Stat/For/Hort 571 - Fall 2003

Assignment 4 - Brief Solutions

2 (a) For I, $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\frac{5^{2}}{2}=12.5$; For II, $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\frac{8^{2}}{5}=12.8$. So, I is more precise.
(b) $\bar{X} \sim N\left(63,8^{2} / 5\right)$. So,

$$
\begin{aligned}
P(60 \leq \bar{X} \leq 65) & =P\left(\frac{60-63}{\sqrt{8^{2} / 5}} \leq Z \leq \frac{65-63}{\sqrt{8^{2} / 5}}\right) \\
& =P(-0.8385 \leq Z \leq 0.559) \\
& =1-P(Z>0.8385)-P(Z>0.559) \\
& =1-0.2005-0.2871=0.5118
\end{aligned}
$$

(c) $\operatorname{Var}\left(\frac{X+Y}{2}\right)=\frac{\operatorname{Var}(X)+\operatorname{Var}(Y)}{4}=22.25$

So, the standard deviation is 4.717
$3 P\left(\sum_{i=1}^{20} X_{i}<40\right)=P\left(Z<\frac{40-2.2 * 20}{\sqrt{20 * 0.2}}\right)=P(Z<-2)=0.02275$
4 (a)

$$
X \sim B(n=180, p=0.3)
$$

By normal approximation, $X_{n a} \sim N(n p, n p(1-p))=N(54,37.8)$. So,

$$
\begin{aligned}
P(X \geq 50) & \approx P\left(X_{n a} \geq 50\right) \\
& =P\left(\frac{X_{n a}-54}{\sqrt{37.8}} \geq \frac{50-54}{\sqrt{37.8}}\right) \\
& =P(Z \geq-0.6506) \\
& =0.7423
\end{aligned}
$$

(b) By normal approximation, $Y_{n a} \sim N(p, p(1-p) / n)=N(0.3,0.001167)$. So,

$$
\begin{aligned}
P(0.25<Y<0.40) & \approx P\left(0.25<Y_{n a}<0.40\right) \\
& =P(-1.46385<Z<2.9277) \\
& =0.9267
\end{aligned}
$$

5 (a) $a=77.9167, b=1.8333$
(b) $a=44.3971, b=11.1176$
(c) $0.950 \leq P\left(S^{2} \leq 46\right) \leq 0.975,0.005 \leq P\left(S^{2} \geq 58\right) \leq 0.01$
(d) $\sigma^{2}=6.9314, b=3.1365$
(e) μ
(f) $a=9.737, b=4.515$
(g) $0.4216,0.8860$

6 Let

$$
\begin{aligned}
& X_{1}=\left\{\begin{array}{lll}
1 & : & \text { if Ray shows up at } 4 \mathrm{pm} \\
0 & : & \text { otherwise }
\end{array}\right. \\
& X_{2}= \begin{cases}1 & : \\
0 & \text { if Felix shows up at } 4 \mathrm{pm} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then, $X_{1} \sim B(1,0.8), X_{2} \sim B(1,0.6)$, and X_{1} and X_{2} are independent.
Let $X=X_{1}+X_{2}$.
(a)

$$
\begin{aligned}
P(X \leq 1) & =P(X=0)+P(X=1) \\
& =P\left(X_{1}=0, X_{2}=0\right)+P\left(X_{1}=1, X_{2}=0\right)+P\left(X_{1}=0, X_{2}=1\right) \\
& =P\left(X_{1}=0\right) P\left(X_{2}=0\right)+P\left(X_{1}=1\right) P\left(X_{2}=0\right)+P\left(X_{1}=0\right) P\left(X_{2}=1\right) \\
& =(0.2)(0.4)+(0.8)(0.4)+(0.2)(0.6) \\
& =0.52
\end{aligned}
$$

(b) They are not mutually exclusive.
(c)

$$
\begin{array}{cccc}
x & 0 & 1 & 2 \\
\hline p(x) & 0.08 & 0.44 & 0.48
\end{array}
$$

(d)

$$
\begin{aligned}
E(X) & =E\left(X_{1}+X_{2}\right) \\
& =E\left(X_{1}\right)+E\left(X_{2}\right) \\
& =0.8+0.6 \\
& =1.4
\end{aligned}
$$

