Discussion #6

Review: Confidence Interval

- 1. Suppose $X \sim N(\mu, \sigma^2)$, and $X_1, X_2, ..., X_n$ is a random sample from this distribution.
 - (a) If σ is known, the (1α) C.I. for μ is

$$\bar{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$

where $Z_{\alpha/2}$ is such that $P(Z \ge Z_{\alpha/2}) = \alpha/2$

(b) If σ is unknown, then the $(1 - \alpha)$ C.I. for μ is

$$\bar{x} - T_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + T_{n-1,\alpha/2} \frac{s}{\sqrt{n}},$$

- where $T_{n-1,\alpha/2}$ is such that $P(T_{n-1} \ge T_{n-1,\alpha/2}) = \alpha/2$
- (c) The (1α) C.I. for σ^2 is

$$\frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}},$$

For testing the variance, use

$$V^2 = \frac{(n-1)S^2}{\sigma^2}$$

where σ^2 is the hypothesized value in H_o . V^2 is exactly χ^2_{n-1} distribution.

2. In general, if $E(X) = \mu$, $Var(X) = \sigma^2$, and sample size *n* is large, then the $(1 - \alpha)$ C.I. for μ is

$$\bar{x} - Z_{\alpha/2} \ \sigma_{\bar{X}} \le \mu \le \bar{x} + Z_{\alpha/2} \ \sigma_{\bar{X}}$$

where
$$\sigma_{\bar{X}} = \begin{cases} \sigma/\sqrt{n} & \text{if } \sigma \text{ is known} \\ s/\sqrt{n} & \text{if } \sigma \text{ is unknown} \end{cases}$$

3. Relation between C.I. and two-sided hypothesis testing (not for binomial distribution):

If the $(1 - \alpha)$ C.I. for μ contains the hypothesized value μ_0 , then we do not reject the null hypothesis H_0 at level α . Otherwise we reject H_0 at level α .

4. If X is distributed as B(n, p), and n is reasonably large, then the $(1 - \alpha)$ C.I. for p is

$$\hat{p} - Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Note that in hypothesis testing, we use the hypothesized value p_0 to calculate p-value, but we use \hat{p} in computing C.I. for p.

Practice Problem

Review Problem from Chapter 6: Inference on Variance

1. It is thought that the variability in measuring the weights of watermelon seeds is at most $0.0025 \ gm^2$. You obtain the following random sample of 8 watermelon seeds: $0.82 \ 0.71 \ 0.77 \ 0.67 \ 0.70 \ 0.85 \ 0.73 \ 0.77$. Test the claim and evaluate the assumptions required for this test.

Problems for Chapter 7: Confidence Intervals

- 2. The time to blossom of 21 plants has $\bar{X} = 39$ days and s = 5.1 days. Assume that the time of blossom of a plant is normally distributed.
 - (a) Give a 90% C.I. of the mean time to blossom.
 - (b) Describe the effects on the C.I. if σ is known and $\sigma = 5.1$.
 - (c) Compute a 90% C.I. for the population variance of the time to blossom.
- 3. A forester measures 100 needles of a pine tree and finds $\bar{X} = 3.1$ cm and s = 0.7 cm.
 - (a) What is a point estimate for μ i.e., the population mean of needle length of the tree ?
 - (b) Construct 95% C.I. for μ . Does the interval cover the true mean ?
 - (c) Test the claim that $\mu = 3$ against the 2 sided alternative using result in (b).
- 4. A machine in a food processing factory must be repaired if it produces more than 10% defectives among the large lot of items it produces in a day. A random sample of 100 items from the day's production contains 15 defectives.
 - (a) Using $\alpha = 0.01$, would you conclude that the machine needs repair ?
 - (b) Find 99% C.I. for the % defectives in the population.
 - (c) State (if any) the relationship between results in (a) and (b).

Suppose we are sampling from N(μ, 64) distribution. How large must n be so that a 95% C.I. for μ has length equal to 0.1?

Solution

1. Assume normal data, n = 8, $\bar{x} = 0.7525$, $S^2 = 0.00379$ $H_0: \sigma^2 = 0.0025 \quad vs \quad H_A: \sigma^2 > 0.0025$ $p\text{-value} = P(S^2 \ge 0.00379|H_0)$ $= P(\frac{(n-1)S^2}{\sigma^2} \ge \frac{7 \times 0.00379}{0.0025})$ $= P(V^2 > 10.62)$

From the chi-squared tables, we determine that 0.1 . Hence there is $no meaningful evidence against <math>H_0$.

2. Normal data, $\bar{x} = 39, s = 5.1, n = 21$.

(a)
$$\alpha/2 = 0.05,$$

 $\bar{x} - T_{20,0.05} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + T_{20,0.05} \frac{s}{\sqrt{n}}$
 $39 - 1.725 \frac{5.1}{\sqrt{21}} \le \mu \le 39 + 1.725 \frac{5.1}{\sqrt{21}}$
 $37.08 \le \mu \le 40.92$

(b)
$$\sigma = 5.1$$
,
 $\bar{x} - Z_{0.05} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{0.05} \frac{\sigma}{\sqrt{n}}$
 $39 - 1.645 \frac{5.1}{\sqrt{21}} \le \mu \le 39 + 1.645 \frac{5.1}{\sqrt{21}}$
 $37.17 \le \mu \le 40.83$

The C.I. in part(b) is slightly narrower than that in part(a).

(c)
$$\alpha/2 = 0.05, 1 - \alpha/2 = 0.95$$

 $\frac{(n-1)s^2}{\chi^2_{20,0.05}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{20,0.95}}$
 $\frac{20(5.1)^2}{31.41} \le \sigma^2 \le \frac{20(5.1)^2}{10.85}$
 $16.56 \le \sigma^2 \le 47.94 \text{ or } 4.07 \le \sigma \le 6.92$

- 3. (a) A point estimate for μ is 3.1.
 - (b) $\alpha/2 = 0.025, n = 100 > 30.$

$$\bar{x} - Z_{0.025} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + Z_{0.025} \frac{s}{\sqrt{n}}$$
$$3.1 - 1.96 \frac{0.7}{\sqrt{100}} \le \mu \le 3.1 + 1.96 \frac{0.7}{\sqrt{100}}$$
$$2.9628 \le \mu \le 3.2372$$

(c) $H_0: \mu = 3$ vs. $H_A: \mu \neq 3$ Since the 1-0.05 = 95% confidence interval for μ contains 3, we don't reject the null hypothesis H_0 at 0.05 level. 4. Let X = number of defectives, then $X \sim Bi(100, p)$

(a)
$$H_0: p = 0.1 vs H_A: p > 0.1$$

$$p - value = P(X \ge 15|H_0)$$

= $P(\frac{X_{NA} - \mu_X}{\sigma_X} \ge \frac{15 - \mu_X}{\sigma_X})$
= $P(Z \ge \frac{15 - 100 \times 0.1}{\sqrt{100 \times 0.1 \times 0.9}})$
= $P(Z \ge 1.67) = 0.0475$

(b)
$$\alpha/2 = 0.01/2 = 0.005$$
, $\hat{p} = X/n = 15/100 = 0.15$

$$\hat{p} - Z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + Z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$0.15 - 2.576 \sqrt{\frac{0.15 \times (1-0.15)}{100}} \le p$$
$$\text{and } p \le 0.15 + 2.576 \sqrt{\frac{0.15 \times (1-0.15)}{100}}$$
$$0.058 \le p \le 0.242$$

- (c) The direct relationship between confidence intervals and significant testing does not hold for confidences intervals obtained from the normal approximation to the binomial.
- 5. normal data, $\sigma=8,\,\alpha=0.025$

$$\bar{x} - Z_{0.025} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + Z_{0.025} \frac{\sigma}{\sqrt{n}}$$

C.I. length = $(\bar{x} + Z_{0.025} \frac{\sigma}{\sqrt{n}}) - (\bar{x} - Z_{0.025} \frac{\sigma}{\sqrt{n}})$
= $2Z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times 1.96 \times \frac{8}{\sqrt{n}} = 0.1$

Thus $\sqrt{n} = 313.6$ and n = 98345.