Discussion \#6

Review: Confidence Interval

1. Suppose $X \sim N\left(\mu, \sigma^{2}\right)$, and $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from this distribution.
(a) If σ is known, the $(1-\alpha)$ C.I. for μ is

$$
\bar{x}-Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}},
$$

where $Z_{\alpha / 2}$ is such that

$$
P\left(Z \geq Z_{\alpha / 2}\right)=\alpha / 2
$$

(b) If σ is unknown, then the $(1-\alpha)$ C.I. for μ is

$$
\bar{x}-T_{n-1, \alpha / 2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x}+T_{n-1, \alpha / 2} \frac{s}{\sqrt{n}},
$$

where $T_{n-1, \alpha / 2}$ is such that $P\left(T_{n-1} \geq T_{n-1, \alpha / 2}\right)=\alpha / 2$
(c) The $(1-\alpha)$ C.I. for σ^{2} is

$$
\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2}},
$$

For testing the variance, use

$$
V^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

where σ^{2} is the hypothesized value in $H_{o} . V^{2}$ is exactly χ_{n-1}^{2} distribution.
2. In general, if $\mathrm{E}(\mathrm{X})=\mu, \operatorname{Var}(X)=\sigma^{2}$, and sample size n is large, then the $(1-\alpha)$ C.I. for μ is

$$
\bar{x}-Z_{\alpha / 2} \sigma_{\bar{X}} \leq \mu \leq \bar{x}+Z_{\alpha / 2} \sigma_{\bar{X}}
$$

where $\sigma_{\bar{X}}= \begin{cases}\sigma / \sqrt{n} & \text { if } \sigma \text { is known } \\ s / \sqrt{n} & \text { if } \sigma \text { is unknown }\end{cases}$

3. Relation between C.I. and two-sided

 hypothesis testing (not for binomial distribution):If the $(1-\alpha)$ C.I. for μ contains the hypothesized value μ_{0}, then we do not reject the null hypothesis H_{0} at level α. Otherwise we reject H_{0} at level α.
4. If X is distributed as $\mathrm{B}(n, p)$, and n is reasonably large, then the $(1-\alpha)$ C.I. for p is
$\hat{p}-Z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+Z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Note that in hypothesis testing, we use the hypothesized value p_{0} to calculate p -value, but we use \hat{p} in computing C.I. for p.

Practice Problem

Review Problem from Chapter 6: Inference on Variance

1. It is thought that the variability in measuring the weights of watermelon seeds is at most $0.0025 \mathrm{gm}^{2}$. You obtain the following random sample of 8 watermelon seeds: 0.82 0.710 .770 .670 .700 .850 .730 .77 . Test the claim and evaluate the assumptions required for this test.

Problems for Chapter 7: Confidence Intervals
2. The time to blossom of 21 plants has $\bar{X}=$ 39 days and $s=5.1$ days. Assume that the time of blossom of a plant is normally distributed.
(a) Give a 90% C.I. of the mean time to blossom.
(b) Describe the effects on the C.I. if σ is known and $\sigma=5.1$.
(c) Compute a 90% C.I. for the population variance of the time to blossom.
3. A forester measures 100 needles of a pine tree and finds $\bar{X}=3.1 \mathrm{~cm}$ and $s=0.7 \mathrm{~cm}$.
(a) What is a point estimate for μ i.e., the population mean of needle length of the tree ?
(b) Construct 95% C.I. for μ. Does the interval cover the true mean ?
(c) Test the claim that $\mu=3$ against the 2 sided alternative using result in (b).
4. A machine in a food processing factory must be repaired if it produces more than 10% defectives among the large lot of items it produces in a day. A random sample of 100 items from the day's production contains 15 defectives.
(a) Using $\alpha=0.01$, would you conclude that the machine needs repair ?
(b) Find 99% C.I. for the $\%$ defectives in the population.
(c) State (if any) the relationship between results in (a) and (b).
5. Suppose we are sampling from $N(\mu, 64)$ distribution. How large must n be so that a 95% C.I. for μ has length equal to 0.1 ?

Solution

1. Assume normal data, $n=8, \bar{x}=0.7525$, $S^{2}=0.00379$
$H_{0}: \sigma^{2}=0.0025$ vs $H_{A}: \sigma^{2}>0.0025$

$$
\begin{aligned}
& \text { p-value }=P\left(S^{2} \geq 0.00379 \mid H_{0}\right) \\
& =P\left(\frac{(n-1) S^{2}}{\sigma^{2}} \geq \frac{7 \times 0.00379}{0.0025}\right) \\
& =P\left(V^{2} \geq 10.62\right)
\end{aligned}
$$

From the chi-squared tables, we determine that $0.1<p-$ value <0.25. Hence there is no meaningful evidence against H_{0}.
2. Normal data, $\bar{x}=39, s=5.1, n=21$.
(a) $\alpha / 2=0.05$,

$$
\begin{aligned}
\bar{x}-T_{20,0.05} \frac{s}{\sqrt{n}} & \leq \mu \leq \bar{x}+T_{20,0.05} \frac{s}{\sqrt{n}} \\
39-1.725 \frac{5.1}{\sqrt{21}} & \leq \mu \leq 39+1.725 \frac{5.1}{\sqrt{21}} \\
37.08 & \leq \mu \leq 40.92
\end{aligned}
$$

(b) $\sigma=5.1$,

$$
\begin{aligned}
& \bar{x}-Z_{0.05} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+Z_{0.05} \frac{\sigma}{\sqrt{n}} \\
& 39-1.645 \frac{5.1}{\sqrt{21}} \leq \mu \leq 39+1.645 \frac{5.1}{\sqrt{21}} \\
& 37.17 \leq \mu \leq 40.83
\end{aligned}
$$

The C.I. in part(b) is slightly narrower than that in part(a).
(c) $\alpha / 2=0.05,1-\alpha / 2=0.95$

$$
\begin{aligned}
\frac{(n-1) s^{2}}{\chi_{20,0.05}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{20,0.95}^{2}} \\
\frac{20(5.1)^{2}}{31.41} \leq \sigma^{2} \leq \frac{20(5.1)^{2}}{10.85}
\end{aligned}
$$

$16.56 \leq \sigma^{2} \leq 47.94$ or $4.07 \leq \sigma \leq 6.92$
3. (a) A point estimate for μ is 3.1.
(b) $\alpha / 2=0.025, n=100>30$.

$$
\begin{aligned}
\bar{x}-Z_{0.025} \frac{s}{\sqrt{n}} & \leq \mu \leq \bar{x}+Z_{0.025} \frac{s}{\sqrt{n}} \\
3.1-1.96 \frac{0.7}{\sqrt{100}} & \leq \mu \leq 3.1+1.96 \frac{0.7}{\sqrt{100}} \\
2.9628 & \leq \mu \leq 3.2372
\end{aligned}
$$

(c) $H_{0}: \mu=3$ vs. $H_{A}: \mu \neq 3$

Since the $1-0.05=95 \%$ confidence interval for μ contains 3 , we don't reject the null hypothesis H_{0} at 0.05 level.
4. Let $X=$ number of defectives, then $X \sim$ Bi(100, p)
(a) $H_{0}: p=0.1$ vs $H_{A}: p>0.1$

$$
\begin{aligned}
p-\text { value } & =P\left(X \geq 15 \mid H_{0}\right) \\
& =P\left(\frac{X_{N A}-\mu_{X}}{\sigma_{X}} \geq \frac{15-\mu_{X}}{\sigma_{X}}\right) \\
& =P\left(Z \geq \frac{15-100 \times 0.1}{\sqrt{100 \times 0.1 \times 0.9}}\right) \\
& =P(Z \geq 1.67)=0.0475
\end{aligned}
$$

(b) $\alpha / 2=0.01 / 2=0.005, \quad \hat{p}=X / n=$ $15 / 100=0.15$

$$
\begin{aligned}
& \hat{p}-Z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+Z_{0.005} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& 0.15-2.576 \sqrt{\frac{0.15 \times(1-0.15)}{100}} \leq p \\
& \text { and } p \leq 0.15+2.576 \sqrt{\frac{0.15 \times(1-0.15)}{100}} \\
& \quad 0.058 \leq p \leq 0.242
\end{aligned}
$$

(c) The direct relationship between confidence intervals and significant testing does not hold for confidences intervals obtained from the normal approximation to the binomial.
5. normal data, $\sigma=8, \alpha=0.025$

$$
\bar{x}-Z_{0.025} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+Z_{0.025} \frac{\sigma}{\sqrt{n}}
$$

C.I. length $=\left(\bar{x}+Z_{0.025} \frac{\sigma}{\sqrt{n}}\right)-\left(\bar{x}-Z_{0.025} \frac{\sigma}{\sqrt{n}}\right)$ $=2 Z_{0.025} \frac{\sigma}{\sqrt{n}}=2 \times 1.96 \times \frac{8}{\sqrt{n}}=0.1$
Thus $\sqrt{n}=313.6$ and $n=98345$.

