STAT 571, Solution for Assignment \#3

September 22, 2003
2. $\mathrm{X}=\#$ of diseased horses needing isolation room
a.

$$
P(X=1)=\frac{6!}{1!5!}(0.20)^{1}(0.80)^{5}=0.3932
$$

b.

$$
\begin{aligned}
P(X \leq 2) & \\
\quad= & P(X=0)+P(X=1)+P(X=2) \\
\quad= & 0.1678+0.3355+0.2936 \\
= & 0.7969
\end{aligned}
$$

3. a.

$$
\begin{aligned}
P(X= & 0)=P\{T T T\}=0.5(0.6)(0.6)=0.18 \\
P(X=1) & =P\{H T T, T H T, T T H\} \\
& =P\{H T T\}+P\{T H T\}+P\{T T H\} \\
& =0.5(0.4)(0.6)+0.5(0.6)(0.4)+0.5(0.4)(0.4) \\
& =0.32
\end{aligned}
$$

By symmetry, we have

$$
\begin{aligned}
& P(X=2)=P(X=1)=0.32 \\
& P(X=3)=P(X=0)=0.18
\end{aligned}
$$

b.

$$
\begin{aligned}
P\{H 1 s t\} & =P\{H H H\}+P\{H T H\}+P\{H H T\}+P\{H T T\} \\
& =0.5(0.6)(0.6)+0.5(0.6)(0.4)+0.5(0.4)(0.4)+0.5(0.4)(0.6) \\
& =0.5
\end{aligned}
$$

similarly, $P\{H 2 n d\}=P\{H 3 r d\}=0.5$.
c. 1 .

$$
P(X=0)=P\{T T T\}=0.5(0.9)(0.9)=0.405
$$

By symmetry, we have $P(X=3)=P(X=0)=0.405$.

$$
P(X=2)=P(X=1)=\frac{1-2(0.405)}{2}=0.095 .
$$

2.

$$
\begin{aligned}
P\{H 1 s t\} & =P\{H H H\}+P\{H T H\}+P\{H T T\}+P\{H T T\} \\
& =0.5(0.9)(0.9)+0.5(0.1)(0.1)+0.5(0.1)(0.9)+0.5) 0.1)(0.9) \\
& =0.5
\end{aligned}
$$

Or, we can get this result simplily by summetry.
Similarly, $P\{H 2 n d\}=P\{H 3 r d\}=0.5$.
d. Two assumptions are violated:

1. Each trial is not independent;
2. The probability of success is not the same.
3. a. i.

$$
P(Z \leq 0.65)=1-P(Z>0.65)=1-0.2578=0.7422 .
$$

ii.

$$
P(Z \geq-1.32 .)=1-P(Z>1.32)=1-0.0934=0.9066 .
$$

iii.

$$
\begin{aligned}
P(-1.25 \leq Z \leq 0.58) & =P(Z \leq 0.58)-P(Z<-0.1 .25) \\
& =1-P(Z>0.58)-P(Z>1.25) \\
& =1-0.2810-0.1056 \\
& =0.6134 .
\end{aligned}
$$

iv.

$$
\begin{aligned}
P(1.4 \leq Z \leq 2.4) & =P(Z \geq 1.4)-P(Z>2.4) \\
& =0.0808-0.0082=0.0726
\end{aligned}
$$

v.

$$
\begin{aligned}
P(-1.5 \leq Z \leq-1.2) & =P(1.2 \leq Z \leq 1.5) \\
& =P(Z \geq 1.2)-P(Z>1.5) \\
& =0.1151-0.0668=0.0483
\end{aligned}
$$

b. i.

$$
\begin{aligned}
& \quad P(-0.639 \leq Z)=P(Z \leq 0.639)=0.7386 . \\
& >\operatorname{pnorm}(.639,0,1)=.7386
\end{aligned}
$$

ii.

$$
\begin{aligned}
P(0.427 \leq Z \leq 1.295) & =P(Z \leq 1.295)-P(Z<0.427) \\
& =0.9023-0.6653=0.237
\end{aligned}
$$

$$
>\operatorname{pnorm}(1.295,0,1)-\operatorname{pnorm}(.427,0,1)=.237
$$

5. a. i.

$$
P(X \leq a)=P(X \geq-a)=0.3 .
$$

From the table, we get $-0.53<a<-0.52$.

$$
P(X \geq-b)=P(X \leq b)=0.2 .
$$

From the table, we have $-0.85<b<-0.84$.
ii.

$$
P(X>a)=0.25=P\left(\frac{X-10}{6}>\frac{a-10}{6}\right),
$$

then $0.67<\frac{a-10}{6}<0.68$, then $14.02<a<14.08$.

$$
P(X \geq b)=0.15=P\left(\frac{X-10}{6} \geq \frac{b-10}{6}\right)
$$

then $1.03<\frac{b-10}{6}<1.04$, then $16.18<b<16.24$.
iii.

$$
\begin{aligned}
& P(X \leq 0)=P(X+32 \leq 32)=P(Z \leq 1.5)=1-0.0668=0.9332 . \\
& P(X \geq b)=0.01=P\left(\frac{X+3}{2} \geq \frac{b+3}{2}\right)=P\left(Z \geq \frac{b+3}{2}\right) .
\end{aligned}
$$

Then $2.32<\frac{b+3}{2}<2.33$, then $1.64<b<1.66$.
iv.

$$
30.4<a<30.425, P(X \geq 31.81)=0.6844
$$

v.

$$
4.65<\sigma<4.6875
$$

b.

$$
P(X \geq-5.7)=1-0.2954=0.7064
$$

$$
\text { > } 1-\operatorname{pnorm}(-5.7,-4, \operatorname{sqrt}(10))=.7064
$$

c.

$$
P(-2.0 \leq X \leq 8.6)=0.5764
$$

$$
>\operatorname{pnorm}(8.6,-4, \operatorname{sqrt}(10))-\operatorname{pnorm}(-2.0,-4, \operatorname{sqrt}(10))=.5764
$$

d.

$$
x^{*}=103.3707 .
$$

> qnorm(.3,104,sqrt(1.44)) $=103.3707$
6. a.

$$
P(0.65<X<0.9)=0.9342
$$

b.

$$
P(X \geq .7840)=.6
$$

c.

$$
0.6760<x<0.9240
$$

