Model

$$Y_i = b_0 + b_1 x_i + e_i$$
, $e_i \sim \text{iid } N(0, \sigma^2)$, $i = 1, \dots, n$.

Model Assumptions

(1) Correct model (2) Independence (3) Homogeneous variance (4) Normal distribution

Statistical Inference

- ANOVA approach: F-test of H_0 : $b_1 = 0$ using the partition of sums of squares $\sum_{i=1}^{n} (y_i \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2 + \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (SSTotal (n-1) = SSRegression (1) + SSError (n-2)).
- Standardization approach: $\frac{\odot \mu_{\odot}}{\text{s.e.}(\odot)}$ where \odot is a statistic such as $\hat{b}_0, \hat{b}_1, \hat{y}_{\text{est}}, \hat{y}_{\text{pred}}$.

T-test/CI of	Using
b_1	\hat{b}_1 and s.e. (\hat{b}_1)
b_0	$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$ and s.e. (\hat{b}_0)
$b_0 + b_1 x^*$	$\hat{y}_{\text{est}} = \hat{b}_0 + \hat{b}_1 x^*$ given x^* and s.e. (\hat{y}_{est})
$b_0 + b_1 x^* + e$	$\hat{y}_{\text{pred}} = \hat{b}_0 + \hat{b}_1 x^*$ given x^* and s.e. (\hat{y}_{pred}) [No test!]

• Test and CI of σ^2 : $s_{Y\cdot x}^2 = \text{MSError}$ is used to estimate σ^2 and $s_{Y\cdot x} = \sqrt{\text{MSError}}$ is used to estimate σ . e.g., s.e. $(\hat{b}_1) = \frac{s_{Y\cdot x}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$.

Model Fitting

Coefficient of determination $R^2 = \frac{\text{SSRegression}}{\text{SSTotal}}$ where SSTotal is mean-corrected.

Model Diagnostics

How to check model assumptions? Look at residuals $r_i = y_i - \hat{y}_i$ (i.e., obs y – fitted y).

- r_i is a raw residual.
- $\sum_{i=1}^{n} r_i = 0.$
- $\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i \bar{y})^2 = \text{SSError.}$
- Plots of r_i versus \hat{y}_i can be used to check model assumptions.
- Normal score plots of r_i can be used to assess the normality assumption.
- If *n* is small, it might be hard to interpret the residual plots.