Stat/For/Hort 571 - Fall 2003

Assignment 1 - Brief Solutions

1. (a) Evaluate the following:
i. $\sum_{i=1}^{8} x_{i}=43.63$
ii. $\sum_{i=1}^{8} x_{i}^{2}=295.8189$
iii. $\left(\sum_{i=1}^{8} x_{i}\right)^{2}=1903.577$
iv. $\sum_{i=1}^{8} y_{i}=617.51$
v. $\sum_{i=1}^{8} x_{i} y_{i}=3366.623$
vi. $\left(\sum_{i=1}^{8} x_{i}\right)\left(\sum_{i=1}^{8} y_{i}\right)=26941.96$
vii. $\sum_{i=1}^{8} a x_{i}=305.41$ with $a=7$
viii. $a \sum_{i=1}^{8} x_{i}=305.41$ with $a=7$
ix. $\sum_{i=1}^{8} a=32$ with $a=4$
x. the answers are not the same, and that the order in which we do the calculations makes a difference
xi. the answers are not the same, and that the order in which we do the calculations makes a difference
xii. the answers are the same, and that the order in which we do the calculations here does not make a difference
(b)

$$
\bar{x}=5.45375 \bar{y}=77.18875
$$

(c)

$$
s_{x}^{2}=8.2674 s_{y}^{2}=0.1292
$$

(d) i.

$$
\begin{aligned}
\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)= & (4.47-5.45375)+(9.75-5.45375)+(1.41-5.45375) \\
& +(8.26-5.45375)+(4.17-5.45375)+(7.63-5.45375) \\
& +(5.28-5.45375)+(2.66-5.45375) \\
= & -0.98375+4.29625-4.04375+2.80625-1.28375 \\
& +2.17625-0.17375-2.79375 \\
= & 0
\end{aligned}
$$

ii.

$$
\begin{aligned}
& \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}=(4.47-5.45375)^{2}+(9.75-5.45375)^{2}+(1.41-5.45375)^{2} \\
&+(8.26-5.45375)^{2}+(4.17-5.45375)^{2}+(7.63-5.45375)^{2} \\
&+(5.28-5.45375)^{2}+(2.66-5.45375)^{2} \\
&= 0.9678+18.4578+16.3519+7.8750+1.6480 \\
&+4.7361+0.0302+7.8050 \\
&= 57.8718 \\
& \sum_{i=1}^{8} x_{i}^{2}-n(\bar{x})^{2}=295.8189-8 \times 5.45375^{2}=57.8718 \\
& \sum_{i=1}^{8} x_{i}^{2}-\frac{\left(\sum_{i=1}^{8} x_{i}\right)^{2}}{n}=295.8189-\frac{(43.63)^{2}}{8}=57.8718
\end{aligned}
$$

So, we have

$$
\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{8} x_{i}^{2}-n(\bar{x})^{2}=\sum_{i=1}^{8} x_{i}^{2}-\frac{\left(\sum_{i=1}^{8} x_{i}\right)^{2}}{n}
$$

2. (a) The decimal point is $1 \operatorname{digit}(\mathrm{~s})$ to the right of the \mid

21 | 558
22 | 56
23 | 025
24 | 011456
25 | 0468
26|7
27 | 0459
28 | 0003455667
29 | 12334889
30 | 0789
31 | 145
32 |
33 | 09
34 | 6
35 |
36 | 6

Mostly bell-shaped.
(b) Median $=x_{[0.50]}=\frac{x_{(26)}+x_{(27)}}{2}=281.5$

Range $=366-215=151$
$\mathrm{IQR}=x_{[0.75]}-x_{[0.25]}=\frac{x_{(39)}+x_{(40)}}{2}-\frac{x_{(13)}+x_{(14)}}{2}=298-245.5=52.5$
$x_{[0.40]}=x_{(21)}=274$

3. The stem-and-leaf display is quite informative:

```
The decimal point is 2 digit(s) to the right of the |
leaf(Healthy)| stem | leaf(infected)
--------------------------------------------
\begin{tabular}{|c|c|c|}
\hline & 0 & | 2 \\
\hline & 1 & | 78 \\
\hline & 2 & 10 \\
\hline & 3 & | 4 \\
\hline & 4 & | 14 \\
\hline & 5 & । \\
\hline & 6 & I \\
\hline & 7 & | 1344 \\
\hline & 8 & | 9 \\
\hline & 9 & 19 \\
\hline 7 & 10 & | \\
\hline & 11 & | 2 \\
\hline & 12 & , \\
\hline 236 & 13 & । \\
\hline 5 & 14 & I \\
\hline 2 & 15 & I \\
\hline 5 & 16 & I \\
\hline 6 & 17 & I \\
\hline 7 & 18 & । \\
\hline
\end{tabular}
```

Summary statistics:

	Healthy	Infected
Median	1446	577.5
Mean	1480	549.4
sd	248.9849	343.4586
cv	0.1682331	0.6251196

Tentatively, we can draw a conclusion that the virus can reduce the stem volume.
4. In this case,the Population should be the students in that university. And we can extrapolate the inference to students in all the universities because age and whether the people of the same age level work or not might be important factors for determing whether the pain killer had any side effects of nausea. If my goal were to make inference to the public at large, I might make my sample comprised of the persons from many age level and from different field.

