STAT 571, Solution for Assignment \#12

December 8, 2003

1. $H_{o}: P_{M}=P_{T}=P_{W}=P_{R}=P_{F}=P_{S a}=P_{S n}=1 / 7$ $H_{A}: \operatorname{Not}_{o}$.

Observed values:
Saturday Sunday Mon-Fri
$87 \quad 67 \quad 246$
Expected values:
Saturday Sunday Mon-Fri
$57.143 \quad 57.143 \quad 285.714$

$$
\begin{aligned}
\chi^{2} & =\sum_{\text {allobs }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }} \\
& =22.82
\end{aligned}
$$

Compared it with χ_{2}^{2} distribution, we get p-value <0.001. We have very strong evidence to reject Ho.
2. $H_{o}: P_{A}=P_{B}=P_{C}=p$
$H_{A}: \operatorname{Not}_{o}$.
Since p is unknown, we estimate it by

$$
\hat{p}=\frac{19+44+27}{48+85+70}=0.44335
$$

Observed values:

AS	AF	BS	BF	CS	CF
19	29	44	41	27	43
Expected values:					
AS	AF	BS	BF	CS	CF
21.28	26.72	37.68	47.32	31.03	38.97

$$
\begin{aligned}
\chi^{2} & =\sum_{\text {allobs }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }} \\
& =3.283
\end{aligned}
$$

Compared it with χ_{2}^{2} distribution, we get p -value >0.25. We have no evidence to reject Ho.

