbf{A})+\mathrm{P}(\mathbf{B})-\mathrm{P}(\mathbf{A}$ AND $\mathbf{B})$
(b) $\mathrm{P}(\operatorname{NOT} \mathbf{A})=1-\mathrm{P}(\mathbf{A})$
(c) $\mathrm{P}(\mathbf{A}$ AND $\mathbf{B})=\mathrm{P}(\mathbf{A}) \mathrm{P}(\mathbf{B})$ if \mathbf{A} and \mathbf{B} are independent
(d) Conditional probability of event \mathbf{A} given \mathbf{B} is

$$
P(\mathbf{A} \mid \mathbf{B})=\frac{P(\mathbf{A} \text { AND } \mathbf{B})}{P(\mathbf{B})}
$$

If \mathbf{A} and \mathbf{B} are independent, then $P(\mathbf{A} \mid \mathbf{B})=P(\mathbf{A})$. So $P(\mathbf{A}$ AND B $)=P(\mathbf{A}) P(\mathbf{B})$
(e) Is there any relationship between mutually exclusive and independence? Answer: No. They are different concepts.

Practice Problem

(a) Suppose that the bowl looks like:

$(1 \mathrm{Y})$	$(2 \mathrm{Y})$	$(3 \mathrm{Y})$	$(1 \mathrm{R})$	$(2 \mathrm{R})$	$(? \mathrm{R})$

Let \mathbf{A} be the event that the ball has a 1 on it. Let \mathbf{B} be the event that the ball is yellow.
i. Suppose $P(\mathbf{B} \mid \mathbf{A})=\frac{1}{3}$, what is the number corresponding to the ball marked "?"?
ii. Suppose $P(\mathbf{B} \mid \mathbf{A})=\frac{3}{4}$, is this possible?
(b) 100 students reported the numbers of brothers and sisters they have. The results are summarized in the following table:

	Number of Sisters				
		0	1	≥ 2	total
	0	3	8	9	20
	1	7	15	8	30
	≥ 2	15	17	18	50
	total	25	40	35	100

Consider the experiment of selecting 1 person at random from a class of 100 students. Compute the following probabilities:
i. Pr (at least 1 sister)
ii. Pr (exactly 1 sister or more than 1 brother)
iii. Pr (exactly 1 brother given that the student has at least 2 sisters)
iv. Pr (exactly 1 sister given that the student has exactly 1 brother)
v. Define $\mathrm{A}=$ "having one sister", $\mathrm{B}=$ " having no brothers". Are A and B independent?

Solutions

(a)

1. $\mathbf{B}=\{1 \mathrm{Y}, 2 \mathrm{Y}, 3 \mathrm{Y}\}$ and \mathbf{A} AND $\mathbf{B}=\{1 \mathrm{Y}\}$,
therefore, $P(\mathbf{B})=\frac{3}{6}=\frac{1}{2}$ and $P(\mathbf{A A N D B})=\frac{1}{6}$.
Now since $P(\mathbf{B} \mid \mathbf{A})=\frac{1}{3}$, we have

$$
P(\mathbf{A})=\frac{P(\mathbf{A A N D B})}{P(\mathbf{B} \mid \mathbf{A})}=\frac{1 / 6}{1 / 3}=\frac{1}{2}
$$

Now we can declare that $?=1$.
2. If $P(\mathbf{B} \mid \mathbf{A})=\frac{3}{4}$, then

$$
P(\mathbf{A})=\frac{P(\mathbf{A A N D B})}{P(\mathbf{B} \mid \mathbf{A})}=\frac{1 / 6}{3 / 4}=\frac{2}{9}
$$

This result is impossible.
(b)
1.

$$
\begin{aligned}
P(\text { at least } 1 \text { sister }) & =P(1 S \text { or } \geq 2 S) \\
& =P(1 S)+P(\geq 2 S) \\
& =\frac{40}{100}+\frac{35}{100} \\
& =\frac{75}{100}=.75
\end{aligned}
$$

2.

$$
\begin{aligned}
& P(\text { exactly } 1 \text { sister or more than } 1 \text { brother }) \\
= & P(1 \text { Sand } 0 B, 1 \text { Sand } 1 B, 1 \text { Sand } \geq 2 B, 0 \text { Sand } \geq 2 B, 2 \text { Sand } \geq 2 B) \\
= & \frac{8+15+17+15+18}{100}=.73
\end{aligned}
$$

3.

$$
\begin{aligned}
& P(\text { exactly } 1 \text { brother given that the student has at least } 2 \text { sisters }) \\
= & P(1 B \mid \geq 2 S) \\
= & \frac{P(1 B a n d \geq 2 S)}{\geq 2 S} \\
= & \frac{8 / 100}{35 / 100}=0.2286
\end{aligned}
$$

4.

P (exactly 1 sister given that the student has exactly 1 brother)

$$
\begin{aligned}
& =P(1 S \mid 1 B) \\
& =\frac{P(1 \text { Sand } 1 B)}{P(1 B)} \\
& =\frac{15 / 100}{30 / 100}=.5
\end{aligned}
$$

5.

$$
\begin{aligned}
& P(\mathbf{A})=P(1 S)=\frac{40}{100}=.4, \\
& P(\mathbf{B})=P(0 B)=\frac{20}{100}=.2,
\end{aligned}
$$

and

$$
P(\mathbf{A} \text { AND B })=P(1 \text { Sand } 0 B)=\frac{8}{100}=.08
$$

Since $P(\mathbf{A}$ AND $\mathbf{B})=P(\mathbf{A}) P(\mathbf{B})$, we can say that \mathbf{A} and \mathbf{B} are independent.

